
zk-Bench: A Toolset for Comparative Evaluation and
Performance Benchmarking of SNARKs
JENS ERNSTBERGER, Technical University of Munich, Germany
STEFANOS CHALIASOS, Imperial College London, United Kingdom
GEORGE KADIANAKIS, Ethereum Foundation, Greece
SEBASTIAN STEINHORST, Technical University of Munich, Germany
PHILIPP JOVANOVIC, University College London, United Kingdom
ARTHUR GERVAIS, University College London, United Kingdom
BENJAMIN LIVSHITS, Imperial College London, United Kingdom
MICHELE ORRÙ, Centre National de la Recherche Scientifique, France

Zero-Knowledge Proofs (ZKPs), especially Succinct Non-interactive ARguments of Knowledge (SNARKs), have
garnered significant attention in modern cryptographic applications. Given the multitude of emerging tools
and libraries, assessing their strengths and weaknesses is nuanced and time-consuming. Often, claimed results
are generated in isolation, and omissions in details render them irreproducible. The lack of comprehensive
benchmarks, guidelines, and support frameworks to navigate the ZKP landscape effectively is a major barrier
in the development of ZKP applications.

In response to this need, we introduce zk-Bench, the first benchmarking framework and estimator tool
designed for performance evaluation of public-key cryptography, with a specific focus on practical assessment
of general-purpose ZKP systems. To simplify navigating the complex set of metrics and qualitative properties,
we offer a comprehensive open-source evaluation platform, which enables the rigorous dissection and analysis
of tools for ZKP development to uncover their trade-offs throughout the entire development stack; from
low-level arithmetic libraries, to high-level tools for SNARK development.

Using zk-Bench, we (i) collect data across 13 different elliptic curves implemented across 9 libraries,
(ii) evaluate 5 tools for ZKP development and (iii) provide a tool for estimating cryptographic protocols,
instantiated for the P𝔩𝔬𝔫K proof system, achieving an accuracy of 6− 32% for ZKP circuits with up to millions
of gates. By evaluating zk-Bench for various hardware configurations, we find that certain tools for ZKP
development favor compute-optimized hardware, while others benefit from memory-optimized hardware.
We observed performance enhancements of up to 40% for memory-optimized configurations and 50% for
compute-optimized configurations, contingent on the specific ZKP development tool utilized.

1 INTRODUCTION
Cryptographic proofs play a fundamental role in complexity theory and cryptography. They enable
an untrusted prover to convince a verifier that a certain computation was executed correctly.
In addition, the provided proof can be zero-knowledge [35], indicating that the proof reveals no
additional information to the verifier beyond the truthfulness of the proven statement.

In the past decade, general-purpose Zero-Knowledge Proofs (ZKPs) [19, 22, 35, 36, 48] transitioned
from theory to practice, and are nowadays a core component of many trust-minimized systems. For
example, ZKPs are commonly used to prove the integrity of storage [54], to enhance the privacy
guarantees of digital asset transfers [20, 21, 31, 60], and to ensure the scalability of blockchain
infrastructure [53, 65, 67].

Tools and libraries for ZKPs are typically constructed in multiple layers, encompassing implemen-
tations of finite fields, elliptic curves, specific models of computation (such as Rank-One Constraint
Systems (R1CS) [9], Quadratic Arithmetic Programs (QAP) [55], Plonkish, and more), polynomial
and vector algebra, public-key cryptography, and the actual proof system. Together, these compo-
nents provide diverse functionality and performance trade-offs, and may further be customized or
optimized. Anyone seeking to utilize ZKPs must systematically evaluate the available primitives
to determine the most suitable combination for their specific task, taking into consideration the

2 Ernstberger, et al.

Backend

Frontend

Log Parser

ZKP
Configuration Circuit Inputs

Circuit Logs

Arithmetic
arkworks

Pairing

Circuit
Bellman

SHA-256 Expon-
entiate

criterion

Setup Runner

Prover Runner

Verifier Runner

gnark

SHA-256 Expon-
entiate

profile

Setup Runner

Prover Runner

Verifier Runner

...

... ...

Arithmetic Logs
Arithmetic

Parser
Circuit
Parser

... ...

zka.lc zk-Harness

FFT

 Add

 Mul Mul

 Invert

 Add

MSM

gnark-crypto

Pairing

...

FFT

 Add

 Mul Mul

 Invert

 Add

MSM

Fig. 1. zk-Bench architecture consisting of three main parts: an arithmetic backend, a circuit backend and
a dual frontend. The arithmetic backend covers arithmetic in finite fields and operations on elliptic curves.
Whenever applicable, upstream benchmarks are imported. Each ZKP tool or library is benchmarked on
equivalent test vectors for comparability. Standardized logs are the base for runtime estimation and the web
interface.

nuanced trade-offs inherent to each option. This, however, is a task that is both demanding in
terms of expertise, labor and computational resources. Similarly, consulting scientific publications
or the broader community frequently proves insufficient. Many cryptographic research endeavors
tend to overlook detailed implementations and direct performance assessments, focusing instead on
specific elements of a given cryptographic scheme [3, 14, 16, 26]. Consequently, it is infeasible for
developers to gain a holistic overview of performance trade-offs, leaving them reliant on fragmented
insights and potentially compromising the efficiency and security of their chosen implementations.

Our contributions. In light of these challenges, we introduce zk-Bench, the first open-source,
generic, extensible, and configurable benchmarking framework for public-key cryptography and
ZKPs. zk-Bench (summarized in Fig. 1) provides extensible backends to benchmark (i) low-level
arithmetic operations and (ii) high-level ZKP circuits with exemplary test vectors, such as an
implementation of SHA-256 in a given ZKP tool or library. For high-level ZKP circuits, zk-Bench
conducts exhaustive benchmarking, encompassing both execution time and memory consumption
for ZKPs for the setup, proving, and verification phases. In addition to providing a set of holistic
benchmarks, zk-Bench proposes a novel methodology with which developers and researchers can
conduct fine-grained performance analysis of cryptographic algorithms and protocols, as it allows
estimating their run-time without actually implementing them. This is not only useful for making
informed decisions when choosing the most suitable cryptographic building blocks for a given task,
but also for new cryptographic protocols or reproducing scientific results.

To demonstrate the usefulness of zk-Bench, we include 13 different elliptic curves implemented
across 9 libraries for arithmetic operations in finite fields, and 5 tools for developing ZKPs. We find
that different tools for ZKP development use different approaches for implementing the same ZKP,
and present ways in which different open-source implementations can be improved based on the

zk-Bench: A Toolset for Comparative Evaluation
and Performance Benchmarking of SNARKs 3

insights gathered from both the arithmetic backend and circuit backend. By using the benchmarks
obtained through the circuit backend as a sanity check, we show that the arithmetic benchmarks
can be used to (i) accurately extrapolate the performances of complex arithmetic operations and
(ii) approximate the runtime of a ZKP circuit implementation — without actually implementing it.

To summarize, we make the following contributions:
(1) zk-Bench, the first holistic and extensible benchmarking framework for ZKP development

tools and arithmetic libraries.
(2) Comprehensive benchmarks across 9 arithmetic libraries and 5 ZKP frameworks.
(3) A novel methodology for estimating the computational costs of cryptographic protocols,

accessible through a web interface.

Benchmark Results. By instantiating zk-Bench with exemplary libraries for ZKP development,
we obtain numerous surprising results. Subsequently, we provide a succinct summary of our
findings. We suggest that readers unfamiliar with the context first consult Section 2.

For the arithmetic backend, we find that addition andmultiplication in the scalar field Z𝑝 of BN254
is not consistently faster than addition and multiplication in the scalar field Z𝑝 of BLS12-381. This
is noteworthy, especially since BN254 functions over a field with a smaller characteristic compared
to BLS12-381. For benchmarks of elliptic curve operations, we, perhaps counterintuitively, find that
gnark-crypto outperforms blstrs for BLS12-381. For an MSM instance of size 220, gnark-crypto
(0.35 s) is 1.83× faster than blstrs (0.64s ± 0.03s).

On the circuits side, we observed that the efficiency of ZKPs benefits from optimized low-level
arithmetic libraries. For example, an MSM instance of size 220 in gnark-crypto is 9.44× faster in
G1 and 13.06× faster in G2 when compared to ffjavascript, leading to gnark being 14.02× faster
than snarkjs for proving SHA256 with a pre-image size of 16 kB. Another key observation is that
custom circuit implementations can falsify the perceived performance of a library or DSL. halo2, for
example, is 8.64× slower than gnark for our first test vector, but due to circuit optimizations, 1.09×
faster for the second. When it comes to proof size, we observe that, as expected, starky’s proof
size is disproportionately larger, being 299.68× to 678.98× greater than the largest Groth16 and
P𝔩𝔬𝔫K proofs for ≈ 224 constraints/rows. Lastly, we observed that some libraries benefit greatly
from compute-optimized hardware, whereas others are more susceptible to memory-optimized
hardware, up to 50% and 40% performance increase for proving, respectively. Hence, developers
should strategically select their infrastructure depending on the library or tool they utilize.
Paper Structure. This paper is structured as follows: Section 2 presents the relevant background
on public key cryptography, ZKPs and implementations of ZKPs in practice. Section 3 introduces zk-
Bench, its design decisions, components, and methodology for benchmarking. Section 4 motivates
the selection of arithmetic libraries, curves, and tools for ZKP development integrated in zk-Bench.
Section 5 presents results and insights as obtained with zk-Bench for the previously selected
arithmetic libraries, curves, and tools for ZKP development. In Section 6 we utilize the obtained
benchmarks to extrapolate and estimate the runtime of cryptographic protocols. Section 7 discusses
the implications of the results obtained through our work, and Section 8 presents the related work.
Finally, in Section 9, we conclude the paper.

2 BACKGROUND ANDMOTIVATION
2.1 Public-Key Cryptography
Public-key cryptography lies at the foundation of secure and trusted communication [25]. It is
widely used in various applications, like secure messaging, digital document signing, web browsing,
and monetary transactions. Roughly speaking, tools in public-key cryptography consider groups
G = ⟨𝐺⟩ of some prime order 𝑝 , for which the discrete logarithm (DL) problem is hard: given 𝑋

4 Ernstberger, et al.

sampled uniformly at random from G, it is hard to find 𝑥 ∈ Z𝑝 (where Z𝑝 = Z/𝑝Z is the field
of 𝑝 elements) such that 𝑥𝐺 = 𝑋 (we treat all groups using additive notation). In contemporary
cryptography, data protection problems are often formulated using algebraic properties over G and
Z𝑝 , where system security relies on computationally intractable problems, such as the DL problem.
In practice, we often consider elliptic curve groups over prime fields of large characteristic (as
natural in many cryptographic applications), that is, G is the set of points (𝑥,𝑦) ∈ Z2𝑞 solving the
equation 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 for some fixed parameters 𝑎, 𝑏 ∈ Z𝑞 .1
Operations over the scalar field Z𝑝 and base field Z𝑞 play a crucial role in various aspects of

(DL-based) public-key cryptography. These operations introduce a baseline overhead on the top of
native CPU instructions, and are integral to the manipulation of polynomials and other algebraic
structures, which form the basis of proof systems.
Secondly, the choice of elliptic curve influences functionality, performance, and security of a

zero-knowledge proof. Some ZKPs require elliptic curves equipped with a pairing map, that is, a
non-trivial bilinear map 𝑒 : G1×G2 → G𝑇 mapping two elliptic curve points (typically, two different
elliptic curve groups) to some target group (typically, a multiplicative subgroup of a finite field) [33].
The estimated security level for pairing-friendly elliptic curves is lower than for curves without
pairings [50], which would require increasing the size of the coordinate field Z𝑞 . Furthermore,
given that novel attacks are introduced frequently, the security of specific curves may degrade
over time, requiring again an increase in the size of the coordinate field Z𝑞 . For example, the two
curves studied in later sections of this work, BN254 [6, 56] and BLS12-381 [5], were both aiming
at a security level of 128 bits when first introduced. However, recent attacks [40, 49] reduce the
security level of BN254 to around 100−110 bits. Successively, the recommendation was to use BLS12
or BN curves over a coordinate field of size 384-bit, instead of BN curves over 256-bit field. The
ZCash [37] team followed this recommendation when developing BLS12-381 [18]. Recent work [4],
however, suggests that the actual security level of BLS12-381 is only 117 − 120 bits, instigating
recommendations for BLS12 curves over a coordinate field of 440 − 448 bits2.

2.2 Zero-Knowledge Proofs (ZKPs)
A zero-knowledge proof is a protocol between a prover and a verifier, in which the prover is trying
to convince the verifier that a certain statement is true without revealing any further information
beyond the statement’s truthfulness. More formally, the prover attempts to convince the verifier
that an instance 𝑥 and a witness 𝑤 are in an NP relation R, i.e., for which (𝑥,𝑤) ∈ R can be verified
by a Turing machine in polynomial time. A ZKP consists of the following three algorithms:

• Setup(pp) → (pk, vk). Given public parameters pp as input, compute and output proving
and verification keys pk and vk, respectively.

• Prove(pk, 𝑥,𝑤) → 𝜋 . Given the proving key pk, the instance 𝑥 , and the witness 𝑤 , such
that (𝑥,𝑤) ∈ R, as input, compute and output a proof 𝜋 .

• Verify(vk, 𝑥, 𝜋) → 0/1. Given the verification key vk, the instance 𝑥 , and the proof 𝜋 as
input, output 1 if the proof is valid and 0 otherwise.

As an example, consider a public-key 𝑋 ∈ G and the NP relation R = {(𝑋, 𝑥) ∈ G × Z𝑝 : 𝑋 = 𝑥𝐺}.
The relation is hard to solve if the DL problem is hard in G, and a zero-knowledge proof for the
above relation can convince a verifier that the prover indeed holds a secret-key associated to 𝑋 ,
without revealing any information about it. More involved zero-knowledge proofs are used to show
satisfiability, i.e., knowledge of a value𝑤 for which 𝐶 (𝑥,𝑤) = 1 for some circuit 𝐶 and input 𝑥 .

1The set of solutions forms an additive group, and for cryptographic purposes we generally focus on a subgroup of prime
order 𝑝 . For more information, we direct the curios reader towards [66].
2https://members.loria.fr/AGuillevic/pairing-friendly-curves/

zk-Bench: A Toolset for Comparative Evaluation
and Performance Benchmarking of SNARKs 5

CircuitPublic Parameters

Prover

Constraint
System

Verifier

Setup Witness
Generation

Public Input Secret Input

Fig. 2. Practical Implementation of a pre-processing SNARK. The frontend is highlighted in green, the backend
is highlighted in red. Public inputs are shaded in grey whereas secret inputs are shaded in blue. Offline
operations are represented with solid boxes, whereas online operations are represented with dotted boxes.

Our benchmarks focus on Zero-Knowledge Succinct Non-interactive Argument of Knowledge
(SNARK) proofs, where SNARK stands for Succinct (i.e., efficient verification) Non-interactive,
ARguments of Knowledge (i.e., proofs where strong soundness properies can be derived from
cryptographic assumptions).3 This is due to their relevance in practice. In particular, we will focus
on pre-processing SNARKs [22], which introduces another algorithm, called setup, that needs to be
run only once in an “offline” phase, and allows to pre-process the relation R which reduces the
computational load of the verifier.

2.3 Practical Implementation of Pre-processing SNARKs
We depict the practical implementation of a pre-processing SNARK in Fig. 2. The practical imple-
mentation of a pre-processing SNARK involves a two-phase approach. The first phase is offline
and preprocesses the computation to a succinct description, while the second phase is online
and leverages a SNARK to prove a satisfying circuit assignment to a verifier. The first process of
defining the circuit, compiling the circuit to a constraint system, and generating a witness given
the assignment of public and secret inputs is commonly referred to as the frontend of a SNARK
implementation. The backend, on the other hand, handles the setup procedure, the generation of
the proof as well as the verification of the proof. We highlight each of the steps below.
Backend. The backend has the following components:

• Setup. The setup algorithm takes public parameters and a relation R as input, and outputs
the prover key 𝑝𝑘 and verifier key 𝑣𝑘 . We deliberately employ ambiguous terminology —
public parameters denote parameters that are independent of the relation being proven. In
pre-processing SNARKs this corresponds to the CRS generation algorithm, alternatively
termed as ceremony [51], or generator [22]. For SNARKs in the random oracle model, this
corresponds to the selection of the cryptographic hash function. By “setup algorithm”, we

3Cryptographic assumptions are not sufficient for non-interactive ZKP and SNARKs: additional assumptions (such as the
random oracle model, the common reference string model, etc.) are required. In the case of SNARKs, we must also rely on
so-called non-falsifiable assumptions [34]. Under these additional constraints, SNARKs exist for any NP statement [13].

6 Ernstberger, et al.

𝑥1 𝑤1 𝑥2

+ +

×

𝑦 = (𝑥1 +𝑤1) · (𝑥2 +𝑤1)

(a)

𝑤2 = 𝑥1 +𝑤1

𝑤3 = 𝑤1 + 𝑥2

𝑦 = 𝑤2 ·𝑤3

(b)


1
0
0
1


𝑇 

𝑥1
𝑥2
𝑦

𝑤1

 ◦

0
1
0
1


𝑇 

𝑥1
𝑥2
𝑦

𝑤1

 −

0
0
1
0


𝑇 

𝑥1
𝑥2
𝑦

𝑤1

 = 0

(c)

®𝑥𝑙 ®𝑥𝑟 ®𝑥𝑜 ®𝑄𝑙
®𝑄𝑟

®𝑄𝑜
®𝑄𝑚

G1 𝑥1 𝑤1 𝑤2 1 1 −1 0
G2 𝑤1 𝑥2 𝑤3 1 1 −1 0
G3 𝑤2 𝑤3 𝑦 0 0 −1 1

®𝑄𝑙 ◦ ®𝑥𝑙 + ®𝑄𝑟 ◦ ®𝑥𝑟 + ®𝑄𝑜 ◦ ®𝑥𝑜 + ®𝑄𝑚 ◦ ®𝑥𝑙 ◦ ®𝑥𝑟 = 0
(®𝑥𝑙,G3 = ®𝑥𝑜,G1, ®𝑥𝑟,G3 = ®𝑥𝑜,G2)

(d)

Fig. 3. The arithmetic circuit 𝐶 (𝑥1, 𝑥2,𝑤1) = (𝑥1 +𝑤1) · (𝑥2 +𝑤1) over Z𝑞 in different representations. (a)
Graph representation. (b) Constraints for the depicted arithmetic circuit. (c) R1CS representation for the
circuit (“◦” denotes the Hadamard product). (d) Representation of the arithmetic circuit as a “Plonkish” table.

refer to the relation-specific setup. The relation-specific setup is also frequently referred
to as indexer in preprocessing SNARKs [15, 22, 32]. Note that the indexer is an offline,
public-coin algorithm, it does not depend on any witness or specific instance assigned to R.

• Prover & Verifier. The prover and verifier collaboratively run the online phase of the pre-
processing SNARK. The prover computes a proof convincing the verifier that an assignment
of private and public inputs to the circuit satisfies R. To do so, the prover leverages 𝑝𝑘 in
the proof computation, and the verifier leverages 𝑣𝑘 in the verification.

Frontend. The frontend has the following components:
• Circuit. A computation is represented as an arithmetic circuit in the frontend of a SNARK.
An arithmetic circuit is a directed acyclic graph, where the edges are denounced wires and
the vertices are called gates. An arithmetic circuit supports addition and multiplication
gates, with unrestricted fan-in and unrestricted fan-out. We depict an exemplary arithmetic
circuit with fan-in 2 and fan-out 1 in Fig. 3. Additional tooling allows developers to specify
the circuit through a domain-specific programming language or a SNARK library.

• Constraint System. A tool for development of SNARKs takes the circuit specification as an
input, and compiles it to an intermediate representation. At the time of writing, the most
popular intermediate representations are Rank-1 Constraint System (R1CS) [55], Arithmetic
Intermediate Representation (AIR) [8] and Plonkish [32].

• Witness Generation. To generate a transcript of wire assignments to the arithmetic circuit,
the intermediate representation is assigned with both the public and private inputs of the
statement to be proven. In some tools for SNARK development, the process of witness
generation is not a distinct step but rather integrated into the prover API. For clarity and
ease of understanding, we separate out the witness generation in our explanation.

3 ARCHITECTURE
In this section, we present the architecture of our framework: the core design decisions, the structure
of the system, and the methodology used for collecting samples and estimating performance.

3.1 Design Decisions

Goals. The primary goal of zk-Bench is to provide a valid, fair, and methodologically sound system
to measure performance. To achieve this goal, we pursue the following set of points:
G1 Completeness: zk-Bench covers quantitative metrics for components shown in Fig. 2, includ-

ing low-level arithmetic operations, public-key operations, proof system performance, and
circuit execution. As of now, we support 9 arithmetic libraries covering the implementation

zk-Bench: A Toolset for Comparative Evaluation
and Performance Benchmarking of SNARKs 7

of 13 elliptic curves and 5 tools for ZKP development. Our framework accounts for ∼ 3 300
lines of Go, ∼ 2 600 lines of Rust, ∼ 2 000 lines of Python, and ∼ 1 800 lines of JavaScript code.

G2 Modularity: Whenever possible, we leverage benchmarks from the upstream library, enhance
them as required, and contribute our modifications back to the original source. We rely on
popular benchmarking libraries to perform accurate timing measurements. Our framework
design is modular to facilitate extension by external developers: each arithmetic operation
and circuit is tested separately, and the arithmetic benchmarks are isolated from circuit
benchmarks. Additionally, little developer effort is required to extend our circuit benchmarks.
For instance, integrating Bellman into zk-Bench necessitates 81 lines of code (LOC) in Rust to
automate the benchmarking of circuits, along with 40 lines of Python code to add it to our
framework. In contrast, adding a new circuit requires an additional 30 lines of Rust code for
benchmarking registration. For a DSL such as Circom, integration into zk-Bench demands
more effort, with 210 lines of scripting code plus 40 lines of Python code, whereas adding
additional circuits needs no extra LOC beyond the circuit itself.

G3 Reproducibility: Benchmarks are automated and executed on standardized cloud hardware
with reproducible configurations. This ensures consistent and comparable results, facilitating
reliable performance evaluations. Benchmarking results are publicly accessible.

G4 Pragmatism: Our objective is to evaluate libraries under conditions that mirror practical
deployments: we set optimization flags whenever possible, and use all cores available in the
machine. Such a setup mirrors the common usage of these tools in real-world applications
and does not compromise the accuracy of the measurements (cf. Section 5). To the best of our
knowledge, there are no standard formats for recording raw benchmark data. We develop a
unified format that can be used in the future also by other developers.

Metrics. In a zero-knowledge proof system, the main performance evaluation metrics are compu-
tation time, computation space, and proof size. We capture all the above in the following way:
M1 Execution time: We rely on the following state-of-the-art libraries and profilers: (a) for Rust,

we selected criterion.rs [12]; (b) in Go, we selected the standard library’s benchmark toolsuite
testing package for the arithmetic backend, and a CPU profiler for the circuit backend; (c) for
JavaScript, we rely on tinybench [1]. All libraries adaptively select the number of samples,
and return the average running time4.

M2 Memory consumption: Due to the absence of a precise universal memory measurement
framework and varying footprints across programming languages, we limited our comparison
to memory usage within tools for developing general-purpose ZKPs. zk-Bench generates
binaries that are independent of the ones used for evaluating execution time, and measures the
maximum resident set size throughout its execution. We include the serialization/deserializa-
tion of relevant values in each phase to measure memory consumption of the setup algorithm,
prove and verify in isolation and accurately reflect real-world usage of proof systems.

M3 Proof size: We consider the byte-size of a serialized proof. Since proofs are cryptographic
objects, the proof size cannot be shrunk significantly using compression algorithms.

3.2 Backend
Two core components constitute our framework:
Arithmetics Backend. The arithmetics backend is responsible for benchmarking low-level
arithmetic operations of supported libraries, e.g., operations over finite fields and elliptic curves.
We benchmark the following operations:
4Another possible approach here would be to instead return the mode. Conformingly to our requirement of modularity, we
opted for leaving the default metric of those libraries unchanged.

https://pkg.go.dev/testing#hdr-Benchmarks
https://github.com/pkg/profile

8 Ernstberger, et al.

• Field operations: for 𝑎, 𝑏 ∈ Z𝑝 sampled uniformly at random, we measure addition 𝑎 + 𝑏,
multiplication 𝑎 · 𝑏, inversion 𝑎−1.

• Elliptic curve group operations: for 𝑎 ∈ Z𝑝 and 𝑃,𝑄 ∈ G sampled uniformly at random,
we measure group addition 𝑃 +𝑄 and scalar multiplication 𝑎𝑃 (a so-called Diffie-Hellman).
We do not concern ourselves with different encodings and algorithms behind elliptic curve
operation. Instead, we measure basic APIs offered by each library, as they represent the
primary interfaces that most library users will engage with.

• Elliptic curve pairing operations: For elliptic curves equipped with a pairing map 𝑒 :
G1 × G2 → G𝑇 , we measure the pairing time 𝑒 (𝐴, 𝐵) for 𝐴, 𝐵 uniformly random in G1,G2.

• Amortized operations: Our focus extends to cryptographic operations that benefit from
amortization using tailored algorithms, prompting us to assess the amortized runtime.
Specifically, we examine computation of an inner-product in the field: for some 𝑛 > 0,
given ®𝑎, ®𝑏 ∈ Z𝑛𝑝 , compute

∑
𝑖 𝑎𝑖𝑏𝑖 [47]; multi-scalar multiplications: given ®𝑎, ®𝐺 , compute∑

𝑖 𝑎𝑖𝐺𝑖 [57]; multi-pairing: given ®𝐴 ∈ G1, ®𝐵 ∈ G2, compute
∑

𝑖 𝑒 (𝐴𝑖 , 𝐵𝑖); the number-
theoretic transform (NTT) in fields with high 2-adicity [24].

The number of samples for each operation is decided adaptively by the underlying benchmarking
library. Amortized operations are sampled across the geometric sequence of sizes 21, 22, . . . , 222
and more. For each sample, we make sure that at least 10 executions are performed. Note, that
there are various approaches to perform multi-scalar multiplication with individual trade-offs [11].
In zk-Bench, we do not differentiate between the specific optimizations chosen in individual
implementations. Instead, we benchmark the given libraries as is, without altering existing methods.

Circuit Backend. For every supported tool for ZKP development, the circuit backend includes
three distinct runners, each designated for setup, proving, and verifying phases. The configuration
file describes the system under test. It specifies the library/DSL to benchmark, the algebraic structure
(that is, finite field or elliptic curve) to rely on, the backend, and the inputs to the circuit.

To precisely measure the execution time, we adopt the same micro-benchmarking libraries,
making sure that a minimum of 10 samples are gathered for larger circuits. Upon successfully
benchmarking the circuit, the execution time is stored in publicly accessible CSV files. Arbitrary
payloads can be added with ease. The benchmark runners can remain untouched, whereas the
developer only provides a circuit implementation to evaluate its performance.

3.3 Log Parser
We provide two specialized parsers that convert micro-benchmarking tool outputs into standard
formats, probing for the different arithmetic operations and elliptic curves being tested. The
processed results, available in both JSON and CSV, are utilized by the supplied front-ends.

3.4 Frontend
We design two frontends to help visualize and extract information from the collected benchmarks.

• Zkalc: Zkalc is a JavaScript library and public website using the benchmark data to
present (1) estimates for the execution times of cryptographic operations, and (2) graphs to
compare performance across different libraries and programming languages;

• zk-Harness: zk-Harness is a web application that leverages the benchmark data to illustrate
the computation time, memory, and proof size for each ZKP development tool or library,
across various payloads. It enables comparisons between different implementations and
configurations.

zk-Bench: A Toolset for Comparative Evaluation
and Performance Benchmarking of SNARKs 9

Table 1. (a) Overview of arithmetic libraries and elliptic curves currently present in our benchmarking
framework. (b) Overview of ZKP libraries and proof systems as included in our benchmarking framework,
and curves/fields that we consider in the results section. *We use Circom with Snarkjs and Rapidsnark.

(a)
BL

S1
2-
38
1

BN
25
4

cu
rv
e2
55
19

BL
S1
2-
37
7

pa
lla

s
ve
st
a

se
cp
25
6k

1
ju
bj
ub

BW
6
cu
rv
es

curve25519-dalek (4.1.1)
pasta_curves (0.5.1)
gnark_crypto (0.11.1)
arkwork-rs (0.4.2)
ffjavascript (0.3.59)
halo2_curves (0.3.1)
pairing_ce (0.28.5)
zkcrypto (0.23)
blstrs (0.7.0)

(b)

Be
llm

an
[6
9]

PS
E/
H
al
o2

[2
8]

G
na

rk
[1
7]

C
ir
co
m

[3
9]
*

St
ar
ky

[5
9]

C
ur

ve
/

Fi
el
d BLS12-381

BN254
Goldilocks

B
ac
ke

nd Groth16
Halo2/Plonk (KZG)

Stark

While the former is targeted for generic public-key operations and cost estimations (which we
believe can be useful also outside the zero-knowledge space, such as identity- and attribute-based
encryption, functional encryption, etc.), the latter is targeted at zero-knowledge circuit developers.

4 SELECTED ARITHMETIC LIBRARIES AND TOOLS FOR ZKP DEVELOPMENT
We implement benchmarks for 13 different elliptic curves across 9 different libraries in Rust, Go,
and JavaScript (Wasm) in the arithmetics backend, and 5 tools that provide functionalities to build
ZKP applications in the circuit backend.

When benchmarking SNARKs, we focus on BN2545 and BLS12-381, two extensively used curves,
especially in relation to SNARKs, and implemented in the selected libraries and tools we benchmark
(cf. Table 1b). For STARKs, we operate in the Goldilocks field, as it is the only one used by starky.

In this section, we outline the reasoning behind our selection. Note that zk-Bench is designed for
modularity and ease of extension — moving forward, we aim to extend our holistic comparison by
supporting further arithmetic libraries and ZKP development tools.

4.1 Arithmetic Libraries
We opted to support a diverse range of arithmetic libraries for executing generic public-key
operations. Our goal is not just to understand the differences in their implementations and curves,
but also to discern their potential impacts on applications and libraries that further rely on them.
Firstly, we selected arithmetic libraries that form the core of popular and state-of-the-art tools

for developing ZKPs. Such libraries include arkworks-rs (Arkworks [2]), pasta_curves (Halo2 [68]),
halo2_curves (PSE/Halo2 [28]), zkcrypto (Bellman [69]), pairing_ce (Bellman-ce [42]), ffjavascript
(Snarkjs [38]), and gnark_crypto (Gnark [17]). Further, we included blstrs as a baseline for curve
BLS12-381, a library extensively utilized by various Ethereum projects, and curve25519-dalek, a
widely adopted library used by more than 70,000 repositories. Our selection of these 9 libraries
encompasses a wide range of fields, curves, and state-of-the-art optimizations. The details of the
selected arithmetic libraries are summarized in Table 1a.

5Note: different libraries sometimes refer to the same curve using different names. BN254 is also called BN256 and alt_bn128.

10 Ernstberger, et al.

Table 2. Hardware specification as applied in the experimental infrastructure.

Name RAM OS #vCPU CPU

m5.large 8 GB Amazon Linux 23 2 Intel Xeon E5-2686
m5.2xlarge 32 GB Amazon Linux 23 8 Intel Xeon 8175M
m6i.8xlarge 128 GB Amazon Linux 23 32 Intel Xeon 8375C
m6g.8xlarge 128 GB Amazon Linux 23 32 Graviton2
r6i.8xlarge 256 GB Amazon Linux 23 32 Intel Xeon 8375C
c6i.12xlarge 128 GB Amazon Linux 23 48 Intel Xeon 8375C

4.2 Tools for ZKP Development
In selecting a variety of initial tools for ZKP development in our experiments, we aim to reflect the
current space of systems from a neutral perspective, without subjectively favoring one tool over
another. Therefore, we identified popular libraries and DSL by examining their popularity, quantified
through their number of Github stars, and maintenance, quantified by their most recent commit
(cf. Appendix A). We include circom, gnark and bellman due to their popularity. Note that we do
not include libsnark, due to insufficient maintenance in the recent past and a decreasing relevance
among practically applied solutions. Beyond popularity and maintenance, we included starky
and halo2_ce. halo2_ce is a fork of halo2 by Ethereum’s Privacy-Scaling-Exploration (PSE)
that replaces the Inner Product Argument with the Kate, Zaverucha, Goldberg (KZG) polynomial
commitment scheme. 6 This decision was largely influenced by (i) the requirement of including
a Succinct Transparent Argument of Knowledge (STARK) as opposed to a ZKP based on pairing-
friendly elliptic curves and (ii) the relevance of starky in the upcoming Polygon zkEVM and halo2
in the upcoming zkEVM of Scroll.

The tools for developing ZKPs examined in this study, as detailed in Table 1b, span an extensive
range of arithmetizations and methodologies. Four of the tools support pairing-based SNARKs,
one accommodates STARKs, while three utilize R1CS. Additionally, two of the tools are built to
support Plonkish arithmetization. Moreover, among the selected tools for SNARK development,
one offers a DSL, while the remaining provide libraries, with three providing APIs in Rust and one
in Golang. This diversity in the supported architectures and programming languages ensures a
broad coverage, thus allowing for more comprehensive and insightful results.

5 BENCHMARK RESULTS
5.1 Experimental Infrastructure
All benchmarks were executed with four different hardware setups, summarized in Table 2.

• Setup Small (AWS m5.large): This setup represents an entry-level cloud server configura-
tion, suitable for lightweight applications.

• Setup Personal (AWS m5.2xlarge): This setup emulates the hardware of a midgrade laptop
for personal use and general-purpose computation.

• Setup Server x86 (AWS m6i.8xlarge): This setup emulates the hardware of a server for
general-purpose computation with a large amount of memory.

• Setup ServerARM (AWSm6g.8xlarge): We run zk-Bench on different processors to evaluate
the impact of CPU architectures on SNARK performance.

• Setup Memory Optimized machine (AWS r6i.8xlarge): This machine provides an enhanced
RAM configuration, tailored for tasks requiring significant memory consumption.

• Setup CPU Optimizedmachine (AWS c6i.12xlarge): Designed to prioritize processing power,
this setup is ideal for compute-heavy applications and parallel processing tasks.

6Note that for the rest of the paper we use halo2 to refer to PSE’s fork.

zk-Bench: A Toolset for Comparative Evaluation
and Performance Benchmarking of SNARKs 11

0

10

20

30

Ad
di

tio
n

tim
e

(n
s)

BN254

m5.large
m5.2xlarge

m6i.8xlarge
m6g.8xlarge

0

10

20

30
BLS12-381

gn
ar

k_
cr

yp
to

pa
iri

ng
_c

e

ha
lo2

_c
ur

ve
s

ar
kw

or
ks

_c
ur

ve
s

0

50

100

M
ul

tip
lic

at
io

n
tim

e
(n

s)

gn
ar

k_
cr

yp
to

bls
trs

zk
cr

yp
to

pa
iri

ng
_c

e

ar
kw

or
ks

_c
ur

ve
s

0

50

100

Fig. 4. BN254 and BLS12-381 Field Addition and Multiplication.

5.2 Arithmetics
Figure 4 depicts the micro-benchmarks for addition and multiplication in the scalar field of curve
BN254 and BLS12-381 on all machines in our experimental infrastructure; Figure 6 depicts the
micro-benchmarks for MSM in G1 and G2 for curves BN254 and BLS12-381 on the server sized
instance AWS m6i.8xlarge. Although the arithmetic backend supports more than the libraries
depicted in Figures 4 and 6, we depict only the selected libraries as they provide the implementation
of arithmetic for the most popular SNARK libraries to date (cf. Table 4). In Appendix B, we discuss
the validity of our results in more detail.

Field Arithmetic. In Figure 4 we compare the execution time for field addition and field multipli-
cation over the scalar field of the respective curve. We find that:

• At the time of writing, Botrel et. al [16] provide the most recent scientific result on op-
timization for Montgomery multiplication in finite fields, implemented in gnark-crypto;
state-of-the-art inner-product of field elements is described by Longa [47]. We find that for
BN254, gnark-crypto is on average 30% faster than any other implementation for addition
and multiplication in the scalar field Z𝑝 . For BLS12-381, however, gnark-crypto incurs an
average slowdown of 9% compared to other libraries.

• The choice of hardware significantly impacts the execution time. Whereas for BLS12-381,
the smallest machine in our experimental setup, m5.large, is 13% faster than m5.2xlarge, 5,7%
faster than m6i.8xlarge and 71,3% faster than m6g.8xlarge, for BN254 m5.large is 1% slower
than m5.2xlarge, 12,4% slower than m6i.8xlarge — but 72,1% faster than field multiplication
in m6g.8xlarge when comparing the mean of the execution time across all libraries.

• When it comes to differences between curves, we observe that BN254 is not faster than BLS12-
381 across the board, although BN254 operates over a prime field of smaller characteristic
than BLS12-381. It can further be observed that the degradation in performance when
switching from BLS12-381 with a 381 bit coordinate field to BN254 with a 256 bit coordinate
field differs across machines. The loss factor for m5.large, m5.2xlarge, m6i.8xlarge and
m6g.8xlarge is 1.18×, 1.21×, 1.15× and 1.09× respectively.

• Field addition is 5,1× to 27,7× faster than field multiplication for BN254 and 2,1× to 38,9×
faster than field multiplication for BLS12-381. Specifically, the minimum ratio for BN254 is
observed on an AWS m5.large machine with an x86 processor, while the maximum ratio
is found for the server size AWS m6g.8xlarge machine with ARM processor. Similarly, for

12 Ernstberger, et al.

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220

Size

m5.large

m5.2xlarge

m6i.8xlarge

m6g.8xlarge

Fig. 5. Multiscalar Multiplication in G1 of curve BLS12-381 for blstrs on all machines as defined in our
experimental setup. Values are normalized between 0 and 1, where 1 indicates the highest execution time
(darker color) across all machines. Preceding the normalization, we perform a logarithmic transformation to
accommodate for the logarithmic increase in the size of MSM instances.

20 25 210 215 22010 4

10 3

10 2

10 1

100

101

BN
25

4

 T
im

e
(s

)

library
halo2_curves
arkworks
ffjavascript
gnark_crypto
pairing_ce

20 25 210 215 22010 4

10 3

10 2

10 1

100

101
library
arkworks
ffjavascript
gnark_crypto
pairing_ce

10 4

10 3

10 2

10 1

100

101
library
halo2_curves
arkworks
ffjavascript
gnark_crypto
pairing_ce

20 25 210 215 220

Size

 (a) MSM 1

10 4

10 3

10 2

10 1

100

101

BL
S1

2
38

1

 -
 T

im
e

(s
)

library
arkworks
blstrs
ffjavascript
gnark_crypto
pairing_ce

20 25 210 215 220

Size

 (b) MSM 2

10 4

10 3

10 2

10 1

100

101
library
arkworks
blstrs
ffjavascript
gnark_crypto
pairing_ce

 (c) Pairing

10 4

10 3

10 2

10 1

100

101
library
arkworks
blstrs
ffjavascript
gnark_crypto
pairing_ce

Fig. 6. Elliptic Curve Operations for BN254 and BLS12-381 on AWS m6i.8xlarge.

BLS12-381, theminimum ratio is observed on anAWSm5.largemachine, while themaximum
ratio is observed on the server size AWS m6g.8xlarge machine with ARM processor.

• We observe that ffjavascript is nearly two orders of magnitude slower than any other
implementation. Specifically, for addition in Z𝑝 of BN254, ffjavascript takes 413ns.
The reason for this is additional serialization in the add function that is exposed by the
ffjavascript API. 7 The same behavior can be observed for multiplication in Z𝑝 , and also
for BLS12-381.

Elliptic Curve Operations. We depict the results of our experiments for elliptic curve operations
obtained through zk-Bench in Figures 5 and 6 . Figure 6 depicts elliptic curve operations over BN254
and BLS12-381 on AWS m6i.8xlarge. We make two observations:

• Some implementations use multi-threading only for large batch sizes (8 for ffjavascript, 16
for blstrs). This causes an abnormal spike at the beginning of the curve.

7We excluded ffjavascript from Fig. 4 for visual clarity.

zk-Bench: A Toolset for Comparative Evaluation
and Performance Benchmarking of SNARKs 13

• For large multi-scalar multiplications, gnark adopts batch affine addition instead of using the
projective formulae. This causes the slight downward deviation towards the end of the graph
for both gnark and blstrs. For smaller MSM instances, mixed addition in extended Jacobian
coordinates delivers an additional performance improvement for gnark and blstrs [16]. A
similar approach can similarly improve the efficiency of other libraries.

More concretely, for a MSM instance of size 220 over BN254, gnark-crypto takes 0.22s in G1 and
0.53s inG2, whereas the second-fastest implementation, provided by pairing_ce, takes 0.85s±0.00s
in G1 and 2.91s± 0.01s in G2. gnark-crypto is 3.86× faster in G1 and 5.53× faster in G2. At 0.45ms,
the pairing product in gnark-crypto is 2.83× to 9.24× faster than pairing_ce (1.28ms ± 0.00ms
) and ffjavascript (4.18ms), respectively. This is expected, as gnark-crypto implements the
state-of-the-art MSM, a variant of the Pippenger algorithm [27].
For BLS12-381, though, blstrs is 1.41× faster for an MSM instance of size 25 in G1. Perhaps

counter-intuitively (given the underlying languages used), gnark-crypto outperforms blstrs for
larger size MSM instances and computing the pairing product. For an MSM instance of size 220,
gnark-crypto (0.35 s) is 1.83× faster than blstrs (0.64s ± 0.03s) in G1. Similar behavior can be
observed in G2. It should be highlighted that blst utilizes field arithmetic assembly code generalized
for fields up to 384-bits, whereas Gnark employs BLS12-381-specific assembly.

To investigate the influence of different machine specifications and instructions set architectures,
we depict MSM over BN254 in G1 in the blstrs library for all machines in our experimental setup
in Fig. 5. The figure shows a heatmap, where each value is logarithmically transformed, to account
for the logarithmic scaling of the MSM size, and successively normalized. The darker the color, the
higher the execution time relative to the lowest and highest execution time across all machines. It
can be observed, that low-level arithmetic operations are faster for more powerful CPUs (i.e., more
CPU cores) in the first three rows. The last row depicts execution on an ARM-based machine, where
it can be seen that executing finite field arithmetic is significantly less performant than on x86. We
expect a detailed investigation of performance improvements for MSM on the ARM instruction set
architecture, an interesting area for future work. Note, that this figure is representative, different
libraries besides blstrs exhibit a similar pattern across different machines.

5.3 Circuits
In this section, we employ zk-Bench to benchmark two circuits: SHA-256 and Exponentiate, imple-
mented across 5 tools for developing ZKP applications. An overview of the ZKP tools considered
can be found in Section 4.2. For each tool, we investigate the time and memory consumption
associated with the Setup, Prove, and Verify phase of the underlying SNARK. Our primary target
for these benchmarks is AWS m6i.8xlarge, with the results for this server depicted in Fig. 7, 8, and 9.
Additionally, given a predefined budget, we examine whether CPU-optimized (c6i.12xlarge) or
Memory-optimized (r6i.8xlarge) machines offer better results for individual ZKP libraries and tools.

Test Vectors. The lack of universal test vectors for ZKPs prompted us to propose two initial
circuits in our performance evaluation — a circuit proving knowledge of an exponent, and a circuit
proving knowledge of a pre-image to a hash computed by the SHA-256 hash function.

• Exponentiate. Our benchmark suite includes a finite field exponentiation circuit. This
circuit has a clearly defined specification that can be easily represented by most modern
proof systems. We manually implemented this circuit consistently across all supported ZKP
development tools. The Exponentiate circuit takes three variables 𝑋 , 𝐸, 𝑌 as public inputs.
Then, it computes and constraints 𝑌 ′ = 𝑋𝐸 , by executing 𝐸 multiplications, before setting a
constraint for 𝑌 ′ = 𝑌 .

14 Ernstberger, et al.

10 2

10 1

100

101

102

103

Se
tu

p/

 G
en

er
at

eT
ra

ce

 T
im

e
(s

)

10 1

101

103

Pr
ov

e

 T
im

e
(s

)

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

 Number of constraints

 (a) Groth16

10 3

10 2

10 1

100

Ve
ri

fy

 T

im
e

(s
)

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

 Number of constraints

 (b) Plonk / Halo2

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

 Number of constraints

 (c) Starky

Frameworks
bellman
gnark
circom/snarkjs
circom/rapidsnark
halo2_pse
starky

Curves
bn254
bls12_381
goldilocks

Fig. 7. Execution Time of Exponentiate circuit on m6i.8xlarge. Note that for halo2 and starky instead of
constraints, this figure depicts the number of utilized rows.

• SHA-256. For the SHA-256 circuit, we rely on implementations as provided in the respective
standard libraries of the examined ZKP development tools. We do not consider implementa-
tions with insufficient tests, or missing acknowledgment by maintainers. However, it is
important to recognize that the performance of a specific circuit implementation may not
be representative of the overall proof system’s performance, as certain implementations
may incorporate more optimizations than others. Therefore, while the SHA256 circuits
are valuable for assessing ZKP development tools in a real-world context, absolute conclu-
sions drawn from the results should be approached with caution, as they might not fully
encapsulate the inherent capabilities of a given tool.

Setup Phase Analysis. The setup is a pre-processing phase performed once per circuit to generate
the 𝑝𝑘 for the prover and 𝑣𝑘 for the verifier, respectively (cf. Section 2). Note that starky does not
require a setup phase, so it is excluded.
Overall, our results show that the setup phase for the P𝔩𝔬𝔫K proof system is faster than that

of Groth16. Specifically, for the SHA-256 circuit, the gnark setup phase with Groth16 and a pre-
image size of 8kB takes 220.17s. In contrast, the gnark setup phase with P𝔩𝔬𝔫K requires 62.50s.
This indicates that the setup for P𝔩𝔬𝔫K is 3.52× faster than of Groth16. A similar trend can be
observed for halo2 when being compared to gnark Groth16. However, this efficiency appears to be
accompanied by a memory trade-off. gnark’s P𝔩𝔬𝔫K implementation consistently consumes more
than twice the amount of memory compared to its Groth16 counterpart. This increased memory
requirement resulted in the inability to successfully generate the proof for preimages of size 16kB
and 32kB in the SHA256 circuit due to exceeding the machine’s available memory of 128GB.

Notably, in the case of the Exponentiate circuit, the gnark Groth16 setup is faster than the setup
in halo2 (e.g., 2.06× faster for 224 multiplication constraints). However, we also observe that the
memory footprint of halo2 is consistently lower than the one for gnark, with savings ranging
from a minimum of 22.64% to a maximum of 60.56% in the range of 210 to 224 constraints/rows
(see Figure 11 in the appendix). Yet, it is important to highlight that, notwithstanding the current

zk-Bench: A Toolset for Comparative Evaluation
and Performance Benchmarking of SNARKs 15

10 3

10 2

10 1

100

101

102

103

104

Se
tu

p/

 G
en

er
at

eT
ra

ce

 T
im

e
(s

)

26 28 210 212 214

 Pre-image Size

 (a) Groth16

10 3

10 2

10 1

100

101

102

103

104

Pr
ov

e

 T
im

e
(s

)

26 28 210 212 214

 Pre-image Size

 (b) Plonk / Halo2

Frameworks
bellman
gnark
circom/snarkjs
circom/rapidsnark
halo2_pse
starky

Curves
bn254
bls12_381
goldilocks

(a) Execution time.

1
2
4
8

16
32
64

128

Se
tu

p/

 G
en

er
at

eT
ra

ce

 R
A

M
 (G

B
)

26 28 210 212 214

 Pre-image Size

 (a) Groth16

1
2
4
8

16
32
64

128

Pr
ov

e

 R
A

M
 (G

B
)

26 28 210 212 214

 Pre-image Size

 (b) Plonk / Halo2

Frameworks
bellman
gnark
circom/snarkjs
circom/rapidsnark
halo2_pse
starky

Curves
bn254
bls12_381
goldilocks

(b) Memory consumption.

Fig. 8. Execution time and memory benchmarks for SHA-256 circuit for preimages ranging from 32 Byte to
32kB on m6i.8xlarge.

execution metrics of the halo2 circuit, optimizations targeting the row count of the exponentiate
circuit in halo2 can offer an improve execution time.
Proving Phase Analysis. Contrary to expectations, starky’s proving cost for the Exponentiate
circuit is 5.00s for 220 multiplications, which is 8.06× slower than gnark P𝔩𝔬𝔫K and merely 3.03×
faster than snarkjs, which employs Groth16. One explanation is that starky is optimized for
wider traces. Should the circuit be optimized to accommodate a larger number of columns, starky
is anticipated to outperform other ZKP development tools in terms of execution time. This is
attributed to the fact that rows transform into leaves in a Merkle tree, and smaller rows do not
optimize the hash rate in starky. A comprehensive exploration of optimizations is outside the scope
of this paper, but could be facilitated by zk-Bench. It’s worth noting that similar optimizations can
benefit halo2. However, such optimizations might induce higher costs with regard to verification
time and proof size.

In contrast to the setup phase, P𝔩𝔬𝔫K trails Groth16 in efficiency. For illustration, within gnark,
for SHA256 with a pre-image size of 8 kB, P𝔩𝔬𝔫K is 9.39× slower compared to Groth16. This
pattern remains consistent across various benchmarks and also applies to halo2.

16 Ernstberger, et al.

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

 Number of constraints

 (a) Groth16

1
2
4
8

16
32
64

128
256
512

Pr
oo

f S
iz

e
(K

B
)

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

 Number of constraints

 (b) Plonk / Halo2

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

 Number of constraints

 (c) Starky

Frameworks
bellman
gnark
circom/snarkjs
circom/rapidsnark
halo2_pse
starky

Curves
bn254
bls12_381
goldilocks

Fig. 9. Proof Size for the Exponentiate circuit as observed on m6i.8xlarge. The observed proof size for
circom/snarkjs and circom/rapidnsark is the same.

In terms of memory consumption, ZKP development tools in Rust exhibit a substantial reduction
compared to other tools for ZKP development. For instance, given a 32 kB preimage size, bellman’s
memory requirement is 10.62GB. In contrast, gnark requires 30.55GB for Groth16 and exceeds
memory limits for P𝔩𝔬𝔫K , outstripping bellman by a factor of 2.88× for Groth16 over BLS12-381.
Interestingly, bellman, despite not being the fastest, emerges as the most efficient in terms of
memory utilization.

Similar to our observations from Section 5.2, the advantage of BN254 over BLS12-381 is evident
in proving times. Specifically, the gnark-BN254-Groth16 combination consistently outperforms the
gnark-BLS12-381-Groth16 results.
Both gnark and rapidsnark stand out as the implementations with the most efficient provers.

However, gnark’s superior performance is offset by its suboptimal memory efficiency. Specifically,
for SHA256 with a pre-image size of 16 kB, the time metrics for gnark over BN254, rapidsnark,
bellman, and snarkjs are 17.10s, 8.24s, 25.81s, and 134.20s, respectively. In terms of memory
consumption, gnark requires 15.25GB, in contrast to rapidsnark, which utilizes only 8.92GB.
Verification Phase Analysis. Fig. 7 showcases the verification results across the evaluated tools.
Aligned with theoretical expectations, the verification time for Groth16 and P𝔩𝔬𝔫K remains both
constant and minimal. Conversely, for starky, this time scales with input size. To illustrate, while
all tools and libraries for SNARK development consistently verify within a 5ms window, starky
can require upwards of an order of magnitude more (e.g., 22ms for 225 multiplication constraints).
Proof Size Analysis. Fig. 9 presents the comparative proof sizes for the Exponentiate circuit across
various tools for ZKP development. As expected, a standout observation is the exponential difference
in starky’s proof size—ranging from 299.68× to 678.98× greater for roughly 224 constraints/rows–
when compared against the larger Groth16 and P𝔩𝔬𝔫K proofs. As anticipated, the proof sizes
for Groth16, P𝔩𝔬𝔫K , and halo2 remain constant. Note that we have excluded bellman from the
comparison because its proof is measured in raw bytes, whereas the other proofs are serialized.
For plonkish arithmetization, an increase in column count corresponds to an elevated proof

size. The Exponentiate circuit in halo2 features a proof size of 992B, whereas the SHA256 circuit,
accommodating a greater column count, has a proof size of 2816B. Nevertheless, adding more
columns can introduce various optimizations, primarily aimed at reducing row count to enhance
proving time.
Memory Optimized vs. CPU Optimized Machines. We set out to determine whether a specific
tool demonstrates superior performance on compute-optimized or memory-optimized hardware.
To investigate this, we run our experiments on two AWS instances: c6i.12xlarge (48 vCPU, 128
RAM) and r6i.8xlarge (32 vCPU, 256 RAM). Though they differ in specifications, their hourly costs

zk-Bench: A Toolset for Comparative Evaluation
and Performance Benchmarking of SNARKs 17

2^5 2^6 2^7 2^8 2^9 2^10 2^11

Bellman/BLS12-381

Rapidsnark/BN254/Groth16

Snarkjs/BN254/Groth16

Gnark/BLS12-381/Plonk

Gnark/BN254/Plonk

Halo2/BN254

1 1 1.1 1.1 1.1 1.1 1.1

1.3 1.2 1.4 1.4 1.4 1.4 1.4

1 1.3 1.3 1.4 1.2 1.4 1

1 1 0.95 0.86 0.94 0.99 1

1 1 0.98 0.98 0.98 1 0.99

1 1 1 1 1 1 1 0.9

1.0

1.1

1.2

1.3

1.4

(a) SHA256 - Memory Consumption

2^5 2^6 2^7 2^8 2^9 2^10 2^11

Bellman/BLS12-381

Rapidsnark/BN254/Groth16

Snarkjs/BN254/Groth16

Gnark/BLS12-381/Plonk

Gnark/BN254/Plonk

Halo2/BN254

0.84 0.84 0.91 0.98 0.91 0.89 0.88

1.1 0.99 1.2 1.2 1.2 1.2 1.1

0.87 0.94 1.1 1.1 1 0.98 0.86

0.75 0.75 0.66 0.66 0.67 0.75 0.77

0.75 0.74 0.67 0.68 0.68 0.7 0.78

0.79 0.79 0.78 0.78 0.77 0.77 0.78 0.7

0.8

0.9

1.0

1.1

1.2

(b) SHA256 - Execution Time

2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18 2^19 2^20

Bellman/BLS12-381

Rapidsnark/BN254/Groth16

Snarkjs/BN254/Groth16

Gnark/BLS12-381/Groth16

Gnark/BN254/Groth16

Halo2/BN254

Starky/Goldilocks

1 0.99 0.99 0.99 1 1.1 1.1 1.1 1.1 1 1

1.2 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.3 1.2

1.4 1.3 1.3 1.2 1.2 1.4 1.3 1.2 1.1 1.1 0.94

1.3 1.2 1.2 1 0.9 0.9 1.1 1.1 0.98 1 1

1.3 1.4 1.2 1.2 1.1 1.2 1.1 1 1 1 0.95

1 0.99 1 1 1 1 1 1 1 1 1

0.99 1 1 1 1 1 0.96 0.89 1 1 1
0.9

1.0

1.1

1.2

1.3

1.4

(c) Exponentiate - Memory Consumption

2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18 2^19 2^20

Bellman/BLS12-381

Rapidsnark/BN254/Groth16

Snarkjs/BN254/Groth16

Gnark/BLS12-381/Groth16

Gnark/BN254/Groth16

Halo2/BN254

Starky/Goldilocks

0.94 0.92 0.91 0.9 0.98 0.98 0.91 0.86 0.84 0.85 0.84

2 1 1.5 1.2 1.1 1.2 1.2 1.2 1.1 0.99 0.93

1.1 1.2 1.2 1.1 1.2 1.1 1 0.98 0.84 0.87 0.95

0.97 0.98 0.89 0.97 0.96 0.99 0.94 0.95 0.87 0.85 0.91

1 0.99 0.96 0.93 0.96 0.94 0.94 0.94 0.93 0.86 0.92

0.98 0.92 0.92 0.84 0.86 0.86 0.85 0.86 0.86 0.88 0.88

0.29 0.59 0.9 0.86 1.1 0.7 0.82 0.84 0.83 0.9 0.87 0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

(d) Exponentiate - Execution Time

Fig. 10. Performance decrease/increase for SHA256 and Exponentiate circuits in terms ofmemory consumption
and execution time for CPU optimized (c6i.12xlarge) vs. RAM optimized (r6i.8xlarge) machines for proving.
For execution time, darker color indicates that the CPU-optimized machine requires more time than the
RAM-optimized machine (i.e., the RAM-optimized machine outperforms the CPU-optimized machine). For
memory consumption, darker color indicates that the CPU-optimized machine consumes more memory than
the RAM-optimized machine (i.e., the RAM-optimized machine utilizes less memory).

are remarkably close at 2.04 and 2.016 USD, respectively. The effects of using these machines for
the proving phase are depicted in Fig. 10.
Both snarkjs and rapidsnark demonstrate improved performance on RAM-optimized ma-

chines across all circuits. Additionally, they use less RAM on these machines. For instance, when
benchmarking the Exponentiate circuit on a CPU-optimized machine with an input size of 215,
rapidsnark consumes 157 MB of RAM and takes 0.15 seconds. This RAM usage is about 1.4 times
higher, and the processing time is approximately 1.2 times slower, compared to the RAM-optimized
machine, where rapidsnark requires 226 MB and 0.18 seconds for the same input size. In contrast,
most other tools display consistent memory consumption regardless of machine type. However,
gnark deviates from this pattern. For smaller inputs in the Exponentiate circuit, gnark uses 1.2
times more memory on the CPU-optimized machine (68MB for 212) than on its RAM-optimized
counterpart (57MB for 212). Nevertheless, due to the relatively low RAM requirements for such
inputs, this difference might not be significant in real-world applications. A more pronounced
difference is evident in gnark’s performance on CPU-optimized machines. Its superior performance
might indicate efficient parallelization, most notably seen in the SHA256 circuit (e.g., 2.10 seconds
on a CPU-optimized machine for 28 vs. 2.99 seconds on a RAM-optimized machine using the BN254
curve). Similarly, both halo2 and bellman exhibit enhanced performance, but their improvements
are more modest compared to gnark.

18 Ernstberger, et al.

6 RUNTIME ESTIMATION
In this section, we harness the data obtained from zk-Bench to accomplish two objectives: (i)
interpolate and extrapolate the runtimes of arithmetic operations and (ii) estimate the runtime
of complex proof systems. Our ultimate goal is to offer a user interface that answers user queries
about the runtime of cryptographic protocols regardless of their complexity. Furthermore, we want
to be able to offer accurate estimation results even if we lack benchmarks for the requested size,
or when the cryptographic protocol is in research stage and not yet implemented. We start by
outlining our strategy for interpolating and extrapolating the runtime of fundamental arithmetic
operation, and then use our techniques to estimate the runtime of entire cryptographic protocols,
exemplified by estimating the prover runtime of the P𝔩𝔬𝔫K proof system.

Arithmetic Data Interpolation and Extrapolation. Given the sparsely sampled benchmark
data for a cryptographic operation 𝜙 , our objective is to derive a function that describes the runtime
of 𝜙 , denoted as 𝑓 (𝑥). 𝑓 (𝑥) is designed to estimate the runtime of 𝜙 for an arbitrary input size 𝑛.
For non-amortized operations like scalar multiplication and field addition, we treat them as

sequential computations. That is, if a single scalar multiplication consumes 𝑥 seconds, 𝑛 such
operations will consume 𝑛 · 𝑥 seconds. The result can be expressed as: 𝑓 (𝑥) = 𝑛 · 𝑥 . However, some
complex operations can be amortized, and their performance is non-linear. In such cases:

• If the user queries for a size that lies between two benchmarked intervals, we perform linear
interpolation of the two estimates and return the value at the given size.

• If the requested size is outside the tested intervals, we apply linear regression using the
least squares method on the nearest four samples, and return the value of the resulting line
at the given size.

In cases involving non-linear algorithms, insights into their asymptotic performance can enhance
our estimation accuracy. For example, Pippenger’s multi-scalar multiplication algorithm is widely
used, and its complexity is known to be close to 𝑂 (𝑛/log𝑛). Here, to provide better estimates, we
use least squares to fit the last 4 samples in the dataset to a function ℎ(𝑛) = 𝑎𝑛+𝑏

log𝑛 and solve for 𝑎 and
𝑏. Analogous methods are applied for the Cooley-Tukey algorithm [24], which has a complexity of
𝑂 (𝑛 log𝑛).

To gauge the precision of our estimator, we sampled user queries both within and beyond our
benchmark ranges at random samples: for interpolation, at points 2𝑖 + 𝑟 where 𝑖 = 10, . . . , 20 and
𝑟 sampled at random in the integer interval [0, 2𝑖]; for extrapolation setting 𝑖 = 24 and taking a
random sample as above. Themode of the percent error touches 0.75% for multi-scalar multiplication
in BN254, and lower than 0.02% for multi-pairing in bls12-381; the highest recorded error has been
of 17.37% for curve25519 on m6i.8xlarge.

Circuit extrapolation. Using the above techniques for estimating the runtime of low-level
arithmetic operations, we can move towards estimating the running times of entire zero-knowledge
proof systems. Given the size of the circuit being proven (in the case of R1CS for instance, the
number of addition gates, multiplication gates, instance, and witness sizes) we can provide estimates
for the running time of a proof system by enumerating the arithmetic operations being performed,
estimating the run-time for each of them, and summing them up.

For the P𝔩𝔬𝔫K proof system, we developed an estimator for the prover’s runtime, concentrating
primarily on the most computationally intensive operations: multi-scalar multiplications and FFTs.
Our observations indicate that even this rudimentary estimation approach can yield sufficiently
accurate results for practical user queries. Specifically, the estimated runtimes were consistently
within 32% of the actual runtimes of gnark’s P𝔩𝔬𝔫K implementation, as illustrated in Table 3.

zk-Bench: A Toolset for Comparative Evaluation
and Performance Benchmarking of SNARKs 19

Table 3. Percent error for estimating the running time of the proving algorithm for the exponentiation circuit
prover using P𝔩𝔬𝔫K as implemented in gnark.

Curve Error Actual Runtime Estimated Runtime Number of gates

BN254 22.40% 3ms 2.33ms 10
BN254 6.03% 6ms 5.64ms 100
BN254 6.83% 24ms 25.64ms 1000
BN254 29.50% 253ms 178.37ms 10000
BN254 32.00% 1793ms 1219.25ms 100000
BN254 27.66% 12 939ms 9359.55ms 1000000
BLS12-381 9.42% 4ms 3.62ms 10
BLS12-381 0.20% 9ms 8.98ms 100
BLS12-381 16.26% 38ms 44.18ms 1000
BLS12-381 22.05% 364ms 283.73ms 10000
BLS12-381 21.40% 2445ms 1921.67ms 100000
BLS12-381 12.35% 17 141ms 15 024.86ms 1000000

We anticipate that analogous techniques can be employed to project the runtime of other proof
systems. When complemented with performance data specific to certain implementations, this
approach holds the potential to address user queries for proof system circuits of arbitrary size.

7 DISCUSSION
7.1 Limitations
While our study provides valuable insights into the performance of different pulic-key-cryptography-
based libraries and tools for ZKP development, several limitations should be acknowledged:
Hardware Considerations. Our evaluation focused on commodity machines, excluding platforms
like GPUs, FPGAs, and mobile devices. To fully grasp the real-world applicability of tools for ZKP
development, future work should include benchmarks on these platforms.
Naïve public-key operations. As outlined in Sections 2 and 5.3, we are not concerned with
the actual representation of elements. Points in an elliptic curve can be represented in multiple
ways (depending on the curve, affine points – in Weirstrass, Montgomery, or Edwards form – or
projective – in standard, Jacobi, or Chudnovsky coordinates). Additionally, different algorithms
might have different constraints: no heap allocations (that’s the case for curve25519), constant
time, etc. Comparing different algorithms on the same ground is outside the scope of our current
arithmetic benchmark. They are meant to give a rough estimate of the runtime of a complex
cryptographic algorithm in a usable way. A broader study incorporating these optimizations can
elucidate the trade-offs involved. We view an in-depth exploration of the impact of optimizations
within across ZKP tools as a promising direction for future work.
Scope of Evaluated Circuits. Our ZKP backend currently only evaluates a limited set of test
vectors, and the performance can vary considerably based on the specific implementation of a
circuit (cf. Section 5). Given the diversity and complexity of potential ZKP circuits, our chosen
circuits might not fully encapsulate all performance scenarios. For instance, in the case of SHA-256,
different libraries provided different set of optiomizations, and the witness generation in different
ZKP tools is sometimes included in the prove API, introducing additional complexity in assessing
performance on equal grounds.
Nevertheless, the extensibility of zk-Bench ensures ease in integrating additional benchmarks

for a more comprehensive evaluation in the future.

7.2 Recommendations
Standardized Test Vectors. When it comes to the test vectors to choose for benchmarks, we find
that there is little convergence in the community. Implementations are dispersed, and it is difficult to
find implementations that target the same functionality in different tools for ZKP development, such

20 Ernstberger, et al.

that equal and fair comparisons can be drawn. We advocate for a focused community discussion on
functionalities, emphasizing that a consensus on a benchmark set would enable unbiased third-party
performance evaluations.
Interoperable Intermediate Representations. Many libraries provide custom implementations
of similar intermediate representations. Whereas initial efforts exist in unifying intermediate
representations [63], the degree of interoperability between tools is, thus far, relatively minimal.
Evaluating ZKP tooling on common intermediate representation language that compilers can target
and libraries can implement, could provide further insights into the performance difference in
differing ZKP backends along different test vectors.
Improved Documentation. The implementation of cryptographic protocols and functionalities
with ZKP tools remains a complex task. Improved documentation of tooling for ZKPs would be
equally beneficial to the practitioners’ community, as well as from a benchmarking perspective.
For example, the witness generation in different ZKP tools is sometimes included in the prove API,
introducing additional complexity in assessing performance on equal grounds. Similarly, improved
documentation of optimizations would tremendously benefit the whole community in qualitatively
comparing differing implementations, in addition to quantitative benchmarks.
With zk-Bench, the intuitive frontend for end-users, and the systematization introduced in

Section 2, we aim to provide an initial step in addressing the above recommendations. We urge the
community to further extend these benchmarking efforts in an open-source effort.

8 RELATEDWORK
eBATS [52] is the current largest effort in benchmarking public-key cryptographic operations.
However, its focus is limited to Diffie-Hellman, (scalar multiplication), KEM, and sign operations
(multiplication and addition) instead of modern cryptography and runtime estimations. Baghery et
al. [3] examine the setup phase of certain zk-SNARKs, and Botrel et. al[16] offer comparative insights
into public-key operations in ZKP libraries such as gnark and arkworks. In contrast to these works,
we provide a comprehensive framework that dives deep into both arithmetic operations and the
zk-SNARK process, bridging both domains. The drive to standardize ZKPs led to a proposal for a
benchmarking framework [10]. This initiative laid some foundational concepts, many of which
we’ve assimilated and expanded upon to deliver an exhaustive and versatile benchmarking tool.

Recently, the practitioners’ community has exhibited a growing interest in benchmarking public-
key cryptography libraries and tools for ZKP development. Housni has benchmarked many elliptic
curve implementations to evaluate the performance of MSMs and pairings. 8 Orthogonally, Bloemen
has presented a set of benchmarks for implementations of polynomial commitments. 9 In our work,
we build upon these efforts by providing an automated framework to benchmark and compare
library implementations across various operations systematically.

Celer Network published a blog post 10 focusing on benchmarking the time and memory costs of
proving SHA-256 circuits, which were developed by community members, in various tools for ZKPs.
By contrast, our work provides an extensible framework that supports arbitrary circuits, libraries
and tools, and thoroughly benchmarks all phases involved in ZKPs. However, the results of this
benchmark could heavily depend on how optimized the circuit is. Therefore, we also benchmarked a
straightforward exponentiation circuit across the evaluated tools. Moreover, Anoma has developed
a framework 11 that benchmarks different ZKP compilation strategies, from libraries used for
writing circuits to zkVMs that can run arbitrary programs, with a particular focus on execution
8https://hackmd.io/@gnark/eccbench
9https://2𝜋 .com/23/pc-bench/
10https://blog.celer.network/2023/07/14/the-pantheon-of-zero-knowledge-proof-development-frameworks/
11https://github.com/anoma/zkp-compiler-shootout

https://hackmd.io/@gnark/eccbench
https://blog.celer.network/2023/07/14/the-pantheon-of-zero-knowledge-proof-development-frameworks/
https://github.com/anoma/zkp-compiler-shootout

zk-Bench: A Toolset for Comparative Evaluation
and Performance Benchmarking of SNARKs 21

time. Lastly, orthogonal to our work, Delendum has developed a framework for benchmarking
zkVMs. 12

9 CONCLUSION
While the performance measurement of ZKP implementations has long been a relevant topic in
academia, its significance has surged recently due to the increased feasibility of proof systems.
Further, libraries and tools for ZKP circuits have evolved from proof-of-concepts to robust solutions
now used in production. This advancement allows developers to employ innovative tools for
expressing computations in a way susceptible to proof systems. However, assessing the performance
of a specific implementation, let alone a novel cryptographic protocol, remains a difficult endeavor.

In this paper, we introduced zk-Bench, the first holistic benchmarking framework and estimator
tool designed for performance evaluation of public-key cryptography, with a specific focus on
practical assessment of general-purpose ZKP systems. zk-Bench is easy to configure and run, whilst
being modular enough to include a high variety of real-world applications. Using zk-Bench, we
evaluated 13 elliptic curves across 9 libraries and assessed 5 prominent tools for ZKP development
with two test vectors — Exponentiation and SHA-256 — uncovering intriguing differences. For
example, we find that certain ZKP frameworks favor compute-optimized hardware, while others
benefit from memory-optimized hardware. This results in a performance increase of up to 50% for
CPU and 40% for memory when computing a proof, guiding developers to select an appropriate
tool to develop their ZKP based application.

ACKNOWLEDGMENTS
This work is partially supported by the Center for Responsible, Decentralized Intelligence at
Berkeley (Berkeley RDI) and the Ethereum Foundation. The authors acknowledge the financial
support by the Federal Ministry of Education and Research of Germany in the programme of
“Souverän. Digital. Vernetzt.”. Joint project 6G-life, project identification number: 16KISK002. We
acknowledge contributions to earlier versions of our open-source repository, zk-Harness, by Celer
Network, Morgan Thomas, and bingcicle.

REFERENCES
[1] Mohammad Bagher Abiat. 2023. Tinybench. https://github.com/tinylibs/tinybench
[2] arkworks contributors. 2022. arkworks zkSNARK ecosystem. https://arkworks.rs
[3] Karim Baghery, AxelMertens, andMahdi Sedaghat. 2023. Benchmarking the Setup of Updatable zk-SNARKs. Cryptology

ePrint Archive (2023).
[4] Razvan Barbulescu and Sylvain Duquesne. 2019. Updating key size estimations for pairings. Journal of cryptology 32

(2019), 1298–1336.
[5] Paulo SLM Barreto, Ben Lynn, and Michael Scott. 2003. Constructing elliptic curves with prescribed embedding

degrees. In Security in Communication Networks: Third International Conference, SCN 2002 Amalfi, Italy, September
11–13, 2002 Revised Papers 3. Springer, 257–267.

[6] Paulo SLM Barreto and Michael Naehrig. 2005. Pairing-friendly elliptic curves of prime order. In International workshop
on selected areas in cryptography. Springer, 319–331.

[7] Eli Ben-Sasson. 2018. libSTARK. https://github.com/elibensasson/libSTARK
[8] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2019. Scalable zero knowledge with no trusted setup.

In Advances in Cryptology–CRYPTO 2019: 39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18–22, 2019, Proceedings, Part III 39. Springer, 701–732.

[9] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. 2013. SNARKs for C: Verifying
Program Executions Succinctly and in Zero Knowledge. In CRYPTO 2013, Part II (LNCS, Vol. 8043), Ran Canetti and
Juan A. Garay (Eds.). Springer, Heidelberg, 90–108. https://doi.org/10.1007/978-3-642-40084-1_6

[10] Daniel Benarroch, Aurélien Nicolas, Justin Thaler, and Eran Tromer. 2020. ‘Community proposal: A benchmarking
framework for (zero-knowledge) proof systems. QEDIT, Tel Aviv-Yafo, Israel, Tech. Rep (2020).

12https://github.com/delendum-xyz/zk-benchmarking

https://github.com/tinylibs/tinybench
https://arkworks.rs
https://github.com/elibensasson/libSTARK
https://doi.org/10.1007/978-3-642-40084-1_6
https://github.com/delendum-xyz/zk-benchmarking

22 Ernstberger, et al.

[11] Daniel J Bernstein. 2002. Pippenger’s exponentiation algorithm. Preprint. Available from http://cr. yp. to/papers. html
(2002).

[12] bheisler. 2023. Rust Criterion. https://bheisler.github.io/criterion.rs/book/index.html
[13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein, and Eran Tromer. 2017.

The hunting of the SNARK. Journal of Cryptology 30, 4 (2017), 989–1066.
[14] Remco Bloemen. 2023. Polynomial Commitment Benchmark.
[15] Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orrù. 2022. Gemini: Elastic SNARKs for Diverse

Environments. In EUROCRYPT 2022, Part II (LNCS, Vol. 13276), Orr Dunkelman and Stefan Dziembowski (Eds.). Springer,
Heidelberg, 427–457. https://doi.org/10.1007/978-3-031-07085-3_15

[16] Gautam Botrel and Youssef El Housni. 2023. Faster Montgomery multiplication and Multi-Scalar-Multiplication for
SNARKs. IACR Transactions on Cryptographic Hardware and Embedded Systems (2023), 504–521.

[17] Gautam Botrel, Thomas Piellard, Youssef El Housni, Ivo Kubjas, and Arya Tabaie. 2023. ConsenSys/gnark: v0.8.0.
https://doi.org/10.5281/zenodo.5819104

[18] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu. 2020. Zexe: Enabling
decentralized private computation. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 947–964.

[19] Matteo Campanelli, Nicolas Gailly, Rosario Gennaro, Philipp Jovanovic, Mara Mihali, and Justin Thaler. 2023. Testudo:
Linear Time Prover SNARKs with Constant Size Proofs and Square Root Size Universal Setup. In Progress in Cryptology–
Latincrypt 2023: 9th International Conference on Cryptology and Information Security in Latin America.

[20] David Chaum. 1982. Blind Signatures for Untraceable Payments. In CRYPTO’82, David Chaum, Ronald L. Rivest, and
Alan T. Sherman (Eds.). Plenum Press, New York, USA, 199–203.

[21] David L Chaum. 1981. Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24, 2
(1981), 84–90.

[22] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas Ward. 2020. Marlin:
Preprocessing zkSNARKs with universal and updatable SRS. In Advances in Cryptology–EUROCRYPT 2020: 39th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020,
Proceedings, Part I 39. Springer, 738–768.

[23] Lambda Class. 2023. lambdaworks. https://github.com/lambdaclass/lambdaworks
[24] James W Cooley and John W Tukey. 1965. An algorithm for the machine calculation of complex Fourier series.

Mathematics of computation 19, 90 (1965), 297–301.
[25] Whitfield Diffie and Martin E Hellman. 2022. New directions in cryptography. In Democratizing Cryptography: The

Work of Whitfield Diffie and Martin Hellman. 365–390.
[26] Youssef El Housni. 2021. Benchmarking pairing-friendly elliptic curves libraries. https://hackmd.io/@gnark/eccbench
[27] Youssef El Housni and Gautam Botrel. 2022. EdMSM: Multi-Scalar-Multiplication for SNARKs and Faster Montgomery

multiplication. Cryptology ePrint Archive (2022).
[28] Privacy & Scaling Explorations. 2023. halo2 Community Edition. https://github.com/privacy-scaling-explorations/halo2
[29] Facebook. 2023. winterfell. https://github.com/facebook/winterfell
[30] Filecoin. 2023. bellperson. https://github.com/filecoin-project/bellperson
[31] Georg Fuchsbauer, Michele Orrù, and Yannick Seurin. 2019. Aggregate Cash Systems: A Cryptographic Investigation

of Mimblewimble. In EUROCRYPT 2019, Part I (LNCS, Vol. 11476), Yuval Ishai and Vincent Rijmen (Eds.). Springer,
Heidelberg, 657–689. https://doi.org/10.1007/978-3-030-17653-2_22

[32] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. 2019. Plonk: Permutations over lagrange-bases for
oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive (2019).

[33] Steven D Galbraith, Kenneth G Paterson, and Nigel P Smart. 2008. Pairings for cryptographers. Discrete Applied
Mathematics 156, 16 (2008), 3113–3121.

[34] Rosario Gennaro and Daniel Wichs. 2013. Fully Homomorphic Message Authenticators. In ASIACRYPT 2013, Part II
(LNCS, Vol. 8270), Kazue Sako and Palash Sarkar (Eds.). Springer, Heidelberg, 301–320. https://doi.org/10.1007/978-3-
642-42045-0_16

[35] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1985. The Knowledge Complexity of Interactive Proof-Systems. In
Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing (STOC ’85). Association for Computing
Machinery, 291–304.

[36] Jens Groth. 2016. On the size of pairing-based non-interactive arguments. In Advances in Cryptology–EUROCRYPT
2016: 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria,
May 8-12, 2016, Proceedings, Part II 35. Springer, 305–326.

[37] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. 2016. Zcash protocol specification. GitHub: San
Francisco, CA, USA 4 (2016), 220.

[38] iden3. 2021. snarkjs. https://github.com/iden3/snarkjs
[39] iden3. 2023. Circom: Circuit Compiler For ZK Proving Systems. https://github.com/iden3/circom

https://bheisler.github.io/criterion.rs/book/index.html
https://doi.org/10.1007/978-3-031-07085-3_15
https://doi.org/10.5281/zenodo.5819104
https://eprint.iacr.org/2023/961
https://eprint.iacr.org/2023/961
https://github.com/lambdaclass/lambdaworks
https://hackmd.io/@gnark/eccbench
https://github.com/privacy-scaling-explorations/halo2
https://github.com/facebook/winterfell
https://github.com/filecoin-project/bellperson
https://doi.org/10.1007/978-3-030-17653-2_22
https://doi.org/10.1007/978-3-642-42045-0_16
https://doi.org/10.1007/978-3-642-42045-0_16
https://github.com/iden3/snarkjs
https://github.com/iden3/circom

zk-Bench: A Toolset for Comparative Evaluation
and Performance Benchmarking of SNARKs 23

[40] Taechan Kim and Razvan Barbulescu. 2016. Extended tower number field sieve: A new complexity for the medium
prime case. In Advances in Cryptology–CRYPTO 2016: 36th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2016, Proceedings, Part I. Springer, 543–571.

[41] Ahmed Kosba. 2022. jsnark. https://github.com/akosba/jsnark
[42] Matter Labs. 2023. bellman Community Edition. https://github.com/matter-labs/bellman
[43] Matter Labs. 2023. Boojum. https://github.com/matter-labs/era-boojum
[44] O1 labs. 2023. kimchi. https://github.com/o1-labs/proof-systems
[45] O1 labs. 2023. snarky. https://github.com/o1-labs/snarky
[46] O1 labs. 2023. snarkyjs. https://github.com/o1-labs/snarkyjs
[47] Patrick Longa. 2023. Efficient Algorithms for Large Prime Characteristic Fields and Their Application to Bilinear

Pairings. IACR Transactions on Cryptographic Hardware and Embedded Systems (2023), 445–472.
[48] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. 2019. Sonic: Zero-knowledge SNARKs from

linear-size universal and updatable structured reference strings. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 2111–2128.

[49] Alfred Menezes, Palash Sarkar, and Shashank Singh. 2017. Challenges with assessing the impact of NFS advances
on the security of pairing-based cryptography. In Paradigms in Cryptology–Mycrypt 2016. Malicious and Exploratory
Cryptology: Second International Conference, Mycrypt 2016, Kuala Lumpur, Malaysia, December 1-2, 2016, Revised Selected
Papers. Springer, 83–108.

[50] Alfred Menezes, Scott Vanstone, and Tatsuaki Okamoto. 1991. Reducing Elliptic Curve Logarithms to Logarithms
in a Finite Field. In Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing (New Orleans,
Louisiana, USA) (STOC ’91). Association for Computing Machinery, New York, NY, USA, 80–89. https://doi.org/10.
1145/103418.103434

[51] Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh. 2022. Powers-of-Tau to the People: Decentralizing
Setup Ceremonies. Cryptology ePrint Archive (2022).

[52] European Network of Excellence for Cryptology. 2006. eBATS: ECRYPT Benchmarking of Asymmetric Systems. https:
//www.ecrypt.eu.org/ebats/

[53] Alex Ozdemir, Riad Wahby, Barry Whitehat, and Dan Boneh. 2020. Scaling verifiable computation using efficient set
accumulators. In 29th USENIX Security Symposium (USENIX Security 20). 2075–2092.

[54] Bryan Parno, Jon Howell, Craig Gentry, andMariana Raykova. 2013. Pinocchio: Nearly Practical Verifiable Computation.
In 2013 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 238–252. https://doi.org/10.1109/SP.
2013.47

[55] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2016. Pinocchio: Nearly practical verifiable computation.
Commun. ACM 59, 2 (2016), 103–112.

[56] Geovandro CCF Pereira, Marcos A Simplício Jr, Michael Naehrig, and Paulo SLM Barreto. 2011. A family of
implementation-friendly BN elliptic curves. Journal of Systems and Software 84, 8 (2011), 1319–1326.

[57] Nicholas Pippenger. 2022. A Formula for the Determinant. CoRR abs/2206.00134 (2022). https://doi.org/10.48550/
arXiv.2206.00134 arXiv:2206.00134

[58] Plonky3. 2023. Plonky3. https://github.com/Plonky3/Plonky3
[59] Mir Protocol. 2023. Plonky2. https://github.com/mir-protocol/plonky2
[60] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars Virza.

2014. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE symposium on security and privacy.
IEEE, 459–474.

[61] scipt lab. 2020. libsnark. https://github.com/scipr-lab/libsnark
[62] scipt lab. 2021. libiop. https://github.com/scipr-lab/libiop
[63] Srinath Setty, Justin Thaler, and RiadWahby. 2023. Customizable constraint systems for succinct arguments. Cryptology

ePrint Archive (2023).
[64] Espresso Systems. 2023. jellyfish. https://github.com/EspressoSystems/jellyfish
[65] Psi Vesely, Kobi Gurkan, Michael Straka, Ariel Gabizon, Philipp Jovanovic, Georgios Konstantopoulos, Asa Oines,

Marek Olszewski, and Eran Tromer. 2022. Plumo: An ultralight blockchain client. In International Conference on
Financial Cryptography and Data Security. Springer, 597–614.

[66] Lawrence C Washington. 2008. Elliptic curves: number theory and cryptography. CRC press.
[67] Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang, Yongzheng Jia, Dan Boneh, and Dawn Song.

2022. zkbridge: Trustless cross-chain bridges made practical. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. 3003–3017.

[68] ZCash. 2023. halo2. https://github.com/zcash/halo2
[69] zkcrypto. 2023. bellman: zk-SNARK library. https://github.com/zkcrypto/bellman

https://github.com/akosba/jsnark
https://github.com/matter-labs/bellman
https://github.com/matter-labs/era-boojum
https://github.com/o1-labs/proof-systems
https://github.com/o1-labs/snarky
https://github.com/o1-labs/snarkyjs
https://doi.org/10.1145/103418.103434
https://doi.org/10.1145/103418.103434
https://www.ecrypt.eu.org/ebats/
https://www.ecrypt.eu.org/ebats/
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.48550/arXiv.2206.00134
https://doi.org/10.48550/arXiv.2206.00134
https://arxiv.org/abs/2206.00134
https://github.com/Plonky3/Plonky3
https://github.com/mir-protocol/plonky2
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libiop
https://github.com/EspressoSystems/jellyfish
https://github.com/zcash/halo2
https://github.com/zkcrypto/bellman

24 Ernstberger, et al.

1
2
4
8

16
32
64

128

Se
tu

p/

 G
en

er
at

eT
ra

ce

 R
A

M
 (G

B
)

1
2
4
8

16
32
64

128

Pr
ov

e

 R
A

M
 (G

B
)

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

 Number of constraints

 (a) Groth16

1
2
4
8

16
32
64

128

Ve
ri

fy

 R

A
M

 (G
B

)

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

 Number of constraints

 (b) Plonk / Halo2

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

 Number of constraints

 (c) Starky

Frameworks
bellman
gnark
circom/snarkjs
circom/rapidsnark
halo2_pse
starky

Curves
bn254
bls12_381
goldilocks

Fig. 11. Memory consumption of Exponentiate circuit on m6i.8xlarge. The memory consumption of Circom is
constant for verification as the API provided by Circom demands for deserializatioin of verification key, public,
and proof, which are relatively small. For other ZKP tools and libraries, the API demands for deserialization
of parameter files that grow in size with size of the circuit. Memory consumption for serialization of starky is
missing due to non-existent serialization APIs, at the time of writing.

A SNARK AND STARK LIBRARIES

Table 4. Overview of the popularity of common SNARK and STARK frameworks. (F)rontend and (B)ackend
of related frameworks are grouped together. Updated as of 1st of August 2023.

Project F B # Stars Last Update

libsnark [61] 1668 07/2020
jsnark [41] 191 12/2022
snarkjs [38] 1471 06/2023
circom [39] 921 06/2023
gnark [17] 1034 07/2023
Bellman / zkcrypto [69] 814 03/2023
arkworks [2] 713 05/2023
Winterfell / Meta [29] 623 07/2023
plonky2 [59] 534 07/2023
snarky [45] 496 05/2023
snarkyjs [46] 338 07/2023

Project F B # Stars Last Update

Kimchi / O(1) Labs [44] 299 07/2023
libstark [7] 448 11/2018
halo2 / ZCash [68] 457 07/2023
lambdaworks [23] 350 07/2023
jellyfish / Espresso Systems [64] 271 07/2023
boojum [43] 170 07/2023
bellperson / filecoin [30] 158 07/2023
bellman_ce / matter labs [42] 138 04/2023
libiop [62] 127 05/2021
plonky3 [58] 138 07/2023
halo2_ce [28] / PSE 116 07/2023

Table 4 presents a comprehensive overview of the most prevalent SNARK and STARK frameworks
used in the development of Zero-Knowledge Proof (ZKP) programs. Each toolchain typically
encompasses both a front-end and a back-end, often provided by the same framework. However,
there are exceptions to this pattern, such as iden3’s Circom project. In this case, Circom serves as
the front-end, while either snarkjs or rapidsnark (offering only proving capabilities) function as the
back-ends.
Beyond showcasing the structural composition of these toolchains, Table 4 offers insights into

each project’s popularity and activity level. This is gauged through the number of GitHub stars

zk-Bench: A Toolset for Comparative Evaluation
and Performance Benchmarking of SNARKs 25

Table 5. Coefficient of Variation (CV) for multiplication and addition in BN254 and BLS12-381. Distributions
of CV < 1 can be considered low-variance, while those with CV > 1 can be considered high variance.

machine library curve operation cv

m5.2xlarge arkworks_curves bls12_381 add 0.117896
zkcrypto bls12_381 mul 0.149145

add 0.145491
pairing_ce bn254 mul 0.186713

add 0.448729
bls12_381 add 0.420041

halo2_curves bn254 mul 0.173454
pairing_ce bls12_381 mul 0.085221
blstrs bls12_381 mul 0.614840

add 0.604633
arkworks_curves bn254 mul 0.071497

add 0.085387
bls12_381 mul 0.521088

halo2_curves bn254 add 0.227429
m5.large pairing_ce bn254 add 2.528118

zkcrypto bls12_381 mul 2.482617
add 2.054006

pairing_ce bn254 mul 4.200262
bls12_381 mul 4.407481

blstrs bls12_381 mul 4.097602
halo2_curves bn254 mul 4.059257

add 1.510318
blstrs bls12_381 add 0.778731
pairing_ce bls12_381 add 1.366626

m6g.8xlarge pairing_ce bls12_381 add 0.351906
zkcrypto bls12_381 mul 0.161643

machine library curve operation cv

add 0.106811
pairing_ce bn254 mul 0.032653

add 0.044894
bls12_381 mul 0.030930

halo2_curves bn254 mul 0.021249
arkworks_curves bls12_381 mul 0.045578
blstrs bls12_381 mul 1.417817

add 0.066837
arkworks_curves bn254 mul 0.050363

add 0.082494
bls12_381 add 0.426573

halo2_curves bn254 add 0.104693
m6i.8xlarge pairing_ce bn254 mul 0.217116

add 0.198308
bls12_381 mul 0.210383

add 0.206211
halo2_curves bn254 mul 0.390493

add 0.074193
arkworks_curves bn254 mul 0.421921
blstrs bls12_381 add 0.061124
arkworks_curves bn254 add 0.065893

bls12_381 mul 0.071483
add 0.063589

zkcrypto bls12_381 add 0.075747
blstrs bls12_381 mul 0.146054
zkcrypto bls12_381 mul 0.300691

each project has accumulated - a measure of community endorsement - as well as the date of the
last commit, indicating the project’s recent activity and ongoing maintenance efforts.

B DATA VALIDATION
To validate the data we obtained from the respective machines, we measure the standard deviation
𝜇 and mean 𝜎 of all operations to calculate the coefficient of variation, a statistical measure that
is defined as the ratio of the standard deviation to the mean, allowing us to compare the relative
variability across datasets andmachines.We present the coefficient of variation for field addition and
multiplication in Table 5, and the coefficient of variation for MSM on AWS m6i.8xlarge in Table 6.
We find that the mean of the coefficient of variation is ≈ 0.39, which indicates relatively low
variability We observe, that especially the smallest instance, m5.large, incurs a large coefficient of
variation across different libraries and operations, which indicates that the samples taken from this
machine are relatively inconsistent. For MSM, we observe the mean of the coefficient of variation to
be ≈ 1.34 for MSM in G1 and ≈ 1.02 for MSM in G2 respectively, which signifies larger variability in
the sampled data. We urge for further investigation to draw conclusions on whether this variability
is introduced by on-demand server infrastructure.

26 Ernstberger, et al.

Table 6. Coefficient of Variation (CV) for multiplication and addition in BN254 and BLS12-381. Distributions
of CV < 1 can be considered low-variance, while those with CV > 1 can be considered high variance.

machine library curve operation size cv

m6i.8xlarge arkworks bls12_381 msm_G1 2 1.023519
m6i.8xlarge arkworks bls12_381 msm_G1 4 1.032269
m6i.8xlarge arkworks bls12_381 msm_G1 8 0.670592
m6i.8xlarge arkworks bls12_381 msm_G1 16 0.925825
m6i.8xlarge arkworks bls12_381 msm_G1 2 1.319842
m6i.8xlarge arkworks bls12_381 msm_G1 64 1.005520
m6i.8xlarge arkworks bls12_381 msm_G1 128 1.536985
m6i.8xlarge arkworks bls12_381 msm_G1 256 0.929388
m6i.8xlarge arkworks bls12_381 msm_G1 512 1.158935
m6i.8xlarge arkworks bls12_381 msm_G1 1024 1.261890
m6i.8xlarge arkworks bls12_381 msm_G1 2048 1.400382
m6i.8xlarge arkworks bls12_381 msm_G1 4096 1.264280
m6i.8xlarge arkworks bls12_381 msm_G1 8192 2.557883
m6i.8xlarge arkworks bls12_381 msm_G1 16384 3.694018
m6i.8xlarge arkworks bls12_381 msm_G1 2768 2.656017
m6i.8xlarge arkworks bls12_381 msm_G1 65536 0.207187
m6i.8xlarge arkworks bls12_381 msm_G1 131072 0.402804
m6i.8xlarge arkworks bls12_381 msm_G1 262144 1.885476
m6i.8xlarge arkworks bls12_381 msm_G1 524288 1.218963
m6i.8xlarge arkworks bls12_381 msm_G1 1048576 1.294875
m6i.8xlarge arkworks bls12_381 msm_G1 2097152 1.346189
m6i.8xlarge blstrs bls12_381 msm_G1 2 0.044488
m6i.8xlarge blstrs bls12_381 msm_G1 4 0.390781
m6i.8xlarge blstrs bls12_381 msm_G1 8 0.056672
m6i.8xlarge blstrs bls12_381 msm_G1 16 0.043823
m6i.8xlarge blstrs bls12_381 msm_G1 2 0.359884
m6i.8xlarge blstrs bls12_381 msm_G1 64 0.303458
m6i.8xlarge blstrs bls12_381 msm_G1 128 0.472966
m6i.8xlarge blstrs bls12_381 msm_G1 256 0.922661
m6i.8xlarge blstrs bls12_381 msm_G1 512 0.609237
m6i.8xlarge blstrs bls12_381 msm_G1 1024 2.029009
m6i.8xlarge blstrs bls12_381 msm_G1 2048 0.741856
m6i.8xlarge blstrs bls12_381 msm_G1 4096 0.366328
m6i.8xlarge blstrs bls12_381 msm_G1 8192 0.289558
m6i.8xlarge blstrs bls12_381 msm_G1 16384 0.687239
m6i.8xlarge blstrs bls12_381 msm_G1 2768 0.081350
m6i.8xlarge blstrs bls12_381 msm_G1 65536 0.130423
m6i.8xlarge blstrs bls12_381 msm_G1 131072 0.138213
m6i.8xlarge blstrs bls12_381 msm_G1 262144 0.533823
m6i.8xlarge blstrs bls12_381 msm_G1 524288 3.483468
m6i.8xlarge blstrs bls12_381 msm_G1 1048576 4.161291
m6i.8xlarge blstrs bls12_381 msm_G1 2097152 2.618671
m6i.8xlarge pairing_ce bls12_381 msm_G1 1 0.865825
m6i.8xlarge pairing_ce bls12_381 msm_G1 2 0.982300
m6i.8xlarge pairing_ce bls12_381 msm_G1 4 0.835601
m6i.8xlarge pairing_ce bls12_381 msm_G1 8 0.717361
m6i.8xlarge pairing_ce bls12_381 msm_G1 16 1.127157
m6i.8xlarge pairing_ce bls12_381 msm_G1 2 1.942223
m6i.8xlarge pairing_ce bls12_381 msm_G1 64 7.285463
m6i.8xlarge pairing_ce bls12_381 msm_G1 128 0.151263
m6i.8xlarge pairing_ce bls12_381 msm_G1 256 3.089730
m6i.8xlarge pairing_ce bls12_381 msm_G1 512 2.877493
m6i.8xlarge pairing_ce bls12_381 msm_G1 1024 0.285611
m6i.8xlarge pairing_ce bls12_381 msm_G1 2048 0.231980
m6i.8xlarge pairing_ce bls12_381 msm_G1 4096 0.353366
m6i.8xlarge pairing_ce bls12_381 msm_G1 8192 0.099853
m6i.8xlarge pairing_ce bls12_381 msm_G1 16384 0.171358
m6i.8xlarge pairing_ce bls12_381 msm_G1 2768 0.058058
m6i.8xlarge pairing_ce bls12_381 msm_G1 65536 0.147453
m6i.8xlarge pairing_ce bls12_381 msm_G1 131072 0.034668
m6i.8xlarge pairing_ce bls12_381 msm_G1 262144 0.081413
m6i.8xlarge pairing_ce bls12_381 msm_G1 524288 0.366701
m6i.8xlarge pairing_ce bls12_381 msm_G1 1048576 0.724438
m6i.8xlarge arkworks bn254 msm_G1 2 0.848204

machine library curve operation size cv

m6i.8xlarge arkworks bn254 msm_G1 4 1.886335
m6i.8xlarge arkworks bn254 msm_G1 8 1.301629
m6i.8xlarge arkworks bn254 msm_G1 16 0.869819
m6i.8xlarge arkworks bn254 msm_G1 2 1.657673
m6i.8xlarge arkworks bn254 msm_G1 64 1.091215
m6i.8xlarge arkworks bn254 msm_G1 128 0.864722
m6i.8xlarge arkworks bn254 msm_G1 256 0.582581
m6i.8xlarge arkworks bn254 msm_G1 512 3.099921
m6i.8xlarge arkworks bn254 msm_G1 1024 3.295864
m6i.8xlarge arkworks bn254 msm_G1 2048 0.941437
m6i.8xlarge arkworks bn254 msm_G1 4096 0.878906
m6i.8xlarge arkworks bn254 msm_G1 8192 1.770486
m6i.8xlarge arkworks bn254 msm_G1 16384 0.505038
m6i.8xlarge arkworks bn254 msm_G1 2768 0.247747
m6i.8xlarge arkworks bn254 msm_G1 65536 0.163440
m6i.8xlarge arkworks bn254 msm_G1 131072 2.003160
m6i.8xlarge arkworks bn254 msm_G1 262144 1.005785
m6i.8xlarge arkworks bn254 msm_G1 524288 2.797046
m6i.8xlarge arkworks bn254 msm_G1 1048576 0.969073
m6i.8xlarge arkworks bn254 msm_G1 2097152 4.846506
m6i.8xlarge arkworks bn254 msm_G1 2 0.842366
m6i.8xlarge arkworks bn254 msm_G1 4 1.521145
m6i.8xlarge arkworks bn254 msm_G1 8 1.372733
m6i.8xlarge arkworks bn254 msm_G1 16 1.068469
m6i.8xlarge arkworks bn254 msm_G1 2 1.414223
m6i.8xlarge arkworks bn254 msm_G1 64 1.190394
m6i.8xlarge arkworks bn254 msm_G1 128 1.026420
m6i.8xlarge arkworks bn254 msm_G1 256 0.478278
m6i.8xlarge arkworks bn254 msm_G1 512 1.378518
m6i.8xlarge arkworks bn254 msm_G1 1024 2.168509
m6i.8xlarge arkworks bn254 msm_G1 2048 1.135775
m6i.8xlarge arkworks bn254 msm_G1 4096 0.777476
m6i.8xlarge arkworks bn254 msm_G1 8192 0.947085
m6i.8xlarge arkworks bn254 msm_G1 16384 0.219800
m6i.8xlarge arkworks bn254 msm_G1 2768 0.171549
m6i.8xlarge arkworks bn254 msm_G1 65536 0.579498
m6i.8xlarge arkworks bn254 msm_G1 131072 0.471684
m6i.8xlarge arkworks bn254 msm_G1 262144 1.522305
m6i.8xlarge arkworks bn254 msm_G1 524288 3.603968
m6i.8xlarge arkworks bn254 msm_G1 1048576 1.214127
m6i.8xlarge arkworks bn254 msm_G1 2097152 4.754687
m6i.8xlarge pairing_ce bn254 msm_G1 1 0.641293
m6i.8xlarge pairing_ce bn254 msm_G1 2 0.602851
m6i.8xlarge pairing_ce bn254 msm_G1 4 0.911040
m6i.8xlarge pairing_ce bn254 msm_G1 8 0.890320
m6i.8xlarge pairing_ce bn254 msm_G1 16 1.223913
m6i.8xlarge pairing_ce bn254 msm_G1 2 1.186686
m6i.8xlarge pairing_ce bn254 msm_G1 64 1.501231
m6i.8xlarge pairing_ce bn254 msm_G1 128 4.109449
m6i.8xlarge pairing_ce bn254 msm_G1 256 5.544364
m6i.8xlarge pairing_ce bn254 msm_G1 512 3.752064
m6i.8xlarge pairing_ce bn254 msm_G1 1024 2.953111
m6i.8xlarge pairing_ce bn254 msm_G1 2048 0.085942
m6i.8xlarge pairing_ce bn254 msm_G1 4096 3.174368
m6i.8xlarge pairing_ce bn254 msm_G1 8192 0.116408
m6i.8xlarge pairing_ce bn254 msm_G1 16384 0.055445
m6i.8xlarge pairing_ce bn254 msm_G1 2768 0.091232
m6i.8xlarge pairing_ce bn254 msm_G1 65536 0.070121
m6i.8xlarge pairing_ce bn254 msm_G1 131072 0.061525
m6i.8xlarge pairing_ce bn254 msm_G1 262144 0.087837
m6i.8xlarge pairing_ce bn254 msm_G1 524288 0.243712
m6i.8xlarge pairing_ce bn254 msm_G1 1048576 0.138218

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Public-Key Cryptography
	2.2 Zero-Knowledge Proofs (ZKPs)
	2.3 Practical Implementation of Pre-processing SNARKs

	3 Architecture
	3.1 Design Decisions
	3.2 Backend
	3.3 Log Parser
	3.4 Frontend

	4 Selected Arithmetic Libraries and Tools for ZKP Development
	4.1 Arithmetic Libraries
	4.2 Tools for ZKP Development

	5 Benchmark Results
	5.1 Experimental Infrastructure
	5.2 Arithmetics
	5.3 Circuits

	6 Runtime Estimation
	7 Discussion
	7.1 Limitations
	7.2 Recommendations

	8 Related work
	9 Conclusion
	Acknowledgments
	References
	A SNARK and STARK Libraries
	B Data Validation

