Imperial College
London

From here to there

challenges for peta exa-scale transient simulation

Lawrence Mitchell"*
27th March 2017

"Departments of Computing and Mathematics, Imperial College London
*lawrence.mitchell@imperial.ac.uk

What do we want?

50GHz single-core CPUs

What do we have?

Too many cores

Chip Cores TF/s GB/s F/B Power

NVidia P100 56 (3584) 53 730 7.2 250 (21 GF/W)

Xeon Phi 7290F 72 3.5 450 + 100 5.4 260 (13 GF/W)

Broadwell 22 0.78 150 52 140 (5.6 GF/W)
Exascale

- 190K NVidia P100s, 1e9-way concurrency, 150MW
- 290K Intel Phis, 1e8-way concurrency, 220MW
- 1.3M Intel Broadwells, 3e7-way concurrency, 540MW

Too many cores

Chip Cores TF/s GB/s F/B Power

NVidia P100 56 (3584) 53 730 7.2 250 (21 GF/W)

Xeon Phi 7290F 72 3.5 450 + 100 5.4 260 (13 GF/W)

Broadwell 22 0.78 150 52 140 (5.6 GF/W)
Exascale

- 190K NVidia P100s, 1e9-way concurrency, 150MW

- 290K Intel Phis, 1e8-way concurrency, 220MW

- 1.3M Intel Broadwells, 3e7-way concurrency, 540MW
- 1 Boeing 747, 140MW

Too many cores

Chip Cores TF/s GB/s F/B Power

NVidia P100 56 (3584) 53 730 7.2 250 (21 GF/W)

Xeon Phi 7290F 72 3.5 450 + 100 5.4 260 (13 GF/W)

Broadwell 22 0.78 150 52 140 (5.6 GF/W)
Exascale

- 190K NVidia P100s, 1e9-way concurrency, 150MW

- 290K Intel Phis, 1e8-way concurrency, 220MW

- 1.3M Intel Broadwells, 3e7-way concurrency, 540MW
- 1 Boeing 747, 140MW

- 1 Google, 650MW

Too many cores

Chip Cores TF/s GB/s F/B Power

NVidia P100 56 (3584) 53 730 7.2 250 (21 GF/W)

Xeon Phi 7290F 72 3.5 450 + 100 5.4 260 (13 GF/W)

Broadwell 22 0.78 150 52 140 (5.6 GF/W)
Exascale

- 190K NVidia P100s, 1e9-way concurrency, 150MW

- 290K Intel Phis, 1e8-way concurrency, 220MW

- 1.3M Intel Broadwells, 3e7-way concurrency, 540MW
- 1 Boeing 747, 140MW

- 1 Google, 650MW

- 1Sizewell B, 1200MW

Too many cores

Chip Cores TF/s GB/s F/B Power

NVidia P100 56 (3584) 53 730 7.2 250 (21 GF/W)

Xeon Phi 7290F 72 3.5 450 + 100 5.4 260 (13 GF/W)

Broadwell 22 0.78 150 52 140 (5.6 GF/W)
Exascale

- 190K NVidia P100s, 1e9-way concurrency, 150MW

- 290K Intel Phis, 1e8-way concurrency, 220MW

- 1.3M Intel Broadwells, 3e7-way concurrency, 540MW
- 1 Boeing 747, 140MW

- 1 Google, 650MW

- 1Sizewell B, 1200MW

- 1 UK, 35GW

What's happened to the chips

- Number of transistors still increasing exponentially
- Frequency flat since c. 2005

- Performance through on-chip parallelism: “now it's your
problem”

- Wider “atomic” floating point instructions

Chip Cores Clock Vector width Historical proxy
P100 56 15 32 CM-1
Broadwell 22 2.2 4
Phi 72 15 8

Cray X1
Skylake 32 22 8 y

ARMv8 (Cavium) 547 27 4-327

What should we do?

Run LINPACK

But seriously

- High arithmetic intensity (flops are cheaper than bytes)
- Vectorise, vectorise, vectorise (only way to achieve flops)

- Avoid bulk synchronous computation (performance
resilience)

- Reduce and/or amortise communication (hide latency)

The status quo

X Low order, memory bound
X Vectorisation left to compiler (?)
X lIterative schemes with blocking reductions

X Simple communication patterns (not optimal?)

What to look for

Algorithmic optimality

Notation
N - total number of degrees of freedom;

P - total number of processes;
T(N, P) - time to solution.

Desired
O(N) computational complexity;

O(log P) communication complexity.

Be aware of the constants!

Parallel scalability

Weak scaling
Constant local work N/P.

Scalable code has T(N, P) = T(2N, 2P).

Strong scaling
Decreasing local work N/P.

Scalable code has T(N, P) = 2T(N, 2P).

Transient simulation

Time-resolved transient simulations do not weak scale.
Sad!

What to do?

- Get algorithmics right
- Work hard to attack constant factors
- Work on strong scaling efficiency

- Develop predictive models of performance to understand
why codes behave how they do.

Predicting scalability

Summarising Fischer, Heisey, and Min (2015).

Notation
- parallelisable work: Tq(N,P) = Toq(N,1)/P
- .communication: T¢(N, P)
- serial overhead: c~ 0
- time to solution
TP { Ta(N, P) + T¢(N, P) + ¢ synchronous
max(Tq(N, P), Tc(N,P)) +c asynchronous

- scaling efficiency: n = %

When to stop adding cores?

Minimum T(N, P)

Find P such that dTEﬁ;P) =0.

Typically too expensive (wasting many core hours).

A compromise
Find P such that Tq(N, P) = T¢(N, P), n = 0.5 for synchronous
case.

Theorem (Anonymous)
Krylov methods strong scale to N/P =~ 30000.

Explicit schemes are a little better N/P ~ 10000.

“Reductions limit scalability”

Empirical scaling limits

- Measure T(N, Pnin) and T(N, P) for a range of process
counts.

- How do | know if that is any good?

10

Building blocks

Computation
Measure S, e.g., flops with P =1, N large.

“atomic” unit of computation takes time t; = S~.

Communication
Linear model, latency + bandwidth.

Time (s) to send m doubles
te(m) =a* 4+ *m
non-dimensionalise, « = a*/tq, 8 = B*/ta.

te(m) = (o + mM)tq

"

Run some measurements

Plng Pong Test rank 0 to rank=k,.. ,511
il “
il ‘l
M
’ H“
f

i
‘ /

¥

Cray)(K7 Titan
—— BG/Q: Veste
— BG/P: Intrepid

o,

o,

1/2 ping-pong time (seconds)

10 10’ 10 10° 10 10
message size (64 bit words)

From Fischer, Heisey, and Min (2015). 12

Performance variability

- Model is pretty good
- Network topology + load can affect even simple codes

- BlueGene has torus network, each job gets a convex
subset

- Not true on Cray (Dragonfly), network traffic from other
jobs can affect your performance (Prisacari et al. 2014).

13

Jacobi iteration, 7-point 3D stencil

yfH = (f, i Zau ,)
j#i

counting operations with N/P entries per process.

With a block decomposition, each face exchange moves
(N/P)?/3 values, so

T.=6 (a + B(N/P)2/3> te.
With oo = 3750, 3 = 2.86 (BG/Q), Tq = T when N/P ~ 1700.
Independent of P.
If =0, N/P ~ 1600.

14

Conjugate gradients, 7-point 3D stencil

Ta = 27(N/P)tq

Again, we need 6 face exchanges, plus two reductions (each
20[ta I.ng P)

T.=6 (a + ﬁ(N/P)2/3) ta +2 - 2atq log, P.
Now the scaling limit is P-dependent.

- P =10°% N/P ~ 12000;
- P=10% N/P = 17000.

15

Mira all-reduce: P=16,32,...,524288
- - - T

°,
T

Hardware-level
allreduce on
BlueGene is P
independent.

all-reduce time (seconds)
B

- On the full machine,
Software alduos a reduction costs 5a.

Hardware all-reduce
1/2ping-pong time

)
10 10 10 10° 10! 10°

message size (64 bit words)

From Fischer, Heisey, and Min (2015).

Te=6 (a n 5(/\///3)2/3) t + 2 2logPaty + 2 - Satg.

Now we have P-independent scaling behaviour, N/P =~ 2100.
Using only a single reduction, we can get to N/P ~ 1500.

8x more strong scaling on P = 10°, with no increase in power
consumption.

A similar analysis can be done for multilevel algorithms,
e.g. for Poisson N/P ~ 10000 (constant reduction complexity).

Some data points

3-D incompressible Navier-Stokes for reactor cooling, NEK5000.
High order, spectral element. 60% time in multigrid Poisson

r 1.4
12
F 1.0
0.8
I 09
°
2
& 04 I os
a >
b} 2
y Fo738
=
5y
3 0.2 | 06'“
g I
=
05
0.1
I 04
0.05 T T T T T T 03
32768 65536 131072 262144 524288 1048576
(61.0k) (30.5) (15.3k) (7.6K) (3.8K) (1.9K)
Number of MPI ranks (2 ranks/core)
(dofs/rank)

Data reproduced from Fischer, Heisey, and Min (2015). 18

Some data points

3-D non-hydrostatic baroclinic instability 3km resolution,
Gordon Bell prize 2016. Low order, finite volume. Most time in
multigrid Helmholtz solve.

24 r 1
1.0
12
I o9
g
<
g 06 o8
s
o Fo7-8
B 03 b
]
H I o6
@»
0.15 o5
o4
0.06 03

T T T T T T T T T T
381696 572544 858816 1310720 17443842291200 3059200 4659200 6990336 10485760
(83.3k) (55.5k) (37.0k) (24.3k) (18.2k) (13.9k) (10.4k) (6.8K) (4.5K) (3.0k)

Number of cores
(dofs/core)

Data reproduced from Yang et al. (2016). 18

Some data points

3-D nonlinear Stokes for mantle convection, Gordon Bell prize
2015. High order, finite element. Time split between viscous
and pressure-Poisson multigrid solves.

64 r i1
32 10
- 0.9
16 -
[~ 0.8
o 8 3
3 g
g Fo7s
@ 4 o &
- 06
2
- 0.5
13 I o4
05 T T T T T T T T 03
16384 32768 65536 131072 262144 524288 1048576 1572864
(506.6k) (253.3k) (126.6k) (63.3k) (31.7k) (15.8k) (7.9¢) (5.3)
Number of MPI ranks
(dofs/rank)

Data reproduced from Rudi et al. (2015). 18

Latency hurts

- When strong-scaling mesh codes, you don't care about
network bandwidth.

- Decreasing « is important, pester your vendor!

- Faster cores (relative to network) means worse strong
scaling.

- Faster code means worse strong scaling.

19

Some thoughts on climate codes

Conjecture

Operational climate models make nowhere near optimal use
of current hardware.

Extrapolating current SYPD to larger problems is perhaps not
useful, unless we think the current models are good.

- More work means scaling should improve.
- Will column-wise data decomposition start to hurt?
- Lobby for power spend on interconnect, not cores?

- Don't forget to focus on minimising time-to-solution first.

20

What might we do?

Improving SYPD

- Better serial performance. Is it the case that current
codes make efficient use of hardware?

- High order? Only useful if we can use fewer dofs. Are
models in the asymptotic region where we expect
exponential accuracy gains from high order
discretisations?

- Better strong scaling. Necessary to counteract timestep
restrictions with increasing resolution.

21

Better serial performance

- Ground up rewrites of models?

- Optimising “line by line” doesn’t work, we're stuck in local
minima. e.g. changes in data layout require a large scale
changes if the data model is implicit.

- Look for opportunities to reduce algorithmic complexities

- Yang et al. (2016) and Rudi et al. (2015) are examples of
what you can do for single components.

22

- High order, flop heavy, schemes are more suited to
modern architectures

- But often not in asymptotic convergence region
- Need to have competitive performance per dof

- FE probably preferable to FV or FD, since minimal stencil
(less comms).

23

Addressing latency

- Reducing a has a big effect on scaling limits

- a — «/10 would allow scaling Poisson multigrid to
N/P = 900. 10x in time to solution for same power.

- Similarly, hardware reductions are really important.

- Would we be happy if vendors spent more of the power
budget on network and less on chips?

2%

Reducing communication

7-FAS

- 7 formulation of multigrid (Brandt (1977), Brandt and Livne
(2011, §8.3)) admits low data transfer implementation
(Brandt and Diskin 1994).

- Performance modelling and results for 27 point FV Poisson
problem in Adams et al. (2016).

- Worthwhile to try if you already have a FAS for your
problem?

25

Tiling to amortise latency

- Diamond tiling is a well known optimisation in computer
science for stencil codes.

h
1

Time steps

P.1 1 p2—— L P.N
Space

- Typically used for better cache usage.

- Can be extended to hide network latency.

- Good analysis in Malas et al. (2015)

- “Rediscovered” in Alhubail and Wang (2016).
- Explicit schemes only.

26

Asynchronous algorithms

- Harden against OS jitter by removing barriers
- Hide latency
- Potential for soft error recovery

- Is MTTF really a problem? The same things were being
warned of petascale systems.

27

Asynchronous algorithms

- Harden against OS jitter by removing barriers
- Hide latency
- Potential for soft error recovery

- Is MTTF really a problem? The same things were being
warned of petascale systems.

Pipelined Krylov methods

- Use asynchronous reductions Ghysels et al. (2013).

- Not aware of any group other than Vanroose's that shows
such performance improvements.

- Best suited to simple preconditioners.

27

Asynchronous algorithms

- Harden against OS jitter by removing barriers

- Hide latency

- Potential for soft error recovery

- Is MTTF really a problem? The same things were being
warned of petascale systems.

s-step Krylov methods

- AKA communication avoiding Krylov.
- Mostly work from Demmel’s group.
- Again, don't work with “good” preconditioners.

- Erin Carson’s thesis (Carson 2015) is an excellent, and
honest, summary of the current state.

27

Is time parallel the answer?

- At some point, traditional timestepping will stop scaling
- Time parallel is perhaps a way around this

- Need to be honest. Can we get speedups relative to the
best “traditional” model?

- Are we better off running bigger ensembles? Better data
assimilation?

28

Questions?

References |

Adams, M. F. et al. (2016). “Segmental Refinement: A Multigrid Technique for
Data Locality”. SIAM Journal on Scientific Computing 38.
doi:10.1137/146975127. arXiv: 1406.7808 [ma.NA].

Alhubail, M. M. and Q. Wang (2016). “The swept rule for breaking the latency
barrier in time advancing PDEs”. Journal of Computational Physics 307.
doi:10.1016/j.jcp.2015.11.026. arXiv: 1504.01380 [cs.CE].

Brandt, A. and O. Livne (2011). Multigrid Techniques. Society for Industrial
and Applied Mathematics. doi:10.1137/1.9781611970753.

Brandt, A. (1977). “Multi-level adaptive solutions to boundary-value
problems”. Mathematics of Computation 31.

Brandt, A. and B. Diskin (1994). “Multigrid solvers on decomposed domains”.
Contemporary Mathematics 157.

http://dx.doi.org/10.1137/140975127
http://arxiv.org/abs/1406.7808
http://dx.doi.org/10.1016/j.jcp.2015.11.026
http://arxiv.org/abs/1504.01380
http://dx.doi.org/10.1137/1.9781611970753

References I

Carson, E. C. (2015). “Communication-Avoiding Krylov Subspace Methods in
Theory and Practice”. PhD thesis. University of California, Berkeley.

Fischer, P. F, K. Heisey, and M. Min (2015). Scaling limits for PDE-based
simulation. Tech. rep. Argonne National Laboratory.
doi:10.2514/6.2015-3049.

Ghysels, P. et al. (2013). “Hiding Global Communication Latency in the GMRES
Algorithm on Massively Parallel Machines”. SIAM Journal on Scientific
Computing 35. doi:10.1137/12086563X.

Malas, T. et al. (2015). “Multicore-Optimized Wavefront Diamond Blocking for
Optimizing Stencil Updates”. SIAM Journal on Scientific Computing 37.
doi:10.1137/140991133.

http://dx.doi.org/10.2514/6.2015-3049
http://dx.doi.org/10.1137/12086563X
http://dx.doi.org/10.1137/140991133

References |lI

Prisacari, B. et al. (2014). “Efficient Task Placement and Routing in Dragonfly
Networks". Proceedings of the 23rd ACM International Symposium on
High-Performance Parallel and Distributed Computing (HPDC'14).
Vancouver, Canada. doi:10.1145/2600212.2600225.

Rudi, J. et al. (2015). “An Extreme-scale Implicit Solver for Complex PDEs:
Highly Heterogeneous Flow in Earth’s Mantle”. Proceedings of the
International Conference for High Performance Computing, NetworRing,
Storage and Analysis. SC '15. Austin, Texas: ACM.
doi:10.1145/2807591.2807675.

Yang, C. et al. (2016). “10M-core Scalable Fully-implicit Solver for
Nonhydrostatic Atmospheric Dynamics”. Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. SC "16. Salt Lake City, Utah: IEEE Press.

http://dx.doi.org/10.1145/2600212.2600225
http://dx.doi.org/10.1145/2807591.2807675

	What do we want?
	What do we have?
	What should we do?
	What to look for
	What might we do?
	Appendix

