Code Splitting for Network Bound Web 2.0 Applications

Benjamin Livshits'

Microsoft Research’

Abstract

Modern Web 2.0 applications such as Gmail, Live Maps,
MySpace, Flickr and many others have become a com-
mon part of everyday life. These applications are net-
work bound, meaning that their performance can and
does vary a great deal based on network conditions.
However, there has not been much systematic research
on trying to optimize network usage of these applications
to make them more responsive for end-user interactions.
Interestingly enough, code itself, usually in the form
of JavaScript that runs within the client browser, consti-
tutes a significant fraction of what needs to be transferred
to the client for the application to run. Therefore, one
way to significantly improve the perceived client-side
performance for a range of Web 2.0 applications is to per-
form judicious decomposition — or splitting — of code
and only transfer the code that is necessary just before it
is needed. In this paper we propose several code splitting
algorithms and explore their effectiveness at improving
the responsiveness of large sophisticated Web 2.0 sites.

1 Introduction

Web 2.0 — an emerging phenomenon just a few years
ago — has arrived. Today it is often hard to imagine
one’s daily existence without Gmail, Live Maps, RedFin,
MySpace, NetFlix, and other similarly ubiquitous appli-
cations. All of these are Web 2.0 applications enabled by
better user experience provided through the Ajax (Asyn-
chronous JavaScript and XML) set of technologies. It
is likely that the development of such applications will
continue, fueled both by start-ups and large companies
competing for customer attention.

From the technical standpoint, a key distinguishing
characteristic of Web 2.0 applications is the fact that code
executes both on the client, within the Web browser, and
on the server, whose capacity ranges from a standalone
machine to a full-fledged data center. Simply put, to-
day’s Web 2.0 applications are effectively sophisticated
distributed systems, with the client portion typically writ-
ten in JavaScript running within the browser. Client-side
execution leads to faster, more responsive client-side ex-
perience, which makes Web 2.0 sites shine compared to
their “traditional” Web 1.0 application counterparts.

In traditional Web applications execution occurs en-
tirely on the server so that every client-side update within

Chen Ding'*

University of Rochester*

the browser triggers a round-trip back to the server, fol-
lowed by a refresh of the entire browser window. In con-
trast, Web 2.0 applications make requests to fetch only
the data that is necessary and are able to repaint indi-
vidual portions of the screen. For instance, a mapping
applications such as Google Maps or Live Maps may
only fetch map tiles around a particular point of interest
such as a street address or a landmark. Once additional
bandwidth becomes available, such an application may
use speculative data prefetch: it could push additional
map tiles for the surrounding regions of the map. This is
beneficial because if the user chooses to move the map
around, as supported by interactive Ajax experience, sur-
rounding tiles will already be available on the client side
in the browser cache.

However, there is an even more basic bottleneck asso-
ciated with today’s sophisticated Web 2.0 applications:
they contain a great deal of code. For large applications,
downloading as much as 1 MB of JavaScript code on
the first visit to the front page is not at all uncommon.
However, since much of application execution occurs on
the client, the code must be transferred for that execu-
tion to proceed. Clearly, however, having the user wait
until the entire code base is transferred to the client be-
fore the execution can commence does not result in the
most user-friendly experience, especially on slower con-
nections. Indeed, on a 56K modem, on even the sec-
ond load of large applications like Live Maps becomes
virtually unusable, taking over 3 minutes to load. In
the international context there are many users that only
have access to low-bandwidth connections and improv-
ing server-side infrastructure will still not place Web 2.0
within their reach. Even on a typical wireless connection
the simple act of opening an email from an inbox can
take 24 seconds on the first Hotmail visit and 11 seconds
subsequently. Even small degradation in the execution
time of such common tasks may significantly impact the
end-user experience.

In this paper we explore the benefits of several code
splitting schemes we have developed for Web 2.0 ap-
plications. We perform an evaluation based on instru-
mented execution traces we have collected and we esti-
mate the benefits of code splitting techniques for a vari-
ety of network conditions, including a range of of band-
width and latency values. The benefits of code split-
ting become especially pronounced for slow connections,
where the initial page loading penalty is especially high

Web Workload | Download Waiting time, in seconds
application Site URL performed |size in KB | 56k modem 802.11b wireless Cable modem
Gmail mail.google.com Open 1% email 24911:07.5 16.0| 18.0 9.8] 9.1 8.8
Bunny Hunt |www.themaninblue.com/...'|Load page 274| 55.6 424| 100 75| 23 1.8
Dropthings |www.dropthings.com Load page 520(1:244 31.8| 29.0 1.8] 5.1 1.3
Google Maps | maps . google. com Load page 71611:09.4 152| 18.8 4.0 4.7 23
Live.com www.live.com Load page 1,030(4:10.6 19.8| 45.7 63| 82 5.0
Pageflakes www.pageflakes.com Load page 1,067 [4:07.4 28.5|1:25.1 18.6]|16.4 9.8
Hotmail www.hotmail. com Open 1°* email 1,2393:02.0 3:06.1| 24.0 11.2| 83 6.1
Live Maps |maps.live.com Load page 1,250 (3:51.3 18.5| 479 48] 5.2 32

Figure 1: Summary of information about some widely used Web 2.0 applications, sorted by download size

mHTML = (CSS mXHR mlImages ® JavaScript

0 200 400 600 800 1,000 1,200 1,400

s IENIE]

woryr. || N
Dropthings .7 i 408
--I_

Figure 2: Size breakdown of different Web 2.0 application components

if transferring the entire code. e Using our model, we evaluate the effectiveness of
various code splitting strategies for a range of real
usage traces of popular Web 2.0 applications.

1.1 Contributions

This paper makes the following contributions:

e We propose code splitting as a means to improve 1.2 Paper Organization
the perceived responsiveness of Web 2.0 applica-

tions within the user’s browser.))
The rest of the paper is organized as follows. Sec-

tion 2 gives an overview of common application con-
struction patterns and of why code splitting is a good
strategy for improving application responsiveness. Sec-
tion 3 presents a formal model that defines an optimiza-
tion problem we are solving as well as several code split-
ting strategies. Section 4 shows potential improvements
e We develop a formal model for reasoning about of various code splitting schemes for our benchmark ap-
and analyzing the waiting time for each of the code plications. Finally, Sections 5 and 6 describe related
splitting approaches for a range of network settings. work and conclude.

e We describe some typical architectural patterns per-
taining to Web 2.0 applications and demonstrate
how code splitting can greatly increase application
responsiveness. Based on our insight, we propose
four different code splitting schemes that are likely
to speed-up a range of Web 2.0 applications.

<html>
<head>
<script src="scripts/schedule.js"

<script src="scripts/string_library.js"

<script src="scripts/clouds.js"
<script src="scripts/bunnies.js"
<script src="scripts/preload.js"

</head>

</html>

type="text/javascript">
type="text/javascript">
type="text/javascript">
type="text/javascript">
type="text/javascript">

Figure 3: A possible script loading strategy from the Bunny Hunt JavaScript game (http : //www.themaninblue.com/experiment/BunnyHunt)

2 Overview

In this section we examine some of the issues that arise in
the context of developing Web 2.0 applications through
examining several existing large applications.

2.1 Benchmarks Applications

A summary of information about our benchmark appli-
cations is given in Figure 1. To measure the size of the
download for each application, we started by clearing the
browser cache and then visiting the site and perform-
ing the action specified in the figure. For most sites,
it involved just loading the page, which in turn trig-
gered download of both static content such as HTML
and image files as well as JavaScript code. In the case
of two Webmail applications, our workload consisted
of (1) opening the inbox and then (2) opening the first
email. We waited for all images and ads to download
at intermediate steps of this process. Furthermore, to
avoid timing inconsistencies associated with manual typ-
ing, we have an authentication cookie that obviated the
need for manual login. To create a realistic workload sce-
narios for the mapping applications, we waited until the
main page finished loading, entered a city name, waited
until the city map finished loading, and double-clicked
on the map.

It is worth pointing out that this initial download size
as specified in Figure 1 is by no means final: in the course
of application usage, there is certainly more and more
data that is downloaded into the user’s browser. How-
ever, it has been our experience that the majority of code
is downloaded on the initial page visit. For some appli-
cations such as Live Maps, there is clearly an attempt to
perform code decomposition. For example, when brows-
ing the downloaded map and asking for traffic informa-
tion for a particular city, new snippets of JavaScript that
correspond to that particular city would be downloaded
to the client. Despite that fact, among our benchmarks,
Live Maps has by far the biggest initial JavaScript down-
load exceeding 900 KB.

The right portion of the table in Figure 1 summarizes
the execution times for our workload to perform each

= Downloaded = Used

Figure 4: Sizes of JavaScript files for Live Maps, in KB

action for different connection speed, both with a clear
browser cache and with the “pre-seeded” cache on the
second visit. On a typical modem connection, execution
speed become on the order of several minutes, rendering
these applications virtually unusable. In most cases, the
effects of client-side caching are quite pronounced: for
example, on a second visit of Live Maps on a modem
connection, the execution time is cut by 92%. A notable
exception is Bunny Hunt, where the drop in execution
time is quite insignificant. This is because Bunny Hunt
uses dynamic HTML rewriting to download images to
be loaded and these dynamically loaded images are not
added to the browser cache.

Figure 5: Difference between the available and demand time for func-
tions in mapcontrol.asjx, a 291 KB file on Live Maps. Functions
that are never called are not shown. Gaps are inserted to show the nat-
ural block structure.

2.2 Typical Code Decomposition Scenarios

The most natural way to transfer JavaScript files or, in-
deed, any type of resource is by specifying their names
directly in HTML, as shown in Figure 3. This is not
the only approach to resource loading: indeed resources
can be loaded dynamically using document.write [6].
One advantage to static resource loading is that the order
in which they are processed by the browser is guaran-
teed, whereas in the case of dynamic resource loading,
additional code needs to be added to make sure that a
JavaScript file is available on the client before a function
from it is called. A disadvantage is that no parallel or
out-of-order loading is possible.

It is often recommended to break down the applica-
tion so that only a small portion of the code — the
framework — is transferred to the client initially. Sub-
sequent code can be transferred whenever bandwidth be-
comes available. Alternatively, it could be transferred in
a context-sensitive manner. For instance, “help” func-
tionality is used very rarely, the JavaScript code behind
it can be transferred upon the help button being pressed.
Similarly, if reading an Ajax-enhanced blog is much
more common than posting to it, JavaScript responsible
for posting can be downloaded later on demand.

To reduce the waiting time and improve the user expe-
rience, Web 2.0 application developers typically decom-
pose their code into logical units. However, often the
break-down is accomplished in an ad-hoc fashion that is
optimized for the ease of use for the developer instead
of the responsiveness of the application for the end-user.
To get a better sense for the decomposition decisions de-
velopers make, it is instructive to look at some typical
application decomposition scenarios for some represen-
tative existing applications.

2.2.1 Bunny Hunt

Bunny Hunt, the application with the smallest JavaScript
codebase of only 17 KB, takes the extreme approach to
resource loading: in addition to transferring all the appli-
cation code as part of the application splash screen, im-
ages are preloaded as well. The Bunny Hunt approach to
resource usage is fully conservative: the entire network
transfer cost is paid upfront. By downloading every sin-
gle resource, including both JavaScript code and image
files while the splash page is loading, page rendering can
never block waiting for either of these types of resources.
The opposite extreme would be to download every re-
source on demand, as it is needed.

The Bunny Hunt code base is broken down into five
files, each of which is transferred separately, as shown
by an example in Figure 3. Notice that this type of
declaration precludes JavaScript files from being down-
loaded in parallel: the browser has to start executing each

of JavaScript file in the order they appear on the page.
Other applications in our benchmark suite use different
strategies to achieve parallel download [1]. While this
may be a reasonable approach when the entire applica-
tion, containing HTML and images is only 272KB, for
larger benchmarks applications this is probably not the
best strategy.

2.2.2 Live Maps

Live Maps is a fairly monolithic application: it loads
over 900 KB of code compressed or over 3 MB uncom-
pressed on the first page load. Figure 4 demonstrates that
while much code is downloaded, only about half of it —
471 KB to be exact — is actually executed on the initial
page load. While it is unlikely that the rest is dead code,
it does suggest that a better splitting of code can be ben-
eficial.

This is especially pronounced in the case of JavaScript
file ve.js: out of over 400 KB of JavaScript, only
about 100 KB is used. Furthermore, code execution takes
place in “bursts”, as illustrated in Figure 5: while the en-
tire JavaScript file is available on the client, some func-
tions are executed right away, as indicated by the initial
block, some are executed within 100ms or so. However,
many functions are not executed until 500ms later and
many, as pointed out above, are not executed at all.

2.2.3 Dropthings

Dropthings is created on top of AJAX.NET, a popular
AJAX toolkit and is an example of a typical framework-
based application. As Figure 2 makes clear, JavaScript
code constitutes over 400KB or almost 80% of the en-
tire Dropthings transfer. Moreover, a closer examination
shows that the code is not transferred very efficiently:
the top-level HTML page for Dropthings declares a to-
tal of 12 files containing JavaScript, whose download
is serialized. Clearly, transferring these files in parallel
would have been a much better use of available client-
side bandwidth. To circumvent the two-connections-per-
domain limitation adopted by most Web browsers [5],
several script-serving machines could be used, such as
sl.dropthings.com, s2.dropthings. com, etc.

It is instructive to contrast Dropthings with Pageflakes,
an industrial-strength mashup page proving the same
functionality. While the download size for Pageflakes is
over 1.8MB, the execution time is quite a bit faster com-
pared to Dropthings. Examining network activity reveals
that Pageflakes downloads code dynamically and only a
small stub is downloadeded through a verbatim declara-
tion as is done in Dropthings.

dtl dtZ

di d1

t t
W; Wi
r r

dt;

d>

5]

r

»
>

Figure 6: Two functions whose demand intervals are d1 and d2 and transfer costs are ¢1 and t2. Assuming that they are transferred one at a time,
the waiting times are calculated as follows: wy = (1 — d1)T,r1 = d1 + w1, w2 = (t1 +t2 — 711 —d2) T, and 72 = da2 + wa.

3 Code Splitting Model

In our code splitting models, we consider each JavaScript
file to be a collection of functions, each of which can be
transferred separately. For simplicity, we ignore the is-
sue of global variable declarations as well as top-level
code, both of which are allowed by JavaScript. One way
to treat such code is by introducing an artificial function
main. Another simplification we make is that we only
allow splitting at the level of top-level function declara-
tions, treating all nested functions as an inseparable unit.
We start by collecting demand traces from a profile
run, which reflect when each function is first executed
on the client side. Collection of demand traces is per-
formed by instrumenting function entries on the wire as
JavaScript is passed from the server to the client using
the AjaxScope proxy [3]. Given a demand trace, our
goal is to evaluate how various code splitting strategies
described below reduce the overall waiting time on the
part of the user with respect to that trace. Clearly, for
different workloads, the effect of different code splitting
strategies may vary. In the future, it would be desirable
to combine and average workloads from multiple users.

Definition 3.1. Demand trace dt consists of dt;, the first
usage time for every function f;, and dt.,, the first usage
time for every code module or file m.

Definition 3.2. Size function s consists of s;, the size of
every top-level JavaScript function f;, and s,,, the size
of every code module or file m. Unlike demand traces,
sizes are computed statically.

3.1 Code Splitting Strategies

In this paper, we consider the following five code split-
ting strategies in addition to the original approach of
transferring the entire file at once:

1. Per-function: In this scheme each function is trans-
ferred and processed separately. While this allows
us to pipeline function transfer, this scheme also
suffers from the per-file processing overhead.

2. Greedy function: We dynamically decide for each
function whether to transfer it separately or in com-
bination with the previous function or sequence of
functions. The greedy heuristic chooses the choice
that minimizes the waiting time for each function
(but not necessarily for all of them). The greedy
algorithm is described in Section 3.2.

3. Per-block: We use a heuristic to group functions
that have similar demand times into a block. We
typically end up with 3—6 blocks per JavaScrip file.
The code is transferred one block at a time.

4. Greedy blocking: We dynamically decide for each
block whether to transfer it separately or in com-
bination with the previous block or sequence of
blocks. The greedy heuristic chooses the choice that
minimizes the waiting time for each block (but not
necessarily for all blocks). The greedy algorithm is
described in Section 3.2.

5. Sequentially optimal blocking: We consider all
possible permutations of blocks to find the one re-
sulting in the best overall transfer time. This is gen-
erally computationally feasible because the number
of blocks per file is small, ranging from 3 to 10.

Definition 3.3. A code splitting model M estimates the
total waiting time the user experiences for a particular
usage scenario w given a tuple (1, b,6,~, dt, s), where

o [is the network latency;
o b is the network bandwidth;

e the per-file processing time that includes parsing
within the browser is given by 0 + 7 + S

o dt is the demand trace; and

® s is the size function.

In our model, we make the assumption that both the la-
tency and the bandwidth are constant over time. More-
over, as a simplification, we assume the packet drop rate
to be zero; incorporating a non-zero packet drop rate
could be accomplished with changing the per-file transfer
time. Given the model parameters, we can easily calcu-
late the time it takes to transfer a single function or a file.
The basic transfer time for function f; is

Si

1
Ly s = (5 47) s

b

If the function is transferred separately, the per-file
processing cost § is added. If the function transfer is not
pipelined with other functions, the latency [is added.

3.2 Characterizing the Waiting Time

Given an execution profile and a code splitting model,
we define the following for each JavaScript function:

demand interval d; is the time after the use of f;_; (or
the beginning if ¢« = 1) and before the use of f; in
the demand trace. It is computed from the demand
trace by setting d; = dt; and d; = dt; — dt;_; for
1=2,...,n.

transfer cost ¢; is the time needed to transfer f; based
on the network model, which includes the cost of
client-side processing. The cost differs depending
on whether f; starts a new transfer or it is included
in the same (block) transfer as its predecessor.

From the demand interval and transfer cost, we compute
the total waiting time by iteratively defining the follow-
ing two attributes for each function

waiting time w; is the waiting time for f;, which is the
cumulative waiting time up to the use of f; minus
the cumulative waiting time up to the use of f;_1.

real use r; is the actual use time, which equals to the
demand interval plus the waiting time for f;.

Since the quantities are defined for each function, their
sums define the total execution time, T =) r;, and the
total waiting time, W = Y w;. The waiting times w;
and d; form a partition of the execution, so

Zwi—FZdi :T:Zri.

3.2.1 Per-function Splitting

Take the simple case where each function is transferred
individually. The exact formulae for w; and r; are:

ro = 0 .)
w; = (23:1 tj —Z;;B T —di)+ 1=1...n (l)
ri = w;+d; t=1...n

where (x)* means to take the non-negative part of x

oo

Example 1. The example in Figure 6 illustrates the basic
quantities. In the figure, two functions are transferred
one at a time, and the waiting time is computed for each
function. The first function is delayed by the difference
between the available time ¢; and the demand interval
dy. The second function becomes available at time ¢; +
to. The quantity r; is used to prevent double counting
of the same waiting time by w; and ws. It records the
sum of the demand interval and the waiting time for each
function. The quantities are computed iteratively. [

ifx>0
otherwise

3.2.2 Per-block Splitting

When a group of functions are transferred together in one
block, the wait happens only for the first function, and
the transfer cost for later functions is lower than when
they are shipped individually. Assuming the block begins
with function f; and ends with function f. (fore —h+1
functions in the block), the waiting times are

wp = (5, ti — Z;:ol ri—dp)t,1<h<n @)
wy =0, h+1<k<e

When i = e, the formula degenerates into the per-
function case given in Equation 1. When h = 1 and e =
n, it is the default case where the entire file is transferred

before any function is used. The total waiting time is

W = w1 = (Z Tfi - d1)+ (3)
j=1

The cost is the positive part of the transfer time of the
file minus the demand interval of the first function. If
the file is transferred in multiple blocks, the formula of
Equation 2 is used to compute the waiting time for each
block.

Regular transfer

waiting for f;

sending fl / to arrive

\

ack f;

server

sending f,

L receiving f;

client [

LiL receiving f,

»
»

Pipelined transfer

server sending f;
sending f,
L receiving f;
client =
receiving f,

\ 4

Figure 7: Differences between regular and pipelined transfer strategies.

3.2.3 Greedy Blocking

The algorithm in Figure 8 transfers the code in one
or more files using a greedy heuristic. Given a de-
mand trace, the algorithm decides, for each unit of code,
whether to pack it in the same transfer with its predeces-
sors or to split it out into a new transfer. At each step,
a quantitative comparison is performed between the ad-
ditional cost of packing, which is computed using Equa-
tion 2 and the cost of starting a new file.

The greedy scheme tries to minimize the waiting time
for each function in demand order, and the overall result
is not necessarily optimal in that it may not minimize the
total waiting time, as illustrated by the example below.

Example 2. Consider a sequence of four functions
f1, f2, f3, f1, whose demand intervals are d; = 10,
do = 6,ds = 1, dy = 5. Assume that the per byte
cost s1 = 5, so = 1, s3 = 5, s4 = 5 and the per file cost
0 is 5. The greedy algorithm would split at the second
function because packing it leads to a waiting time of 1
but splitting it means no wait for the first two functions.

However, the best overall scheme for the four func-
tions is to group the first three in the first file and trans-
fer the last one in the second file. The waiting time is 7.
Since the greedy algorithm splits the second function into
a new file, the lowest waiting it can achieve is 9. [

3.2.4 Optimal Blocking

To find the best code splitting scheme, one can test all
possible splitting choices and select the one with the low-
est overall waiting time. The number of choices one
needs to examine can be reduced by observing that to
minimize the waiting time one should transfer the code
in order of demand times.

h=1

ro = 0

t1 = f(cf, sizey)

wy = (t1 —dp)*t

ry=w +dy

fori: =2ton
tsplit = f(szzez)
tpack = tnopqck: + ..)
Waptit = (523 by + Laptie = 32r—y 75— di)
Wpack = (Y51 +tpack — Yoy 75 — dn)T

~(C =i —dn)

if (wsplit < wpack)

t; = tsplit
W; = Wsplit
r; =w; +d;
h=1

else
t; = tpack:

wp = wp, + Wpack
rh=Thp+ Wpack

T = d1
end for

Figure 8: Greedy heuristic algorithm for selecting block splitting

To see this, consider a situation when code unit a is
demanded before b but transferred in a file after the file
containing code unit b. If we exchange the two functions
in the two files, the second file still arrives at the same
time, say t,. Consider the use time of a and b. In the
original case, the former can be no earlier than ¢, but in
the exchanged case, a is either used at the same or an

earlier time. Therefore, b is used at the same or an earlier
time. The waiting time up to b is either the same or lower,
so is the overall waiting time.

As aresult, we just need to examine the choices where
the code units are transferred in the order they are used,
because if for any waiting time obtained by an out-of-
order transfer scheme, there exists an in-order transfer
scheme that has the same or lower waiting time.

Given n units of code, there are 2"~ ways to divide
it into different files. To see this, number the gaps be-
tween units from 1 to n — 1. Any subset of the set
c=1,...,n — 1 represents one and only one type of par-
tition of the code. For example, the empty set means to
transfer all units in one file, and the complete set means
to transfer the units one in each file. When n is small, we
can enumerate all partitions and find the minimal wait-
ing time, which we take as the optimal solution and will
compare it with the greedy scheme.

3.3 Caveats of the Analytical Model

To make our model formulation simpler to reason about
analytically, we have made several simplifying assump-
tions, as listed below.

e While our model considers the transfer cost to be
linear in the size of the data being transferred, in re-
ality, data is transferred as a series of network pack-
ets. While we may only use a small portion of the
packet if we are, for instance, transferring a single
function, we are still effectively paying for the rest
of the packet to be transferred. In practice, however,
the per-file penalty incurred for parsing, etc. pro-
hibits a code splitting scheme from breaking code
down into units that are too small.

e The default approach to file transfer by the browser
requires that every response be acknowledged be-
fore the next request is issued by the browser. As
Figure 7 illustrates, this can get pretty costly on a
high-latency connection. With a world-wide aver-
age network latency of 300ms, the cost of a round-
trip is 600ms. Added to the cost of in-browser
processing, we have over 1 second on average to
process a single file.

An alternative is to use HTTP pipelining, a mech-
anism that allows subsequent HTTP requests to be
issued without waiting for the response to arrive [2,
9]. Both our model as well as the experiments de-
scribed in Section 4 assume that HTTP pipelining
is implemented. For an example of how HTTP
pipelining affects the waiting time for two subse-
quently transferred functions, consider Figure 7.
The non-pipelined version spends extra 2 x L for

every unit of transfer compared to the pipelined ver-
sion, in which the latency L is only incurred once in
the beginning of pipelining.

4 Experimental Results

In this section we analyze the performance of splitting
strategies outlined above with respect to the popular
Web 2.0 benchmark applications described in Section 2.

4.1 Experimental Setup

To collect demand traces, we used a modified version
of the AjaxScope proxy [3] which for every JavaScript
block recorded the following information:

e request time;

e response time;

e size of the JavaScript block;

e size of every JavaScript function;

e number of JavaScript functions retieved.

Additionally, every declared JavaScript function was in-
strumented to record its start time, from which we com-
puted the first execution time. Our experiments were
performed on a Pentium 4 3.6 GHz machine equipped
with 3 GB of memory running Windows XP SP2.

4.2 Experimental Data Analysis

Figure 9 shows the savings achieved by optimal blocking
compared with the default transfer strategy as both ab-
solute values in seconds and also as fractions of the orig-
inal waiting time. In many cases, the savings achieved
with the optimal splitting strategy are quite significant,
exceeding 90% for Pageflakes with over 70Figures 10 —
15 summarize the waiting time, in seconds, for a range of
network bandwidth values, starting from a 12k modem to
a 1Mbit link. We consider a total of six transfer strate-
gies: the original approach of transferring the entire file
at once and the five splitting techniques summarized in
Section 3.1.

Overall, splitting has the biggest advantage for
narrow-band connections, ranging from a modem to slow
wireless. Waiting time savings range from dozens to
hundreds of seconds for monolithic applications such as
Live Maps, file ve.js. Even for a 1Mb connection, the
difference between transferring the entire file at once and
optimal blocking is 6.1 seconds. For wireless-speed con-
nections, savings cause by file splitting amount to several
to several dozen seconds in the case of bigger files, which
is quite significant.

H12k ®m14k =29k m56k m128k m256k m512k m1m

250

200

.
u
=]

[N
o
)

Waiting time, in seconds

50 +-

Waiting time reduction, in % of original

s
For
%

Figure 9: Comparison between the default and optimal waiting times as (a) absolute values and (b) percentages of time savings

5 Related Work

While we are not aware of research directly pertaining to
responsiveness of Web 2.0 applications, several projects
focused on software that is delivered over the network.
In particular, Krintz et al. propose a technique for split-
ting and prefetching Java classes to reduce the applica-
tion transfer delay [4]. Class splitting is a code transfor-
mation that involves breaking a given class into part: hot

and cold, depending on usage patterns observed a pro-
file time. The cold part is shipped to the client later
in a demand-driven fashion. Our analysis can be seen
as an extension of their technique, in particular, trans-
fer blocks we identify represent “degrees of urgency”:
the first block must be transferred right away, while oth-
ers can be transferred later so their transfer is overlapped
with client-side execution. Finally, code whose execu-
tion was not observed in our profile runs often consti-

—e—whole_file ——per_func —#—greedy func ==per_block =#—greedy blk —®=—optimal_blk
200
180 BN

160 \
140 \
120 \

100 \

80 N

60
40 \\
20

0

Total waiting time, in seconds

—

12k 14k 29k 56k 128k 256k 512k im
Bandwidth

Figure 10: Pageflakes, JavaScript file Files.axd, size 288 KB, used
68 KB

—o—whole_file ~—m—per_func —a—greedy_func =><=per_block —#—greedy_blk —®—optimal_blk

60

50 \
3 ™
2
S
3 40
£
£ 30
@
E \\
®
© 10 =~

0

12k 14k 29k 56k 128k 256k 512k im
Bandwidth

Figure 11: Dropthings, JavaScript file ScriptResource.axd, size
84 KB, used 7 KB and 40 top-level functions

—e—whole_file —@—per_func —a—greedy_func ——per_block ——greedy_blk —®—optimal_blk

12

10

[

8

Total waiting time, in seconds

B SS)
ey

12k 14k 29k 56k 128k 256k 512k im

Bandwidth

Figure 12: Google Maps, JavaScript embedded within
http : //maps.google.com/, size 27 KB, used 5 KB and 24
top-level functions

tutes a significant portion of the application as explained
in Section 2.1.

Other researchers have focused on reducing the
amount of code that is shipped over the wire, most no-
tably in the case of extracting Java applications [7, 8].
There are several distinguishing characteristics between
that work and ours. First, with some notable exceptions,
JavaScript applications have not yet taken advantage of
library-based application decomposition. Exceptions in-
clude reliance on Ajax libraries such as AJA.NET, the
Dojo Toolkit, and others, which suggests that going for-

—e—whole_file —M—per_func —a—greedy_func ——per_block —%—greedy_blk —®—optimal_blk

140

120

100

80

60

40

Total waiting time, in seconds

20 +

0

12k 14k 29k 56k 128k 256k 512k im
Bandwidth

Figure 13: Live Maps, JavaScript file within mapdrawing.js, size
178 KB, used 111 KB and 99 top-level functions, 4 blocks

~—#—whole_file —=per_func —d—greedy_func =>é=per_block =s=greedy blk ~@-optimal_blk

300

250 \\

200
150 \
00 T~

50 \"\l\\‘; |

12k 14k 29k 56k 128k 256k 512k im

Total waiting time, in seconds

Bandwidth

Figure 14: Live Maps, JavaScript file ve.js, file size 404 KB, out of
that, 116 KB are used, which includes calling 215 top-level functions, 3
blocks

—o—whole_file ~——per_func —sd—greedy_func ——per_block —#—greedy blk —®—optimal_blk

S
O\

N
N

o —

250

N
=3
=3

-
&
=]

=
1<)
=3

Total waiting time, in seconds

@
o

12k 14k 29k 56k 128k 256k 512k im
Bandwidth

Figure 15: Live Maps, JavaScript file mapcontrol.asjx, size
293 KB, used 243 KB and 60 top-level functions, 4 blocks

ward, the issue of application extraction may become im-
portant once again. Second, the reason for performing
extraction was the need to minimize space requirements
for applications that are designed to be deployed in em-
bedded settings such as J2ZME.

6 Conclusions

In this paper we have explored code splitting as a means
to improve the end-user responsiveness of large Web 2.0
applications. We have proposed five code splitting strate-

gies that apply in a wide variety of settings and evalu-
ated their efficacy on a range of widely-used sophisti-
cated Web 2.0 applications. To perform our evaluation,
we have constructed a formal analytical model that al-
lows us to estimate the end-user waiting times. In many
cases, improvements achieved with our proposed split-
ting schemes were significant, ranging to dozen of sec-
onds. Furthermore, in most cases, the savings of the
waiting time saved with our best algorithm are over 70%
of the original.

References
[1] K. Henriksson. Loading JavaScript files
in parallel. http://blogs.msdn.com/

kristoffer/archive/2006/12/22/
loading-javascript-files-in-parallel.
aspx, Dec. 2006.

[2] A. Hopkins. Optimizing page load time. http://
www.die.net/musings/page_load_time/, 2006.

[3] E. Kiciman and B. Livshits. AjaxScope: a platform
for remotely monitoring the client-side behavior of
Web 2.0 applications. In Proceedings of Symposium
on Operating Systems Principles, Oct. 2007.

[4] C. Krintz, B. Calder, and U. Holzle. Reducing trans-
fer delay using Java class file splitting and prefetch-
ing. In OOPSLA, pages 276291, 1999.

[5] E. Law. Internet Explorer and connection
limits. http://blogs.msdn.com/ie/archive/
2005/04/11/407189. aspx, Apr. 2005.

[6] M. Mahemoff. Ajax Design Patterns. O’Reilly Me-
dia, Inc., 2006.

[7]1 F. Tip, P. F. Sweeney, and C. Laffra. Extracting
library-based Java applications. Commun. ACM,
46(8):35-40, 2003.

[8] F. Tip, P. F. Sweeney, C. Laffra, A. Eisma, and
D. Streeter. Practical extraction techniques for Java.
ACM Transactions of Programming Languages and
Systems, 24(6):625-666, 2002.

[9] Wikipedia. =~ HTTP pipelining. http://en.
wikipedia.org/wiki/HTTP_pipelining.

11

