
Reflection Analysis for Java

Benjamin Livshits John Whaley
Monica S. Lam

Computer Science Department
Stanford University

Stanford, CA 94305, USA

{livshits, jwhaley, lam}@cs.stanford.edu

Technical Report

October 29, 2005

CONTENTS 2

Contents

1 Introduction 5
1.1 Contributions . 9
1.2 Paper Organization . 10

2 Overview of Reflection in Java 11
2.1 Reflection APIs in Java . 11

2.1.1 Obtaining Class Objects 11
2.1.2 Reflective Object Creation 13
2.1.3 Reflective Method Invocation 13
2.1.4 Reflective Field Access 13

3 Use of Reflection: Case Studies 14
3.1 Specifying Application Extensions 15
3.2 Custom-made Object Serialization Scheme 16
3.3 Improving Portability Using Reflection 17
3.4 Code Unavailable Until Deployment 18
3.5 Using Class.forName for its Side-effects 19
3.6 Getting Around Static Type Checking 19
3.7 Providing a Built-in Interpreter 19

4 Assumptions About Reflection 20

5 Analysis of Reflection 22
5.1 Call Graph Discovery . 23
5.2 Pointer Analysis for Reflection 23

5.2.1 Reflection and Points-to Information 23
5.2.2 The bddbddb Program Database 24
5.2.3 Basics of Reflection Resolution Using Points-To Infor-

mation . 26
5.2.4 Handling Reflective Constructor Calls: Constructor

Objects . 27
5.2.5 Handling Reflective Invocations: Method Objects . . . 28
5.2.6 Handling Reflective Field Accesses: Field Objects . . 29
5.2.7 Specification Points and User-Provided Specifications . 30

CONTENTS 3

5.2.8 Dealing with Other Reflective Calls 32
5.3 Precision of Points-to Results 33
5.4 Reflection Resolution Using Casts 34

5.4.1 Preparing Subtype Information 34
5.4.2 Using Cast Information 35
5.4.3 Problems with Using Casts 35

6 Experimental Results 37
6.1 Experimental Setup . 37
6.2 Evaluation Approach . 38
6.3 Local Analysis for Reflection Resolution (Local) 39
6.4 Points-to & Reflection Resolution (Points-to) 40

6.4.1 Specification Points . 40
6.5 Casts & Reflection Resolution (Casts) 41

6.5.1 Precision of Cast Information 42
6.6 A Sound Call Graph Approximation (Sound) 43

6.6.1 Specification Statistics 43
6.6.2 Specification Difficulties 44
6.6.3 Remaining Unresolved Calls 45

6.7 Effect of Reflection Resolution on Call Graph Size 45
6.8 Running Times . 47

7 Related Work 48
7.1 Reflection and Metadata Research 48
7.2 Call Graph Construction . 49

7.2.1 Function Pointers in C 50
7.2.2 Virtual Calls in C++ 50
7.2.3 Virtual Calls in Java 50

7.3 Dynamic Analysis Approaches 51

8 Conclusions 53

9 Acknowledgements 54

Abstract

Reflection has always been a thorn in the side of Java static an-
alysis tools. Without a full treatment of reflection, static analysis
tools are both incomplete because some parts of the program may not
be included in the application call graph, and unsound because the
static analysis does not take into account reflective features of Java
that allow writes to object fields and method invocations. However,
accurately analyzing reflection has always been difficult, leading to
most static analysis tools treating reflection in an unsound manner or
just ignoring it entirely. This is unsatisfactory as many modern Java
applications make significant use of reflection.

In this paper we propose a static analysis algorithm that uses
points-to information to approximate the targets of reflective calls
as part of call graph construction. Because reflective calls may rely
on input to the application, in addition to performing reflection res-
olution, our algorithm also discovers all places in the program where
user-provided specifications are necessary to fully resolve reflective tar-
gets. As an alternative to user-provided specifications, we also propose
a reflection resolution approach based on type cast information that
reduces the need for user input, but typically results in a less precise
call graph.

We have implemented the reflection resolution algorithms de-
scribed in this paper and applied them to a set of six large, widely-used
benchmark applications consisting of more than 600,000 lines of code
combined. Experiments show that our technique is effective for re-
solving most reflective calls without any user input. Certain reflective
calls, however, cannot be resolved at compile time precisely. Relying
on a user-provided specification to obtain a conservative call graph
results in graphs that contain 1.43 to 6.58 times more methods that
the original. In one case, a conservative call graph has 7,047 more
methods than a call graph that does not interpret reflective calls. In
contrast, ignoring reflection leads to missing substantial portions of
the application call graph.

5

SECTION 1

Introduction

Whole-program static analysis requires knowing the targets of function or
method calls. The task of computing a program’s call graph is complicated
for a language like Java because of virtual method invocations and reflection.
Past research has addressed the analysis of function pointers in C [EGH94,
MRR01, MRR04] as well as virtual method calls in C++ [AH96, BS96, CG94,
PR96] and Java [GC01, GDDC97, RRHK00, SHR+00, TP00]. Reflection,
however, has mostly been neglected.

Reflection in Java allows the developer to perform runtime actions given
the descriptions of the objects involved: one can create objects given their
class names, call methods by their name, and access object fields given their
name [FF04]. Because names of methods to be invoked can be supplied by
the user, especially in the presence of dynamic class loading, precise static
construction of a call graph is generally undecidable. Even if we assume that
all classes that may be used are available for analysis, without placing any
restrictions of the targets of reflective calls, a sound (or conservative) call
graph would be prohibitively large.

Many projects that use static analysis for optimization, error detection,
and other purposes ignore the use of reflection, which makes static analysis
tools incomplete because some parts of the program may not be included in
the call graph and potentially unsound, because some operations, such as
reflectively invoking a method or setting an object field, are ignored. Others
require the user to specify the methods invoked reflectively [TLSS99]. Com-
pleteness is not the only problem with ignoring reflection: the results may in
fact also be unsound if the static analysis does not take into account reflec-
tive features of Java that allow writes to object fields and reflective method
invocations. Our research is motivated by the practical need to improve
the coverage of static error detection tools [KPK02, LL05a, RSS+04, WN04].
The success of such tools in Java is predicated upon having a call graph avail-
able to the error detection tool. Unless reflective calls are interpreted, the
tools run the danger of only analyzing a small portion of the available code
and giving the developer a false sense of security when no bugs are reported.
Moreover, when static results are used to reduce runtime instrumentation, all
parts of the application that are used at runtime must be statically analyzed.

6

F
ig

u
re

1:
A

rc
hi

te
ct

ur
e

of
ou

r
st

at
ic

an
al

ys
is

fr
am

ew
or

k.

7

Retrieving Class or Constructor objects:
Class java.lang.Class.forName(String className)

Class java.lang.Class.forName(String name, boolean initialize, ClassLoader loader)

Class java.lang.Object.getClass()

Constructor[] java.lang.Class.getConstructors()

Constructor java.lang.Class.getConstructor(Class[] args)

Creating new objects:
Object java.lang.Class.newInstance()

Object java.lang.reflect.Constructor.newInstance(Object[] initargs)

Figure 2: Java API methods for reflective object creation.

While finding some bugs is valuable, a tool that claims to find all possible
bugs of a particular kind provides a much stronger guarantee: a software
system for which no errors are statically reported in known to be error-free.

A recent paper by Hirzel, Diwan, and Hind proposes the use of dy-
namic instrumentation to collect the reflection targets discovered at run
time [HDH04]. They use this information to extend Andersen’s context-
insensitive, inclusion-based pointer analysis for Java into an online algo-
rithm [And94]. Reflective calls are generally used to offer a choice in the
application control flow, and a dynamic application run typically includes
only several of all the possibilities. However, analyses used for static error
detection and optimization often require a full call graph of the program in
order to achieve complete coverage.

In this paper we present a static analysis algorithm that uses points-to
information to determine the targets of reflective calls. Often the targets of

Retrieving Method objects:
Method java.lang.Class.getDeclaredMethod(String name, Class[] parameterTypes)

Method[] java.lang.Class.getDeclaredMethods()

Method[] getMethods()

Calling methods:
Object java.lang.reflect.Method.invoke(Object obj, Object[] args)

Figure 3: Java API methods for method invocation.

8

Retrieving Field objects:
Field getField(String name)

Field[] getFields()

Field getDeclaredField(String name)

Field[] getDeclaredFields()

Accessing field values: getter and setter methods for
objects and primitive types:
Object java.lang.Reflect.Field.get(Object obj)

byte java.lang.Reflect.Field.getByte(Object obj)

char java.lang.Reflect.Field.getChar(Object obj)

int java.lang.Reflect.Field.getInt(Object obj)

...
void java.lang.Reflect.Field.set(Object obj, Object value)

void java.lang.Reflect.Field.setByte(Object obj, byte b)

void java.lang.Reflect.Field.setChar(Object obj, char c)

void java.lang.Reflect.Field.setInt(Object obj, int i)

Figure 4: Java API methods for field access and manipulation.

reflective calls can be determined precisely by analyzing the flow of strings
that represent class names throughout the program. This allows us to pre-
cisely resolve many reflective calls and add them to the call graph. However,
in some cases reflective call targets may depend on user input and require
user-provided specifications for the call graph to be determined. Our al-
gorithm determines all specification points — places in the program where
user-provided specification is needed to determine reflective targets. The user
is given the option to provide a specification and our call graph is complete
with respect to the specifications provided [TP00].

Because providing reflection specifications can be time-consuming and
error-prone, we also provide a conservative, albeit sometimes imprecise, ap-
proximation of targets of reflective calls by analyzing how type casts are used
in the program. A common coding idiom consists of casting the result of a
call to Class.newInstance used to create new objects to a more specific type
before the returned object can be used. Relying on cast information allows us
to produce a conservative call graph approximation without requiring user-
provided reflection specifications in most cases. A flow diagram summarizing
the stages of our analysis is shown in Figure 1.

Contributions 9

Our reflection resolution approach hinges on three assumptions about
the use of reflection: (a) all the class files that may be accessed at run-
time are available for analysis; (b) the behavior of Class.forName is consistent
with its API definition in that it returns a class whose name is specified by
the first parameter, and (c) cast operations that operate on the results of
Class.newInstance calls are correct. In rare cases when no cast information is
available to aid with reflection resolution, we report this back to the user as
a situation requiring specification.

1.1 Contributions

This paper makes the following contributions:

• We present a case study of common uses of reflection in large modern
Java systems. This study shows the importance of handling reflection
in call graph construction.

• We formulate a set of natural assumptions that hold in most Java
applications and make the use of reflection amenable to static analysis.

• We propose a call graph construction algorithm that uses points-to
information about strings used in reflective calls to statically find po-
tential call targets. When reflective calls cannot be fully “resolved” at
compile time, our algorithms determines a set of specification points —
places in the program that require user-provided specification to resolve
reflective calls.

• As an alternative to having to provide a reflection specification, we
propose an algorithm that uses information about type casts in the
program to statically approximate potential targets of reflective calls.

• We provide an extensive experimental evaluation of our analysis ap-
proach based on points-to results by applying it to a suite of six large
open-source Java applications consisting of more than 600,000 lines of
code combined. We evaluate how the points-to and cast-based analyses
of reflective calls compare to a local intra-method approach. While all
these analyses find at least one constant target for most Class.forName

call sites, they only moderately increase the call graph size. However,
the conservative call graph obtained with the help of a user-provided
specification results is a call graph than is almost 7 times as big as the

Paper Organization 10

original. We assess the amount of effort required to come up with a
specification and how cast-based information can significantly reduce
the specification burden placed on the user.

1.2 Paper Organization

The rest of the paper is organized as follows. In Section 2, we provide back-
ground information about the use of reflection in Java. In Section 3 we show
some of the common usage idioms that justify the need for reflection analy-
sis. In Section 4, we lay out the simplifying assumptions made by our static
analysis. In Sections 5 we describe our analysis approach. Section 6 provides
a comprehensive experimental evaluation. In Sections 7 and 8 we describe re-
lated work and conclude. Finally, Section 9 provides the acknowledgements.

11

SECTION 2

Overview of Reflection in Java

In this section we first informally introduce the reflection APIs in Java and
then show some characteristic ways in which they are used in large Java
applications.

2.1 Reflection APIs in Java

The most typical use of reflection by far is for creating new objects given the
object class name. The most common usage idiom for reflectively creating
an object is shown in Figure 5. In the rest of this section, we fully describe
reflective APIs that Java provides for creating objects, invoking methods, and
reading and writing to data structures at runtime. There are also read-only
API methods that are used for runtime discovery; for example, an application
can check if a certain method exists before trying to invoke it.

2.1.1 Obtaining Class Objects

Obtaining a class given its name is most typically done using a call to one
of the static functions Class.forName(String, ...) and passing the class name as
the first parameter. We should point out that while Class.forName is the most
common way to obtain a class given its name, it may not be the only method
for doing so. An application may define a native method that implements the
same functionality. The same observation applies to other standard reflective
API methods.

The .class construct is syntactic sugar that is translated by the compiler
down into basic calls to Class.forName. The translation is somewhat different
depending on the version of the compiler. For example, when T.class is

1. String className = ...;
2. Class c = Class.forName(className);
3. Object o = c.newInstance();
4. T t = (T) o;

Figure 5: Typical use of reflection to create new objects.

Reflection APIs in Java 12

static java.lang.Class class$test$T;

...

0: getstatic #7; //Field class$test$T:Ljava/lang/Class;

3: ifnonnull 18

6: ldc #8; //String test$T

8: invokestatic #9; //class$:(Ljava/lang/String;)Ljava/lang/Class;

11: dup

12: putstatic #7; //Field class$test$T:Ljava/lang/Class;

15: goto 21

18: getstatic #7; //Field class$test$T:Ljava/lang/Class;

21: astore_1

22: getstatic #10; //Field java/lang/System.out:Ljava/io/PrintStream;

25: new #11; //class StringBuffer

28: dup

29: invokespecial #12; //StringBuffer."<init>":()V

32: ldc #13; //String c:

34: invokevirtual #14; //StringBuffer.append:(Ljava/lang/String;)Ljava/lang/StringBuffer;

37: aload_1

38: invokevirtual #15; //StringBuffer.append:(Ljava/lang/Object;)Ljava/lang/StringBuffer;

41: invokevirtual #16; //StringBuffer.toString:()Ljava/lang/String;

44: invokevirtual #17; //PrintStream.println:(Ljava/lang/String;)V

47: return

static java.lang.Class class$(java.lang.String);

Code:

0: aload_0

1: invokestatic #1; //Class.forName:(Ljava/lang/String;)Ljava/lang/Class;

4: areturn

5: astore_1

6: new #3; //class NoClassDefFoundError

9: dup

10: aload_1

11: invokevirtual #4; //ClassNotFoundException.getMessage:()Ljava/lang/String;

14: invokespecial #5; //NoClassDefFoundError."<init>":(Ljava/lang/String;)V

17: athrow

Exception table:

from to target type

0 4 5 Class java/lang/ClassNotFoundException

Figure 6: Interpretation of .class in JDK version 1.4 and below.

translated, Sun’s version of javac in JDK 1.4 produces bytecode shown in
Figure 6. In this case, method class$ that takes a class name and returns
the class returned by Class.forName is generated by the compiler. The result
of the call is stored in field class$test$T. The same compiler in JDK 1.5 takes
a more efficient approach that results in a much shorter bytecode sequence:

ldc_w #2; //class test$T
astore_1

In this case, the Class object is loaded from a constant pool. The analysis

Reflection APIs in Java 13

described here handles the JDK 1.4 interpretation; supporting the JDK 1.5
interpretation requires a simple extension of our algorithm to reflect the
creation of the contact pool.

2.1.2 Reflective Object Creation

Object creation APIs in Java provide a way to programmatically create ob-
jects of a class, whose name is provided at runtime; parameters of the object
constructor can be passed in as necessary. Relevant Java API methods are
summarized in Figure 2. Creating an object with an empty constructor is
achieved through a call to newInstance on the appropriate java.lang.Class ob-
ject, which provides a runtime representation of a class.

While methods Class.forName and Class.newInstance represent the majority
of uses of reflection in real-life software systems, Java also provides ways to
reflectively invoke a method given its name and to access the value of an
object field at runtime, as described below [FF04].

2.1.3 Reflective Method Invocation

Methods are obtained from a Class object by supplying the method signature
or by iterating through the array of Methods returned by one of Class functions.
Methods are subsequently invoked by calling Method.invoke. The complete list
of relevant API functions is summarized in Figure 3.

2.1.4 Reflective Field Access

Fields of Java runtime objects can be read and written at runtime. Calls
to Field.get and Field.set can be used to get and set fields containing ob-
jects. Additional methods are provided for fields of primitive types. (All
Java primitive types are supported, we limit the list in Figure 4 to several
representative ones only.)

14

SECTION 3

Use of Reflection: Case Studies

In this Section, we describe some of the common usage patterns for reflec-
tion found in large Java systems. We identified these patterns by studying
large Java applications downloaded from SourceForge; more details on these
applications can be found in Section 6. In addition to describing each use
case, we show why statically resolving reflection is important.

public void addHandlers(String path) {
XmlIO xmlFile = new XmlIO(DiskIO.getResourceURL(path));
xmlFile.load();

XmlElement list = xmlFile.getRoot().getElement("handlerlist");
Iterator it = list.getElements().iterator();
while (it.hasNext()) {

XmlElement child = (XmlElement) it.next();
String id = child.getAttribute("id");
String clazz = child.getAttribute("class");

AbstractPluginHandler handler = null;
try {

Class c = Class.forName(clazz);
handler = (AbstractPluginHandler) c.newInstance();
registerHandler(handler);

} catch (ClassNotFoundException e) {
if (Main.DEBUG) e.printStackTrace();

} catch (InstantiationException e1) {
if (Main.DEBUG) e1.printStackTrace();

} catch (IllegalAccessException e1) {
if (Main.DEBUG) e1.printStackTrace();

}
}

}

Figure 7: Creating objects reflectively based on an XML specification.

Specifying Application Extensions 15

1. String geneClassName = thisGeneElement.
2. getAttribute(CLASS_ATTRIBUTE);
3.
4. Gene thisGeneObject = (Gene) Class.forName(
5. geneClassName).newInstance();

Figure 8: Creating objects reflectively based on an XML specification.

3.1 Specifying Application Extensions

Many large applications support plugins, which are usually detected by the
application upon startup by either reading a specification file or looking for
files in a specific directory. For example, columba, an open-source email client
parses an XML specification file to determine which plugins to instantiate,
as shown in Figure 7. A similar scheme is supported by jedit, which also
supports high levels of customization and downloadable plugins.

Application servers such as Apache Tomcat, use similar schemes where
they retrieve plugin descriptions from files or by traversing a predefined di-
rectory WEB− INF [BD03]. Clearly, static analysis needs to be aware of these
application extensions. If reflective calls are not properly resolved, most of
the plugins or Web applications in the case of Tomcat would be completely
missing from the call graph. However, this represents a case where with-
out “hints” from the user static analysis cannot determine which plugins to
analyze.

try {
Class macOS = Class.forName("gruntspud.standalone.os.MacOSX");
Class argC[] = {ViewManager.class};
Object arg[] = {context.getViewManager()};
Method init = macOS.getMethod("init", argC);
Object obj = macOS.newInstance();
init.invoke(obj, arg);

} catch (Throwable t) {
// not on macos

}

Figure 9: Calling a method if it is present on the runtime platform.

Custom-made Object Serialization Scheme 16

Method m = c.getMethod("clone", null);
if (Modifier.isPublic(m.getModifiers())) {

try {
result = m.invoke(object, null);

}
catch (Exception e) {

e.printStackTrace();
}

}

Figure 10: Checking if a method is present before calling it.

3.2 Custom-made Object Serialization Scheme

Often objects are reflectively created based on a specification that is passed
to the application.

Example 1. Reflection is used by an open-source genetic algorithm library,
jgap, to implement a customized serialization scheme. Information on genes is
saved in an XML file and then later loaded to create runtime data structures.
The names of the classes to be created are read from an XML element on
lines 1–2 in Figure 8 and the objects are created on lines 4–5. 2

Like the plugin examples above, this example demonstrates the need for
user-provided specifications of reflective targets [TP00] when the strings on
which reflective calls depend are not constant.

try {
// Test for being run under JDK 1.4+
Class.forName("javax.imageio.ImageIO");
// Test for JFreeChart being compiled
// under JDK 1.4+
Class.forName("org.jfree.chart.encoders.SunPNGEncoderAdapter");

} catch (ClassNotFoundException e) {
...

}

Figure 11: Using reflection to circumventing JDK inconsistencies.

Improving Portability Using Reflection 17

Method getVersionMethod =
Class.forName("org.columba.core.main.ColumbaVersionInfo").

getMethod("getVersion", new Class[0]);

return (String) getVersionMethod.invoke(null,new Object[0]);

Figure 12: Using a method that is not available at compile time.

3.3 Improving Portability Using Reflection

While many Java applications are fully platform-independent, there are often
subtle reasons to use platform-specific code, especially in large systems.

Example 2. Reflection is used in gruntspud, an open-source graphical CVS
client, to improve code portability across different platforms. As shown in
the code excerpt in Figure 9, call of method init is executed only if the call
to Class.forName in the try clause succeeds when the Mac-OS-specific class is
available. 2

Similarly, sometimes applications check if certain methods are available
before calling them:

Example 3. A generic cloning routine in jfreechart checks that clone is
available and declared to be public before attempting to call it, as shown in
Figure 10. The call is attempted only if the method is public. 2

Platform-dependent features are not the only reason to use reflection
for the purpose of introspection. The behavior of the program can differ
depending on the JDK version being used as well:

Example 4. The code in Figure 11 illustrates another use of reflection to get
around incompatibilities in the JDK implementations across different distri-

public JDBCCategoryDataset(String url, String driverName,
String user, String passwd)

throws ClassNotFoundException, SQLException
{

Class.forName(driverName);
this.connection = DriverManager.getConnection(url, user, passwd);

}

Figure 13: Using Class.forName for its side-effects.

Code Unavailable Until Deployment 18

1. fieldSysPath = ClassLoader.class.getDeclaredField("sys_paths");
2. fieldSysPath.setAccessible(true);
3.
4. if (fieldSysPath != null) {
5. fieldSysPath.set(System.class.getClassLoader(), null);
6. }

Figure 14: Circumventing static type checking to set a field.

butions. The code conditionally creates an instance of SunPNGEncoderAdapter

if jfreechar is used with a JDK version 1.4 and above. 2

Examples 2—4 illustrate an inherent weakness of dynamic analysis that
manifests itself when it comes to platform-specific code. Only a subset of
the code in an application is executed on any particular platform. Static
techniques, on the other hand, can analyze parts of code intended to be
executed on different platforms all at once. If we want to detect subtle
platform-specific errors that are hard to reproduce at runtime, obtaining a
full call graph of the application requires reflection resolution.

3.4 Code Unavailable Until Deployment

Reflection is also used to examine information that does not exist at compile
time and only becomes available after the application is deployed.

Example 5. The code from columba in Figure 12 invokes method getVersion

of class org.columba.core.main.ColumbaVersionInfo. Upon examining the code,
we found that this class is not created until after the application is deployed,
which is when the version information becomes available. 2

As described in Section 5.4.1, to make classes generated at deployment
time available to our analysis, our techniques collect information on all classes
after application deployment. Example 5 is a specific case of a more general
Java design pattern, in which interface types are used and their implementa-
tions are substituted in a manner that is deployment-specific. Unless reflec-
tion is resolved, all objects of the interface types will lack an implementation
that can be statically analyzed.

Using Class.forName for its Side-effects 19

3.5 Using Class.forName for its Side-effects

The call to Class.forName has the additional effect of calling the class con-
structor of the class being referenced. Occasionally, the result of the call is
ignored and the call is used as a convenient way to invoke the class construc-
tor. This coding idiom is commonly used to initialize database drivers as
shown in a code excerpt extracted from jfreechart in Figure 13.

3.6 Getting Around Static Type Checking

While this is relatively uncommon, reflection makes it possible to circumvent
the standard Java type system.

Example 6. As shown in the code snippet in Figure 14 extracted from
columba, reflection is used to reset the system library paths of the default
class loader by setting field sys paths to null. Since the field is non-public,
the accessibility flag of the field is first reset on line 2 before assigning to the
field on lines 5. 2

Without taking into account methods that assign to fields of objects when
constructing the program representation, the representation will be simply
incomplete.

3.7 Providing a Built-in Interpreter

On occasion, a very wide set of classes may be returned by a reflective calls,
as shown below.

Example 7. One of our benchmark applications, jedit, contains an embed-
ded BeanShell, a Java source interpreter used to write editor macros [Nie].
Within the BeanShell interpreted, one of the calls to Class.forName takes type
parameters extracted from the Bean shell macros. 2

Clearly, ignoring the targets of the Class.forName call in this case leads to
the code within the macro file not being analyzed. But this example also
reveals a key difficulty: the set of macros is hardly static. New macros can
be downloaded or written, so the approximation of the reflective targets is
only valid with respect to a specific application configuration.

20

SECTION 4

Assumptions About Reflection

This section presents assumptions we make in our static analysis for resolving
reflection in Java programs. We believe that these assumptions are quite
reasonable and hold for many real-life Java applications.

The problem of precisely determining the classes that an application may
access is undecidable. Furthermore, for applications that access the network,
the set of classes that may be accessed is unbounded: we cannot possibly
hope to analyze all classes that the application may conceivably download
from the net and load at runtime. Programs can also dynamically generate
classes to be subsequently loaded. Our analysis assumes a closed world, as
defined below.

Assumption 4.1 Closed world.
We assume that only classes reachable from the class path at analysis time
can be used by the application at runtime.

In the presence of user-defined class loaders, it is impossible to statically
determine the behavior of function Class.forName. If custom class loaders
are used, the behavior of Class.forName can change; it is even possible for a
malicious class loader to return completely unrelated classes in response to
a Class.forName call. The following assumption allows us to interpret calls
to Class.forName. We assume that the behavior of Class.forName is consistent
with the API declaration even when custom class loaders are used, which
postulates that:

“Given the fully qualified name for a class or interface (in the same
format returned by getName) this method attempts to locate, load,
and link the class or interface.”

Assumption 4.2 Well-behaved class loaders.
The name of the class returned by a call to Class.forName(className) equals
className.

To check the validity of this assumption, we have instrumented large appli-
cations to observe the behavior of Class.forName; we have never encountered a
violation of this assumption. Finally, we introduce the following assumption
that allows us to leverage type cast information contained in the program to
constrain the targets of reflective calls.

21

Assumption 4.3 Correct casts.
Type cast operations that always operate on the result of a call to newInstance

are correct; they will always succeed without throwing a ClassCastException.

We believe this to be a valid practical assumption: while it is possible to
have casts that fail, causing an exception that is caught so that the instanti-
ated object can be used afterwards, we have not seen such cases in practice.
Typical catch blocks around such casts lead to the program terminating with
an error message.

22

SECTION 5

Analysis of Reflection

In this section, we present techniques for resolving reflective calls in a pro-
gram. Our analysis consists of the following three steps:

1. We use a sound points-to analysis to determine all the possible sources
of strings that are used as class names. Such sources can either be
constant strings or derived from external sources. The pointer analysis-
based approach fully resolves the targets of a reflective call if constant
strings account for all the possible sources. We say that a call is partially
resolved if the sources can be either constants or inputs and unresolved
if the sources can only be inputs. Knowing which external sources may
be used as class names is useful because users can potentially specify
all the possible values; typical examples are return results of file read
operations. We refer to program points where the input strings are
defined as specification points.

2. Unfortunately the number of specification points in a program can be
large. Instead of asking users to specify the values of every possible
input string, our second technique takes advantage of casts, whenever
available, to determine a conservative approximation of targets of re-
flective calls that are not fully resolved. For example, as shown in Fig-
ure 5, the call to Class.newInstance, which returns an Object, is always
followed by a cast to the appropriate type before the newly created
object can be used. Assuming no exception is raised, we can conclude
that the new object must be a subtype of the type used in the cast,
thus restricting the set of objects that may be instantiated.

3. Finally, we rely on user-provided specification for the remaining set of
calls — namely calls whose source strings are not all constants — in
order to obtain a conservative approximation of the call graph.

We start by describing the call graph discovery algorithm in Section 5.1 as
well as how reflection resolution fits in with call graph discovery. Section 5.2
presents a reflection resolution algorithm based on pointer analysis results.
Finally, Section 5.4 describes our algorithm that leverages type cast informa-
tion for conservative call graph construction without relying on user-provided
specifications.

Call Graph Discovery 23

5.1 Call Graph Discovery

Our static techniques to discover reflective targets are integrated into a
context-insensitive points-to analysis that discovers the call graph on the
fly [WL04]. As the points-to analysis finds the pointees of variables, type
information of these pointees is used to resolve the targets of virtual method
invocations, increasing the size of the call graph, which in turn is used to find
more pointees. Our analysis of reflective calls further expands the call graph,
which is used in the analysis to generate more points-to relations, leading to
bigger call graphs. The discovery algorithm terminates when a fixpoint is
reached and no more call targets or points-to relations can be found.

By using a points-to analysis to discover the call graph, we can obtain a
more accurate call graph than by using a less precise technique such as class
hierarchy analysis CHA [DGC95] or rapid type analysis RTA [Bac98]. We
use a context-insensitive version of the analysis because context sensitivity
does not seem to substantially improve the accuracy of the call graph [WL04,
GC01] and the context-insensitive version is substantially faster.

5.2 Pointer Analysis for Reflection

This section describes how we leverage pointer analysis results to resolve calls
to Class.forName and track Class objects. This can be used to discover the
types of objects that can be created at calls to Class.newInstance, along with
resolving reflective method invocations and field access operations. Pointer
analysis is also used to find specification points: external sources that prop-
agate string values to the first argument of Class.forName.

5.2.1 Reflection and Points-to Information

The programming idiom that motivated the use of points-to analysis for
resolving reflection was first presented in Figure 5. This idiom consists of the
following steps:

1. Obtain the name of the class for the object that needs to be created.

2. Create a Class object by calling the static method Class.forName.

3. Create the new object with a call to Class.newInstance.

Pointer Analysis for Reflection 24

4. Cast the result of the call to Class.newInstance to the necessary type in
order to use the newly created object.

When interpreting this idiom statically, we would like to “resolve” the call to
Class.newInstance in step 3 as a call to the default constructor T(). However,
analyzing even this relatively simple idiom is nontrivial.

The four steps shown above can be widely separated in the code and reside
in different methods, classes, or jar libraries. The Class object obtained in
step 2 may be passed through several levels of function calls before being used
in step 3. Furthermore, the Class object can be deposited in a collection to
be later retrieved in step 3. The same is true for the name of the class created
in step 1 and used later in step 2. To determine how variables className, c,
o, and t defined and used in steps 1–4 may be related, we need to know what
runtime objects they may be referring to: a problem addressed by points-to
analysis. Point-to analysis computes which objects each program variable
may refer to.

Resolution of Class.newInstance of Class.forName calls is not the only thing
made possible with points-to results: using points-to analysis, we also track
Method, Field, and Constructor objects. This allows us to correctly resolve
reflective method invocations and field accesses. Reflection is also commonly
used to invoke the class constructor of a given class via calling Class.forName

with the class name as the first argument. We use points-to information
to determine potential targets of Class.forName calls and add calls to class
constructors of the appropriate classes to the call graph.

5.2.2 The bddbddb Program Database

In the remainder of this section we describe how pointer information is used
for reflection resolution. We start by describing how the input program
can be represented as a set of relations in bddbddb, a BDD-based program
database [LWL+05, WL04]. The program database and the associated con-
straint resolution tool allows program analyses to be expressed in a succinct
and natural fashion as a set of rules in Datalog, a logic programming lan-
guage. Points-to information is compactly represented in bddbddb with binary
decision diagrams (BDDs), and can be accessed and manipulated efficiently
with Datalog queries. The program representation as well as pointer analysis
results are stored as relations in the bddbddb database. The domains in the
database include invocation sites I, variables V , methods M , heap objects
named by their allocation site H, types T , and integers Z.

Pointer Analysis for Reflection 25

actual : I × Z × V .
actual(i, z, v) means that variable v is
zth argument of the method call at i.

ret : I × V . ret(i, v), means that variable v is the
return result of the method call at i.

mret : M × V . ret(m, v), means that variable v is the
return result of method m.

assign: V × V .
assign(v1, v2) means that there is an
implicit or explicit assignment state-
ment v1 = v2 in the program.

load : V × F × V .
load(v1, f, v2) means that there is a
load statement v2 = v1.f in the pro-
gram.

store: V × F × V .
store(v1, f, v2) means that there is a
store statement v1.f = v2 in the pro-
gram.

string2class : H × T .
string2class(s, t) means that string
constant s is the string representation
of the name of type t.

string2method : H ×M .
string2method(s, m) means that string
constant s is the string representation
of the name of method m.

string2field : H × F .
string2field(s, f) means that string
constant s is the string representation
of the name of field f .

calls : I ×M .
calls(i, m) means that invocation site i
may invoke method m.

Figure 15: Datalog relations used to represent the input program.

Pointer Analysis for Reflection 26

The source program is represented as a number of input relations. For
instance, relations actual and ret represent parameter passing and method
returns, respectively. In the following, we say that predicate A(x1, . . . , xn) is
true if tuple (x1, . . . , xn) is in relation A.

The definitions of Datalog relations used to represent the input program
are presented in Figure 15. All of these input relations are in lower case
to make them stand our from relations defined for the purpose of reflection
resolution. Points-to results are represented with relations points-to and
hpoints-to:

points-to: V × H is the variable points-to relation. points-to(v, h) means
that variable v may point to heap object h.

hpoints-to: H × F × H is the heap points-to relation. hpoints-to(h1, f, h2)
means that field f of heap object h1 may point to heap object h2.

Finally, an auxiliary relation freshi2h is used for reflection resolution to make
“fresh” heap allocation sites:

freshi2h: I × H. freshi2h(i, h) means that a freshly created allocation site
h corresponds to the result of the method call at i.

A Datalog query consists of a set of rules, written in a Prolog-style notation,
where a predicate is defined as a conjunction of other predicates. For exam-
ple, the Datalog rule D(w, z) : – A(w, x), B(x, y), C(y, z). says that “D(w, z)
is true if A(w, x), B(x, y), and C(y, z) are all true.”

5.2.3 Basics of Reflection Resolution Using Points-To Information

The algorithm for computing targets of reflective calls is naturally expressed
in terms of Datalog queries. Below we define Datalog rules to resolve tar-
gets of Class.newInstance and Class.forName calls. Handling of constructors,
methods, and fields proceed similarly, as described in Sections 5.2.4–5.2.6.
To disambiguate relations introduced for reflection resolution from input re-
lations, we use Java identified naming conventions for the former.

To compute reflective targets of calls to Class.newInstance, we define two
Datalog relations. Relation classObjects contains pairs 〈i, t〉 of invocations
sites i ∈ I calling Class.forName and types t ∈ T that may be returned from

Pointer Analysis for Reflection 27

the call. We define classObjects using the following Datalog rule:

classObjects(i, t) : – calls(i, “Class.forName”),
actual(i, 1, v), points-to(v, s),
string2class(s, t).

The Datalog rule for classObjects reads as follows. Invocation site i returns
an object of type t if the call graph relation calls contains an edge from i to
“Class.forName”, parameter 1 of i is v, v points to s, and s is a string that
represents the name of type t.

Relation newInstanceTargets contains pairs 〈i, t〉 of invocation sites i ∈ I
calling Class.newInstance and classes t ∈ T that may be reflectively invoked
by the call. The Datalog rule to compute newInstanceTargets is:

newInstanceTargets(i, t) : – calls(i, “Class.newInstance”),
actual(i, 0, v), points-to(v, c),
points-to(vc, c), ret(ic, vc),
classObjects(ic, t).

The rule reads as follows. Invocation site i returns a new object of type t
if the call graph relation calls contains an edge from i to Class.newInstance,
parameter 0 of i is v, v is aliased to a variable vc that is the return value
of invocation site ic, and ic returns type t. Targets of Class.forName calls
are resolved and calls to the appropriate class constructors are added to the
invocation relation calls :

calls(i, m) : – classObjects(i, t), m = t + “. < clinit >”.

(The “+” sign indicates string concatenation.) Similarly, having computed
relation newInstanceTargets(i, t), we add these reflective call targets invoking
the appropriate type constructor to the call graph relation calls with the rule
below:

calls(i, m) : – newInstanceTargets(i, t), m = t + “. < init >”.

In Sections 5.2.4–5.2.6 we cover other ways to perform reflective operations.

5.2.4 Handling Reflective Constructor Calls: Constructor Objects

Another technique of reflective object creation is to use Class.getConstructor

to get a Constructor object, and then calling newInstance on that. We define

Pointer Analysis for Reflection 28

a relation constructorTypes that contains pairs 〈i, t〉 of invocations sites i ∈ I
calling Class.getConstructor and types t ∈ T of the type of the constructor:

constructorTypes(i, t) : – calls(i, “Class.getConstructor”),
actual(i, 0, v), points-to(v, h),
classObjects(h, t).

Once we have computed constructorTypes , we can compute more
newInstanceTargets as follows:

newInstanceTargets(i, t) : – calls(i, “Class.newInstance”),
actual(i, 0, v), points-to(v, c), points-to(vc, c),
ret(ic, vc), constructorTypes(ic, t).

This rule says that invocation site i calling method “Class.newInstance” re-
turns an object of type t if parameter 0 of i is v, v is aliased to the return
value of invocation ic which calls “Class.getConstructor”, and the call to ic is
on type t.

In a similar manner, we add support for Class.getConstructors, along with
support for reflective field, and method accesses. The specification of these
are straightforward and we do not describe them here.

5.2.5 Handling Reflective Invocations: Method Objects

Auxiliary relation getMethod defines two standard ways reflection API ways
to reflectively invoke a method.

getMethod(“Class.getMethod(String, Class”).
getMethod(“Class.getDeclaredMethod(String, Class”).

Relation methodObject(h,m) defines when a heap-allocated object h ∈ H
represents a method m ∈ M . Relation resolvedInvoke(i, m) defines when a
method m ∈ M can be called from an invocation site i ∈ I.

methodObject(h,m) : – getMethod(mi), calls(i, mi), freshi2h(i, h),
actual(i, 1, v), points-to(v, hm),
string2method(hm, m).

resolvedInvoke(i, m) : – calls(i, “Method.invoke(Object, Object[])”),
actual(i, 0, v), points-to(v, h),methodObject(h,m).

Pointer Analysis for Reflection 29

Finally, input relations are updated with the results of method invocation
resolution to represent the flow of data through parameters and return values:

assign(v1, v2) : – resolvedInvoke(i, m),
formal(m, 0, v1), actual(i, 1, v2).

assign(v1, v2) : – resolvedInvoke(i, m), ret(i, v1),mret(m, v2).

points-to(v, h) : – resolvedInvoke(i, m), formal(m, z, v), z > 0,
actual(i, 2, v2), points-to(v2, h2),
hpoints-to(h2, “null”, h).

5.2.6 Handling Reflective Field Accesses: Field Objects

Resolution of Field objects is similar to Methods. Auxiliary relation getField
defines two standard ways reflection API ways to reflectively access a field.

getField(“Class.getField(String)”).
getField(“Class.getDeclaredField(String)”).

Relation fieldObject(h, f) defines when a heap-allocated object h ∈ H repre-
sents a field f ∈ F .

fieldObject(h, f) : – getF ield(mf), calls(i, mf),
freshi2h(i, h), actual(i, 1, v), points-to(v, hf),
string2field(hf , f).

Finally, load and store relations are updated to represent the newly discov-
ered reflective field accesses:

store(v1, f, v2) : – calls(i, “Field.set(Object, Object)”),
actual(i, 0, v), points-to(v, h), fieldObject(h, f),
actual(i, 1, v1), actual(i, 2, v2).

load(v1, f, v2) : – calls(i, “Field.get(Object, Object)),
actual(i, 0, v), points-to(v, h), fieldObject(h, f),
actual(i, 1, v1), ret(i, v2).

Notice that because our relations describing the input program only represent
objects and effectively ignore primitive values, we do not need to model other
field accessors such as Field.getByte/Field.setByte, etc. listed in Figure 4.

Pointer Analysis for Reflection 30

loadImpl() @ 43 InetAddress.java:1231 => java.net.Inet4AddressImpl
loadImpl() @ 43 InetAddress.java:1231 => java.net.Inet6AddressImpl
...
lookup() @ 86 AbstractCharsetProvider.java:126 => sun.nio.cs.ISO_8859_15
lookup() @ 86 AbstractCharsetProvider.java:126 => sun.nio.cs.MS1251
...
tryToLoadClass() @ 29 DataFlavor.java:64 => java.io.InputStream
...

Figure 16: A fragment of a specification file accepted by our system. A string identifying
a call site to Class.forName is mapped to a class name that that call may resolve to.

5.2.7 Specification Points and User-Provided Specifications

Using a points-to analysis also allows us to determine, when a non-constant
string is passed to a call to Class.forName, the provenance of that string. The
provenance of a string is in essence a backward data slice showing the flow of
data to that string. Provenance allows us to compute specification points—
places in the program where external sources are read by the program from
a configuration file, system properties, etc. For each specification point, the
user can provide values that may be passed into the application.

Our implementation accepts specification files that contain a simple tex-
tual map of a specification point to the constant strings it can generate. A
specification point is represented by a method name, bytecode offset, and the
relevant line number. An example of a specification file is shown in Figure 16.

We compute the provenance by propagating through the assignment re-
lation assign, aliased loads and stores, and string operations. To make the
specification points as close to external sources as possible, we perform a sim-
ple analysis of strings to do backward propagation through string concate-
nation operations. For brevity, we only list the StringBuffer.append method
used by the Java compiler to expand string concatenation operations here;
other string operations work in a similar manner. The following rules for
relation leadsToForName detail provenance propagation:

Pointer Analysis for Reflection 31

leadsToForName(v, i) : – calls(i, “Class.forName”), actual(i, 1, v).

leadsToForName(v2, i) : – leadsToForName(v1, i), assign(v1, v2).

leadsToForName(v2, i) : – leadsToForName(v1, i),
load(v3, f, v1), points-to(v3, h3),
points-to(v4, h3), store(v4, f, v2).

leadsToForName(v2, i) : – leadsToForName(v1, i), ret(i2, v1),
calls(i2, “StringBuffer.append”), actual(i2, 0, v2).

leadsToForName(v2, i) : – leadsToForName(v1, i), ret(i2, v1),
calls(i2, “StringBuffer.append”), actual(i2, 1, v2).

leadsToForName(v2, i) : – leadsToForName(v1, i), actual(i2, 0, v1),
calls(i2, “StringBuffer.append”), actual(i2, 1, v2).

To compute the specification points necessary to resolve Class.forName calls,
we find endpoints of the leadsToForName propagation chains that are not
string constants that represent class names. Relation lhs(v) defines when
variable v is ever assigned to in the program.

lhs(v) : – assign(v, _).
lhs(v) : – calls(i, “StringBuffer.append”), ret(i, v).
lhs(v) : – calls(i, “StringBuffer.append”), actual(i, 0, v).
lhs(v) : – calls(i, “StringBuffer.toString”), ret(i, v).
lhs(v) : – calls(i, “new StringBuffer”), actual(i, 0, v).
lhs(v) : – load(v3, f, v), points-to(v3, h), points-to(v2, h), store(v2, f, _).

Relation isTypeString(v) below holds for variables v that refer to class name
constants:

isTypeString(v) : – points-to(v, h), string2class(h, _).

Finally, relation specPts(v, i) defines when variable v is a specification point
for a call to Class.forName at call site i:

specPts(v, i) : – leadsToForName(v, i),¬lhs(v),¬isTypeString(v).

Variables in specPts are often return results of calls to System.getProperty

in the case of reading from a system property or BufferedReader.readLine in

Pointer Analysis for Reflection 32

the case of reading from a file. By specifying the possible values at that
point that are appropriate for the application being analyzed, the user can
construct a complete call graph.

5.2.8 Dealing with Other Reflective Calls

Unfortunately, Class.forName calls discussed in detail in the previous sec-
tion are not the only ones whose results cannot sometimes be resolved
without a user-provided specification. According to the definition of
newInstanceTargets in Section 5.2.3, calls to Class.newInstance should all be
fully resolved as long as the underlying Class and Constructor objects are
fully resolved.

Similarly, according to the rules in Sections 5.2.5 and 5.2.6, method in-
vocations and field accesses may not be fully resolved either because the un-
derlying field or method objects are not fully resolved or because the method
or field names are not fully resolved. Since the underlying objects come from
Class.forName calls, they will be dealt with when we consider Class.forName

resolution. However, method and field names can be not fully resolved and
we need to address these cases separately by adding to the specPts relation.

leadsToInvoke(v, i) : – calls(i, getMethod(m)), actual(i, 1, v).

leadsToInvoke(v2, i) : – leadsToInvoke(v1, i), assign(v1, v2).

leadsToInvoke(v2, i) : – leadsToInvoke(v1, i),
load(v3, f, v1), points-to(v3, h3),
points-to(v4, h3), store(v4, f, v2).

leadsToInvoke(v2, i) : – leadsToInvoke(v1, i), ret(i2, v1),
calls(i2, “StringBuffer.append”), actual(i2, 0, v2).

leadsToInvoke(v2, i) : – leadsToInvoke(v1, i), ret(i2, v1),
calls(i2, “StringBuffer.append”), actual(i2, 1, v2).

leadsToInvoke(v2, i) : – leadsToInvoke(v1, i), actual(i2, 0, v1),
calls(i2, “StringBuffer.append”), actual(i2, 1, v2).

Relation isMethodString below defines all string variables that represent
method names:

isMethodString(v) : – points-to(v, h), string2method(h, _).

Finally, we all the necessary 〈v ∈ V, i ∈ I〉 pairs to relation specPts :

Precision of Points-to Results 33

specP ts(v, i) : – leadsToInvoke(v, i),¬lhs(v),¬isMethodString(v).

Finding additional specification points caused by unresolved field accesses
proceeds similarly. The relevant rules are shown below:

leadsToField(v, i) : – calls(i, getField(m)), actual(i, 1, v).

leadsToField(v, i) : – calls(i, “Class.getDeclaredField”), actual(i, 1, v).

leadsToField(v2, i) : – leadsToField(v1, i), assign(v1, v2).

leadsToField(v2, i) : – leadsToField(v1, i),
load(v3, f, v1), points-to(v3, h3),
points-to(v4, h3), store(v4, f, v2).

leadsToField(v2, i) : – leadsToField(v1, i), ret(i2, v1),
calls(i2, “StringBuffer.append”), actual(i2, 0, v2).

leadsToField(v2, i) : – leadsToField(v1, i), ret(i2, v1),
calls(i2, “StringBuffer.append”), actual(i2, 1, v2).

leadsToField(v2, i) : – leadsToField(v1, i), actual(i2, 0, v1),
calls(i2, “StringBuffer.append”), actual(i2, 1, v2).

isFieldString(v) : – points-to(v, h), field2method(h, _).

specP ts(v, i) : – leadsToField(v, i),¬lhs(v),¬isFieldString(v).

5.3 Precision of Points-to Results

Accurate interprocedural pointer alias analysis is critical to the precision
of our reflection analysis, because Class objects can be passed around the
program, placed in collections, etc. to be used later for object creation. The
pointer analysis our approach implements is a variation of the inclusion-
based pointer analysis by Whaley and Lam [WL04]. Being an inclusion-
based analysis, it is more precise than equivalence-based ones as it allows
two aliased pointers to point to overlapping but different sets of locations.

The default approach to object naming in this analysis uses object allo-
cation sites as an approximation of object identity. This approach yields
insufficient precision in the case of collection classes; all instances of a
collection class typically use the same allocation site to store the objects

Reflection Resolution Using Casts 34

put into the collection. Introducing new names for these internal data
structures of the default collection classes greatly improves analysis preci-
sion [LL05a, LL05b, MRR02].

5.4 Reflection Resolution Using Casts

For some applications, the task of providing reflection specifications may be
too heavy a burden. Fortunately, we can leverage the type cast information
present in the program to automatically determine a conservative approx-
imation of possible reflective targets. Consider, for instance, the following
typical code snippet:

1. Object o = c.newInstance();
2. String s = (String) o;

The cast in statement 2 post-dominates the call to Class.newInstance in state-
ment 1. This implies that all execution paths that pass through the call to
Class.newInstance must also go through the cast in statement 2 [ASU86]. For
statement 2 not to produce a runtime exception, o must be a subclass of
String. Thus, only subtypes of String can be created as a result of the call
to newInstance. More generally, if the result of a newInstance call is always
cast to type t, we say that only subtypes of t can be instantiated at the call
to newInstance.

Relying on cast operations can possibly be unsound as the cast may fail,
in which case, the code will throw a ClassCastException. Thus, in order to
work, our cast-based technique relies on Assumption 4.3, the correctness of
cast operations.

5.4.1 Preparing Subtype Information

We rely on the closed world Assumption 4.2 described in Section 4 to find
the set of all classes possibly used by the application. The classes available
at analysis time are generally distributed with the application. However,
occasionally, there are classes that are generated when the application is
compiled or deployed, typically with the help of an Ant script. Therefore,
we generate the set of possible classes after deploying the application.

We pre-process all resulting classes to compute the subtyping relation
subtype(t1, t2) that determines when t1 is a subtype of t2. Preprocessing
even the smallest applications involved looking at many thousands of classes

Reflection Resolution Using Casts 35

because we consider all the default jars that the Java runtime system has
access to. We run this preprocessing step off-line and store the results for
easy access.

5.4.2 Using Cast Information

We integrate the information about cast operations directly into the system
of constraints expressed in Datalog. We use a Datalog relation subtype de-
scribed above, a relation cast that holds the cast operations, and a relation
unresolved that holds the unresolved calls to Class.forName. The following
Datalog rule uses cast operations applied to the return result vret of a call
i to Class.newInstance to constrain the possible types tc of Class objects c
returned from calls sites ic of Class.forName:

classObjects(ic, t) : – calls(i, “Class.newInstance”), actual(i, 0, v),
points-to(v, c), ret(i, vret),
cast(_, tc, vret), subtype(t, tc),
unresolved(ic), points-to(vc, c), ret(ic, vc).

Information propagates both forward and backward—for example, casting
the result of a call to Class.newInstance constrains the Class object it is called
upon. If the same Class object is used in another part of the program, the
type constraint derived from the cast will be obeyed.

5.4.3 Problems with Using Casts

Casts are sometimes inadequate for resolving calls to Class.newInstance for
the following reasons. First, the cast-based approach is inherently imprecise
because programs often cast the result of Class.newInstance to a very wide
type such as java.io.Serializable. This produces a lot of potential subclasses,
only some of which are relevant in practice. Second, as our experiments show,
not all calls to Class.newInstance have post-dominating casts, as illustrated
by the following example.

Example 8. As shown in Figure 17, one of our benchmark applica-
tions, freetts, places the object returned by Class.newInstance into a vector
voiceDirectories (line 5). Despite the fact that the objects are subsequently
cast to type VoiceDirectory[] on line 8, intraprocedural post-dominance is not
powerful enough to take this cast into account. 2

Reflection Resolution Using Casts 36

1. UniqueVector voiceDirectories = new UniqueVector();
2. for (int i = 0; i < voiceDirectoryNames.size(); i++) {
3. Class c = Class.forName((String) voiceDirectoryNames.get(i),
4. true, classLoader);
5. voiceDirectories.add(c.newInstance());
6. }
7.
8. return (VoiceDirectory[]) voiceDirectories.toArray(new
9. VoiceDirectory[voiceDirectories.size()]);

Figure 17: A case in freetts where our analysis is unable to determine the type of
objects instantiated on line 5 using casts.

Using cast information significantly reduces the need for user-provided
specification in practice. While the version of the analysis that does not use
cast information can be made fully sound with user specification as well, we
chose to only provide a specification for the cast-based version.

37

SECTION 6

Experimental Results

In this section we present a comprehensive experimental evaluation of the
static analysis approaches presented in Section 5. In Section 6.1 we describe
our experimental setup. Section 6.2 presents an overview our experimental
results. Section 6.3 presents our baseline local reflection analysis. In Sec-
tions 6.4 and 6.5 we discuss the effectiveness of using the points-to and cast-
based reflection resolution approaches, respectively. Section 6.6 describes the
specifications needed to obtain a sound call graph approximation. Section 6.7
compares the overall sizes of the call graph for the different analysis versions
presented in this section.

6.1 Experimental Setup

We performed our experiments on a suite of six large, widely-used open-
source Java benchmark applications. These applications were selected among
the most popular Java projects available on SourceForge. We believe that
real-life applications like these are more representative of how programmers
use reflection than synthetically created test suites, or SPEC JVM bench-
marks, most of which avoid reflection altogether.

Summary of information about the applications is provided in Figure 18.
Notice that the traditional lines of code size metric is somewhat misleading in

Line File Available
Benchmark Description count count Jars classes

jgap genetic algorithms package 32,961 172 9 62,727
freetts speech synthesis system 42,993 167 19 62,821

gruntspud graphical CVS client 80,138 378 10 63,847

jedit graphical text editor 144,496 427 1 62,910

columba graphical email client 149,044 1,170 35 53,689

jfreechart chart drawing library 193,396 707 6 62,885

Total 643,028 3,021 80 368,879

Figure 18: Summary of information about our benchmarks. Applications are sorted by
the number of lines of code in column 3.

Evaluation Approach 38

None Local Points-to Casts Sound

Benchmark T T FR UR T FR PR UR T FR PR UR T FR UR

jgap 27 27 19 8 28 20 1 7 28 20 4 4 89 85 4
freetts 30 30 21 9 30 21 0 9 34 25 4 5 81 75 6
gruntspud 139 139 112 27 142 115 5 22 232 191 19 22 220 208 12
jedit 156 156 137 19 161 142 3 16 178 159 12 7 210 197 12
columba 104 105 89 16 105 89 2 14 118 101 10 7 173 167 6
jfreechart 104 104 91 13 104 91 1 12 149 124 10 15 169 165 4

Figure 19: Results of resolving Class.forName calls for different analysis versions.

the case of applications that rely on large libraries. Many of these benchmarks
depend of massive libraries, so, while the application code may be small, the
full size of the application executed at runtime is quite large. The last column
of the table in Figure 18 lists the number of classes available by the time each
application is deployed, including those in the JDK.

We ran all of our experiments on an Opteron 150 machine equipped
with 4GB or memory running Linux. JDK version 1.4.2_08 was used. All of
the running times for our preliminary implementation were in tens of min-
utes, which, although a little high, is acceptable for programs of this size.
Creating subtype information for use with cast-based analysis took well un-
der a minute.

6.2 Evaluation Approach

We have implemented five different variations of our algorithms: None, Lo-

cal, Points-to, Casts, and Sound and applied them to the benchmarks
described above. None is the base version that performs no reflection reso-
lution; Local performs a simple local analysis, as described in Section 6.3.
Points-to and Casts are described in Sections 5.2 and 5.4, respectively.

Version Sound is augmented with a user-provided specification to make
the answer conservative. We should point out that only the Sound version
provides results that are fully sound: None essentially assumes that reflective
calls have no targets. Local only handles reflective calls that can be fully
resolved within a single method. Points-to and Casts only provide targets
for reflective calls for which either string or cast information constraining the
possible targets is available and unsoundly assumes that the rest of the calls
have no targets.

Figure 19 summarizes the results of resolving Class.forName using all five
analysis versions. Class.forName calls represent by far the most common kind

Local Analysis for Reflection Resolution (Local) 39

of reflective operations and we focus on them in our experimental evaluation.
To reiterate the definitions in Section 5, we distinguish between:

• fully resolved calls to Class.forName for which all potential targets are
class name constants,

• partially resolved calls, which have at least one class name string con-
stant propagating to them, and

• unresolved calls, which have no class name string constants propagating
to them, only non-constant external sources requiring a specification.

The columns subdivide the total number of calls (T) into fully resolved
calls (FR), partially resolved (PR), and unresolved (UR) calls. In the case of
Local analysis, there are no partially resolved calls — calls are either fully
resolved to constant strings or unresolved. Similarly, in the case of Sound

analysis, all calls are either fully resolved or unresolved, as further explained
in Section 6.5.

6.3 Local Analysis for Reflection Resolution (Local)

To provide a baseline for comparison, we implemented a local intra-method
analysis that identifies string constants passed to Class.forName. This analysis
catches only those reflective calls that can be resolved completely within a
single method. Because this technique does not use interprocedural points-to
results, it cannot be used for identification of specification points. Further-
more, because for method invocations and field accesses the names of the
method or field are typically not locally defined constants, we do not per-
form resolution of method calls and field accesses in Local.

A significant percentage of Class.forName calls can be fully resolved by
local analysis, as demonstrated by the numbers in column 4, Figure 19. This
is partly due to the fact that it is actually quite common to call Class.forName
with a constant string parameter for side-effects of the call, because doing
so invokes the class constructor. Another common idiom contributing the
number of calls resolved by local analysis is T.class, which is converted to a
call to Class.forName and is always statically resolved.

Points-to & Reflection Resolution (Points-to) 40

6.4 Points-to & Reflection Resolution (Points-to)

Points-to information is used to find targets of reflective calls to Class.forName,
Class.newInstance, Method.invoke, etc. As can be seen from Figure 19, for
all of the benchmarks, Points-to information results in more resolved
Class.forName calls and fewer unresolved ones compared to Local.

6.4.1 Specification Points

Quite frequently, some sort of specification is required for reflective calls to be
fully resolved. Points-to information allows us to provide the user with a list
of specification points where inputs needs to be specified for a conservative
answer to be obtained. Among the specification points we have encountered
in our experiments, calls to System.getProperty to retrieve a system variable
and calls to BufferedReader.readLine to read a line from a file are quite com-
mon. Below we provide a typical example of providing a specification.

Example 9. This example describes resolving reflective targets of a call
to Class.newInstance in javax.xml.transform.FactoryFinder in the JDK in order
to illustrate the power and limitation of using points-to information. Class
FactoryFinder has a method Class.newInstance shown in Figure 20. The call
to Class.newInstance occurs on line 9. However, the exact class instantiated
at runtime depends on the className parameter, which is passed into this
function. This function is invoked from a variety of places with the className

parameter being read from initialization properties files, the console, etc. In
only one case, when Class.newInstance is called from another function find

located in another file, is the className parameter a string constant.
This example makes the power of using points-to information apparent

— the Class.newInstance target corresponding to the string constant is often
difficult to find by just looking at the code. The relevant string constant
was passed down through several levels of method calls located in a different
file; it took us more that five minutes of exploration with a powerful code
browsing tool to find this case in the source. Resolving this Class.newInstance

call also requires the user to provide input for four specification points: along
with a constant class name, our analysis identifies two specification points,
which correspond to file reads, one access of system properties, and another
read from a hash table. 2

In most cases, the majority of calls to Class.forName are fully resolved.
However, a small number of unresolved calls are potentially responsible for a

Casts & Reflection Resolution (Casts) 41

1. private static Object newInstance(String className,
2. ClassLoader classLoader) throws ConfigurationError {
3. try {
4. Class spiClass;
5. if (classLoader == null) {
6. spiClass = Class.forName(className);
7. }
8. ...
9. return spiClass.newInstance();

10. } catch (...)
11. ...
12. }

Figure 20: Reflection resolution using points-to results in
javax.xml.transform.FactoryFinder in the JDK.

large number of specification points the user has to provide. For Points-to,
the average number of specification points per invocation site ranges from
3 for freetts to 9 for gruntspud. However, for jedit, the average number
of specification points is 422. Specification points computed by the pointer
analysis-based approach can be thought of as “hints” to the user as to where
provide specification.

In most cases, the user is likely to provide specification at program input
points where he knows what the input strings may be. This is because at a
reflective call it may be difficult to tell what all the constant class names that
flow to it may be, as illustrated by Example 9. Generally, however, the user
has a choice. For problematic reflective calls like those in jedit that produce
a high number of specification points, a better strategy for the user may be to
provide reflective specifications at the Class.forName calls themselves instead
of laboriously going through all the specification points.

6.5 Casts & Reflection Resolution (Casts)

Type casts often provide a good first static approximation to what objects
can be created at a given reflective creation site. There is a pretty signifi-
cant increase in the number of Class.forName calls reported in Figure 19 in a
few cases, including 93 newly discovered Class.forName calls in gruntspud that
apprear due to a bigger call graph when reflective calls are resolved. In all
cases, the majority of Class.forName calls have their targets at least partially

Casts & Reflection Resolution (Casts) 42

resolved. In fact, as many as 95% of calls are resolved in the case of jedit.
As our experience with the Java reflection APIs would suggest, most

Class.newInstance calls are post-dominated by a cast operation, often located
within only a few lines of code of the Class.newInstance call. However, in
our experiments, we have identified a number of Class.newInstance call sites,
which were not dominated by a cast of any sort and therefore the return
result of Class.newInstance could not be constrained in any way. As it turns
out, most of these unconstrained Class.newInstance call sites are located in
the JDK and sun.∗ sources, Apache libraries, etc. Very few were found in
application code.

The high number of unresolved calls in the JDK is due to the fact that
reflection use in libraries tends to be highly generic and it is common to
have “Class.newInstance wrappers” — methods that accept a class name as a
string and return an object of that class, which is later cast to an appropriate
type in the caller method. Since we rely on intraprocedural post-dominance,
resolving these calls is beyond our scope. However, since such “wrapper”
methods are typically called from multiple invocation sites and different sites
can resolve to different types, it is unlikely that a precise approximation of
the object type returned by Class.newInstance is possible in these cases at all.

6.5.1 Precision of Cast Information

Many reflective object creation sites are located in the JDK itself and are
present in all applications we have analyzed. For example, method lookup

in package sun.nio.cs.AbstractCharsetProvider reflectively creates a subclass of
Charset and there are 53 different character sets defined in the system. In
this case, the answer is precise because all of these charsets can conceivably
be used depending on the application execution environment. In many cases,
the cast approach is able to uniquely pinpoint the target of Class.newInstance
calls based on cast information. For example, there is only one subclass of
class sun.awt.shell.ShellFolderManager available to gruntspud, so, in order for
the cast to succeed, it must be instantiated.

In general, however, the cast-based approach provides an imprecise up-
per bound on the call graph that needs to be analyzed. Because the re-
sults of Class.newInstance are occasionally cast to very wide types, such as
java.lang.Cloneable, many potential subclasses can be instantiated at the
Class.newInstance call site. The cast-based approach is likely to yield more
precise results on applications that use Java generics, because those applica-

A Sound Call Graph Approximation (Sound) 43

tions tend to use more narrow types when performing type casts.

6.6 A Sound Call Graph Approximation (Sound)

Providing a specification for unresolved reflective calls allows us to achieve
a sound approximation of the call graph. In order to estimate the amount
of effort required to come up with a specification for unresolved reflective
calls, we decided to start with Points-to and add a reflection specification
until the result became sound. Because providing a specification allows us
to discover more of the call graph, two or three rounds of specification were
required as new portions of the program became available. In practice, we
would start without a specification and examine all unresolved calls and
specification points corresponding to them. Then we would come up with a
specification and feed it back to the call graph construction algorithm until
the process converges.

Coming up with a specification is a difficult and error-prone task that
requires looking at a large amount of source code. It took us about ten hours
to incrementally devise an appropriate specification and ensure its complete-
ness by rerunning the call graph construction algorithm. After providing a
reflection specification stringing with Points-to, we then estimate how much
of the user-provided specification can be avoided if we were to rely on type
casts instead.

6.6.1 Specification Statistics

The first part of Figure 21 summarizes the effort needed to provide specifi-
cations to make the call graph sound. The second column shows the number
of specifications of the form

reflective call site => type

as exemplified by Figure 16. Columns 3–5 show the number of reflection
calls sites covered by each specification, breaking them down into sites that
located within library vs application code. As can be seen from the table,
while the number of invocation sites for which specifications are necessary is
always around 20, only a few are part of the application. Moreover, in the
case of jfreechart, all of the calls requiring a specification are part of the
library code.

A Sound Call Graph Approximation (Sound) 44

Starting with Strings Starting with Casts

Benchmark Specs Sites Libs App Types/site Specs Sites Libs App Types/site

jgap 1,068 25 21 4 42.72 16 2 2 0 8.0
freetts 964 16 14 2 60.25 0 4 3 1 0.0
gruntspud 1,014 27 26 1 37.56 18 4 4 0 4.5
jedit 1,109 21 19 2 52.81 63 3 2 1 21.0
columba 1,006 22 21 1 45.73 16 2 2 0 8.0
jfreechart 1,342 21 21 0 63.90 18 4 4 0 4.5

Figure 21: User-provided specification statistics.

Since almost all specification points are located in the JDK and library
code, specification can be shared among different applications. Indeed, there
are only 40 unique invocation sites requiring a specification across all the
benchmarks. Column 6 shows the average number of types specified per
reflective call site. Numbers in this columns are high because most reflective
calls within the JDK can refer to a multitude of implementation classes.

The second part of Figure 21 estimates the specification effort required
if were were to start with a cast-based call graph construction approach. As
can be seen from columns 8–10, the number of Class.forName calls that are
not constrained by a cast operation is quite small. There are, in fact, only
14 unique invocation sites — or about a third of invocation sites required for
Points-to. This suggests that the the effort required to provide a specifi-
cation to make Casts sound is considerably smaller than our original effort
that starts with Points-to.

6.6.2 Specification Difficulties

In some cases, determining meaningful values to specify for Class.forName re-
sults is quite difficult, as shown by the example below. One such problematic
example was the BeanShell interpreter in jedit first described in Section 3.7.

Example 10. In order to come up with a conservative superset of classes
that may be invoked by the BeanShell interpreter for a given installation of
jedit, we parse the scripts that are supplied with jedit to determine imported
Java classes they have access to. (We should note that this specification is
only sound for the default configuration of jedit; new classes may need to be
added to the specification if new macros become available.)

Effect of Reflection Resolution on Call Graph Size 45

It took us a little under an hour to develop appropriate Perl scripts to
do the parsing of 125 macros supplied with jedit. The Class.forName call can
instantiate a total of 65 different types, which is, of course, an improvement
over an overly conservative approximation that assumes that any class in the
system may be instantiated. 2

We should emphasize that the conservativeness of the call graph depends
on the conservativeness of the user-provided specification. If the specifica-
tion missed potential relations, they will be also omitted from the call graph.
Furthermore, a specification is typically only conservative for a given con-
figuration of an application: if initialization files are different for a different
program installation, the user-provided specification may no longer be con-
servative.

6.6.3 Remaining Unresolved Calls

Somewhat surprisingly, there are still some Class.forName calls that are not
fully resolved given a user-provided specification, as can be seen from the
last column in Figure 19. In fact, this is not a specification flaw: no valid
specification is possible for those cases, as explained below.

Example 11. The audio API in the JDK includes method
javax.sound.sampled.AudioSystem.getDefaultServices, which is not called in Java
version 1.3 and above. A Class.forName call within that method resolves to
constant com.sun.media.sound.DefaultServices, however, this class is absent in
post-1.3 JDKs. However, since this method represents dead code, our answer
is still sound. Similarly, other unresolved calls to Class.forName located within
code that is not executed for the particular application configuration we are
analyzing refer to classes specific to MacOS and unavailable on Linux, which
is the platform we performed analysis on. In other cases, classes were un-
available for JDK version 1.4.2_08, which is the version we ran our analysis
on. 2

6.7 Effect of Reflection Resolution on Call Graph Size

Figure 22 compares the number of classes and methods across different an-
alysis versions. Local analysis does not have any significant effect on the
number of methods or classes in the call graph, even though most of the calls
to Class.forName can be resolved with local analysis. This is due to the fact

Effect of Reflection Resolution on Call Graph Size 46

that the vast majority of these calls are due to the use of the T.class idiom,
which typically refer to classes that are already within the call graph. While
these trivial calls are easy to resolve, it is the analysis of the other “hard”
calls with a lot of potential targets that leads to a substantial increase in the
call graph size.

Using Points-to increases the number of classes and methods in the
call graph only moderately. The biggest increase in the number of methods
occurs for jedit (293 methods). Using Casts leads to significantly bigger call
graphs, especially for gruntspud, where the increase in the number of methods
compared to None is almost two-fold.

The most noticeable increase in call graph size is observed in version
Sound. Compared to None, the average increase in the number of classes
is 3.2 times the original and the average increase for the number of methods
is 3 times the original. The biggest increase in the number of methods occurs
in gruntspud, with over 7,000 extra methods added to the graph.

Figure 22 also demonstrate that the lines of code metric is not always
indicative of the size of the final call graph — programs are listed in the

Classes
Benchmark None Local Points-to Casts Sound

jgap 264 264 268 276 1,569 5.94
freetts 309 309 309 351 1,415 4.58
gruntspud 1,258 1,258 1,275 2,442 2,784 2.21
jedit 1,660 1,661 1,726 2,152 2,754 1.66
columba 961 962 966 1,151 2,339 2.43
jfreechart 884 881 886 1,560 2,340 2.65

Methods
Benchmark None Local Points-to Casts Sound

jgap 1,013 1,014 1,038 1,075 6,676 6.58
freetts 1,357 1,358 1,358 1,545 5,499 4.05
gruntspud 7,321 7,321 7,448 14,164 14,368 1.96
jedit 11,230 11,231 11,523 13,487 16,003 1.43
columba 5,636 5,642 5,652 6,199 12,001 2.13
jfreechart 5,374 5,374 5,392 8,375 12,111 2.25

Figure 22: Number of classes and methods in the call graph for different analysis versions.

Running Times 47

None Local Points-to Casts Sound

Benchmark Solver Total Solver Total Solver Total Solver Total Solver Total
jgap 30 54 34 61 43 73 477 692
freetts 16 32 19 35 23 39 180 250
gruntspud 193 268 239 318 392 481 5,702 5,860
jedit 836 1,236 983 1,394 1,925 2,401 0 7,300
columba 106 158 125 179 173 237 1,161 1,456
jfreechart 272 395 335 462 450 592 2,578 3,351

Figure 23: Running times for different analysis versions, in seconds.

increasing order of line counts, yet, jedit and gruntspud are clearly the biggest
benchmarks if we consider the method count. This can be attributed to the
use of large libraries that ship with the application in binary form as well as
considering a much larger portion of the JDK in version Sound compared to
version None.

6.8 Running Times

Figure 23 presents the running times for the different versions our our anal-
ysis. For each analysis version, we specify the bddbddb solver time as well as
the total wall clock time, which includes the time to load the relations and
save the program representation and call graph information. The overhead
involved in these steps can range from 38% to over 100%. When there is a
client analysis that uses the results of reflection resolution, these additional
saving operations can be avoided by running the client analysis together with
reflection resolution while the relevant relations are still within bddbddb.

While the version with no reflection resolution runs relatively fast, other
analysis versions take considerably more time to complete.

48

SECTION 7

Related Work

General treatments of reflection in Java are given in Forman and For-
man [FF04] and Guéhéneuc et al. [GCSD02]. The rest of the related work
falls into the following broad categories: projects that explicitly deal with
reflection in Java and other languages; approaches to call graph construction
in Java; and finally, static and dynamic analysis algorithms that address the
issue of dynamic class loading.

7.1 Reflection and Metadata Research

The metadata and reflection community has a long line of research originating
in languages such as Scheme [Thi96]. We only mention a few highly relevant
projects here. The closest static analysis project to ours we are aware of
is the work by Braux and Noyé on applying partial evaluation to reflection
resolution for the purpose of optimization [BN99]. Their paper describes
extensions to a standard partial evaluator to offer reflection support. The
idea is to “compile away” reflective calls in Java programs, turning them
into regular operations on objects and methods, given constraints on the
concrete types of the object involved. The type constraints for performing
specialization are provided by hand.

Our static analysis can be thought of as a tool for inferring such con-
straints, however, as our experimental results show, in many cases targets
of reflective calls cannot be uniquely determined and so the benefits of spe-
cialization to optimize program execution may be limited. Braux and Noyé
present a description of how their specialization approach may work on ex-
amples extracted from the JDK, but lacks a comprehensive experimental
evaluation. In related work for languages other than Java, Ruf explores
the use of partial evaluation as an optimization technique in the context
of CLOS [Ruf93]. Masuhara et al. explore the use of partial evaluation as
applied to an abstract object-oriented language [MY98].

The issue of specifying reflective targets is explicitly addressed in
Jax [TLSS99]. Similarly, the Spark pointer analysis implemented within
the Soot compiler uses specifications of many reflective targets in the JDK
during call graph construction [LH03]. Just like our technique, Spark also
used on-the-fly call graph construction. Potential reflective call targets are

Call Graph Construction 49

automatically added to the set of root methods in the beginning of the an-
alysis. Unlike Spark, which comes with models of many native methods, our
approach is oblivious to native methods. While this is generally unlikely, not
handling such methods can render our results not fully sound.

Jax is concerned with reducing the size of Java applications in order to
reduce download time; it reads in the class files that constitute a Java appli-
cation, and performs a whole-program analysis to determine the components
of the application that must be retained in order to preserve program be-
havior. Clearly, information about the true call graph is necessary to ensure
that no relevant parts of the application are pruned away. Jax’s approach to
reflection is to employ user-provided specifications of reflective calls. While
our framework also supports user-provided annotations, as illustrated in Sec-
tion 6.4, determining targets of reflective calls can often be error-prone, if
delegated to the user. To assist the user with writing complete specification
files, Jax relies on dynamic instrumentation to discover the missing targets of
reflective calls. Our analysis based on points-to information can be thought
of as a tool for determining where to insert reflection specifications.

A precise analysis of strings by Christensen et al. mentions reflections as
one of the potential uses of their approach [CMS03]. They treat Class.forName

calls as “hotspots” for their analysis, then trying to determine what the exact
values passed as parameters may be. Their approach, however, relies on an
external pointer analysis to determine the propagation of strings through-
out the program. The paper applies their approach to programs that are all
under 4,000 lines long and lacks a detailed experimental evaluation of the pre-
cision of their approach. Their technique, however, can potentially address
reflective calls that have much more complex string expressions passed as re-
flective arguments. For example, knowing that the argument of Class.forName
must end in string "Configuration" will allow the analysis to substantially
limit the number of possibly instantiated classes.

7.2 Call Graph Construction

A lot of effort has been spent of analyzing function pointers in C [EGH94,
MRR01, MRR04] as well as virtual method calls in C++ [AH96, BS96, CG94,
PR96] and Java [GC01, GDDC97, RRHK00, SHR+00, TP00]. They are
described in more detail below.

Call Graph Construction 50

7.2.1 Function Pointers in C

Emami et al. describe how a context-sensitive pointer analysis for C in-
tegrated with call graph construction in the presence of function point-
ers [EGH94]. Their approach introduces the notion of call graph discovery
when the call graph is unavailable in advance.

Milanova et al. evaluate the precision of call graph construction in the
presence of function pointers using an inexpensive pointer analysis ap-
proach [Zha98] and conclude that it is sufficient for most cases [MRR01,
MRR04].

7.2.2 Virtual Calls in C++

Bacon et al. compare the “unique name”, RTA, and CHA virtual call reso-
lution approaches [BS96, Bac98]. They conclude that RTA is both fast and
effective and able to resolve 71% of virtual calls on average.

Aigner and Hölzle investigate the effect virtual call elimination using CHA
has on the runtime of large C++ programs and report a median 18% per-
formance improvement over the original programs [AH96]. The number of
virtual function calls is reduced by a median factor of five.

7.2.3 Virtual Calls in Java

Grove et al. present a parameterized algorithmic framework for call graph
construction [GC01, GDDC97]. They empirically assess a multitude of call
graph construction algorithms by applying them to a suite of medium-sized
programs written in Cecil and Java. Their experience with Java programs
suggests that the effect of using context sensitivity for the task of call graph
construction in Java yields only moderate improvements.

Tip and Palsberg propose a propagation-based algorithm for call graph
construction and investigate the design space between existing algorithms for
call graph construction such as 0-CFA and RTA, including RA, CHA, and
four new ones [TP00]. Sundaresan et al. go beyond the tranditional RTA
and CHA approaches in Java and and use type propagation for the purpose
of obtaining a more precise call graph [SHR+00]. Their approach of using
variable type analysis (VTA) is able to uniquely determine the targets of
potentially polymorphic call sites in 32% to 94% of the cases.

Agrawal et al. propose a demand-driven algorithm for call graph construc-
tion [ALS02]. Their work is motivated by the need for just-in-time or dynamic

Dynamic Analysis Approaches 51

compilation as well as program analysis used as part of software development
environments. They demonstrate that their demand-driven technique has the
same accuracy as the corresponding exhaustive technique. The reduction in
the graph construction time depends upon the ratio of the cardinality of the
set of influencing nodes to the set of all nodes.

Rayside et al. explore the effect various call graph construction tech-
niques have on automatic clustering approaches used to extract the high
level structure of the program under study [RRHK00]. They also used a
slightly different notion of the call graph that supports weighted edges.

7.3 Dynamic Analysis Approaches

Our work is motivated to a large extend by the need of error detection tool to
have a static approximation of the true conservative call graph of the appli-
cation. This largely precludes dynamic analysis that benefits optimizations
such as method inlining and connectivity-based garbage collection.

A recent paper by Hirzel, Diwan, and Hind addresses the issues of dy-
namic class loading, native methods, and reflection in order to deal with the
full complexity of Java in the implementation of a common pointer analy-
sis [HDH04]. Their approach involves converting the pointer analysis [And94]
into an online algorithm: they add constraints between analysis nodes as they
are discovered at runtime. Newly generated constraints cause re-computation
and the results are propagated to analysis clients such as a method inliner
and a garbage collector at runtime. Their approach leverages the class hier-
archy analysis (CHA) to update the call graph. Our technique uses a more
precise pointer analysis-based approach to call graph construction.

Their paper also contains a comprehensive overview of analysis ap-
proaches that address dynamic class loading. Here we briefly mention some of
the highlights. However, none of the projects mentioned below fully address
the issue of reflection.

The ARE tool presented in Gscwind et al. allows tracing of method pa-
rameter and return values at runtime for program comprehension [GOP03].
They point out that ignoring reflection leads to program traces that are in-
complete. ARE instruments the program and collects data that allows it
to provide targets of reflective method calls. These reflective targets are
subsequently displayed by way of sequence diagrams.

Pechtchanski and Sarkar [PS01] present a framework for interprocedural
whole-program analysis. They discuss how the analysis is triggered (when

Dynamic Analysis Approaches 52

newly loaded methods are compiled), and how to keep track of what to
de-optimize (when optimistic assumptions are invalidated). Qian and Hen-
dren [QH04] adapt Tip and Palsbergs XTA [TP00] to deal with dynamic
class loading. The main contribution of their work is a low-overhead call
edge profiler, which yields a precise call graph upon which XTA is based.

53

SECTION 8

Conclusions

This paper presents the first static analysis for call graph construction in Java
that addresses reflective calls. Our algorithm uses the results of a points-to
analysis to determine potential reflective call targets. When the calls cannot
be fully resolved, user-provided specification is requested. As an alternative
to providing specification, type cast information can be used to provide a
conservative approximation of reflective call targets.

We applied our static analysis techniques to the task of constructing call
graphs for six large Java applications, some consisting of more than 190,000
lines of code. Our evaluation showed that as many as 95% of reflective
Class.forName could at least partially be resolved to statically determined tar-
gets with the help of points-to results and cast information without providing
any specification.

While most reflective calls are relatively easy to resolve statically, precisely
interpreting some reflective calls requires a user-provided specification. Our
pointer analysis-based approach also identified specification points — places
in the program corresponding to file and system property read operations,
etc., where user input is needed in order to obtain a full call graph. Our evalu-
ation showed that the construction of a specification that makes the call graph
conservative is a time-consuming and error-prone task. Fortunately, our cast-
based approach can drastically reduce the specification burden placed on the
user by providing a conservative, albeit potentially imprecise approximation
of reflective targets.

Our experiments confirmed that ignoring reflection results in missing sig-
nificant portions of the call graph, which is not something that effective static
analysis tools can afford. While the local and points-to analysis techniques
resulted in only a moderate increase in call graph size, using the cast-based
approach resulted in call graphs with as many as 1.5 times more methods
than the original call graph. Furthermore, providing a specification resulted
in much larger conservative call graphs that were almost 7 times bigger than
the original. For instance, in one our benchmark, an additional 7,047 meth-
ods were discovered in the conservative call graph version that were not
present in the original.

54

SECTION 9

Acknowledgements

This work was supported by NSF Grant No. 0326227 and an Intel Graduate
Fellowship. We would like to thank Chris Unkel as well as the anonymous
reviewers for helpful suggestions about improving this work.

REFERENCES 55

References

[AH96] Gerald Aigner and Urs Hölzle. Eliminating virtual function calls
in C++ programs. In Proceedings of the 10th European Confer-
ence on Object-Oriented Programming, pages 142–166. Springer-
Verlag, 1996.

[ALS02] Gagan Agrawal, Jinqian Li, and Qi Su. Evaluating a demand
driven technique for call graph construction. In Computational
Complexity, pages 29–45, 2002.

[And94] L. O. Andersen. Program analysis and specialization for the C
programming language. PhD thesis, University of Copenhagen,
1994.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[Bac98] David Francis Bacon. Fast and Effective Optimization of Stati-
cally Typed Object-Oriented Languages. PhD thesis, University of
California at Berkeley, 5, 1998.

[BD03] Jason Brittain and Ian F. Darwin. Tomcat: The Definitive Guide.
O’Reilly and Associates, 2003.

[BN99] Mathias Braux and Jacques Noyé. Towards partially evaluating
reflection in Java. In Proceedings of the ACM Workshop on Partial
Evaluation and Semantics-based Program Manipulation, pages 2–
11, 1999.

[BS96] David F. Bacon and Peter F. Sweeney. Fast static analysis of C++
virtual function calls. In Proceedings of the 11th ACM SIGPLAN
conference on Object-oriented programming, systems, languages,
and applications, pages 324–341, 1996.

[CG94] Brad Calder and Dirk Grunwald. Reducing indirect function call
overhead in C++ programs. In Conference Record of POPL ’94:
21st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 397–408, Portland, Oregon, 1994.

REFERENCES 56

[CMS03] Aske Simon Christensen, Anders Møller, and Michael I.
Schwartzbach. Precise analysis of string expressions. In Proc.
10th International Static Analysis Symposium, SAS ’03, volume
2694 of LNCS, pages 1–18. Springer-Verlag, June 2003. Available
from http://www.brics.dk/JSA/.

[DGC95] Jeffrey Dean, David Grove, and Craig Chambers. Optimization
of object-oriented programs using static class hierarchy analysis.
Lecture Notes in Computer Science, 952:77–101, 1995.

[EGH94] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-
sensitive interprocedural points-to analysis in the presence of func-
tion pointers. In SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 242–256, 1994.

[FF04] Ira R. Forman and Nate Forman. Java Reflection in Action. Man-
ning Publications, 2004.

[GC01] David Grove and Craig Chambers. A framework for call graph
construction algorithms. ACM Trans. Program. Lang. Syst.,
23(6):685–746, 2001.

[GCSD02] Yann-Gaël Guéhéneuc, Pierre Cointe, and Marc Ségura-
Devillechaise. Java reflection exercises, correction, and FAQs.
http://www.yann-gael.gueheneuc.net/Work/Teaching/

Documents/Practical-ReflectionCourse.doc.pdf, 2002.

[GDDC97] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers.
Call graph construction in object-oriented languages. In Proceed-
ings of the ACM Conference on Object-oriented Programming,
Systems, Languages, and Applications, pages 108–124, 1997.

[GOP03] Thomas Gschwind, Johann Oberleitner, and Martin Pinzger. Us-
ing run-time data for program comprehension. In IWPC ’03:
Proceedings of the 11th IEEE International Workshop on Pro-
gram Comprehension, page 245, Washington, DC, USA, 2003.
IEEE Computer Society.

[HDH04] Martin Hirzel, Amer Diwan, and Michael Hind. Pointer analysis
in the presence of dynamic class loading. In Proceedings of the

http://www.yann-gael.gueheneuc.net/Work/Teaching/Documents/Practical-ReflectionCourse.doc.pdf
http://www.yann-gael.gueheneuc.net/Work/Teaching/Documents/Practical-ReflectionCourse.doc.pdf

REFERENCES 57

European Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 96–122, 2004.

[KPK02] L. Koved, M. Pistoia, and A. Kershenbaum. Access rights analy-
sis for Java. In Proceedings of the ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications,
pages 359 – 372, 2002.

[LH03] Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analy-
sis using Spark. In G. Hedin, editor, Compiler Construction, 12th
International Conference, volume 2622 of LNCS, pages 153–169,
Warsaw, Poland, April 2003. Springer.

[LL05a] V. Benjamin Livshits and Monica S. Lam. Finding security errors
in Java programs with static analysis. Technical report, Stanford
University, August 2005.

[LL05b] V. Benjamin Livshits and Monica S. Lam. Finding security errors
in Java programs with static analysis. In Proceedings of the 14th
Usenix Security Symposium, pages 271 – 286, August 2005.

[LWL+05] Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C.
Martin, Dzintars Avots, Michael Carbin, and Christopher Un-
kel. Context-sensitive program analysis as database queries. In
Proceedings of the ACM Symposium on Principles of Database
Systems, pages 1 – 12, June 2005.

[MRR01] A. Milanova, A. Rountev, and B. Ryder. Precise call graph con-
struction in the presence of function pointers. Technical report,
Rutgers University, 2001.

[MRR02] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parame-
terized object sensitivity for points-to and side-effect analyses for
Java. In ISSTA ’02: Proceedings of the 2002 ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis, pages
1–11, 2002.

[MRR04] A. Milanova, A. Rountev, and B. G. Ryder. Precise and efficient
call graph onstruction for programs with function pointers. Jour-
nal of Automated Software Engineering, 2004.

REFERENCES 58

[MY98] Hidehiko Masuhara and Akinori Yonezawa. Design and partial
evaluation of meta-objects for a concurrent reflective language. In
Proceedings of the European Conference on Object-Oriented Pro-
gramming, pages 418–439. Springer-Verlag, 1998.

[Nie] Patrick Niemeyer. BeanShell 2.0. http://www.beanshell.org/

BeanShellSlides.pdf.

[PR96] Hemant D. Pande and Barbara G. Ryder. Data-flow-based virtual
function resolution. In SAS ’96: Proceedings of the Third Inter-
national Symposium on Static Analysis, pages 238–254. Springer-
Verlag, 1996.

[PS01] Igor Pechtchanski and Vivek Sarkar. Dynamic optimistic interpro-
cedural analysis: a framework and an application. In Proceedings
of the 16th ACM SIGPLAN conference on Object oriented pro-
gramming, systems, languages, and applications, pages 195–210,
2001.

[QH04] Feng Qian and Laurie Hendren. Towards dynamic interprocedural
analysis in JVMs. In Usenix VM, 2004.

[RRHK00] Derek Rayside, Steve Reuss, Erik Hedges, and Kostas Kontogian-
nis. The effect of call graph construction algorithms for object-
oriented programs on automatic clustering. In Proceedings of
the 8th International Workshop on Program Comprehension, page
191. IEEE Computer Society, 2000.

[RSS+04] Darrell Reimer, Edith Schonberg, Kavitha Srinivas, Harini Srini-
vasan, Bowen Alpern, Robert D. Johnson, Aaron Kershenbaum,
and Larry Koved. SABER: Smart Analysis Based Error Reduc-
tion. In Proceedings of International Symposium on Software Test-
ing and Analysis, pages 243 – 251, 2004.

[Ruf93] Erik Ruf. Partial evaluation in reflective system implementations.
In Workshop on Reflection and Metalevel Architecture, October
1993.

[SHR+00] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja
Vallée-Rai, Patrick Lam, Etienne Gagnon, and Charles Godin.

http://www.beanshell.org/BeanShellSlides.pdf
http://www.beanshell.org/BeanShellSlides.pdf

REFERENCES 59

Practical virtual method call resolution for Java. ACM SIGPLAN
Notices, 35(10):264–280, 2000.

[Thi96] Peter Thiemann. Towards partial evaluation of full Scheme. In
Reflection ’96, 1996.

[TLSS99] Frank Tip, Chris Laffra, Peter F. Sweeney, and David Streeter.
Practical experience with an application extractor for Java. ACM
SIGPLAN Notices, 34(10):292–305, 1999.

[TP00] Frank Tip and Jens Palsberg. Scalable propagation-based
call graph construction algorithms. ACM SIGPLAN Notices,
35(10):281–293, 2000.

[WL04] John Whaley and Monica Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In Proceed-
ings of the ACM Conference on Programming Language Design
and Implementation, pages 131 – 144, 2004.

[WN04] Wesley Weimer and George Necula. Finding and preventing run-
time error handling mistakes. In Proceedings of the ACM Confer-
ence on Object-Oriented Programming, Systems, Languages, and
Applications, pages 419 – 431, 2004.

[Zha98] Sean Zhang. Practical Pointer Aliasing Analyses for C. PhD
thesis, Rutgers University, August 1998.

	Introduction
	Contributions
	Paper Organization

	Overview of Reflection in Java
	Reflection APIs in Java
	Obtaining Class Objects
	Reflective Object Creation
	Reflective Method Invocation
	Reflective Field Access

	Use of Reflection: Case Studies
	Specifying Application Extensions
	Custom-made Object Serialization Scheme
	Improving Portability Using Reflection
	Code Unavailable Until Deployment
	Using Class.forName for its Side-effects
	Getting Around Static Type Checking
	Providing a Built-in Interpreter

	Assumptions About Reflection
	Analysis of Reflection
	Call Graph Discovery
	Pointer Analysis for Reflection
	Reflection and Points-to Information
	The bddbddb Program Database
	Basics of Reflection Resolution Using Points-To Information
	Handling Reflective Constructor Calls: Constructor Objects
	Handling Reflective Invocations: Method Objects
	Handling Reflective Field Accesses: Field Objects
	Specification Points and User-Provided Specifications
	Dealing with Other Reflective Calls

	Precision of Points-to Results
	Reflection Resolution Using Casts
	Preparing Subtype Information
	Using Cast Information
	Problems with Using Casts

	Experimental Results
	Experimental Setup
	Evaluation Approach
	Local Analysis for Reflection Resolution (Local)
	Points-to & Reflection Resolution (Points-to)
	Specification Points

	Casts & Reflection Resolution (Casts)
	Precision of Cast Information

	A Sound Call Graph Approximation (Sound)
	Specification Statistics
	Specification Difficulties
	Remaining Unresolved Calls

	Effect of Reflection Resolution on Call Graph Size
	Running Times

	Related Work
	Reflection and Metadata Research
	Call Graph Construction
	Function Pointers in C
	Virtual Calls in C++
	Virtual Calls in Java

	Dynamic Analysis Approaches

	Conclusions
	Acknowledgements

