From symbolic mathematics to fast solvers for finite element problems

Lawrence Mitchell^{1,*}

C.J. Cotter, P.E. Farrell, D.A. Ham, M. Homolya, P.H.J. Kelly, R.C. Kirby, F. Wechsung ...

18th September 2018

¹Department of Computer Science, Durham University *lawrence.mitchell@durham.ac.uk

- Automated finite elements
 - Fast implementations thereof
- Multilevel solvers for coupled problems
 - Stationary Navier-Stokes
- Future directions

Code that looks like maths

Find
$$(u, p, T) \in V \times W \times Q$$
 s.t.

$$\int \nabla u \cdot \nabla v + (u \cdot \nabla u) \cdot v$$
$$-p \nabla \cdot v + \frac{\text{Ra}}{\text{Pr}} Tg\hat{z} \cdot v \, dx = 0$$
$$\int \nabla \cdot uq \, dx = 0$$
$$(u \cdot \nabla T)S + \text{Pr}^{-1} \nabla T \cdot \nabla S \, dx = 0$$
$$\forall (v, q, T) \in V \times W \times Q$$

from firedrake import * mesh = Mesh(...)V = VectorFunctionSpace(mesh, "CG", 2) W = FunctionSpace(mesh, "CG", 1) Q = FunctionSpace(mesh, "CG", 1) Z = V * W * ORa = Constant(...) Pr = Constant(...)upT = Function(Z)u, p, T = split(upT)v, q, S = TestFunctions(Z) bcs = [...] F = (inner(grad(u), grad(v))+ inner(dot(grad(u), u), v) - inner(p, div(v)) + (Ra/Pr)*inner(T*g, v) + inner(div(u). a) + inner(dot(grad(T), u), S) + (1/Pr) * inner(grad(T), grad(S)))*dx

solve(F == 0, upT, bcs=bcs)

F(u) = 0 in Ω

+ boundary conditions

Seek weak solution in some space of functions $V(\Omega)$.

٠

Now we need to solve the (infinite dimensional) problem, find $u \in V$ s.t.

$$\int_{\Omega} F(u)v \, \mathrm{d} x = 0 \quad \forall v \in V$$

Choose finite dimensional subspace $V_h \subset V$, find $u_h \in V_h$ s.t.

$$\int_{\Omega} F(u_h) v_h \, \mathrm{d} x = 0 \quad \forall \, v_h \in V_h$$

Divide domain Ω ...

...into triangulation $\mathcal{T}\mbox{...}$

...and choose basis with finite support.

Finite elements III

Integrals become sum over element integrals

$$\int_{\Omega} F(u_h) v_h \, \mathrm{d} x = \sum_{e \in \mathcal{T}} \int_e F(u_h) v_h \, \mathrm{d} x$$

(Usually) perform element integrals with numerical quadrature

$$\int_{e} F(u_h) v_h \, \mathrm{d}x = \sum_{q} w_q F(u_h(q)) v_h(q) \, \mathrm{d}x$$

Replace $u_h(q)$, $v_h(q)$ with expansion in finite element basis

$$u_h(q) = \sum_i u_h^i \phi_i(q)$$
$$v_h(q) = \phi_j(q)$$

Looking for abstractions

- Mathmatics just says "here is the integral to compute on each element, do that everywhere"
- Computer implementation chooses how to do so

Assertion(s)

Having chosen a discretisation, writing the element integral is "mechanical".

With an element integral in hand, integrating over a mesh is "mechanical".

Corollary

Computers are good at mechanical things, why don't we get the computer to write them for us?

Firedrake www.firedrakeproject.org

[...] an automated system for the solution of partial differential equations using the finite element method.

- Written in Python.
- Finite element problems specified with *embedded* domain specific language, UFL (Alnæs, Logg, Ølgaard, Rognes, and Wells 2014) from the FEniCS project.
- *Runtime* compilation to optimised, low-level (C) code.
- PETSc for meshes and (algebraic) solvers.

F. Rathgeber, D.A. Ham, **LM**, M. Lange, F. Luporini, A.T.T. McRae, G.-T. Bercea, G.R. Markall, P.H.J. Kelly. ACM Transactions on Mathematical Software, 2016.

arXiv:1501.01809[cs.MS]

Firedrake www.firedrakeproject.org

[...] an automated system for the solution of partial differential equations using the finite element method.

User groups at Imperial, Oxford, Bath, Leeds, Durham, Kiel, Rice, Houston, Exeter, Buffalo, Waterloo, Minnesota, Baylor, Texas A&M, ...

Annual user & developer meeting this year had 45 attendees.

Automation enables optimisations

Compile UFL (symbolics) into low-level code (implementation).

M. Homolya, LM, F. Luporini, D.A. Ham. SIAM SISC (2018).

```
arXiv:1705.03667[cs.MS]
```

• Element integral

$$\int_e \nabla u \cdot \nabla v \, \mathrm{d} x$$

V = FiniteElement("Lagrange", triangle, 1)
u = TrialFunction(V)
v = TestFunction(V)
a = dot(grad(u), grad(v))*dx

• Is transformed to a tensor algebra expression

$$\sum_{q} w_{q} |d| \sum_{i_{5}} \left(\sum_{i_{3}} K_{i_{3},i_{5}} \begin{bmatrix} E_{q,k}^{(1)} & E_{q,k}^{(2)} \end{bmatrix}_{i_{3}} \right) \left(\sum_{i_{4}} K_{i_{4},i_{5}} \begin{bmatrix} E_{q,j}^{(1)} & E_{q,j}^{(2)} \end{bmatrix}_{i_{4}} \right)$$

• Multiple optimisation passes aim to minimise FLOPs required to evaluate this expression.

Sum factorisation

Spectral elements typically use tensor product basis functions

 $\phi_{i,q} := \phi_{(j,k),(p,r)} = \varphi_{j,p}\varphi_{k,r}$

Tensor algebra maintains this structure, compiler exploits it for low-complexity evaluation of integrals.

Loop transformations

Solve ILP problem to reorder loops, and decide how to split complicated expressions.

Vectorisation

Low-level rearrangement to ease the job of C compilers in generating efficient code.

Algorithmically optimal implementation

Computing curl – curl action Find $u \in V \subset H(curl)$ s.t.

$$\int \operatorname{curl} u \cdot \operatorname{curl} v \, \mathrm{d} x = \int B \cdot v \, \mathrm{d} x \quad \forall v \in V.$$

NCE = FiniteElement("NCE", hexahedron, degree)
Q = VectorElement("Q", hexahedron, degree)
u = Coefficient(NCE)
B = Coefficient(Q)
v = TestFunction(NCE)
F = (dot(curl(u), curl(v)) - dot(B, v))*dx

Application: coastal ocean modelling

Surface salinity of the Columbia river plume. Credit T. Kärnä,

Finnish Meteorological Institute

thetisproject.org

- Lower numerical mixing, improved results.
- 3-8x faster than models with similar quality of results.
- Differentiable: efficient adjoint.

T. Kärnä, S.C. Kramer, LM, D.A. Ham, M.D. Piggott, and A.M. Baptista. To appear in Geoscientific Model Development, 2018. arXiv: 1711.08552 [physics.ao-ph]

Solving sparse systems

Application challenge

Stationary incompressible Navier-Stokes Find $(u, p) \in H^1(\Omega; \mathbb{R}^d) \times L^2(\Omega)$ such that

$$-\nu \nabla^2 u + (u \cdot \nabla)u + \nabla p = f$$
 in Ω ,

$$\nabla \cdot u = 0$$
 in Ω ,

$$u = g$$
 on Γ_D ,

$$\nu \nabla u \cdot n = pn$$
 on Γ_N ,

Discretise and linearise Need to solve linear saddle point system

$$P := \begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} \delta u \\ \delta p \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}.$$

Challenges for solvers

Desired properties

- Growth in time to solution is (at worst) $\mathcal{O}(n \log n)$.
- Convergence does not degree with $\nu
 ightarrow$ 0.

Direct methods

- ✓ Convergence independent of *ν*
- **X** Time to solution $\mathcal{O}(n^2)$ (3D).

Krylov methods

- ✓ Time to solution O(n log n) (with multilevel preconditioner)
- X Convergence independent of ν challenging

Want ν - and *h*-independent convergence.

Monolithic multigrid: Vanka, Braess-Sarazin smoothing

- ✓ h-independent
- **X** Convergence degrades with $\nu \rightarrow 0$.

Block factorisations $P^{-1} = \begin{pmatrix} I & -A^{-1}B^{T} \\ 0 & I \end{pmatrix} \begin{pmatrix} A^{-1} & 0 \\ 0 & S^{-1} \end{pmatrix} \begin{pmatrix} I & 0 \\ -BA^{-1} & I \end{pmatrix}$

Challenges, good approximations to A^{-1} and S^{-1} .

Pressure mass ($S^{-1} \approx M_p^{-1}$)

- ✓ h-independent
- ★ Convergence degrades rapidly with $\nu \rightarrow 0$

PCD, LSC ($S^{-1} \approx M_p^{-1} F_p L_p^{-1}$ **)**

- ✓ h-independent
- **X** Convergence degrades with $\nu \rightarrow 0$.

Augmented Lagrangian Replace $A \rightarrow A + \gamma B^T M_p^{-1} B =: A_\gamma$:

$$P_{\gamma} := \begin{pmatrix} A + \gamma B^{\mathsf{T}} M_p^{-1} B & B^{\mathsf{T}} \\ B & 0 \end{pmatrix} \begin{pmatrix} \delta u \\ \delta p \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}.$$

Discrete solution unchanged, since $B\delta u = 0$.

Then $S^{-1} \approx (\nu + \gamma) M_p^{-1}$ (gets better as $\gamma \to \infty$).

- ✓ *h* and ν -independent
- **X** A_{γ} is *much* harder to invert than A.

Developed 3D multigrid scheme for A_{γ} extending 2D preconditioner of Benzi and Olshanskii (2006).

grad – div term has large kernel: point smoothers not robust.

Theorem (Schöberl (1999), Benzi & Olshanksii (2006)) A smoother robust wrt ν and γ requires a subspace decomposition

$$V = \sum_{i} V_{i}$$

such that the kernel is spanned by the subspaces

$$\{u \in V : (\nabla \cdot u, \nabla \cdot v) = 0 \ \forall v \in V\} =: \mathcal{N} = \sum_{i} (V_i \cap \mathcal{N})$$

Star smoother

- \cdot Want a local basis for the kernel: \mathbb{P}_0 pressure.
- Kernel spanned by functions on patch of elements around each vertex.
- Use overlapping additive Schwarz smoother of "star" patches.

A multigrid solver for A_{γ} II: robust prolongation

Theorem (Schöberl (1999)) Let $E_H : V_H \rightarrow V_h$, a robust multigrid cycle requires, $\forall u_H \in V_H$:

 $\nu \|\nabla (E_H u_H)\|_{L^2}^2 + \gamma \|\nabla \cdot (E_H u_H)\|_{L^2}^2 \le c(\nu \|\nabla (u_H)\|_{L^2}^2 + \gamma \|\nabla \cdot u_H\|_{L^2}^2)$

Can fix by solving a small Stokes problem for a correction in the *interior* of each coarse cell.

3D element pair

Problem

 $[\mathbb{P}_2]^3 - \mathbb{P}_0$ is *not* inf-sup for the local Stokes problems.

 $[\mathbb{P}_3]^3 - \mathbb{P}_0$ is, but is tremendously expensive for only second order convergence in the velocity.

Solution We use an affine-equivalent analog of the Bernard-Raugel element: $\left[\mathbb{P}_1 \oplus B_3^F\right]^3 - \mathbb{P}_0.$

Preconditioner for flexible additive Schwarz smoothers

- Solver needs additive Schwarz smoothers in two places.
- New in PETSc 3.10 -pc_type patch

Extensible callback interface

- Separate subspace decompostion (topology + discretisation)
- from equation assembly
- Extensible mechanism for defining patches
- Flexibly supports Vanka, line- and plane-smoothers, ...
- Easy experimentation!

LM, M.G. Knepley, P.E. Farrell, In preparation.

Results: 3D lid-driven cavity

Velocity streamlines at Reynolds number 5000. Credit

F. Wechsung, University of Oxford.

P.E. Farrell, LM, and F. Wechsung. In preparation

# refinements	# dofs	Reynolds number				
		10	100	1000	2500	5000
1	2.1×10^{6}	7.50	7.33	7.50	7.00	6.50
2	1.7×10^{7}	8.50	7.00	7.50	6.50	5.50
3	1.3×10^{8}	7.00	7.00	6.50	5.00	6.50
4	1.1×10^{9}	7.00	7.33	5.50	4.00	9.00

Table 1: Average Krylov iterations per Newton step

P.E. Farrell, LM, and F. Wechsung. In preparation

- + $\left[\mathbb{P}_1\oplus B_3^{\text{F}}\right]^3-\mathbb{P}_0$ is not a great discretisation
- Same ideas should apply to pressure robust schemes (e.g. Scott-Vogelius, H(div) – L² mixed methods)
- Application of same ideas directly to nonlinear multigrid?

Idea

- $\cdot\,$ Preconditioners are formulated in mathematics on paper
- They should be formulated in mathematics on computer

Conclusions & directions

Automated finite elements

- Enable significant experimentation
- Better code than many humans
- Productive mechanism to collaborate with computer science

Fast solvers

- How to capture mathematical "building blocks" in code?
- Each class PDE presents different challenges, can we avoid doing everything "from scratch" each time?