
Session 10: Summary
COMP2221: Functional programming

Lawrence Mitchell*

March 21, 2019
∗lawrence.mitchell@durham.ac.uk

COMP2221—Session 10: Summary 1

Exam I

Exam assesses

• knowledge and comprehension: how do things work in Haskell,
why do they work, …

• application: what does some code do; can you write code to
solve problem X…

• evaluation: what are the concepts; what properties does some
solution have…

Remarks

• Practice via problem sheets (will cover programming knowledge)
• Types are important: always write types in code
• Theory, methodology, concepts from lectures are also relevant
• Please use exact terminology (definitions)

COMP2221—Session 10: Summary 2

Session 1

• Functional languages, definition of side effects
• Difference between imperative and functional programming
styles

• Why programming languages at all?
• Idea of abstract machine models
• Compilers serve to map from one paradigm (e.g. functional) to
another (e.g. execution on CPU)

• First examples of Haskell
• Naming requirements: functions must start with lowercase letter
• Layout rule: whitespace alignment
• Comments

COMP2221—Session 10: Summary 3

Session 2

• First look at types
• Why use types? Correctness, documentation
• Typing in Haskell
• Defining types

e :: T -- e is of type T
not :: Bool -> Bool -- Function type

• Builtin types Bool, Char, String, Int, Integer, …
• Lists: sequence of values of same type:

[1, 2, 3] :: [Int]

• Tuples: sequence of values of (different) types:
('a', 1) :: (Char, Int)

• Function types
• currying: take arguments “one at a time”
• association of -> to the right, and function application to the left:

mult :: Int -> Int -> Int -> Int == Int -> (Int -> (Int -> Int))
mult x y z == (((mult x) y) z)

COMP2221—Session 10: Summary 4

Session 3 I

• Advice: even with type inference, always write types for functions
• Infix calling convention for binary operators:

1 + 2 == (+) 1 2
elem 1 xs == 1 `elem` xs

• Defining functions

• Conditional expressions:
if expr then
true_expr

else
false_expr

• Guarded equations
abs :: Int -> Int
abs n | n >= 0 = n

| otherwise = -n

• Pattern matching
not :: Bool -> Bool
not False = True
not True = False

Patterns matched in order from
top to bottom. Wildcard matches
with _

• Pattern matching lists in session
4.

COMP2221—Session 10: Summary 5

Session 3 II

• Polymorphism: functions that are defined generically for many
types.

• Type variables: length :: [a] -> Int “a” is a type variable,
length is generic over the type of the list.

• Haskell uses parametric polymorphism “generic functions”

• Constraining polymorphic functions: type classes
• (+) :: Num a => a -> a -> a “+ works on any type a as long as
that type is numeric”

• Relevant type classes: Num “numeric”, Eq “equality”, Ord “ordered”
⇒ Include class constraints in type definitions when appropriate

• Generic programming in other languages (contrast with Java)

COMP2221—Session 10: Summary 6

Session 4

• λ-expressions: “anonymous” functions
• Formalises the idea of currying
• Lists

• List construction syntax [1, 2, 3] == 1 : (2 : (3 : []))
• Linked list⇒ traversing list or getting elements is O(n)
• Brief interlude on big-O notation

• Pattern matching lists: use list constructor syntax
scan :: Num a => [a] -> a
scan [] = []
scan [x] = [x]
scan (x:y:xs) = x : scan (x+y:xs)

• Binds variables in pattern to values: can’t repeat names!
• List comprehensions: similar to set builder notation in maths

pairs = [(x, y) | x <- [1..10], y <- [1..x], even y]

• Functionally similar to nested for loops

COMP2221—Session 10: Summary 7

Session 5

• Recursion
• Idea: only solve simple problems, reducing more complicated
ones to simpler ones

• Step-by-step writing recursive functions (example with drop)
• Classification of recursive functions: linear, multiple, direct,
mutual/indirect. Tail recursion: a special case

• “Complexity” of recursive functions: how many times do they call
themselves. Linear: O(n) calls on data of size n.

• Higher-order functions
• A function which takes a function as an argument; or returns a
function as its result

• Core method of composition in Haskell (especially with currying)
• Some examples: map, filter, (.)
• Folds: foldr, foldl

COMP2221—Session 10: Summary 8

Session 6

• Building new data types: type for synonyms; data for more
complicated things

• Syntax: new type names must start with capital letter
• Data declarations introduce a new type and new constructors

-- New type "IsTrue"; New constructors Yes, No, Perhaps
data IsTrue = Yes | No | Perhaps

• We can do pattern matching on the constructors
• Constructors can take parameters
• They can be polymorphic

data Maybe a = Nothing | Just a

• They can refer to themselves
data List a = Nil | Cons a (List a)

• Product vs. Sum types
• Pros and cons of Haskell’s “algebraic data types” and normal OO
classes

• More on type classes: useful for writing generic code

COMP2221—Session 10: Summary 9

Session 7

• Lazy evaluation
• Infinite data structures are fine, as long as we don’t try and look at
all of them

• Call by name vs. Call by value (contrast with strict languages)
• Evaluation strategies and reducible expressions
• Think about expression as a graph of computations: multiple
different orders possible

• What are Haskell’s evaluation rules: normal form and weak head
normal form

• Apply reduction rules (functions) until expression is in WHNF
• How to write strict function application with ($!)

COMP2221—Session 10: Summary 10

Session 8

• Input and output
• IO is a side-effectful action

⇒ does not immediately fit the pure functional paradigm
• Hide it behind a special “action” type IO a
• Conceptually IO destroys the universe and creates a new one

• do notation for executing actions and binding their results to
variables

• Why we can’t treat IO with normal functions: referential
transparency and impurity

• Actions as promises for a future value of a given type.
• A small example program (try it out!)

COMP2221—Session 10: Summary 11

Session 9

• Functional programming in the “real world”
• Material not examinable

COMP2221—Session 10: Summary 12

Session 10

Definition
recursion noun

see: recursion.

COMP2221—Session 10: Summary 13

Exam II

By its nature, cannot be exhaustive.

Past papers a good guide. Broadly they cover these types of
questions:

• Can you write (short) Haskell functions and can you understand
what (short) Haskell functions do? Type annotations, class
constraints, pattern matching, guard expressions, conditionals.

• Can you use list-based functions from the standard library?
head, tail, length, map, comprehensions, …

• Can you explain/define key terms? Classes of recursion, types of
polymorphism, currying, side effects, higher order functions, …

• Can you explain/describe differences in different programming
paradigms? Functional/imperative, pure/impure (side
effects/side effect free), compiled/interpreted, lazy/strict, …

COMP2221—Session 10: Summary 14

Fin

COMP2221—Session 10: Summary 14

