
Kizzle: A Signature Compiler for Exploit Kits
MSR-TR-2015-12

Ben Stock
FAU Erlangen-Nuremberg

Benjamin Livshits and Benjamin Zorn
Microsoft Research

Abstract—In recent years, the drive-by malware
space has undergone significant consolidation. Today,
the most common source of drive-by downloads are
the so-called exploit kits. Exploit kits signify a drastic
consolidation of the process of malware creation and
delivery. Exploit kit authors are often significantly
more skillful and better financially motivated than an
average “standalone” JavaScript malware author. This
paper presents Kizzle, the first prevention technique
specifically designed for finding exploit kits.

Our analysis of some of the code found in exploit
kits shows that while the actual JavaScript delivered
by kits varies greatly, the code observed after it is
sufficiently unpacked and deobfuscated varies much
less. The approach taken by Kizzle is based in our
observation that, while exploit kits change the malware
they deliver frequently, kit authors generally reuse
much of their code from version to version. Ironically,
this well-regarded software engineering practice allows
us to build a scalable and precise detector that is able
to quickly respond to superficial but frequent changes
in exploit kits.

Kizzle is a signature compiler that is able to gen-
erate signatures for detecting exploit kits delivering
JavaScript to browsers. These signatures compare fa-
vorably to those created by hand by security analysts.
Yet Kizzle is highly responsive in that able to automat-
ically generate new malware signatures within hours.
Our approach will reduce the imbalance between the
attacker who often only needs to make cosmetic changes
to their malware to thwart detection, and the defender,
whose role requires much manual effort.

Our experiments show that Kizzle produces high-
accuracy signatures using a scalable cloud-based anal-
ysis. When evaluated over a month-long period, false
positive rates for Kizzle are under 0.03%, while the false
negative rates are under 5%. Both of these numbers
compare favorably with the performance of commercial
AV engines using hand-written signatures.

I. Introduction

The landscape of drive-by download malware has
changed significantly in recent years. There has been a
great deal of consolidation in malware production and a
shift from attackers writing custom malware to almost
exclusively basing drive-by download attacks on exploit
kits (EKs) [20]. This approach gives attackers an advan-
tage by allowing them to share and quickly reuse malware
components in line with the best of software engineering
guidelines. It is the natural evolution of the malware
ecosystem [12] to specialize in individual tasks such as

CVE discovery, packer creation, and malware delivery. We
observe that this consolidation, while benefiting attackers,
also allows defenders significant opportunities.

From ad-hoc to structural diversity: Indeed, the
reliance on EKs implies a great deal of structural diver-
sity in deployed malware. While five years ago we may
have had deployed variants of the same JavaScript-driven
heap spraying exploit written by two independent hackers,
today much of the time malware variants will come by as
a result of malware individualization performed by an EK
as well as natural changes in the EK over time.

...

outer layer inner layer

Fig. 1: Malware variants at different layers of the “malware
onion”. As we unpack the malware further, we observe fewer
variants and more code reuse.

There is virtually no deployed JavaScript malware that
is not obfuscated in some way; at runtime, the obfus-
cated code is unpacked, often multiple times, to get to
the ultimate payload. We observe that in practice, much
EK-generated malware operates like an onion: the outer
layers change fast, often via randomization created by code
packers, while the inner layers change more slowly, for
example because they contain rarely-changing CVEs.

Arresting the malware cycle: Malware development is
chiefly reactive in nature: malware producers create and
test their wares against the current generation of readily
available detection tools such as AV engines, EmergingTh-
reats signatures, or sites such as VirusTotal. In a constant
arms race with the AV industry, these kits change part
of their code to avoid detection by signature-based ap-
proaches. While these changes may be distinct between
two versions of the same kit, the underlying structure of
the fingerprinting and exploitation code rarely changes.

This attack-defense pattern is the fundamental nature
of the adversarial cycle (Figure 7), as has been noted as



EK Flash Silverlight Java Adobe Reader Internet Explorer AV check

Sweet Orange 2014-0515 Unknown1 2013-2551, 2014-0322 No
Angler 2014-0507, 2014-0515 2013-0074 2013-0422 2013-2551 Yes
RIG 2014-0497 2013-0074 Unknown 2013-2551 Yes
Nuclear exploit kit (2013-5331), 2014-0497 2013-2423, 2013-2460 2010-0188 2013-2551 Yes

Fig. 2: CVEs used for each malware kit (as of September 2014). The CVEs are broken down into categories.

early as 20 years ago [25]. Unfortunately, presently, in the
drive-by malware space the attacker has a considerable
advantage in terms of the amount of work involved. Un-
fortunately, malware variants are relatively easy to create,
most typically by changing the unpacker the attacker
uses and testing their variant against VirusTotal. Indeed,
the attacker can easily automate the process of variant
creation and testing.

A. Kizzle

This paper proposes Kizzle, a signature compiler that
automates the process of synthesizing signatures from
captured malware variants. Kizzle gives defenders greater
automation in the creation of AV signatures. Our scalable
cloud-based implementation allows defenders to generate
new signatures for malware variants observed the same day
within a matter of hours. Moreover, because Kizzle creates
signatures in an existing AV format, it takes advantage of
a well-established deployment channel, i.e. AV signature
update, and fits seamlessly into the existing malware
defense ecosystem. Of course, the focus of Kizzle is on
exploit kits only, whereas AV engines handle a much wider
range of threats.

At the heart of Kizzle is a malware clustering approach
that matches new malware clusters with previously-
recognized malicious clusters by understanding the process
of malware unpacking. As shown in Figure 1, more clusters
exist at outer malware layers than exist at inner, more
slowly changing layers. While we used a simple variant
of k-means that we deployed on a cluster of computers,
note, however, that a different clustering technique may
be substituted in place of the one we used. We do not
claim clustering as a contribution of this paper, as it
is a standard technique in malware detection research
and more complex techniques are available in the lit-
erature. In our implementation, however, we aimed to
avoid complexity when it came to machine learning. This
deliberate simplicity of our technical approach is a boon
to our technique, making it more accessible to engineers
who are the end-users of Kizzle. On the basis of created
clusters, Kizzle generates AV signatures which we used for
evaluation.

B. Contributions

This paper makes the following contributions:

Insight: Through detailed examination of existing exploit
kits we document the evolution of these kits over time,
noting how they grow and evolve. In particular, EKs
often evolve by appending new exploits, the outer packer

changes without major changes to the inner layer, and
different EK families “borrow” exploits from each other.
These observations suggest that there is a great deal of
commonality and code reuse, both across EK versions,
and between the different EKs, which enables EK-focused
detection strategies.

Clustering in the cloud: Based on these observations
we built a high-performance processing pipeline for pre-
processing the JavaScript code into a structured token
stream and parallelizing the process of clustering to be
run in the cloud (50 machines in our deployment). Lastly,
the clusters are matched with known exploit kits for
both marking them as either benign or malicious and kit
identification.

Signature generation: Out of the detected code clusters,
we propose an algorithm for quickly automatically gener-
ating structural signatures which may be deployed within
an anti-virus engine. Kizzle signatures are comparable in
quality and readability to those a human analyst may
write. With these structural signatures whose accuracy
rivals those written by analysts, we can track EK changes
in minutes rather than days. Kizzle signatures can be also
deployed within the browser, enabling fast detection at
JavaScript execution runtime.

Evaluation: Our longitudinal experimental evaluation
shows that automatically-produced structural signatures
are comparable to those produced manually. We compare
Kizzle against a widely used commercial AV engine and
find that it produces comparable false positive and false
negative rates for the exploit kits we targeted. When
evaluated over a month-long period, false positive rates
for Kizzle are under 0.03%, while the false negative rates
are under 5%.

C. Paper Organization

The rest of the paper is organized as follows. Section II
gives some background on exploit kits and how they are
typically constructed. Section III provides some of the
technical details. Section IV contains a detailed experi-
mental evaluation. Section V talks about the limitations
of our approach. Finally, Sections VI and VII summarize
related work and conclude.

II. Background

The last several years have witnessed a shift from
unique drive-by downloads to a consolidation into so-

1Note that for some of the kits, while a Java exploit was present,
no version checking was conducted by the kit, thus determining the
specific CVE is difficult if not impossible.

2



called Exploit Kits, which incorporate a variety of exploits
for known vulnerabilities. This has several advantages
for all malicious parties involved. As mentioned in the
Microsoft Security Intelligence Report V16, “Commercial
exploit kits have existed since at least 2006 in various
forms, but early versions required a considerable amount
of technical expertise to use, which limited their appeal
among prospective attackers. This requirement changed
in 2010 with the initial release of the Blackhole exploit
kit, which was designed to be usable by novice attackers
with limited technical skills.”

Exploit kits bring the benefits of specialization to mal-
ware production. Indeed, a botnet herder can now focus
on development of his software rather than having to build
exploits that target vulnerabilities in browser and plugins.
On the other hand, the maintainer of a single exploit
kit may use it to distribute different pieces of malicious
software, optimizing his revenue stream. This trend is also
shown by glimpses security researchers sometimes got into
the backend functionality and operation of such kits, such
as detailed information on the rate of successful infection
from the kits [15]. Interested readers are referred to [20]
for a more comprehensive summary. Note, however, that
most up-to-date information can be found via blogs like
SpiderLabs2 and “Malware don’t need Coffee3” which are
updated regularly as exploit kit updates emerge.

In this paper we primarily focus on detecting four
popular exploit kits (EKs). Figure 2 shows a brief sum-
mary of information about these EKs. As can be seen
from the table, the EKs under investigation are targeting
vulnerabilities in five browser and plugin components. An
interesting observation in this instance is the fact that the
Nuclear contains an exploit targeting a CVE from 2010
in Adobe Reader, highlighting the fact that exploitable
vulnerabilities are hard to come by.

Note that in September 2014, three of the exploit kits
used the exact same code to check for certain system files
belonging to AV solutions. If such solutions are discov-
ered, the exploit kits effectively stop the attack to avoid
detection.

A. Exploit Kit Structure

Exploit kits (EKs) are typically comprised of several
components organized into layers (see Figure 3). The
components typically include an unpacker, a plugin and
AV detection component, an eval/execution trigger, and,
finally, at least one malicious payload.

unpacker
eval 

trigger
plugin detector payload

Fig. 3: Structure and components of a typical EK.

2http://blog.spiderlabs.com/
3http://malware.dontneedcoffee.com/

1 var buffer="";

2 var delim="y6";

3

4 function collect(text) {

5 buffer += text;

6 }

7

8 collect("47 y642y6100y6");

9 collect("102 y6103y6104 ..");

10

11 pieces = buffer.split(delim);

12

13 screlem = document.createElement("script");

14

15 for (var i=0; i<pieces.length; i++) {

16 screlem.text += String.fromCharCode(pieces[i]);

17 }

18

19 document.body.appendChild(screlem);

(a) RIG

1 var payload =

2 "691722434526012276437

3 1882152398870382188197

4 6426340570143769276221

5 2757616434526211272.."

6 var cryptkey =

7 "Io^Rg_U8$ \\ ep6kAu.rVvn!’Ti15SQqd -

8 #2@\"{( l4xcbt ?>[3E/sP:O<D7*yz|m+Z;JBf)

9 hX9Gw L0CF%KN},&YaMHj=]W";

10 ...

11

12 getter = function(a){

13 return a;

14 };

15

16 thiscopy = this;

17 doc = thiscopy[thiscopy["getter"]("document")]

18 bgc = doc[thiscopy["getter"]("bgColor")];

19

20 evl = thiscopy["getter"]("ev #333366 al")

21 win = thiscopy["getter"]("win #333366 dow")

22

23 thiscopy

24 [win["replace"](bgc ,"")]

25 [evl["replace"](bgc , "")]( payload);

(b) Nuclear exploit kit

Fig. 4: Two typical code unpackers from exploit kits.

To stay competitive, a real-life exploit kit usually comes
equipped with a range of CVEs it attempts to exploit,
which target a wide range of operating systems and
browsers. In the following, we shed light on these com-
ponents, showing how they evolve over time.

Unpackers: The outer-most layer of this onion is typically
used to ensure that a security analyst or a web site admin-
istrator cannot effortlessly determine the inner workings
of the exploit kit. This can either be achieved by packing
the underlying pieces or by at least applying obfuscation
techniques such as string encoding.

Figure 4 shows samples of packers from RIG and Nu-
clear Exploit Kit, highlighting the differences between
them across families. While Nuclear relies on an en-
cryption key that is used when unpacking the malicious
payload, RIG uses a buffer which is dynamically filled
during runtime with the ASCII codes for the payload,
intermixed with a delimiter. We found that this delimiter
is randomized between different versions of the kit. In con-
trast, the encryption key — and therefore the encrypted
payload — for the Nuclear exploit kit differs in every
response, highlighting the fact that the obfuscated code is
difficult to pattern-match on.

Plugin and AV detection code: All major EKs use

3



6/1/2014 8/31/2014
6/8/2014 6/15/2014 6/22/2014 6/29/2014 7/6/2014 7/13/2014 7/20/2014 7/27/2014 8/3/2014 8/10/2014 8/17/2014 8/24/2014

8/19/2014

eher_vam#

6/18/2014

eva#FFFFFFl

7/20/2014

e3fwrwg4#

7/11/2014

e~##...~#v~#a~#l

7/17/2014

e3X@@#v..

8/12/2014

Semantic change

6/24/2014

"ev" + var

8/27/2014

CVE 2013-0074 (SL)

6/1/2014

ev#FFFFFFal

8/22/2014

efber443#

8/17/2014

esa1asv

6/14/2014

e#FFFFFFval

7/29/2014

AV detection

6/30/2014

e~v~#...~a~l

8/26/2014

eUluN#

7/9/2014

e~#...~v~a~l
Packer 

changes

Payload 
changes

Fig. 5: Evolution of the Nuclear exploit kit over a three-months period in 2014. In this timeline, packer changes are shown
above the axis and payload changes below the axis. The lion’s share of changes are superficial changes to the packer.

1 function chavs(a) {

2 var xmlDoc = new ActiveXObject("Microsoft.XMLDOM");

3 xmlDoc.async = true;

4 xmlDoc.loadXML(’<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML

1.0 Translation //EN" "res://c:\\ Windows \\ System32 \\

drivers \\’ + a + ’">’);

5 if (xmlDoc.parseError.errorCode != 0) {

6 var err = "Error Code: " + xmlDoc.parseError.errorCode

+ "\n";

7 err += "Error Reason: " + xmlDoc.parseError.reason;

8 err += "Error line: " + xmlDoc.parseError.line;

9 if (err.indexOf(" -2147023083") > 0) {

10 return 1;

11 } else {

12 return 0;

13 }

14 }

15 return 0;

16 }

17

18 if (chavs("kl1.sys") || chavs("tmnciesc.sys") || chavs("tmtdi.

sys") || chavs("tmactmon.sys") || chavs("TMEBC32.sys")

|| chavs("tmeext.sys") || chavs("tmcomm.sys") || chavs("

tmevtmgr.sys")) {

19 exit();

20 }

Fig. 6: Detecting and avoiding Anti-Virus solutions.

some form of plugin or browser version detection code.
Apart from the fact that, e.g., downloading a malicious
PDF file to a machine which is not running a vulnerable
version of Adobe Reader causes unnecessary traffic, at-
tackers have different reasons to ensure specific versions of
client-side software are running for better targeting [19].

As an example, let us consider a heap-spraying vulnera-
bility in a browser. While the attack might eventually lead
to execution of attacker-controlled payload, exhausting
memory in a browser that is not susceptible to this attack
might crash the browser, which raises the attention of the
user and possibly sends reports to the browser vendor,
prompting attention the attacker would like to avoid. Also,
downloading a malicious file might trigger AV software on
the machine, which again draws attention to the site that
was just visited. We also found that several exploit kit use
measures to determine if a certain AV software is present,
in which case the EK would abort the execution entirely,
as shown in Figure 6. The code leverages the fact that
the XMLDOM implementation in Internet Explorer returns a
different error code depending on whether a file was not
on disk or access was denied to that file. This can be used

to enumerate files on the system. Here, the Trend Micro
(tm*.sys) as well the Kaspersky (kl1.sys) AV engines are
being detected based on drivers installed on the machine.

Version checking code is closely tied with the exploits
that are used — ensuring that a given version of Java is
running on a machine is unnecessary when only targeting
Silverlight vulnerabilities. As we will see, exploits or CVEs
are not frequently added (due to the lack of sufficient
exploitable vulnerabilities) to EKs and so, changes to
plugin detection code also occur quite infrequently. While
in the past client-side detection was developed by each
individual malware author, today, EK authors tend to use
the PluginDetect JavaScript library4 which allows the
extraction of browser and plugin version information with
a simple function call.

Malicious payload: The actual payload typically targets
a set of known vulnerabilities in the browser or plugins. As
can be seen from the Exploit Pack Table5, 5–7 CVEs per
kit is fairly typical. The payload is often interleaved with
plugin detection code, e.g. an HTML element is added to
the DOM pointing to a malicious flash file if a vulnerable
version was detected previously.

Eval trigger: After the malware is fully unfolded, there
is usually a short trigger that starts the EK execution
process. Examples of these triggers are shown on line 19
of Figure 4(a) and lines 23–25 of Figure 4(b).

B. Evolution of an Exploit Kit

To understand how EK components evolve in the wild,
we captured samples of the Nuclear exploit kit over
the course of 3 months and tracked changes to the kit (see
Figure 5).

Changing the packer: The figure illustrates specific
changes that were made to the packer and the payload in
the kit to avoid AV detection on a time line. Many of the
changes were very local, changing the way that the kit ob-
scured calls to eval. For example, between 6/1 and 6/14,
the attacker changed ev#FFFFFFal to e#FFFFFFFval.

4http://www.pinlady.net/PluginDetect/
5http://contagiodump.blogspot.com/2010/06/

overview-of-exploit-packs-update.html

4



Signature 
creation

Signature 
deployment

Malware 
deployed

Initial 
detection 

Attacker 
detects

Malware 
variant 

manual 
work

small
mutation

Fig. 7: Adversarial cycle illustrated. There is a built-in asym-
metry that Kizzle aims to remedy: the response time for the
attacker is only a fraction of that of the defender.

Over the course of the three months, we see a total of 13
small syntactic changes in this category. Only one of these
packer changes (on 8/12) changed the semantics of the
packer.

Appending new exploits: We observed changes to the
other components of the kit, namely plug-in detection, and
payload, much less frequently. On 7/29, AV detection was
added to the plug-in detector component, and on 8/27 a
new CVE was added. Nothing was removed from either
the plug-in detector or the payload over this period. This
data supports our claim that exploit kits change their
outer layer frequently to avoid AV detection, but typically
modify their inner components by appending to them and
even then only infrequently.

Code borrowing: A noteworthy fact in this instance
is that in June, Nuclear exploit kit did not utilize
any code aiming at detecting AV software running on the
victim’s machine. We initially observed this behavior in
the RIG exploit kit starting in May. The exact code we
had observed for RIG was then used in Nuclear starting
in August, obviously having been copied from the rivaling
kit.

Summary: While we use Nuclear exploit kit as a
specific example here, we observed similar changes in all
the exploit kits we studied. In summary, we observe that
kits typically change in three ways, namely changing
the unpacker (frequent), appending new exploits (infre-
quent), and borrowing code from other kits (infrequent).

C. Adversarial Cycle

Exploit kit authors are in a constant arms race with
anti-virus companies as well as rivaling kits’ authors.
While on the one hand, the kits try to avoid detection
by anti-virus engines, their revenue stream is dependent
on the amount of machines they can infect. Therefore, kit
authors always try to include multiple exploits, and if one
kit includes a new exploit, we observed that these exploits
are quickly incorporated into other kits as well.

signature 
released

0%

10%

20%

30%

40%

50%

60%

1
-A

u
g

3
-A

u
g

5
-A

u
g

7
-A

u
g

9
-A

u
g

1
1

-A
u

g

1
3

-A
u

g

1
5

-A
u

g

1
7

-A
u

g

1
9

-A
u

g

2
1

-A
u

g

2
3

-A
u

g

2
5

-A
u

g

2
7

-A
u

g

2
9

-A
u

g

3
1

-A
u

g

AV FN %

Kizzle FN %

Fig. 8: Window of vulnerability for Angler in August, 2014
for a commercial AV engine. The window starts around Au-
gust 13th and continues to roughly August 19th.

As we have seen in the example of the Nuclear ex-
ploit kit above, kit authors attempt to avoid detection
by anti-virus engines by modifying the code, whereas in
turn AV analysts try to create new signatures matching
the modified variants. This process can be abstracted to
the adversarial cycle shown in Figure 7.

Initially, an exploit kit is not detected by AV, which
presents a very challenging problem for an analyst. First
they have to find examples of the undetected variant and
then they need to write a new signature which matches
this undetected variant, trading off precision and recall –
i.e. the signature has to be able to catch all occurrences
of the exploit kit while not blocking benign components.
Naturally this takes time and effort and despite this cost,
AV engines update their signatures frequently to keep pace
with the malware writers. After an analyst is satisfied
they have a sufficiently precise and unique signature, they
deploy it.

At this point, the attacker responds, determining that
his kit is now detected by deployed AV signatures. Once
this step has occurred (left-hand side of the figure), he
takes measures to counter detection, such as slight modifi-
cation to the part of the code that would be suspicious
(such as calls to eval), or, in more drastic cases we
observed in the wild, exchanging entire pieces, such as the
unpacker.

Depending on the type of change, this task can be easily
accomplished within minutes — and more importantly, an
attacker can typically scan his code with an AV solution
to determine if now passes detection. This shows the
imbalance between the involved parties, i.e. the effort and
reaction time of the malicious player can be much lower
than that of the AV vendors.

Example 1 (Angler in August) Figure 8 shows false
negatives for the Angler exploit kit in the month of

5



L2 L4
L3

L1

L2 L3

L1   
  
  
  
  
  

cl
u

st
e

ri
n

g 
m

ac
h

in
e

cl
u

st
e

ri
n

g 
m

ac
h

in
e

...

cl
u

st
e

ri
n

g 
m

ac
h

in
e

cl
u

st
e

ri
n

g 
m

ac
h

in
e

Unknown samples

Fig. 9: Architecture of Kizzle.

August, 2014 for a widely used commercial AV engine6. By
observing the changes to the kit over this time, we under-
stand what happened. Before August 13th, the exploit kit
contained an unencrypted HTML snippet that included
an exploit targeting Java with a specific unique string.
On August 13th, this string was incorporated into the
encrypted body of kit and only written to the document if
a vulnerable version of Java was installed on the system.
This change negated the AVs ability to identify the kit,
resulting in a window of time where variants of the kits
were not detected. j

III. Techniques

In this section, we describe the implementation of Kiz-

zle, which is illustrated at a high level in Figure 9. The
input to Kizzle is a set of new samples and a set of existing
unpacked malware samples which correspond to exploit
kits Kizzle is aiming to detect. The algorithmic elements
of Kizzle include abstracting the samples into token se-
quences, clustering the samples, labeling the clusters, and
generating signatures from the elements of clusters labeled
as malicious. We describe each of these steps in turn with
examples, referring to the pseudocode in Figures 10–15
and Figure 17.

The processing starts with a new collection of samples
(Figure 10). The Main routine shows how Kizzle breaks
the new, “unknown” samples into a set of clusters, la-
bels each cluster either as benign or corresponding to a
known kit, and if the cluster is malicious, generates a
new signature for that cluster based on the samples in
it. We consider each of the parts of the task in turn in the
subsections below.

6We anonymize the exact engine for two reasons: first, we believe
that all engines exhibit the same behavior despite constant efforts
by the analysts to keep them current, and second because EULA
agreements typically prevent disclosing such comparisons.

Main
Inputs: unlabeled samples
Returns: generated signatures for all malicious samples

1: clusters = Cluster(samples)
2: for all cluster in clusters do
3: unpackedSample = Unpack(cluster.prototype)
4: label = LabelSample(unpackedSample)
5: if label != ”unknown” then
6: yield CreateSignature(cluster)
7: end if
8: end for

Fig. 10: Kizzle Main�samples�. Main function of Kizzle,
invokes the components, namely clustering and unfolding, fol-
lowed by the process of labeling of resulting clusters and
signature creation for each malicious cluster.

Cluster
Inputs: unlabeled samples
Returns: clustered, unlabeled samples

1: partitions = Partition(samples)
2: for all partition in partitions do
3: partitiontokens = map(partition, lambda x: tokenize(x))
4: clusters[i] = DBSCAN(partitiontokens)
5: i++
6: end for
7: return DBSCAN(clusters)

Fig. 11: Function Cluster�samples�. After partitioning the
input, the content is abstracted to the tokenized form and
subsequently, DBSCAN is used to cluster the samples.

A. Clustering Samples

The process of clustering the input samples is com-
putationally expensive, and as a result, benefits from
parallelization across a set of machines. Figure 11 explains
the process.

The first step is to randomly partition the samples
across a cluster of machines (line 1). For each par-
tition, the samples are first tokenized from the con-
crete JavaScript source code represented as Unicode to
a sequence of abstract tokens that include Keyword,
Identifier, Punctuation, and String. Figure 12 gives

6



Token Class

var Keyword
Euur1V Identifier
� Punctuation
this Identifier
� Punctuation
”l9D” String
� Punctuation
� Punctuation
”ev#333399al” String
� Punctuation

Fig. 12: Example of tokenization in action.

LabelSample
Inputs: single unlabeled sample
Returns: label for that sample

1: global knownMalwareSamples
2: sampleWinnows = WinnowHistogram(sample)
3: for all kMS in knownMalwareSamples do
4: kMSWinnows = WinnowHistogram(kMS.sample)
5: overlap = HistogramOverlap(kMSWinnows, sampleWinnows)
6: if overlap > kMS.threshold then
7: return kMS.Family
8: end if
9: end for

10: return ”unknown”

Fig. 13: Function LabelSample�sample�. Given a set of known
malicious samples and their winnow histograms, the histogram
is calculated for the sample in question to quickly check the
code overlap.

an example of tokenization in action.
We cluster the samples based on these token strings in

order to eliminate artificial noise created by an attacker in
the form of randomized variable names, etc. We apply a
hierarchical clustering algorithm, using the edit distance
between token strings as a means of determining the
distance between any two samples. We have experimen-
tally determined that a threshold of 0.10 is sufficient to
generate a reasonably small number of clusters, while
not generating clusters that are too generic, i.e. contain
samples that do not belong to the same family of malware
(or snippets of benign code). As an algorithm, we use
the DBSCAN clustering algorithm [11] (line 4). In the
reduction phase, the clusters determined by each partition
are combined in a final step (line 7).

Jumping back to the Main function in Figure 10, we then
consider each cluster in turn (line 2), selecting a single
prototype sample (piece of JavaScript code) from the
cluster, unpacking it (if it is packed) and then attempting
to label it (line 4)7. With the unpacked cluster prototype,
we then attempt to label the cluster.

B. Labeling Clusters

Figure 13 shows how we label clusters using winnow-
ing [34], a technique originally proposed for detecting
plagiarism in code. Using a collection of known unpacked

7In our experiments, because we focus on a small number of
exploit kits, we chose to implement an unpacker for each exploit kit
manually. More general techniques such as emulation or collecting
the unpacked sample over the course of executing it in JavaScript
engine are possible as well.

CreateSignature
Inputs: malicious cluster
Returns: signature to match all files in the cluster

1: DistinctValues = []
2: CommonSubseq = BinarySearch(extractNgrams, cluster, max=200)
3: if CommonSubseq.length < 20 then
4: return <invalid>
5: end if
6: for all member in cluster do
7: RelevantTokens = ExtractTokens(member, CommonSubseq)
8: for all token in RelevantTokens do
9: if token.value not in DistinctValues[token.offset] then

10: DistinctValues[token.offset].add(token.value)
11: end if
12: end for
13: end for
14: signature = ””
15: for all values in DistinctValues do
16: signature += GenerateMatchingRegexp(values)
17: end for
18: if signature.length < 100 then
19: return <invalid>
20: end if
21: return signature

Fig. 14: Function CreateSignature�cluster�. After finding
the longest common token sequence, the concrete values for
those tokens are collected and a matching regular expression is
generated.

extractNgrams
Inputs: cluster, length of n-gram
Returns: distinct n-grams that can be found once if every file of the clus-
ter

1: for all member in cluster do
2: tokens = tokenize(member)
3: tokenNgrams = getNgrams(tokens, n)
4: NgramHistogram = histogram(tokenNgrams)
5: UniqueNgrams = NgramHistogram.extract(count=1)
6: for all ngram in UniqueNgrams do
7: GlobalHistogram[ngram].count += 1
8: end for
9: end for

10: for all ngram in GlobalHistogram do
11: if ngram.count == size(cluster) then
12: yield ngram
13: end if
14: end for

Fig. 15: Function extractNgrams�cluster,n�. Finds all n-
grams for a given n that occur exactly once in every file of
the analyzed cluster.

malware samples (with exploit family labels), we generate
a winnow histogram for the cluster prototype and com-
pare it against the winnow histograms for all the known
malware samples. If there is sufficient overlap (based on
a threshold that we determined empirically is malware
family specific) (line 6), then we consider the cluster
represented by the prototype to be malicious and from
the corresponding family.

C. Signature Creation

For each cluster that is labeled as malicious, we gener-
ate a signature from the packed samples in that cluster
with the following method (Figure 14). The first step
in signature creation is to find a maximum value of N
such that every sample in a cluster has a common token
string subsequence of length up to N tokens. We cap this
maximum length at 200 tokens. We find this subsequence
with binary search, varying N and calling the function

7



in Figure 15, extractNgrams, to determine if a common
subsequence of length N exists. A additional constraint,
imposed during the search for a common subsequence, is
that the subsequence is unique in every sample (Figure 15,
line 5).

Once the length of the common subsequence is known
and sufficiently long (sequences that are too short are
discarded), the exact sequences of tokens and characters
in each of the samples from the malicious cluster are
extracted (Figure 14, line 4). In addition, for each offset in
the token sequence, the algorithm determines the distinct
set of concrete strings found in the different samples at
that token offset.

Figure 16 illustrates this process, showing a cluster with
three samples and the process of determining the distinct
values at each offset. Note, that although the original
string contains quotation marks, these are automatically
removed by AV scanners in a normalization step. There-
fore, we omit these in the final signature. Finally, with the
array DistinctValues containing all variants appearing
in the samples at each offset, the algorithm generates a
regular expression-based signature, one token at at time
(Figure 14, line 13).

Euur1V =  this   [   "l9D“   ]   ( "ev#333399al“  )   ;

jkb0hA   =  this   [   "uqA“   ]   ( "ev#ccff00al“  )   ;

QB0Xk    =  this   [  "k3LSC“  ]   ( "ev#33cc00al“  )   ;

[A-Za-z0-9]{5,6}=this\[[A-Za-z0-9]{3,5}\]\(.{11}\);

Euur1V
jkb0hA
QB0Xk

= this [ ] (
l9D
uqA

k3LSC

ev#333399al
ev#ccff00al
ev#33cc00al

) ;

Fig. 16: An example of signature generation in action.

Figure 17 describes how a regular expression is gen-
erated from a set of distinct values. If the value is the
same across all samples (line 1), add the concrete value
to the signature. Otherwise, the algorithm must generate
a regular expression that will match all elements of this
set. While this is a well-studied problem in general (The
L� algorithm [2] can infer a minimally accepting DFA),
we implement a domain-specific approach focusing on our
expectations of the kinds of diversity that malware writers
are likely to inject into their code.

Our approach turns out to be highly scalable. We
compute an expression that will accept strings of the
observed lengths, and containing the characters observed
by drawing on a predefined set of common patterns such
as �a � z��, �a � zA � Z0 � 9��, etc. The current approach
uses brute force to determine a working pattern (line 9)
but a more selective approach could build a more efficient
decision procedure from the predefined templates.

Example 2 (Kizzle signatures) Figure 18 shows sig-
nature generated by Kizzle that match the Nuclear and

GenerateMatchingRegexp
Inputs: distinct values
Returns: regular expression that matches all distinct val-
ues

1: if values.length == 1 then
2: return values[0]
3: end if
4: minlength = min(values, key=length)
5: maxlength = max(values, key=length)
6: lengthdef = ”” + minlength + ”,” + maxlength + ””
7: AllUsedChars = set(values.join().split())
8: PredefinedRegexp = ([”̂ [A-Z+]$”, ”̂ [A-Z0-9+]$”, ...])
9: for all regexp in PredefinedRegexp do

10: if regexp.matches(AllUsedChars) then
11: return regexp + lengthdef
12: end if
13: end for
14: return ”.” + lengthdef

Fig. 17: Function GenerateMatchingRegexp�values�. Gen-
erates a regular expression that expresses all distinct values
collected in the previous step.

(?<var0 >[0-9a-zA-Z]{3 ,6})=\[\[(? <var1 >

[0-9a-zA-Z]{3 ,6})\[(? <var2 >[0-9a-zA-Z"’]

{5 ,8})]\("cUluNoUluNnUluNcUluNaUluNtUluN"\),

\k<var1 >\[\k<var2 >]\("sUluNuUluNbUluNsUluNtUluNrUluN"\),

\k<var1 >\[\k<var2 >]\("dUluNoUluNcUluNuUluNmUluNeUluNnUluNtUluN"\),

\k<var1 >\[\k<var2 >]\("CUluNoUluNlUluNoUluNrUluN"\),

\k<var1 >\[\k<var2 >]\("lUluNeUluNnUluNgUluNtUluNhUluN"\)],

\[\k<var1 >\[\k<var2 >]\((? <var3 >.{57})\) ,\k<var1 >

\[\k<var2 >]\((? <var4 >.{67})\) ,\k<var1 >

\[\k<var2 >]\("rUluNeUluNpUluNlUluNaUluNcUluNeUluN"\)]]

var(?<var5 >[0-9a-zA-Z]{3 ,7})

(a) Nuclear exploit kit

\)\)\)\{ varaa=xx\.join\(""\)ar\[\( Math\.exp\(1\)- Math\.E\)]

\[\(1\)\*2]="l"ar \[\(1\)]\[3]="WWWWWWWbEWsjdhfW"varq=

\(Math\.exp\(1\)- Math\.E\)for

\(qq<ar\[\( Math\.exp\(1\)- Math\.E\)]\. length \+

\+q\)\{aa=aa\. cnvbsdfYTQUWETQWUEASA \( newRegExp \(ar \[\(1\)]

\[q\+\(1\)] ,"g"\),ar\[\( Math\.exp\(1\)- Math\.E\)]\[q]\)\}

returnaa \} return""\} function(?<var0 >[a-zA-Z]{6})\(\)

\{varok =\[(?<var1 >[0-9a-zA-Z" ’]{17})\. charAt \(Math\.sqrt

\(196\)\) ,(? <var2 >[0-9a-zA-Z"’]{17})\. charAt \(Math\.sqrt

\(196\)\) ,(? <var3 >[0-9a-zA-Z"’]{17})\. charAt \(Math\.sqrt

\(196\)\) ,(? <var4 >[0-9a-zA-Z" ’]{21})\. charAt \(Math\.sqrt

\(324\)\) ,(? <var5 >[0-9a-zA-Z"’]{21})\.

(b) Sweet orange

Fig. 18: Examples of Kizzle-generated signatures.

Sweet orange. For the first signatures, Kizzle picked up
on the strings delimited by Ulun. While such long strings
that do not naturally occur in benign applications make
the creation of a signature easy, the kit author can easily
change these to avoid detection by a matching signature.
Since, however, Kizzle generates these automatically, this
advantage vanishes.

Also, Kizzle picked up on the usage of templatized
variable names, as can be observed by the combination
of var1 and var2 in lines 4 to 9. While the Sweet
orange EK does not use such delimiters, it uses a simple
obfuscation technique, namely exchanging static integer
values with calls to the Math.sqrt function, allowing it to
simply change this obfuscation by using other mathemat-
ical operations. Again, Kizzle picked up on this property
of the packed payload, generating a precise signature. j

IV. Evaluation

In this section we evaluate the effectiveness of Kizzle. To
evaluate Kizzle, we gathered potentially malicious samples

8



0

100,000

200,000

300,000

400,000

500,000

600,000

1
-A
u
g

2
-A
u
g

3
-A
u
g

4
-A
u
g

5
-A
u
g

6
-A
u
g

7
-A
u
g

8
-A
u
g

9
-A
u
g

1
0
-A
u
g

1
1
-A
u
g

1
2
-A
u
g

1
3
-A
u
g

1
4
-A
u
g

1
5
-A
u
g

1
6
-A
u
g

1
7
-A
u
g

1
8
-A
u
g

1
9
-A
u
g

2
0
-A
u
g

2
1
-A
u
g

2
2
-A
u
g

2
3
-A
u
g

2
4
-A
u
g

2
5
-A
u
g

2
6
-A
u
g

2
7
-A
u
g

2
8
-A
u
g

2
9
-A
u
g

3
0
-A
u
g

3
1
-A
u
g

Fig. 19: Grayware volume over time for a month-long time
window.

using a crawler with a browser instrumented to gather
telemetry collected from IE 11 installations on pages that
have ActiveX content. We worked with an anti-malware
vendor to hook into the IExtensionValidation interface8

for data extraction.
The Validate method of this interface allows the

capture of htmlDocumentTop and htmlDocumentSubframe

which is how we get access to the underlying HTML
and JavaScript. Our focus on IE 11 biases our collection
towards newer, more actively supported kits that have
payloads that work in IE 11. Because we sample data
during a potentially suspicious operation, the fraction of
malware we see is likely to be substantially higher than
a typical browser will see, hence we consider our data
stream “grayware”. We ran the crawler daily for a month
(August 2014) and the overall number of samples in the
stream of grayware data is shown in Figure 19.

Throughout the rest of this section, we focus on the four
exploit kits that are most prevalent in our data: Nuclear,
Sweet orange, Angler, and RIG. All these kits follow
the pattern we describe in Section II: they are packed on
the outside and are relatively similar when unpacked.

We compare Kizzle with a state-of-the-art commercial
AV implementation, which we anonymize to avoid drawing
generalizations based on our limited observations (our
position is that all commercial AV vendors have similar
challenges). Because we focus solely on only four exploit
kits, drawing more general conclusions about the quality
of the product based on these results would be incorrect.

A. Experimental Setup

Figure 20 shows our measurements of how these kits
change over the course of a month in our data. We measure
the overlap between the centroids of malicious clusters on
each day with centroids of the clusters of all previous
days based on winnowing (Section III) and report the
maximum overlap. Figure 20 shows that, for three of the
four kits we measured, the amount of change from over the
course of the entire month, is quite small, often only a few
percent. This contrasts greatly from the external changes
at the level of the packed kits as shown in Figure 5, which

8http://msdn.microsoft.com/en-us/library/dn301826(v=vs.
85).aspx.

96%	  

97%	  

98%	  

99%	  

100%	  

8/
2/
14
	  

8/
4/
14
	  

8/
6/
14
	  

8/
8/
14
	  

8/
10
/1
4	  

8/
12
/1
4	  

8/
14
/1
4	  

8/
16
/1
4	  

8/
18
/1
4	  

8/
20
/1
4	  

8/
22
/1
4	  

8/
24
/1
4	  

8/
26
/1
4	  

8/
28
/1
4	  

8/
30
/1
4	  

(a) Nuclear

50%	  

55%	  

60%	  

65%	  

70%	  

75%	  

80%	  

85%	  

90%	  

95%	  

8/
2/
14
	  

8/
4/
14
	  

8/
6/
14
	  

8/
8/
14
	  

8/
10
/1
4	  

8/
12
/1
4	  

8/
14
/1
4	  

8/
16
/1
4	  

8/
18
/1
4	  

8/
20
/1
4	  

8/
22
/1
4	  

8/
24
/1
4	  

8/
26
/1
4	  

8/
28
/1
4	  

8/
30
/1
4	  

(b) Sweet Orange

99%	  

100%	  

8/
2/
14
	  

8/
4/
14
	  

8/
6/
14
	  

8/
8/
14
	  

8/
10
/1
4	  

8/
12
/1
4	  

8/
14
/1
4	  

8/
16
/1
4	  

8/
18
/1
4	  

8/
20
/1
4	  

8/
22
/1
4	  

8/
24
/1
4	  

8/
26
/1
4	  

8/
28
/1
4	  

8/
30
/1
4	  

(c) Angler

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

8/
2/
14
	  

8/
4/
14
	  

8/
6/
14
	  

8/
8/
14
	  

8/
10
/1
4	  

8/
12
/1
4	  

8/
14
/1
4	  

8/
16
/1
4	  

8/
18
/1
4	  

8/
20
/1
4	  

8/
22
/1
4	  

8/
24
/1
4	  

8/
26
/1
4	  

8/
28
/1
4	  

8/
30
/1
4	  

(d) RIG

Fig. 20: Similarity over time for a month-long time window.
Note that the y axis is different across the graphs: sometimes,
the range of similarities is very narrow.

happen every few days. The example in Figure 4(b) shows
that EKs use payload encryption minimizing the amount
of syntactic similarity between the variants that employ
different encryption keys.

These observations confirm our hypothesis that most of
the change is external and happens on the packer that
surrounds the logic of the kit. In the case of Nuclear
exploit kit, there is very little change at all. We do note
that RIG (Figure 20(d)) is an outlier, showing changes
of 50% from day over day. This behavior is explained by
noticing that the changes reflect changes in the embedded
URLs of the kit, and, given the body of the kit is relatively
short, these URLs alone represent a significant enough part

9



0.0

0.2

0.4

0.6

0.8

1.0

1.2
1
-A
u
g

3
-A
u
g

5
-A
u
g

7
-A
u
g

9
-A
u
g

1
1
-A
u
g

1
3
-A
u
g

1
5
-A
u
g

1
7
-A
u
g

1
9
-A
u
g

2
1
-A
u
g

2
3
-A
u
g

2
5
-A
u
g

2
7
-A
u
g

2
9
-A
u
g

3
1
-A
u
g

Fig. 21: Running time in megabytes per second, for a month-
long time window.

483

594

478

601

842

465

613 620

507 502 508
587

354
305

626 637
558

869

651

453

284

1,152

620

742

562

382

481

604
516

962

420

0

200

400

600

800

1,000

1,200

1,400

1
-A
u
g

2
-A
u
g

3
-A
u
g

4
-A
u
g

5
-A
u
g

6
-A
u
g

7
-A
u
g

8
-A
u
g

9
-A
u
g

1
0
-A
u
g

1
1
-A
u
g

1
2
-A
u
g

1
3
-A
u
g

1
4
-A
u
g

1
5
-A
u
g

1
6
-A
u
g

1
7
-A
u
g

1
8
-A
u
g

1
9
-A
u
g

2
0
-A
u
g

2
1
-A
u
g

2
2
-A
u
g

2
3
-A
u
g

2
4
-A
u
g

2
5
-A
u
g

2
6
-A
u
g

2
7
-A
u
g

2
8
-A
u
g

2
9
-A
u
g

3
0
-A
u
g

3
1
-A
u
g

Fig. 23: Number of clusters generated daily over time for
a month-long time window.

of the code to indicate a 50% churn.

B. Cluster-Based Processing Performance

Our implementation is based on using a cluster of
machines and exploiting the inherent parallelism of our ap-
proach. For the performance numbers found in this section,
we used 50 machines for sample clustering and signature
generation. Figure 21 which shows the normalized running
time over the same month-long period of data consistently
shows running times of about 1 MB per second.

Our experience shows that clustering takes the majority
of this time, as opposed to signature generation. The re-
duce step described in Section III-A is often the bottleneck
when we needed to reconcile the clusters computed across
the distributed machines. With more effort, we believe
that the reduction step can be parallelized as well in
future work to improve our scalability. In practice, our
runs consistently completed in about 90 minutes when
processing the data collected by our crawl. We believe
that this processing time is adequate and can be further
improved with more machines.

C. Clustering Process

Figure 23 shows the number of clusters over time de-
tected by the Kizzle clustering process. The majority of
clusters every day correspond to benign code, while a
handful are detected as malicious and labeled as one of the
exploit kits above. The figure shows that despite the fact
that we are analyzing grayware, much of what we observe
is benign code that falls into a relatively small number of
frequently observed clusters.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

Benign

(a) Benign clusters.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

Malicious

(b) Malicious clusters.

Fig. 24: A bar plot showing the number of samples per cluster
on the y axis, for both benign and malicious clusters. Each bar
represent a single cluster, sorted by the number of contained
samples.

When we compared the number of samples per cluster
by focusing on a single day within the month of August,
we do not see significant differences between the number
of samples in benign and malicious clusters, as shown
in the two charts in Figure 24. Each bar represents a
single detected cluster. We see a wide variety of benign
clusters — over a hundred of them — some with as many
as 10,000 samples in size. There only several malicious
clusters corresponding to the exploit kits we are looking
for — a small fraction of the total detected, although, two
of them contain at least 1,000 elements. At the same time,
we cannot, for example, conclude that clusters with many
samples are necessarily malicious; this is simply not the
case.

D. Characterizing Kizzle-Generated Signatures

Figure 18 shows some examples of the signatures pro-
duced by Kizzle. Overall, two things immediately stand
out for the automatically-generated signatures: they are
long and they are very specific. Both of these character-
istics contribute to Kizzle signatures being less prone to
false positives, as we show in Figure 25.

10



NEK.sig1 NEK.sig2 sa1as her_vam
fber443

NEK.sig3

UluN

NEK.sig4

ANG.sig1
ANG.sig2 ANG.sig3

RIG.sig1

RIG.sig2

RIG.sig3

RIG.sig4

RIG.sig5 RIG.sig6 RIG.sig7

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

1
-A
u
g

2
-A
u
g

3
-A
u
g

4
-A
u
g

5
-A
u
g

6
-A
u
g

7
-A
u
g

8
-A
u
g

9
-A
u
g

1
0
-A
u
g

1
1
-A
u
g

1
2
-A
u
g

1
3
-A
u
g

1
4
-A
u
g

1
5
-A
u
g

1
6
-A
u
g

1
7
-A
u
g

1
8
-A
u
g

1
9
-A
u
g

2
0
-A
u
g

2
1-
A
u
g

2
2-
A
u
g

2
3-
A
u
g

2
4-
A
u
g

2
5-
A
u
g

2
6-
A
u
g

2
7-
A
u
g

2
8-
A
u
g

2
9-
A
u
g

3
0-
A
u
g

3
1-
A
u
g

RIG

Angler

Sweet orange

Nuclear

Fig. 22: Signature lengths over time for a month-long time window. Red call-outs are new signatures issued by AV. Green
oval call-outs show delimiter changes in Nuclear exploit kit. In this figure, signature names have been anonymized to avoid
violating the terms of use.

Figure 22 shows the lengths of Kizzle-generated signa-
tures over the month-long period of time. We show the
length of the signatures, in characters, on the y axis of the
graph. Every time there is a “bump” in the line for one of
the EKs, this means that Kizzle decides to create a new
signature. To help the reader correlate Kizzle signatures
with manually-generated signatures, we show the labels
for hand-crafted signatures created to address these EKs
over the same period of time.

To highlight some of the insights, consider Nuclear
exploit kit (blue line) starting on August 17th. As
a packing strategy, Nuclear exploit kit uses a
delimiter, which separates characters ev and al and
win and dow in Figure 4(b). You can also spot this
delimeter-based approach in Figure 18 where a string like
dUluNoUluNcUluNuUluNmUluNeUluNnUluNtUluN unpacks
into document. The strategy that Nuclear exploit kit
uses is to change this delimiter frequently because the
malware writer suspects that AV signatures will try to
match this code.

The green oval call-outs in the figure show signature-
avoiding changes to the delimiter which is part of kit evolu-
tion. The Kizzle algorithm can immediately react to these
minor changes in the body of the kit, as indicated by daily
changes in Kizzle signatures. To contrast with manually-

produced signatures, the first AV signature that we see
responding to these changes emerges on August 25th. Note
that it may be the case the the AV signature did not need
to be updated to be effective, but the figure illustrates
that Kizzle will automatically respond to kit changes on
a day-by-day basis.

E. Precision of Kizzle-Generated Signatures

The quality of any anti-virus solution is based on its
ability to find most viruses with a very low false positive
rate. Our goal for Kizzle is to provide rates comparable to
human-written AV signatures when tested over the month
of data we collected. Figure 25 shows false positive and
false negative rates for Kizzle compared to those for AV.
Overall, false positive rates are lower for Kizzle (except for
a period between August 21 and August 29th). Figure 27
shows a representative false positive. False positive rates
for Kizzle overall are very small: under 0.03%.

Figure 26 shows some of the details of our evaluation.
The kit that gave Kizzle the most challenge was RIG,
which occurred with low frequency in our sample set.
RIG also changed more on a daily basis, as illustrated in
Figure 20. To be able to confirm false positives and false
negatives, we manually evaluated X samples. To obtain
the ground truth, we took the union of samples matched

11



0.00%

0.01%

0.02%

0.03%

0.04%

0.05%

0.06%

0.07%

1
-A

u
g

3
-A

u
g

5
-A

u
g

7
-A

u
g

9
-A

u
g

1
1

-A
u

g

1
3

-A
u

g

1
5

-A
u

g

1
7

-A
u

g

1
9

-A
u

g

2
1

-A
u

g

2
3

-A
u

g

2
5

-A
u

g

2
7

-A
u

g

2
9

-A
u

g

3
1

-A
u

g

False positives for all kits

AV FP %

Kizzle FP %

(a) False positives over time for a month-long time window.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1
-A

u
g

3
-A

u
g

5
-A

u
g

7
-A

u
g

9
-A

u
g

1
1

-A
u

g

1
3

-A
u

g

1
5

-A
u

g

1
7

-A
u

g

1
9

-A
u

g

2
1

-A
u

g

2
3

-A
u

g

2
5

-A
u

g

2
7

-A
u

g

2
9

-A
u

g

3
1

-A
u

g

False negatives for all kits

AV FN %

Kizzle FN %

(b) False negatives over time for a month-long time window.

Fig. 25: False positives and false negatives over time for
a month-long time window: Kizzle vs. AV.

Ground AV Kizzle
EK truth FP FN FP FN

Nuclear 6,106 1 1,671 25 8
Sweet Orange 11,315 0 2 0 1
Angler 40,026 635 4,213 0 196
RIG 1,409 11 30 241 144

Sum 58,856 647 7,587 266 349

Fig. 26: False positives and false negatives: absolute counts
comparing Kizzle vs. AV.

by both AV signatures and the Kizzle approach and
examined the overlap. We were able to manually review all
samples over the month of August within the union of the
two approaches. The manual validation time is a tedious
and sometimes frustrating manual process. We estimate
the overall manual examination time to be 10–15 hours.

Notably, false negative rates for Kizzle are smaller than
those for AV as well. This shows that Kizzle successfully
balances false positive and false negative requirements.
In particular, there is a spike in false negatives between
August 13 and August 21st for AV which Kizzle does not
suffer from. The majority of these false negatives are due to

\},toString:\(\{\}\)\.constructor\.prototype\
.toString,isPlainObject:function\(c\)\{vara=
this,bif\(!c\|\|a\.rgx\.any\.test\(a\.toString\
.call\(c\)\)\|\|c\.window==c\|\|a\.rgx\.num\
.test\(a\.toString\.call\(c\.nodeType\)\)\)\
{return0\}try\{if\(!a\.hasOwn\(c,"constructor"\)
&&!a\.hasOwn\(c\.constructor\.prototype,
"isPrototypeOf"\)\)\{return0\}\}catch\(b\)\
{return0\}return1\},isDefined:function\(b\)\
{returntypeofb!="undefined"\},isArray:
function\(b\)\{returnthis\.rgx\.arr\.test\
(this\.toString\.call\(b\)\)\},isString:
function\(b\)\{returnthis\.rgx\.str\.test\
(this\.toString\.call\(b\)\)\},isNum:function\(b\)

Fig. 27: A false positive for Kizzle: this sample extracted from
PluginDetect shares a very high (79%) overlap with Nuclear
exploit kit.

AV’s failure to detect a variant of Angler, as we showed
in Figure 8.

Overall, the false negative rate for Kizzle is under 5%
for the month of August. While a fundamental weakness
of the Kizzle approach is that if the kit changes drastically
overnight theKizzle is no longer able to connect previous
samples to subsequent ones, for the period of time we
examined, we did not see this in practice. This is because
kit authors reuse either the unpacked body of the kit
(Figure 20), or because they reuse the packer. When
we experience false negatives, it is generally because of
changes in the kit that are not numerous enough in our
grayware stream to warrant a separate cluster. An example
of this is a small bump in false negatives for Angler on
August 13th in Figure 8, which produced some, but not
enough new variants of Angler for Kizzle to produce a
new signature.

V. Discussion

Our approach combines automatically building signa-
tures on the packed versions of exploit kits by reasoning
about maliciousness based on comparing the unpacked
versions to previous known attacks.

While our initial results are promising, there are still
many questions that remain and possible threats to valid-
ity of our approach. First, we depend on reliably unpacking
malware samples that are collected either by crawling
or via detection in a deployed browser. We have had
previous success collecting malware samples via crawling
but detection in a browser would also be valuable at the
cost of additional overhead. While there are situations in
which this overhead may be unacceptable, we believe there
are approaches, including sampling, that can mitigate the
overhead.

Second, our results are based on studying the behavior
of four exploit kits over a period of one month. We
have looked at the same kits over a longer period (and
observed consistent behavior) and these kits do represent
a significant fraction of all malware we observe in our
data stream, but our experiments are still limited. Longer

12



studies with more kits would provide stronger support for
this result.

Also, as with any solution based on clustering and
abstracting streams of data, a number of tuning knobs
control the effectiveness of the approach. For example,
how far apart can clusters be, how many samples do we
need to define a cluster, how long should the generated
signatures be, etc. Finding the right values for these
parameters and adjusting them due to the dynamic nature
of a malicious opponent make keeping such a system well-
tuned challenging. Likely, observing detection accuracy
over time as part of operations with the attacker adjusting
to Kizzle is needed.

Our approach is based on the fact that while the effort to
change the outer layer of an exploit kit is relatively small,
changing the syntax, yet not the semantics, of the inner
layer is non-trivial. However, research by Payer has high-
lighted that in the space of binary files, automated rewrit-
ing to achieve just such syntactic changes is feasible [28].
While this work aims specifically at binaries, adoption of
such automated rewriting schemes would impair Kizzle’s
ability to track the kits in their unfolded form, if exploit
kits move closer to the “fully polymorphic” model.

Finally, our algorithm generates signatures that match
all samples in a given cluster while trying to maximize the
length of a signature to avoid false positives, resulting in
long signatures. While this helps our approach to ensure
low false positive rates, longer signatures potentially make
the adversary’s job of avoiding them easier, since minor
changes to any part of what is being matched by the
signature is sufficient to bypass detection. They could also
reduce the performance of scanning, however, they would
only be applied to JavaScript samples.

VI. Related Work

Below, we cover the three most closely related areas of
research in turn.

A. Exploit Kits

Previous work on exploit kits has focused mainly on
examining their server-side components. In their work,
Kotov et al. analyze the server-side code for 24 (partially
inactive) different families and found that, similar to what
our work has shown, 82% of the analyzed kits use some
form of obfuscation of the client payload [20]. They also
detail the average age of the exploits involved and show
that only about one half of the used exploits are less than
two years old, with the oldest exploits reaching the age of
six years. Finally, they investigate the code reuse of the
server-side code to ascertain whether a common code base
was used by the malware authors. While they did find
some overlap and sharing between the kits, they could not
discover evidence of a common codebase. This resonates
with some of our observations, i.e., same AV checking code
was incorporated into different kits over a period of several
weeks.

Additional research into the server-side components has
been conducted by De Maio et al. [8]. Contrary to the
results from [20], the authors conclude from the large
overlap of exploit code that several of the analyzed kits are
derived from one another. Using static taint-tracking and
a constraint solver, they are able to produce combinations
of both User-Agents and GET parameters such that an
infection is more likely to occur. The authors propose to
use such signatures to either “milk” a known exploit kit to
extract as many different exploits as possible or to deploy
honey-clients which are more likely to get infected.

Esthe and Venkatakrishnan recently proposed an appli-
cation of machine learning to determine if a given URL is
part of an exploit kit [10]. They focus on two types of ex-
ploit kit-specific characteristics, namely the fact that EKs
are attack-centric — e.g. they utilize client targeting and
obfuscation — and use self-defense approaches, e.g., IP
blocking or cloaking [19]. They also discover that several
exploit kits actively probe URL blacklists and AV signa-
tures databases, enabling the EK author to quickly react to
such countermeasures. Using their proposed scheme, they
were able to determine with a high accuracy if a given
URL belonged to an exploit kit, and outperform existing
approaches such as Wepawet [6].

Apart from research that has focused on the technical
aspects of exploit kits, Grier et al. [12] have conducted an
analysis into the effects exploit kits have on the malware
ecosystem, finding that the analyzed kits are used to
deliver several different families of malware. They show
that exploit kits are an integral part of that ecosystem,
putting additional emphasis of effective countermeasures.
Recently, Allodi et al. conducted experiments with the
server-side code of exploit kits to determine how resilient
kits are to changes to the targeted systems. In doing so,
they found that while some exploit kits aim for a lower, yet
steadier infection rate over time, other kits are designed
to deliver a small number of the latest exploits, achieving
a higher infection rate [1].

Additional analyses have been conducted to analyze
exploits used in attacks. Bilge et al. show that exploits,
which were later on also used in exploit kits, could be
found in the wild as zero-days before the disclosure of the
targeted vulnerability by the vendor [3]. They show that
even with AV that can react to known threats, the window
of exposure to zero-days is often longer than expected.
In 2011, Dan Guido present a case study highlighting
the fact that exploit kits encountered by his customers
typically incorporated exploits from whitehats or APTs,
rather than actually using a zero-day in their attacks [14].

B. Drive-by Attacks

Drive-by downloads or drive-by attack have received
much attention [5, 12, 30]. Many studies [24, 30, 31, 35, 38,
39] rely on a combination of high- and low-interaction
client honeypots to visit a large number of sites, detect-
ing suspicious behavior in environment state after being

13



compromised

Below we mention some of the more closely related
projects. Apart from the work that specifically investigates
issues related to exploit kits, researchers have also focused
on drive-by downloads. In Zozzle, Curtsinger et al. de-
velop a solution that can detect JavaScript malware in
the browser using static analysis techniques to classify a
given piece of JavaScript as malicious [7]. This system
uses a näıve Bayes classifier to finding instances of known,
malicious JavaScript. A similar approach was followed
by Rieck et al. for CUJO, in which the detection and
prevention components were deployed in a proxy rather
than the browser [33].

Cova et al. describe JSAND [6] for analyzing and clas-
sifying web content based on static and dynamic features.
Their system provides a framework to emulate JavaScript
code and determine characteristics that are typically found
in malicious code.

Ratanaworabhan et al. describe Nozzle, a dynamic sys-
tem that uses a global heap health metric to detect heap-
spraying, a common technique used in modern browser
exploits [32].

In addition to detection, researchers have also analyzed
ways to mitigate the effects of drive-by download attacks.
To this end, Egele et al. check strings that are allocated
during runtime for patterns that resemble shellcode and
ensure that this code is never executed [9]. Lu et al.
propose a system called BLADE, which effectively en-
sures that all executable files that are downloaded via
the browser are automatically sandboxed such that they
can only be executed with explicit user consent [23].
Additionally, Zhang et al. provide a means of identifying
malware distribution networks (MDNs), which are used
to host malware that is being download to the victim’s
machine. After these have been identified, their system
ARROW can generate URL signatures which can be used
to block these malicious downloads.

Kapravelos et al. present Revolver, a system that
leverages the fact that in order to avoid detection by
emulators or honey clients, authors of exploits use small
syntactic changes to throw of such detection tools. In order
to find such evasive malware, they compare the structure
of two pieces of JavaScript, allowing them to determine
these minor changes [16].

C. Signature Generation

Automated signature generation based has been re-
searched to counter both network-based attacks and
generate AV-like signatures for malicious files. In 2003,
Singh et al. proposed an automated method to detect
previously unknown worms based on traffic characteristics
und subsequently create content-based signatures [36]. In
the following year, two research groups presented similar
works, generating signatures from honeypot [21] and DMZ
traffic [18]. In subsequent years, additional research has

focused on improving false positive rates of such sys-
tems [27], enabling privacy-preserving exchange of signa-
tures to quickly combat detected attacks [37] and shifting
the detection towards commonalities between all different
attacks against a single vulnerable service [22, 26]

Work by Brumley et al. proposes a deeper analysis of
the vulnerabilities rather than exploits to detect malicious
packets and subsequently create matching signatures [4].
The concept of clustering HTTP traffic was then used
in 2010 by Perdisci et al. to find similar patterns in
different packets to improve the quality of generated sig-
natures [29].

While much focus has been on the detection of network-
based attacks, research into automatic generation of virus
signatures dates back to 1994, when Kephart and Arnold
propose a system that leverages a large base of benign
software to infer which byte sequences in malicious binaries
are unlikely to cause false positives if used a signature [17].

In recent years, this idea was picked up when Grif-
fin et al. presented Hancock, which determines the prob-
ability that an arbitrary byte sequence occurs in a random
file and improves the selection of signature candidates
by automatically identifying library code in malicious
files. This allows them to ensure that signatures are not
generated on such shared code, helping them achieve a
false positive rate of 0.1% [13]. One way to think of Kizzle

is that it is a specialized, narrowly-focused tool which
achieves a rate that is lower still.

VII. Conclusions

This paper proposes Kizzle, a malware signature com-
piler that targets exploit kits. Kizzle automatically identi-
fies malware clusters as they evolve over time and produces
signatures that can be applied to detect malware with a
lower false negative and similar false positive rates, when
compared to hand-written anti-virus signatures. While we
have seen a great deal of consolidation in the space of
web malware, which leads to sophisticated attacks being
accessible to a broad range of attackers, we believe that
Kizzle can tip the balance in favor of the defender.

Kizzle is designed to run in the cloud and scale to
large volumes of streaming data. Our longitudinal evalua-
tion shows that Kizzle produces high-accuracy signatures.
When evaluated over a month-long period in August 2014,
false positive rates for Kizzle are under 0.03%, while the
false negative rates are under 5%.

Acknowledgments

We greatly appreciate the cooperation and help we
received from Dennis Batchelder, Edgardo Diaz, Jonathon
Green, and Scott Molenkamp in the course of working on
this project.

References

[1] L. Allodi, V. Kotov, and F. Massacci. Malwarelab: Experimen-
tation with cybercrime attack tools. In Workshop on Cyber
Security Experimentation and Test, 2013.

14



[2] D. Angluin. Learning regular sets from queries and counterex-
amples. Information and Computation, 75(2), 1987.

[3] L. Bilge and T. Dumitras. Before we knew it: An empirical study
of zero-day attacks in the real world. In ACM Conference on
Computer and Communications Security, 2012.

[4] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha.
Towards automatic generation of vulnerability-based signatures.
In IEEE Symposium on Security and Privacy, 2006.

[5] J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Measuring
pay-per-install: The commoditization of malware distribution.
In USENIX Security Symposium, 2011.

[6] M. Cova, C. Kruegel, and G. Vigna. Detection and analysis of
drive-by-download attacks and malicious JavaScript code. In
International World Wide Web Conference, 2010.

[7] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert. Zozzle:
Low-overhead mostly static JavaScript malware detection. In
USENIX Security Symposium, 2011.

[8] G. De Maio, A. Kapravelos, Y. Shoshitaishvili, C. Kruegel, and
G. Vigna. Pexy: The other side of exploit kits. In Detection of
Intrusions and Malware, and Vulnerability Assessment, 2014.

[9] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defending
browsers against drive-by downloads: Mitigating heap-spraying
code injection attacks. In Detection of Intrusions and Malware,
and Vulnerability Assessment. 2009.

[10] B. Eshete and V. N. Venkatakrishnan. Webwinnow: Leveraging
exploit kit workflows to detect malicious urls. In Conference on
Data and Application Security and Privacy, 2014.

[11] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases with
noise. In International Conference on Knowledge Discovery and
Data Mining, 1996.

[12] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich,
K. Levchenko, P. Mavrommatis, D. McCoy, A. Nappa, A. Pit-
sillidis, et al. Manufacturing compromise: the emergence of
exploit-as-a-service. In ACM Conference on Computer and
Communications Security, 2012.

[13] K. Griffin, S. Schneider, X. Hu, and T.-C. Chiueh. Automatic
generation of string signatures for malware detection. In Recent
Advances in Intrusion Detection, 2009.

[14] D. Guido. A case study of intelligence-driven defense. IEEE
Security and Privacy, 2011.

[15] J. Jones. The state of Web exploit kits. In BlackHat US, 2012.
[16] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and

G. Vigna. Revolver: An automated approach to the detection of
evasive web-based malware. In USENIX Security Symposium,
2013.

[17] J. O. Kephart and W. C. Arnold. Automatic extraction of
computer virus signatures. In Virus Bulletin International
Conference, 1994.

[18] H.-A. Kim and B. Karp. Autograph: Toward automated,
distributed worm signature detection. In USENIX Security
Symposium, 2004.

[19] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. Rozzle: De-
cloaking internet malware. In IEEE Symposium on Security and
Privacy, 2012.

[20] V. Kotov and F. Massacci. Anatomy of exploit kits: Preliminary
analysis of exploit kits as software artefacts. In International
Conference on Engineering Secure Software and Systems, 2013.

[21] C. Kreibich and J. Crowcroft. Honeycomb: creating intrusion
detection signatures using honeypots. Workshop on Hot Topics
in Networks, 2003.

[22] Z. Li, M. Sanghi, Y. Chen, M.-Y. Kao, and B. Chavez. Hamsa:
Fast signature generation for zero-day polymorphic worms with
provable attack resilience. In IEEE Symposium on Security and
Privacy, 2006.

[23] L. Lu, V. Yegneswaran, P. Porras, and W. Lee. Blade: an attack-
agnostic approach for preventing drive-by malware infections. In
ACM conference on Computer and Communications Security,
2010.

[24] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy. A
crawler-based study of spyware in the web. In Network and
Distributed System Security Symposium, 2006.

[25] C. Nachenberg. Computer virus-antivirus coevolution. Com-
munications of the ACM, 40(1):46–51, Jan. 1997.

[26] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically
generating signatures for polymorphic worms. In IEEE Sympo-
sium on Security and Privacy, 2005.

[27] J. Newsome and D. Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on com-
modity software. In Network and Distributed System Security
Symposium, 2005.

[28] M. Payer. Embracing the new threat: Towards automatically
self-diversifying malware. In The Symposium on Security for
Asia Network, 2014.

[29] R. Perdisci, W. Lee, and N. Feamster. Behavioral clustering of
http-based malware and signature generation using malicious
network traces. In USENIX Symposium on Networked Systems
Design and Implementation, 2010.

[30] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All
your iFRAMEs point to us. In USENIX Security Symposium,
2008.

[31] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and
N. Modadugu. The ghost in the browser: Analysis of web-based
malware. In Workshop on Hot Topics in Understanding Botnets,
2007.

[32] P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle: A de-
fense against heap-spraying code injection attacks. In USENIX
Security Symposium, 2009.

[33] K. Rieck, T. Krueger, and A. Dewald. Cujo: efficient detection
and prevention of drive-by-download attacks. In Annual Com-
puter Security Applications Conference, 2010.

[34] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing:
Local algorithms for document fingerprinting. In International
Conference on Management of Data, 2003.

[35] C. Seifert, V. Delwadia, P. Komisarczuk, D. Stirling, and
I. Welch. Measurement study on malicious web servers in the
.nz domain. In Australasian Conference on Information Security
and Privacy, 2009.

[36] S. Singh, C. Estan, G. Varghese, and S. Savage. Earlybird
system for real-time detection of unknown worms. Technical
report, 2003.

[37] K. Wang, G. Cretu, and S. J. Stolfo. Anomalous payload-based
worm detection and signature generation. In Recent Advances
in Intrusion Detection, 2006.

[38] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski,
S. Chen, and S. T. King. Automated web patrol with Strider
HoneyMonkeys: Finding web sites that exploit browser vulner-
abilities. In Network and Distributed System Security Sympo-
sium, 2006.

[39] J. Zhuge, T. Holz, C. Song, J. Guo, X. Han, and W. Zou. Study-
ing malicious websites and the underground economy on the
Chinese web. Managing Information Risk and the Economics
of Security, 2008.

15


