From symbolic mathematics to fast solvers for
finite element problems

Lawrence Mitchell™”
C.J. Cotter, PE. Farrell, D.A. Ham, M. Homolya, P.H.J. Kelly, R.C. Kirby, F. Wechsung ...

18th September 2018

TDepartment of Computer Science, Durham University
*lawrence.mitchell@durham.ac.uk

- Automated finite elements
- Fast implementations thereof

- Multilevel solvers for coupled problems
- Stationary Navier-Stokes

- Future directions

Code that looks like maths

Find (u,p,T) € V x W x Qst.
/Vu-Vv+(u-Vu)~v
—pV-v+%Tg?~vdx:O

/V-uqu:o

/(u -VT)S+Pr'VT.VSdx =0

V(v,q,T) eV xWxQ

from firedrake import =
mesh = Mesh(...)
V = VectorFunctionSpace(mesh, "CG", 2)

W = FunctionSpace(mesh, "CG", 1)
Q = FunctionSpace(mesh, "CG", 1)
Z =V« W=Q

Ra = Constant(...)

Pr = Constant(...)

upT = Function(Z)

u, p, T = split(upT)

v, q, S = TestFunctions(Z)
bes = [...]

F = (inner(grad(u), grad(v))
inner(dot(grad(u), u), v)

inner(p, div(v))

(Ra/Pr)*inner(T+g, v)

inner(div(u), q)

inner(dot(grad(T), u), S)

(1/Pr) = inner(grad(T), grad(S)))=dx

o

EE

solve(F == 0, upT, bcs=bcs)

Finite elements |

F(uy=0inQ
+ boundary conditions

Seek weak solution in some space of functions V().

Now we need to solve the (infinite dimensional) problem, find
uevVst

/F(u)vdx:o VveV
Q

Choose finite dimensional subspace V,, Cc V, find u, € V, sit.

/F(uh)vh dx =0 VVh S Vh
Q

Finite elements Il

Divide domain Q...

Finite elements Il

..into triangulation 7 ...

Finite elements Il

..and choose basis with finite support.

Finite elements IlI

Integrals become sum over element integrals

/F(uh)Vh dx = Z F(up)vp dx
Q

ecT €

(Usually) perform element integrals with numerical quadrature

/ Fun)vh dx = 3 waF(un(a))va(q) dx
& q

Replace up(q),vh(g) with expansion in finite element basis
un(q) = Y uhoi(q)
i

vn(q) = #;(q)

Looking for abstractions

- Mathmatics just says “here is the integral to compute on
each element, do that everywhere”

- Computer implementation chooses how to do so

Assertion(s) . o N . .
Having chosen a discretisation, writing the element integral is

“mechanical”.

With an element integral in hand, integrating over a mesh is
“mechanical”.

Corollary . .
Computers are good at mechanical things, why don’t we get

the computer to write them for us?

Firedrake www. firedrakeproject.org

[...] an automated system for the solution
of partial differential equations using the
finite element method.

- Written in Python.

- Finite element problems specified with embedded domain
specific language, UFL (Alnaes, Logg, ®lgaard, Rognes, and
Wells 2014) from the FEniCS project.

- Runtime compilation to optimised, low-level (C) code.

- PETSc for meshes and (algebraic) solvers.

F. Rathgeber, D.A. Ham, LM, M. Lange, F. Luporini, ATT. McRae, G-T. Bercea, G.R. Markall,
P.H.J. Kelly. ACM Transactions on Mathematical Software, 2016.
arxiv:1501.01809 [cs.MS]

www.firedrakeproject.org
http://www.arxiv.org/abs/1501.01809

Firedrake www. firedrakeproject.org

[...] an automated system for the solution
of partial differential equations using the
finite element method.

User groups at , .
Imperial, Oxford, Bath, Leeds, Durham, Kiel, Rice, Houston,

Exeter, Buffalo, Waterloo, Minnesota, Baylor, Texas A&M, ...

Annual user & developer meeting this year had 45 attendees.

www.firedrakeproject.org

More automation

| Pen and paper |

Manual

a(u,v) = /QV“‘VV dx WveVv | High-level code |

V = FiniteElement("Lagrange", Automated
triangle, 1)

u = TrialFunction(V) | Low-level code |

v = TestFunction(V)

F = dot(grad(u), grad(v))=dx Automated (gcc)

| Machine code |

Automation enables optimisations

Compile UFL (symbolics) into low-level code (implementation).

M. Homolya, LM, F. Luporini, D.A. Ham. SIAM SISC (2018).
arXiv: 1705.03667 [cs.MS]

- Element integral

FiniteElement("Lagrange", triangle, 1)
TrialFunction(V)

TestFunction(V)

dot(grad(u), grad(v))=dx

- Is transformed to a tensor algebra expression

1 2 1) 2
Z Wq |d Z Z Kis,is [Eé}e E((q M Z Kia s [E(7])} i
a is i3

- Multiple optimisation passes aim to minimise FLOPs
required to evaluate this expression.

/Vu.Vvdx
e

< <

http://www.arxiv.org/abs/1705.03667

Optimisation passes

Sum factorisation _ .
Spectral elements typically use tensor product basis functions

Bi,g 7= P(jk),(p.r) = Pj,pPhyr

Tensor algebra maintains this structure, compiler exploits it for
low-complexity evaluation of integrals.

Loop transformations . .
Solve ILP problem to reorder loops, and decide how to split
complicated expressions.

Vectorisation _ o
Low-level rearrangement to ease the job of C compilers in
generating efficient code.

10

Algorithmically optimal implementation

FLOPs to evaluate F

’IO‘H 4
Computing curl — curl action
Find u € V C H(curl) s.t. 10° |
&
' S 10t
/curlu-curlvdx:/B-vdx Y e V. o

10° 1

NCE = FiniteElement("NCE", hexahedron, degree)
Q = VectorElement("Q", hexahedron, degree) =
u = Coefficient(NCE) 10° £ ! ! ! }
B = Coefficient(Q) 1 2 4 S 16 32
v = TestFunction(NCE)
F = (dot(curl(u), curl(v)) - dot(B, v))xdx Polynomial degree

— Nalve

-=-= With sum factorisation

n

Application: coastal ocean modelling

- Lower numerical mixing,
improved results.

- 3-8x faster than models
with similar quality of
results.

- Differentiable: efficient
adjoint.

Surface salinity of the Columbia river plume. Credit T. Karna,

Finnish Meteorological Institute

thetisproject.org

)

THETIS

T.Karnga, S.C. Kramer, LM, D.A. Ham, M.D. Piggott, and A.M. Baptista. To appear in
Geoscientific Model Development, 2018. arXiv: 1711.08552 [physics.ao-ph]

12

thetisproject.org
http://www.arxiv.org/abs/1711.08552

Solving sparse systems

Application challenge

Stationary incompressible Navier-Stokes
Find (u,p) € H'(Q;RY) x L?(Q) such that
—vVU+(u-Vu+Vp=f inQ,
V-u=0 inQ,
u=g on Ip,

vVu-n=pn only,

Discretise and linearise _
Need to solve linear saddle point system

(960

13

Challenges for solvers

Desired properties

- Growth in time to solution is (at worst) O(nlogn).
- Convergence does not degree with v — 0.

Direct methods Krylov methods
v Convergence independent v Time to solution O(nlog n)
of v (with multilevel
X Time to solution O(n?) preconditioner)
(3D). X Convergence independent

of v challenging

14

Challenges for solvers

Want v- and h-independent convergence.
Monolithic multigrid: Vanka, Braess-Sarazin smoothing

v h-independent

X Convergence degrades with v — 0.

Block factorisations

b1 (! —AT'B"\ (A" 0 I 0
~\o I 0 S/ \=-BA |

Challenges, good approximations to A~ and S™.

15

Block factorisations, approximating S—'

Pressure mass (S~ ~ M,") PCD, LSC (S~" ~ M, 'FpL, ")
v h-independent v h-independent
X Convergence degrades X Convergence degrades

rapidly with v — 0 with v — 0.

Block factorisations, approximating S—'

Augmented Lagrangian
Replace A — A+ yB"M;"'B =: A,:

o . (A+7BM;'B BT\ fou) _ (b
T B 0/)\ép) \o)°

Discrete solution unchanged, since Bdu = 0.

Then S~" ~ (v +)M, ' (gets better as v — o0).

v h-and v-independent

X A, is much harder to invert than A.

Developed 3D multigrid scheme for A, extending 2D
preconditioner of Benzi and Olshanskii (2006).

A multigrid solver for A, I: robust smoother

grad — div term has large kernel: point smoothers not robust.

Theorem (Schoberl (1999), Benzi & Olshanksii (2006))
A smoother robust wrt v and ~ requires a subspace

decomposition
v=>"V,
i

such that the kernel is spanned by the subspaces

{ueV:(V-u,V-v)=0VveVi=N=> (VnN)

i

Star smoother

- Want a local basis for the kernel: Py pressure.
- Kernel spanned by functions on patch of elements around
each vertex.

- Use overlapping additive Schwarz smoother of “star”
patches.

N\

A multigrid solver for A, 1I: robust prolongation

Theorem (Schoberl (1999)) o .
Let Ey : Vy — Vp, a robust multigrid cycle requires, Vuy € Vy:

VIV(Equ)liz + YV - (Enun)lif < clIV(um)lizz + IV - unll)

Can fix by solving a small Stokes problem for a correction in
the interior of each coarse cell.

N\
D
|

-

19

3D element pair

Problem
[P,]3—Pg is not inf-sup for the local

Stokes problems.

[P3]3—IPg is, but is tremendously @
expensive for only second order

convergence in the velocity.

Solution .
We use an affine-equivalent analog

of the Bernard-Raugel element:
[Py @ Bf]® Py,

20

Preconditioner for flexible additive Schwarz smoothers

- Solver needs additive Schwarz smoothers in two places.
- New in PETSc 310 -pc_type patch

Extensible callback interface
- Separate subspace decompostion (topology +
discretisation)
- from equation assembly
- Extensible mechanism for defining patches
- Flexibly supports Vanka, line- and plane-smoothers, ...
- Easy experimentation!

LM, M.G. Knepley, P.E. Farrell, In preparation.

21

Multilevel solver

Newton solver with line search |

Krylov solver (FGMRES)

\—| Block precond'\tionerl
Approximate Schur complement mversel

F-cycle on augmented momentum btockl

Coarse grid solver

LU factorization
Prolongation operator

Local solves over coarse ceHsl
Relaxation

Additive star iteration
$ count-lines .

Language files blank comment code

Python 4 108 153 558

22

Results: 3D lid-driven cavity

250 - 3

200 3

—
w
o
T
1

100 3

Time to solution [min]

w1
o
T
1

Il Il Il
48 384 3072 24576
[2.13] [16.9] [135] [1077]

Cores

Velocity streamlines at Reynolds number 5000. Credit
[DOFs x10°] /

F. Wechsung, University of Oxford.

PE. Farrell, LM, and F. Wechsung. In preparation

23

Results: 3D lid-driven cavity

refinements # dofs Reynolds number
10 100 1000 2500 5000

21x10%| 750 733 750 7.00 6.50
1.7x10” | 850 7.00 750 650 5.50
1.3x 108 | 700 7.00 650 500 6.50
11%x10° | 700 733 550 400 9.00

~ W N

Table 1: Average Krylov iterations per Newton step

PE. Farrell, LM, and F. Wechsung. In preparation

23

Going forward

- [Py @ B5]” =Py is not a great discretisation

- Same ideas should apply to pressure robust schemes
(e.g. Scott-Vogelius, H(div) — L? mixed methods)

- Application of same ideas directly to nonlinear multigrid?

Idea

- Preconditioners are formulated in mathematics on paper

- They should be formulated in mathematics on computer

2%

Conclusions & directions

Automated finite elements

- Enable significant experimentation
- Better code than many humans

- Productive mechanism to collaborate with computer
science
Fast solvers

- How to capture mathematical “building blocks” in code?

- Each class PDE presents different challenges, can we avoid
doing everything “from scratch” each time?

25

	Solving sparse systems

