


http://www.climate-1lab-book.ac.uk/
2014/end-of-the-rainbow/



http://www.climate-lab-book.ac.uk/2014/end-of-the-rainbow/
http://www.climate-lab-book.ac.uk/2014/end-of-the-rainbow/

@' Firedrake

Firedrake: automating the finite element
method by composing abstractions

Lawrence Mitchell’
6th July 2016

"Departments of Computing and Mathematics, Imperial College London

Impéri FCol
London™



Firedrake team 6‘

IC David A. Ham, Miklos Homolya, Fabio Luporini,
Gheorghe-Teodor Bercea, Paul H. ). Kelly

Bath Andrew T. T. McRae
ECMWF Florian Rathgeber

www.firedrakeproject.org
Rathgeber et al. 2015 arXiv: 1501.01809 [cs.MS]

-



www.firedrakeproject.org
http://www.arxiv.org/abs/1501.01809

The right abstraction level

~—_



A specification of finite element problems

from firedrake import =

mesh = UnitSquareMesh(100, 100)
V = FunctionSpace(mesh, "RT”, 2)
Q = FunctionSpace(mesh, "DG”, 1)
W = V+Q

u, p = TrialFunctions(w)

v, q = TestFunctions(W)

a = dot(u, v)*dx + div(v)*p*dx + div(u)*q*dx Flﬂd u e V X Q C H(dIV) X I_2 St
L = -Constant(1)+v=dx
u = Function(W)

solve(a == L, u, solver_parameters={ <U, V> —+ <d|V V’ p) =0 VYv € vV
"ksp_type”: "gmres”,
"ksp_rtol”: le-8, <d|v u7 q> — _<']7 q> VQ = Q

"pc_type”: "fieldsplit”,
"pc_fieldsplit_type”: "schur”,
"pc_fieldsplit_schur_fact_type”: "full”,
"pc_fieldsplit_schur_precondition”: "selfp”,
"fieldsplit_0_ksp_type”: "preonly”,
"fieldsplit_0_pc_type”: "ilu”,
"fieldsplit_1_ksp_type”: "preonly”,
"fieldsplit_1_pc_type”: "hypre”




More than a pretty face 6‘

Library usability

- High-level language enables rapid model development
- Ease of experimentation

- Small model code base

Library development

- Automation of complex optimisations
- Exploit expertise across disciplines

- Small library code base

-




Composability of libraries that manipulate PDE solvers 6‘

www.dolfin-adjoint.org
Automated derivation of the discrete adjoint from forward
models written using FEnICS.

$ cloc dolfin-adjoint/
Language files blank comment code

Python 52 2228 878 6939
$ cloc dolfin-adjoint/compatibility.py
Python 1 36 9 135

-


www.dolfin-adjoint.org

Ease of experimentation 6‘

How much code do you need to change to

- Change preconditioner (e.g. ILU to AMG)?

- Drop terms in the preconditioning operator?

- Use a completely different operator to precondition?
- Do quasi-Newton with an approximate Jacobian?

- Apply operators matrix-free?

Same “easy to use” code must run fast at scale.

-




Say what, not how.




Firedrake

automated finite element system.

Finite element problems written in the FEniCS
& FF05%: language (UFL + problem solving language).

ite element language obje

Mesh, Functi

nSpace, Fun

4

7
<, dolfin-adjoint
Adjoint simulations by
automated reasoning about the
finite element problem.
\

Form compiler converts
tegrals into unscheduled loops.

Extended FIAT
& FraSe; element tabulator

PyOP2
Interface

MPI

Optimised compiled mesh loops

transforming com

PyOP2

High performance
mesh execution abstraction.

r
PETSc
DMPlex global mesh objects

Linear and nonlinear solvers
\ J




Local kernels




Optimisation of finite element kernels Q‘

Problem
Modern optimising compilers do a bad job on finite element
kernels.




Optimisation of finite element kernels Q‘

Problem
Modern optimising compilers do a bad job on finite element
kernels.

Code motion (or not?)

for (i = 0; 1 < L; i++ )
for (j = 0; J < M; j++)
for (k = 0; k < Nj; k++)
A[310k] += f(i, j)+g(i, k)

-



Optimisation of finite element kernels 6‘

Problem
Modern optimising compilers do a bad job on finite element
kernels.

Code motion (or not?)

for (i = 0; 1 < L; i++ )
for (3 = 0; J < M; j++)
for (k = 0; k < Nj; k++)
A[310k] += f(i, j)+g(i, k)

Corollary
We need to spoon-feed the compiler already optimised code.

-




A job for an expert Q‘

Hardware-aware optimsation of finite element kernels is a job
for:




A job for an expert Q‘

Hardware-aware optimsation of finite element kernels is a job
for:

- A numerical analyst?




A job for an expert Q‘

Hardware-aware optimsation of finite element kernels is a job
for:

- A numerical analyst?
- A geodynamicist?

-



A job for an expert Q‘

Hardware-aware optimsation of finite element kernels is a job
for:

- A numerical analyst?
- A geodynamicist?

- A computational chemist?

-



A job for an expert 6‘

Hardware-aware optimsation of finite element kernels is a job
for:

- A numerical analyst?
- A geodynamicist?
- A computational chemist?

- A computational scientist?

-



A job for an expert 6‘

Hardware-aware optimsation of finite element kernels is a job
for:

- A numerical analyst?

- A geodynamicist?

- A computational chemist?
- A computational scientist?

- A computer scientist?

-




Automating expertise 6‘

- “In-person” case-by-case optimisation does not scale

- Code generation allows us to package expertise and
provide it to everyone

- Done by a special-purpose kernel compiler

-



COFFEE I %

No single optimal schedule for evaluation of every finite
element kernel. Variability in

- polynomial degree,

- number of fields,

- kernel complexity,

- working set size,

- structure in the basis functions,

- structure in the quadrature points,

-




COFFEE Il %

Vectorisation

Align and pad data structures, then use intrinsics or rely on
compiler.

Luporini, Varbanescu, et al. 2015 doi: 10.1145/2687415

Flop reduction

Exploit linearity in test functions to perform factorisation, code
motion and CSE.

Luporini, Ham, and Kelly 2016 arXiv: 1604.05872 [cs.MS]

github.com/coneoproject/COFFEE

-


http://dx.doi.org/10.1145/2687415
http://www.arxiv.org/abs/1604.05872
github.com/coneoproject/COFFEE

Global iteration




Tensions in model development | 6‘

Performance

- Keep data in cache as long as possible.
- Manually fuse kernels.
- Loop tiling for latency hiding.

- Individual components hard to test

- Space of optimisations suffers from combinatorial
explosion.

-




Tensions in model development Il 6‘

Maintainability

- Keep kernels separate
- “Straight-line” code

- Testable

- Even if performance of individual kernels is good, can lose
a lot

-



PyOP2 \3“

A library for expressing data parallel iterations

Sets iterable entities
Dats abstract managed arrays (data defined on a set)
Maps relationships between elements of sets
Kernels local computation
par_loop Data parallel iteration over a set

Arguments to parallel loop indicate how to gather/scatter
global data using access descriptors

par_loop(kernel, iterset, datal(mapl, READ), data2(map2, WRITE))

-




Key ideas 6‘

Local computation
Kernels do not know about global data layout.

- Kernel defines contract on local, packed, ordering.

- Global-to-local reordering/packing appears in map.

“Implicit” iteration
Application code does not specify explicit iteration order.

- Define data structures, then just “iterate”

- Lazy evaluation

Impéri FCol
London™




Lazy evaluation 6‘

- par_Lloop only executed “when you look at the data”.
- PyOP2 sees sequence of loops, can reason about them for

- Loop fusion
- Loop tiling
- Communication coalescing

- Application code does not change. “What, not how”.

-



Did we succeed?




Experimentation 6‘

With model set up, experimentation is easy

- Change preconditioner: c. 1 line
- Drop terms: c. 1-4 lines

- Different operator: c. 1-10 lines
- quasi-Newton: c. 1-10 lines

- Matrix-free: XXX

R




Maintainability 6‘

Core Firedrake Shared with FEniCS
Component  LOC Component  LOC
Firedrake 9000 FIAT 4000
PyOP2 5000 UFL 13000
TSFC 2700 Total 17000
COFFEE 4500
Total 21200

B



Performance | 6‘

Kernel performance
- COFFEE produces kernels that are better (operation count)
than existing automated form compilers
- Provably optimal in some cases

- Good vectorised performance, problem dependent, but up
to 70% peak for in-cache computation.

T



Performance Il @

Thetis s
- 3D unstructured coastal ocean model
written with Firedrake ) ﬂ

- 5000 LOC, c. 1 person year THETIS

- Lock exchange test case

Thetis P1DG-P1DG, triangular
wedges. 245s/s.

SLIM hand-coded/optimised

(same numerics), 65/s

github.com/thetisproject/thetis

Imperic gge
Londori¥ T ¥1



github.com/thetisproject/thetis

Summary 6‘

- Firedrake provides a layered set of abstractions for finite
element

- Enables automated provision of expertise to model
developers

- Computational performance is good, often > 50%
achievable peak.

- Hero-coding necessary if you want the last 10-20%

- ..but at what (person) cost?

B




Want to work on FEM at Imperial? We are
hiring.




Questions?




References 6‘

Luporini, F, D. A. Ham, and P. H. J. Kelly (2016). An algorithm for the
optimization of finite element integration loops. Submitted. arXiv:
1604.05872.

Luporini, F, A. L. Varbanescu, et al. (2015). “Cross-Loop Optimization of
Arithmetic Intensity for Finite Element Local Assembly”. ACM Trans. Archit.
Code Optim. 11. doi:10.1145/2687415.

Rathgeber, F. et al. (2015). Firedrake: automating the finite element method
by composing abstractions. Submitted. arXiv: 1501.01908.

~—_


http://arxiv.org/abs/1604.05872
http://dx.doi.org/10.1145/2687415
http://arxiv.org/abs/1501.01908

	The right abstraction level
	Local kernels
	Global iteration
	Did we succeed?
	Appendix

