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Setting

Firedrake www.firedrakeproject.org […] is an
automated system for the solution of partial differ-
ential equations using the finite element method.

• Finite element problems specified with embedded domain specific
language, UFL (Alnæs, Logg, Ølgaard, Rognes, and Wells 2014) from the
FEniCS project.

• Runtime compilation to optimised, low-level (C) code.
• PETSc for meshes and (algebraic) solvers.

Rathgeber et al. (2016) arXiv:1501.01809[cs.MS]

Advert
3rd Firedrake user meeting is in Durham 26 & 27 September 2019.

www.firedrakeproject.org/firedrake_19.html
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The problem

Stationary, Newtonian, incompressible Navier–Stokes
Find (u,p) ∈ H1(Ω;Rd)× L2(Ω) such that

−ν∇2u+ (u · ∇)u+∇p = f in Ω,

∇ · u = 0 in Ω,

with suitable boundary conditions, and ν the kinematic viscosity.

Multiple solutions
For ν → 0, these equations admit multiple solutions

Motivating question
What are the solution(s) as ν varies?
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Solving for the Newton step

Newton linearisation

−ν∇2u+ (u · ∇)w + (w · ∇)u+∇p = f in Ω,

∇ · u = 0 in Ω.

LU factorisation

3 Scales well with ν → 0
7 Scales poorly with dof count

Existing preconditioners

7 Convergence degrades with
ν → 0

3 Scales well with dof count

This talk
First preconditioner to scale well with ν and dof count in 3D.
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Block preconditioners



Stokes

Stokes’ equations
Find (u,p) ∈ H1(Ω)d × L2(Ω) such that

−ν∇2u+∇p = f in Ω,

∇ · u = 0 in Ω,

Discretisation
Choosing an inf-sup stable element pair yields

J x :=
(
A BT

B 0

)(
u
p

)
=

(
f
0

)
.

4



Preconditioners for block matrices

Block factorisation (Murphy, Golub, and Wathen 2000)
Build preconditioners based on

J−1 =

(
I −A−1BT

0 I

)(
A−1 0
0 S−1

)(
I 0

−BA−1 I

)

where S is the (usually dense!) Schur complement

S = −BA−1BT .

PDE-specific challenges
Find cheap, fast, approximations Ã−1 and S̃−1 to A−1 and S−1.
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Choosing Ã−1 and S̃−1

Stokes (Silvester and Wathen 1994)
Multigrid for Ã−1, and choose S̃−1 ∼ M−1

p (Mp the pressure mass matrix).

Bad news
Mesh independent, but for Navier–Stokes, choosing S̃−1 ∼ M−1

p degrades
like O(ν−2).

PCD for Navier–Stokes (Kay, Loghin, and Wathen 2002)
Approximate S−1 with convection-diffusion solves on pressure space.
Mesh independent, but degrades like O(ν−1/2).
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Performance of pressure convection-diffusion (PCD)

1/h # degrees of freedom Reynolds number
10 100 1000

24 8.34× 102 22.0 40.4 103.3
25 3.20× 103 23.0 41.3 137.7
26 1.25× 104 24.5 42.0 157.0
27 4.97× 104 25.5 42.7 149.0
28 1.98× 105 26.0 44.0 137.0

Table 1: Average number of outer Krylov iterations per Newton step for the 2D
regularized lid-driven cavity problem with PCD preconditioner. Obtained with IFISS
v3.5, Q1 − P0 element pair.
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Augmented Lagrangian
preconditioners



Observation

3 Reynolds-robust preconditioning
7 No-one else appears to have implemented the full scheme (2006–2018)
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Objectives

• Can we make the first general implementation of the method? 3

• Can we extend the solver and discretisation to three dimensions? 3

Three ideas

1. Control Schur complement with an augmented Lagrangian term
2. Kernel-capturing multigrid relaxation
3. Robust multigrid prolongation

Farrell, Mitchell, and Wechsung (2018) arXiv:1810.03315[math.NA]
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Augmented Lagrangian approach

Stokes again

, with augmented Lagrangian term

minimise
u∈V

∫
∇ : ∇ dx −

∫
f · v dx

+ γ

∫
(∇ · v)2 dx

subject to ∇ · v = 0

Doesn’t change solution, since ∇ · v = 0.

Theorem (Hestenes, Fortin, Glowinski, Olshanksii, …)
As γ → ∞, the Schur complement is well approximated by
S−1 ∼ −(1+ γ)M−1

p .
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…or discretely

Discrete augmented Lagrangian(
A+ γBTM−1

p B BT

B 0

)(
u
p

)
=

(
b
0

)

Doesn’t change solution, since Bu = 0

New Schur complement

Ŝ−1 = S−1 − γM−1
p

Again, as γ → ∞, the Schur complement is well approximated by
Ŝ−1 ∼ −(1+ γ)M−1

p .

These results still hold for Navier–Stokes!
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Conservation of misery

We now must solve either: find u ∈ V ⊆ H1(Ω;Rd) such that

Continuous stabilisation

ν(∇u,∇v) + ((w · ∇)u, v) + ((u · ∇)w, v) + γ(∇ · u,∇ · v) = (f , v)

or

Discrete stabilisation

ν(∇u,∇v) + ((w · ∇)u, v) + ((u · ∇)w, v) + γ(∇ · u,∇ · v) = (f , v)

for all v ∈ V , where x is the L2 projection onto the discrete pressure space.
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Conservation of misery II

Good news
The Schur complement becomes easy to approximate as γ → ∞.

Bad news
Our usual multigrid approaches for Ã−1 no longer work for
Aγ := A+ γBTM−1

p B, and get worse as γ → ∞

LU for A−1γ AMG for A−1γ

γ = 10−1 15 18
γ = 1 6 40
γ = 101 3 107

Goal
Find a γ-robust multigrid method for A−1γ .
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Aγ := A+ γBTM−1

p B, and get worse as γ → ∞

LU for A−1γ AMG for A−1γ

γ = 10−1 15 18
γ = 1 6 40
γ = 101 3 107

Goal
Find a γ-robust multigrid method for A−1γ .

13



Robust multigrid



Stokes case

• Ignorning advection, then the top-left block corresponds to
discretisation of

aγ(u, v) =
∫
Ω

ν∇u : ∇v dx︸ ︷︷ ︸
sym. pos. def.

+

∫
Ω

γ div(u) div(v) dx︸ ︷︷ ︸
sym. pos. semi-def.

• The semi-definite term is singular on all solenoidal fields⇒ the
system becomes nearly singular as γ → ∞

• To build a γ-robust scheme we need (Schöberl 1999)
• a γ-robust smoother;
• a prolongation operator with γ-independent continuity constant.
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Idea: kernel-capturing relaxation

Consider the problem: for α, β ∈ R, find u ∈ V such that

αa(u, v) + βb(u, v) = (f , v) ∀v ∈ V,

where a is SPD, and b is symmetric positive semidefinite.

Relaxation method
Choose a subspace decomposition

V =
∑
i

Vi,

solve the problem on each subspace and combine the updates.

Example
If each Vi is the span of a single basis function, this defines a Jacobi
(Gauss-Seidel) iteration.
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Idea: kernel-capturing relaxation

Define the kernel as

N := {u ∈ V : b(u, v) = 0 ∀v ∈ V}.

Theorem (Schöberl (1999); Lee, Wu, Xu, Zikatanov (2007))
An additive subspace correction method using subspaces {Vi} is
parameter robust if every u ∈ N can be written as a sum u =

∑
i ui with

ui ∈ Vi ∩N , i.e.
N =

∑
i

N ∩ Vi.

“The subspace decomposition captures the kernel.”
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Relaxation

In 2D we consider P2 − P0 elements. For these one can show that star
patches

satisfy the kernel decomposition property.
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Idea: robust prolongation

Theorem (Schöberl (1999))
Let the prolongation P : VH → Vh. A robust multigrid cycle requires

ν‖∇PuH‖2L2 + γ‖∇ · PuH‖2L2 ≤ C(ν‖∇uH‖2L2 + γ‖∇ · uH‖2L2)

with C independent of both ν and γ.

Observation
Notice that if ∇ · uH = 0 then we have

ν‖∇PuH‖2L2 + γ‖∇ · PuH‖2L2 ≤ Cν‖∇uH‖2L2

⇒ we need P to map coarse-grid div-free fields to (nearly) div-free fields
on the fine grid.
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Robust prolongation: 2D

• Discrete divergence⇔ flux across facets
• Vh ⊂ Vh =⇒ flux across coarse-grid faces is preserved.

• P2 − P0 not a divergence-free discretisation⇒ solve a local Stokes
problem to fix the flux on new facets.
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What about 3D

Which element should we choose?

P2

P3 P1 ⊕ FB

stable

7 3 3
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Prolongation — 3D

Problem: VH 6⊂ Vh

Solution:

1. Split into P1 and facet bubble part, prolong the two parts separately.
2. Scale the facet bubble components to preserve flux across coarse grid
facets.

3. Solve local Stokes problem to fix divergence inside coarse cell.
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Numerical results



Full solver

Continuation

Newton solver with line search

Krylov solver (FGMRES)

Block preconditioner

Approximate Schur complement inverse

F-cycle on augmented momentum block

Coarse grid solver

LU factorization on assembled matrix

Prolongation operator

Local solves over coarse cells

Relaxation

GMRES

Overlapping additive Schwarz iteration
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Numerical results — 2D

# ref. # dofs Reynolds number
10 100 1000 5000 10000

Lid Driven Cavity

1 1.0× 104 3.00 4.00 5.33 8.50 11.0
2 4.1× 104 2.50 3.67 6.00 8.00 9.50
3 1.6× 105 2.50 3.00 5.67 7.50 9.00
4 6.6× 105 2.50 3.00 5.00 7.00 8.00

Backwards Facing Step

1 1.1× 106 2.33 3.75 4.50 4.50 8.00
2 4.5× 106 3.00 3.25 4.50 4.50 5.50
3 1.8× 107 3.00 5.75 4.00 4.00 6.00

Table 2: Average number of outer Krylov iterations per Newton step for two 2D
benchmark problems.
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Numerical results — 3D

# ref. # dofs Reynolds number
10 100 1000 2500 5000

Lid Driven Cavity

1 2.1× 106 4.50 4.00 5.00 4.50 4.00
2 1.7× 107 4.50 4.33 4.50 4.00 4.00
3 1.3× 108 4.50 4.33 4.00 3.50 7.00
4 1.1× 109 4.50 3.66 3.00 5.00 5.00

Backwards facing step

1 2.1× 106 4.50 4.00 4.00 4.50 7.50
2 1.7× 107 5.00 4.00 3.33 4.00 10.00
3 1.3× 108 6.50 4.50 3.50 3.00 8.00
4 1.0× 109 7.50 3.50 2.50 3.00 6.00

Table 3: Average number of outer Krylov iterations per Newton step for two 3D
benchmark problems.
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Computational performance — 3D
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Pressure robust discretisations



Why pressure robust?

Standard error estimate for Stokes (John, Linke, Merdon, Neilan, and
Rebholz 2017)

‖∇(u− uh)‖L2 ≤ 2 inf
ũ
‖∇(u− ũ)‖L2 + ν−1 inf

p̃
‖p− p̃‖L2

If the element pair is divergence-free (∇ · Vh ⊂ Qh), then this estimate can
be improved to

‖∇(u− uh)‖L2 ≤ 2 inf
ũ
‖∇(u− ũ)‖L2

Similar optimal estimates can be shown for the time-dependent problem
(Linke and Rebholz 2019).
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Element choices

H(div)-conforming
Choose discrete element pair from the de Rham complex:

R id−→ H1 grad−−→ H(curl) curl−−→ H(div) div−→ L2 null−−→ 0.

Example
Raviart and Thomas (1977)

Vh × Qh = RTk×Pdisck

3 Nested spaces VH ⊂ Vh: regular prolongation suffices

3 Arbitrary order

3 Commuting diagram⇒ kernel decomposition “just works”

7 Not H1-conforming: need penalty or hybridised scheme for ∇2 term

7 Requires more code development in PETSc
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Scott–Vogelius pair

For k ≥ d, pair is stable on barycentrically refined meshes.

Build a non-nested multigrid hierarchy.
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Discrete complex — 2D

Requires bigger patch in smoother
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Discrete complex — 2D

Requires bigger patch in smoother
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Discrete complex — 3D

• Discrete exact sequence developed in Fu, Guzmán, and Neilan (2018),
k ≥ 3

• No commuting projections (yet)
⇒ need to work a bit harder in the theory to prove convergence of

scheme
• In practice, same idea: “macro patches” work fine.

⇒ some new conjectures on basis for C1 functions
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Conclusions & outlook

Main result
It is possible to solve the Navier–Stokes equations in a Reynolds-robust
way!

Even for exactly divergence-free discretisations

Ongoing work
Large-scale runs for Scott-Vogelius element pair.

Tidying up proof of convergence.

Other discretisations

• Scott-Vogelius rather expensive. A lot of interest in H(div)-conforming,
and hybridised H(div)-conforming methods.

• Can we do this on general non-nested meshes?
⇒ needs divergence-preserving prolongation: Fortin operators?
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