z-layers, oh noes

Lawrence Mitchell1
18th July 2017

1Departments of Computing and Mathematics, Imperial College London
z-layers

- Around steep topography, might want to use z-layers rather than σ coordinates.
- Mostly the core computational aspects remain unchanged.
- But, the layer number is now entity-dependent.
- So there’s loads more book-keeping.
Provide number of cell layers per base cell
Bootstrap layers for other entities
Mesh construction

- On each base cell, provide:
 1. Start layer (bottom is zero)
 2. Number of cells

```python
mesh2d = Mesh(...)  
mesh = ExtrudedMesh(mesh2d, [[0, 3],  
[1, 2],  
[2, 3],  
[3, 4]],  
layer_height=0.25)
```
Iteration sets need *four* values per entry.

- **allocation** First two entries control allocation of dofs. When assigning dofs to base mesh entities, we must consider full column.

- **iteration** Second two control iteration. When iterating over entities, we can’t iterate over “exposed” interior facets.

- Need to attach these to *all* base mesh entities.
Datatype extension

Iteration sets need *four* values per entry.

```
interior_facets = ExtrudedSet(2,
    layers=[[0, 3, 1, 3],
            [1, 3, 1, 2]])
```
Kernel extension

- GungHo *kernel* contains iteration over layers
- So now we need to provide this information at runtime
- Just a directly accessed data array
- This needs to be part of kernel API

```fortran
subroutine old(A, B, nlayers)
  ...
  integer, intent(in) :: nlayers
  do k = 0, nlayers-1
    ...
  end do
end subroutine old

subroutine new(A, B, lstart, lend)
  ...
  integer, intent(in) :: lstart, lend
  do k = lstart, lend-1
    ...
  end do
end subroutine new
```
Boundary conditions

• As ever, strong conditions are painful
• It is no longer the case that only nodes on the bottom/top cell are killed
• I maintain a bitmask on each cell that marks which topological entities on the cell are exposed
• Then when assembling I can determine which dofs to drop on the floor
• This is easier if you never build sparse matrices: what’s the status here?
Firedrake support

• Support is still WIP (interior facets)
• We squash interior facets geometrically, but not topologically.
• Then we never iterate over these facets.
• They could be left exposed, but now need new iteration type.
• An alternate option would be mixed cell shape (ugh!)