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A specification of finite element problems

from firedrake import =

mesh = UnitSquareMesh(100, 100)
V = FunctionSpace(mesh, "RT”, 2)
Q = FunctionSpace(mesh, "DG”, 1)
W = V+Q

u, p = TrialFunctions(w)

v, q = TestFunctions(W)

a = dot(u, v)*dx + div(v)*p*dx + div(u)*q*dx Flﬂd u e V X Q C H(dIV) X I_2 St
L = -Constant(1)+v=dx
u = Function(W)

solve(a == L, u, solver_parameters={ <U, V> —+ <d|V V’ p) =0 VYv € vV
"ksp_type”: "gmres”,
"ksp_rtol”: le-8, <d|v u7 q> — _<']7 q> VQ = Q

"pc_type”: "fieldsplit”,
"pc_fieldsplit_type”: "schur”,
"pc_fieldsplit_schur_fact_type”: "full”,
"pc_fieldsplit_schur_precondition”: "selfp”,
"fieldsplit_0_ksp_type”: "preonly”,
"fieldsplit_0_pc_type”: "ilu”,
"fieldsplit_1_ksp_type”: "preonly”,
"fieldsplit_1_pc_type”: "hypre”




More than a pretty face 6‘

Library usability

- High-level language enables rapid model development
- Ease of experimentation

- Small model code base

Library development

- Automation of complex optimisations
- Exploit expertise across disciplines

- Small library code base
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Composability of libraries that manipulate PDE solvers 6‘

www.dolfin-adjoint.org
Automated derivation of the discrete adjoint from forward
models written using FEnICS.

$ cloc dolfin-adjoint/
Language files blank comment code

Python 52 2228 878 6939
$ cloc dolfin-adjoint/compatibility.py
Python 1 36 9 135
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Ease of experimentation 6‘

How much code do you need to change to

- Change preconditioner (e.g. ILU to AMG)?

- Drop terms in the preconditioning operator?

- Use a completely different operator to precondition?
- Do quasi-Newton with an approximate Jacobian?

- Apply operators matrix-free?

Same “easy to use” code must run fast at scale.
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Say what, not how.




Firedrake

automated finite element system.

Finite element problems written in the FEniCS
& FF05%: language (UFL + problem solving language).

ite element language obje

Mesh, Functi

nSpace, Fun

4

7
<, dolfin-adjoint
Adjoint simulations by
automated reasoning about the
finite element problem.
\

Form compiler converts
tegrals into unscheduled loops.

Extended FIAT
& FraSe; element tabulator

PyOP2
Interface

MPI

Optimised compiled mesh loops

transforming com

PyOP2

High performance
mesh execution abstraction.

r
PETSc
DMPlex global mesh objects

Linear and nonlinear solvers
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Local kernels




Optimisation of finite element kernels Q‘

Problem
Modern optimising compilers do a bad job on finite element
kernels.




Optimisation of finite element kernels Q‘

Problem
Modern optimising compilers do a bad job on finite element
kernels.

Code motion (or not?)

for (i = 0; 1 < L; i++ )
for (j = 0; J < M; j++)
for (k = 0; k < Nj; k++)
A[310k] += f(i, j)+g(i, k)
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Optimisation of finite element kernels 6‘

Problem
Modern optimising compilers do a bad job on finite element
kernels.

Code motion (or not?)

for (i = 0; 1 < L; i++ )
for (3 = 0; J < M; j++)
for (k = 0; k < Nj; k++)
A[310k] += f(i, j)+g(i, k)

Corollary
We need to spoon-feed the compiler already optimised code.
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A job for an expert Q‘

Hardware-aware optimsation of finite element kernels is a job
for:
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A job for an expert 6‘

Hardware-aware optimsation of finite element kernels is a job
for:

- A numerical analyst?

- A geodynamicist?

- A computational chemist?
- A computational scientist?

- A computer scientist?
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Automating expertise 6‘

- “In-person” case-by-case optimisation does not scale

- Code generation allows us to package expertise and
provide it to everyone

- Done by a special-purpose kernel compiler
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COFFEE I %

No single optimal schedule for evaluation of every finite
element kernel. Variability in

- polynomial degree,

- number of fields,

- kernel complexity,

- working set size,

- structure in the basis functions,

- structure in the quadrature points,

-




COFFEE Il %

Vectorisation

Align and pad data structures, then use intrinsics or rely on
compiler.

Luporini, Varbanescu, et al. 2015 doi: 10.1145/2687415

Flop reduction

Exploit linearity in test functions to perform factorisation, code
motion and CSE.

Luporini, Ham, and Kelly 2016 arXiv: 1604.05872 [cs.MS]

github.com/coneoproject/COFFEE
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Global iteration




Tensions in model development | 6‘

Performance

- Keep data in cache as long as possible.
- Manually fuse kernels.
- Loop tiling for latency hiding.

- Individual components hard to test

- Space of optimisations suffers from combinatorial
explosion.

-




Tensions in model development Il 6‘

Maintainability

- Keep kernels separate
- “Straight-line” code

- Testable

- Even if performance of individual kernels is good, can lose
a lot

-



PyOP2 \3“

A library for expressing data parallel iterations

Sets iterable entities
Dats abstract managed arrays (data defined on a set)
Maps relationships between elements of sets
Kernels local computation
par_loop Data parallel iteration over a set

Arguments to parallel loop indicate how to gather/scatter
global data using access descriptors

par_loop(kernel, iterset, datal(mapl, READ), data2(map2, WRITE))
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Key ideas 6‘

Local computation
Kernels do not know about global data layout.

- Kernel defines contract on local, packed, ordering.

- Global-to-local reordering/packing appears in map.

“Implicit” iteration
Application code does not specify explicit iteration order.

- Define data structures, then just “iterate”

- Lazy evaluation

Impéri FCol
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Lazy evaluation 6‘

- par_Lloop only executed “when you look at the data”.
- PyOP2 sees sequence of loops, can reason about them for

- Loop fusion
- Loop tiling
- Communication coalescing

- Application code does not change. “What, not how”.

-



Did we succeed?




Experimentation 6‘

With model set up, experimentation is easy

- Change preconditioner: c. 1 line
- Drop terms: c. 1-4 lines

- Different operator: c. 1-10 lines
- quasi-Newton: c. 1-10 lines

- Matrix-free: XXX

R




Maintainability 6‘

Core Firedrake Shared with FEniCS
Component  LOC Component  LOC
Firedrake 9000 FIAT 4000
PyOP2 5000 UFL 13000
TSFC 2700 Total 17000
COFFEE 4500
Total 21200
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Performance | 6‘

Kernel performance
- COFFEE produces kernels that are better (operation count)
than existing automated form compilers
- Provably optimal in some cases

- Good vectorised performance, problem dependent, but up
to 70% peak for in-cache computation.

T



Performance Il @

Thetis s
- 3D unstructured coastal ocean model
written with Firedrake ) ﬂ

- 5000 LOC, c. 1 person year THETIS

- Lock exchange test case

Thetis P1DG-P1DG, triangular
wedges. 245s/s.

SLIM hand-coded/optimised

(same numerics), 65/s

github.com/thetisproject/thetis
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github.com/thetisproject/thetis

Summary 6‘

- Firedrake provides a layered set of abstractions for finite
element

- Enables automated provision of expertise to model
developers

- Computational performance is good, often > 50%
achievable peak.

- Hero-coding necessary if you want the last 10-20%

- ..but at what (person) cost?

B




Want to work on FEM at Imperial? We are
hiring.




Questions?
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