
From symbolic mathematics to fast solvers for
finite element problems

Lawrence Mitchell1,*

C.J. Cotter, P.E. Farrell, D.A. Ham, M. Homolya, P.H.J. Kelly, R.C. Kirby, F. Wechsung …

18th September 2018
1Department of Computer Science, Durham University
∗lawrence.mitchell@durham.ac.uk

Outline

• Automated finite elements
• Fast implementations thereof

• Multilevel solvers for coupled problems
• Stationary Navier-Stokes

• Future directions

1

Code that looks like maths

Find (u, p, T) ∈ V ×W × Q s.t.∫
∇u · ∇v + (u · ∇u) · v

−p∇ · v + Ra
Pr Tgẑ · v dx = 0∫

∇ · uqdx = 0∫
(u · ∇T)S+ Pr−1∇T · ∇Sdx = 0

∀ (v, q, T) ∈ V ×W × Q

from firedrake import *
mesh = Mesh(...)
V = VectorFunctionSpace(mesh, "CG", 2)
W = FunctionSpace(mesh, "CG", 1)
Q = FunctionSpace(mesh, "CG", 1)
Z = V * W * Q
Ra = Constant(...)
Pr = Constant(...)
upT = Function(Z)
u, p, T = split(upT)
v, q, S = TestFunctions(Z)
bcs = [...]

F = (inner(grad(u), grad(v))
+ inner(dot(grad(u), u), v)
- inner(p, div(v))
+ (Ra/Pr)*inner(T*g, v)
+ inner(div(u), q)
+ inner(dot(grad(T), u), S)
+ (1/Pr) * inner(grad(T), grad(S)))*dx

solve(F == 0, upT, bcs=bcs)

2

Finite elements I

F(u) = 0 in Ω

+ boundary conditions

Seek weak solution in some space of functions V(Ω).

Now we need to solve the (infinite dimensional) problem, find
u ∈ V s.t. ∫

Ω
F(u)v dx = 0 ∀ v ∈ V

Choose finite dimensional subspace Vh ⊂ V , find uh ∈ Vh s.t.∫
Ω
F(uh)vh dx = 0 ∀ vh ∈ Vh

3

Finite elements II

Divide domain Ω…

4

Finite elements II

…into triangulation T …

4

Finite elements II

…and choose basis with finite support.

4

Finite elements III

Integrals become sum over element integrals∫
Ω
F(uh)vh dx =

∑
e∈T

∫
e
F(uh)vh dx

(Usually) perform element integrals with numerical quadrature∫
e
F(uh)vh dx =

∑
q
wqF(uh(q))vh(q)dx

Replace uh(q), vh(q) with expansion in finite element basis

uh(q) =
∑
i

uihφi(q)

vh(q) = φj(q)

5

Looking for abstractions

• Mathmatics just says “here is the integral to compute on
each element, do that everywhere”

• Computer implementation chooses how to do so

Assertion(s)
Having chosen a discretisation, writing the element integral is
“mechanical”.

With an element integral in hand, integrating over a mesh is
“mechanical”.

Corollary
Computers are good at mechanical things, why don’t we get
the computer to write them for us?

6

Firedrake www.firedrakeproject.org

[…] an automated system for the solution
of partial differential equations using the
finite element method.

• Written in Python.
• Finite element problems specified with embedded domain
specific language, UFL (Alnæs, Logg, Ølgaard, Rognes, and
Wells 2014) from the FEniCS project.

• Runtime compilation to optimised, low-level (C) code.
• PETSc for meshes and (algebraic) solvers.

F. Rathgeber, D.A. Ham, LM, M. Lange, F. Luporini, A.T.T. McRae, G.-T. Bercea, G.R. Markall,

P.H.J. Kelly. ACM Transactions on Mathematical Software, 2016.

arXiv:1501.01809[cs.MS]
7

www.firedrakeproject.org
http://www.arxiv.org/abs/1501.01809

Firedrake www.firedrakeproject.org

[…] an automated system for the solution
of partial differential equations using the
finite element method.

User groups at
Imperial, Oxford, Bath, Leeds, Durham, Kiel, Rice, Houston,
Exeter, Buffalo, Waterloo, Minnesota, Baylor, Texas A&M, …

Annual user & developer meeting this year had 45 attendees.

7

www.firedrakeproject.org

More automation

a(u, v) =
∫
Ω
∇u·∇v dx ∀v ∈ V

V = FiniteElement("Lagrange",
triangle, 1)

u = TrialFunction(V)
v = TestFunction(V)
F = dot(grad(u), grad(v))*dx

Pen and paper

High-level code

Low-level code

Machine code

Manual

Automated

Automated (gcc)

8

Automation enables optimisations

Compile UFL (symbolics) into low-level code (implementation).

M. Homolya, LM, F. Luporini, D.A. Ham. SIAM SISC (2018).

arXiv:1705.03667[cs.MS]

• Element integral∫
e
∇u · ∇v dx

V = FiniteElement("Lagrange", triangle, 1)
u = TrialFunction(V)
v = TestFunction(V)
a = dot(grad(u), grad(v))*dx

• Is transformed to a tensor algebra expression

∑
q
wq |d|

∑
i5

∑
i3

Ki3,i5
[
E(1)q,k E(2)q,k

]
i3

∑
i4

Ki4,i5
[
E(1)q,j E(2)q,j

]
i4


• Multiple optimisation passes aim to minimise FLOPs
required to evaluate this expression.

9

http://www.arxiv.org/abs/1705.03667

Optimisation passes

Sum factorisation
Spectral elements typically use tensor product basis functions

φi,q := φ(j,k),(p,r) = ϕj,pϕk,r

Tensor algebra maintains this structure, compiler exploits it for
low-complexity evaluation of integrals.

Loop transformations
Solve ILP problem to reorder loops, and decide how to split
complicated expressions.

Vectorisation
Low-level rearrangement to ease the job of C compilers in
generating efficient code.

10

Algorithmically optimal implementation

Computing curl− curl action
Find u ∈ V ⊂ H(curl) s.t.∫

curl u · curl v dx =
∫
B · v dx ∀v ∈ V.

NCE = FiniteElement("NCE", hexahedron, degree)
Q = VectorElement("Q", hexahedron, degree)
u = Coefficient(NCE)
B = Coefficient(Q)
v = TestFunction(NCE)
F = (dot(curl(u), curl(v)) - dot(B, v))*dx

1 2 4 8 16 32
103

105

107

109

1011

O(p6)

O(p4)

Polynomial degree
FL
O
Ps

FLOPs to evaluate F

Naïve
With sum factorisation

11

Application: coastal ocean modelling

Surface salinity of the Columbia river plume. Credit T. Kärnä,

Finnish Meteorological Institute

thetisproject.org

• Lower numerical mixing,
improved results.

• 3-8x faster than models
with similar quality of
results.

• Differentiable: efficient
adjoint.

T. Kärnä, S.C. Kramer, LM, D.A. Ham, M.D. Piggott, and A.M. Baptista. To appear in

Geoscientific Model Development, 2018. arXiv:1711.08552[physics.ao-ph]

12

thetisproject.org
http://www.arxiv.org/abs/1711.08552

Solving sparse systems

Application challenge

Stationary incompressible Navier-Stokes
Find (u,p) ∈ H1(Ω;Rd)× L2(Ω) such that

−ν∇2u+ (u · ∇)u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on ΓD,

ν∇u · n = pn on ΓN,

Discretise and linearise
Need to solve linear saddle point system

P :=

(
A BT

B 0

)(
δu
δp

)
=

(
b
0

)
.

13

Challenges for solvers

Desired properties

• Growth in time to solution is (at worst) O(n log n).
• Convergence does not degree with ν → 0.

Direct methods

3 Convergence independent
of ν

7 Time to solution O(n2)
(3D).

Krylov methods

3 Time to solution O(n log n)
(with multilevel
preconditioner)

7 Convergence independent
of ν challenging

14

Challenges for solvers

Want ν- and h-independent convergence.

Monolithic multigrid: Vanka, Braess-Sarazin smoothing

3 h-independent
7 Convergence degrades with ν → 0.

Block factorisations

P−1 =
(
I −A−1BT

0 I

)(
A−1 0
0 S−1

)(
I 0

−BA−1 I

)
Challenges, good approximations to A−1 and S−1.

15

Block factorisations, approximating S−1

Pressure mass (S−1 ≈ M−1
p)

3 h-independent
7 Convergence degrades
rapidly with ν → 0

PCD, LSC (S−1 ≈ M−1
p FpL−1p)

3 h-independent
7 Convergence degrades
with ν → 0.

16

Block factorisations, approximating S−1

Augmented Lagrangian
Replace A→ A+ γBTM−1

p B =: Aγ :

Pγ :=

(
A+ γBTM−1

p B BT

B 0

)(
δu
δp

)
=

(
b
0

)
.

Discrete solution unchanged, since Bδu = 0.

Then S−1 ≈ (ν + γ)M−1
p (gets better as γ → ∞).

3 h- and ν-independent
7 Aγ is much harder to invert than A.

Developed 3D multigrid scheme for Aγ extending 2D
preconditioner of Benzi and Olshanskii (2006).

16

A multigrid solver for Aγ I: robust smoother

grad− div term has large kernel: point smoothers not robust.

Theorem (Schöberl (1999), Benzi & Olshanksii (2006))
A smoother robust wrt ν and γ requires a subspace
decomposition

V =
∑
i

Vi

such that the kernel is spanned by the subspaces

{u ∈ V : (∇ · u,∇ · v) = 0 ∀ v ∈ V} =: N =
∑
i

(Vi ∩N)

17

Star smoother

• Want a local basis for the kernel: P0 pressure.
• Kernel spanned by functions on patch of elements around
each vertex.

• Use overlapping additive Schwarz smoother of “star”
patches.

18

A multigrid solver for Aγ II: robust prolongation

Theorem (Schöberl (1999))
Let EH : VH → Vh, a robust multigrid cycle requires, ∀uH ∈ VH:

ν‖∇(EHuH)‖2L2 + γ‖∇ · (EHuH)‖2L2 ≤ c(ν‖∇(uH)‖2L2 + γ‖∇ · uH‖2L2)

Can fix by solving a small Stokes problem for a correction in
the interior of each coarse cell.

19

3D element pair

Problem
[P2]3−P0 is not inf-sup for the local
Stokes problems.

[P3]3−P0 is, but is tremendously
expensive for only second order
convergence in the velocity.

Solution
We use an affine-equivalent analog
of the Bernard-Raugel element:[
P1 ⊕ BF3

]3−P0.

20

Preconditioner for flexible additive Schwarz smoothers

• Solver needs additive Schwarz smoothers in two places.
• New in PETSc 3.10 -pc_type patch

Extensible callback interface

• Separate subspace decompostion (topology +
discretisation)

• from equation assembly
• Extensible mechanism for defining patches
• Flexibly supports Vanka, line- and plane-smoothers, …
• Easy experimentation!

LM, M.G. Knepley, P.E. Farrell, In preparation.

21

Multilevel solver

Continuation

Newton solver with line search

Krylov solver (FGMRES)

Block preconditioner

Approximate Schur complement inverse

F-cycle on augmented momentum block

Coarse grid solver

LU factorization

Prolongation operator

Local solves over coarse cells

Relaxation

GMRES

Additive star iteration
$ count-lines .
Language files blank comment code
Python 4 108 153 558

22

Results: 3D lid-driven cavity

48 384 3072 24576
0

50

100

150

200

250

[2.13] [16.9] [135] [1077]
Cores

[DoFs ×106]

Ti
m
e
to
so
lu
tio
n
[m
in
]

Velocity streamlines at Reynolds number 5000. Credit

F. Wechsung, University of Oxford.

P.E. Farrell, LM, and F. Wechsung. In preparation

23

Results: 3D lid-driven cavity

refinements # dofs Reynolds number
10 100 1000 2500 5000

1 2.1× 106 7.50 7.33 7.50 7.00 6.50
2 1.7× 107 8.50 7.00 7.50 6.50 5.50
3 1.3× 108 7.00 7.00 6.50 5.00 6.50
4 1.1× 109 7.00 7.33 5.50 4.00 9.00

Table 1: Average Krylov iterations per Newton step

P.E. Farrell, LM, and F. Wechsung. In preparation

23

Going forward

•
[
P1 ⊕ BF3

]3−P0 is not a great discretisation
• Same ideas should apply to pressure robust schemes
(e.g. Scott-Vogelius, H(div)− L2 mixed methods)

• Application of same ideas directly to nonlinear multigrid?

Idea

• Preconditioners are formulated in mathematics on paper
• They should be formulated in mathematics on computer

24

Conclusions & directions

Automated finite elements

• Enable significant experimentation
• Better code than many humans
• Productive mechanism to collaborate with computer
science

Fast solvers

• How to capture mathematical “building blocks” in code?
• Each class PDE presents different challenges, can we avoid
doing everything “from scratch” each time?

25

	Solving sparse systems

