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What do we want?



50GHz single-core CPUs
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What do we have?



Too many cores

Chip Cores TF/s GB/s F/B Power
NVidia P100 56 (3584) 5.3 730 7.2 250 (21 GF/W)
Xeon Phi 7290F 72 3.5 450 + 100 5.4 260 (13 GF/W)
Broadwell 22 0.78 150 5.2 140 (5.6 GF/W)

Exascale

• 190K NVidia P100s, 1e9-way concurrency, 150MW
• 290K Intel Phis, 1e8-way concurrency, 220MW
• 1.3M Intel Broadwells, 3e7-way concurrency, 540MW

• 1 Boeing 747, 140MW
• 1 Google, 650MW
• 1 Sizewell B, 1200MW
• 1 UK, 35GW
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What’s happened to the chips

• Number of transistors still increasing exponentially
• Frequency flat since c. 2005
• Performance through on-chip parallelism: “now it’s your
problem”

• Wider “atomic” floating point instructions

Chip Cores Clock Vector width Historical proxy
P100 56 1.5 32 CM-1
Broadwell 22 2.2 4

Cray X1
Phi 72 1.5 8
Skylake 32 2.2 8
ARMv8 (Cavium) 54? 2? 4-32?
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What should we do?



Run LINPACK
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But seriously

• High arithmetic intensity (flops are cheaper than bytes)
• Vectorise, vectorise, vectorise (only way to achieve flops)
• Avoid bulk synchronous computation (performance
resilience)

• Reduce and/or amortise communication (hide latency)
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The status quo

7 Low order, memory bound
7 Vectorisation left to compiler (?)
7 Iterative schemes with blocking reductions
7 Simple communication patterns (not optimal?)
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What to look for



Algorithmic optimality

Notation
N – total number of degrees of freedom;

P – total number of processes;

T(N,P) – time to solution.

Desired
O(N) computational complexity;

O(logP) communication complexity.

Be aware of the constants!
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Parallel scalability

Weak scaling
Constant local work N/P.

Scalable code has T(N,P) = T(2N, 2P).

Strong scaling
Decreasing local work N/P.

Scalable code has T(N,P) = 2T(N, 2P).
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Transient simulation

Time-resolved transient simulations do not weak scale.
Sad!

What to do?

• Get algorithmics right
• Work hard to attack constant factors
• Work on strong scaling efficiency
• Develop predictive models of performance to understand
why codes behave how they do.
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Predicting scalability

Summarising Fischer, Heisey, and Min (2015).

Notation

• parallelisable work: Ta(N,P) = Ta(N, 1)/P
• communication: Tc(N,P)
• serial overhead: c ≈ 0
• time to solution

T(N,P) =
{
Ta(N,P) + Tc(N,P) + c synchronous
max(Ta(N,P), Tc(N,P)) + c asynchronous

• scaling efficiency: η = T(N,1)
PT(N,P)
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When to stop adding cores?

Minimum T(N,P)

Find P such that dT(N,P)dP = 0.

Typically too expensive (wasting many core hours).

A compromise
Find P such that Ta(N,P) = Tc(N,P), η = 0.5 for synchronous
case.

Theorem (Anonymous)
Krylov methods strong scale to N/P ≈ 30000.

Explicit schemes are a little better N/P ≈ 10000.

“Reductions limit scalability”
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Empirical scaling limits

• Measure T(N,Pmin) and T(N,P) for a range of process
counts.

• Pick Popt such that PoptT(N,Popt) = 2T(N,Pmin).
• How do I know if that is any good?
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Building blocks

Computation
Measure S, e.g., flops with P = 1, N large.

“atomic” unit of computation takes time ta = S−1.

Communication
Linear model, latency + bandwidth.

Time (s) to send m doubles

tc(m) = α∗ + β∗m

non-dimensionalise, α = α∗/ta, β = β∗/ta.

tc(m) = (α+ βm)ta
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Run some measurements

overlapped or not.

Nonoverlapping: T (n, P ) = Ta/P + Tc(n, P ) + c
0

(2)

Overlapping: T (n, P ) = max[Ta/P, Tc(n, P )] + c
0

(3)

Here, Ta reflects time spent on the parallelizable work for a single processor, Tc is the communication
overhead, and c

0

represents non-parallelizable work or other overhead such a data motion. We note that the
multiplicative e↵ect of parallel computing (i.e., order unity e�ciency) is realized only when

Ta/P � Tc(n, P ) + c
0

,

which is a manifestation of Amdahl’s law. Our interest is in quantifying the (P, n) parameter space where
we can expect performance to be good. A reasonable breakpoint in either the overlapping or nonoverlapping
case is where communication is subdominant to the time spent doing useful work. That is,

Ta/P � Tc(n, P ) + c
0

. (4)

We will take equality in (4) to be the breakpoint for any particular algorithm/architecture coupling. For
our CPU-based analysis, we will ignore c

0

, since it typically will be small compared with the communication
overhead.

A. Interprocessor Communication Costs

The next component required for the complexity analysis is a model for interprocessor communication costs.
The linear model

tc(m) = ↵⇤ + �⇤m (5)

is well suited for the present analysis. Here, m is the number of 64-bit words transferred in a single mes-
sage between two processors, ↵⇤ is the internode latency in seconds, and �⇤ is the inverse-bandwidth in
seconds/word. We consider a nondimensional version of (5),

tc(m) = (↵ + �m) ta, (6)

where ta = 1/S
1

(seconds) is the inverse of the flop rate observed for the given algorithm on the computer
in question, in the absence of communication.

Figure 2. Ping-pong times for
Cray XK7 (Titan), IBM BG/P
(Intrepid), and IBM BG/Q
(Mira).

The communication constants are measured by running ping-pong
tests with MPI for varying values of m between rank 0 and rank k. Figure
(2) shows typical ping-pong results for k = 15, . . . , 511. (Lower values of
k correspond to intranode communication and are omitted here for clar-
ity.) Each time point represents an average of anywhere from 4 to a 1,000
tests, with 1,000 trials being used for the shorter messages. The model
curve (5) is plotted as a dashed line for each case. We see that the XK7
has the lowest minimal times and highest peak bandwidth but that the
timings are noisy despite the averaging, whereas the BG timings are es-
sentially noise free. Moreover, a weakness of the model (5) is revealed by
the plots, particularly for BG/Q, namely, that the model underpredicts
communication by roughly a factor of 2 in the important range m ⇡ 10–
104. The underprediction is platform dependent and could readily be
incorporated into the complexity model. The curves also indicate that on
BG/Q there would be merit in changing the shift points to support longer
messages before shifting to the three-trip message protocol. The challenge
on BG/Q is that one must set aside enough bu↵er space to accommodate
the potentiality of a million unsolicited inbound messages (one from each
MPI rank). In practice, this condition almost never occurs, however, and
exploiting mechanisms such as the Eager message protocol allows this size to be adjusted.

Table 1 presents a list of machine parameters measured over the past several decades. The arithmetic
times, ta, are based on the matrix-matrix product performance for sets of noncached matrices of order
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Performance variability

• Model is pretty good
• Network topology + load can affect even simple codes
• BlueGene has torus network, each job gets a convex
subset

• Not true on Cray (Dragonfly), network traffic from other
jobs can affect your performance (Prisacari et al. 2014).
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Jacobi iteration, 7-point 3D stencil

uk+1i = a−1ii

fi +∑
j̸=i

aijukj


counting operations with N/P entries per process.

Ta = 14(N/P)ta.

With a block decomposition, each face exchange moves
(N/P)2/3 values, so

Tc = 6
(
α+ β(N/P)2/3

)
ta.

With α = 3750, β = 2.86 (BG/Q), Ta = Tc when N/P ≈ 1700.
Independent of P.

If β = 0, N/P ≈ 1600.
14



Conjugate gradients, 7-point 3D stencil

Ta = 27(N/P)ta

Again, we need 6 face exchanges, plus two reductions (each
2αta log2 P)

Tc = 6
(
α+ β(N/P)2/3

)
ta + 2 · 2αta log2 P.

Now the scaling limit is P-dependent.

• P = 106: N/P ≈ 12000;
• P = 109: N/P ≈ 17000.
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But wait

Unlike Jacobi iteration, the CG complexity depends on P as well as (n/P ). Since we are interested in
exascale, we consider currently accessible values of P and those that could theoretically deliver exascale,
that is, P = 106 and 109. For these cases, we find the strong-scale limit (15) is realized with the BG/Q
parameters when

n/P � 12000, P = 106, (16)

n/P � 17000, P = 109. (17)

Here the nearly 3/2 increase in (n/P ) results from the fact that log
2

106 ⇡ 20 and log
2

109 ⇡ 30.

Figure 3. BG/Q mpi allreduce
times in software and hardware,
along with 1/2 round-trip ping-
pong times.

The complexity increase resulting from the projective dot products in
conjugate gradient iteration can be avoided through the use of Chebyshev
iteration,8 which has the same asymptotic complexity as CG but elimi-
nates the need for vector reductions. In practice, however, we’ve found
that Chebyshev typically results in a 10 to 15 percent increase in iteration
count, even with optimally estimated eigenvalue ranges, and is therefore
not of interest unless one is running at the critical (n/P ) value, that is, in
the range where all-reduce really dominates the total costs. Other choices,
such as low-communication CG variants,9 are also possible. On the BG se-
ries and some other forthcoming platforms, however, the log

2

P overhead
is significantly reduced by having hardware support for all-reduce opera-
tions. Figure 3 shows the all-reduce times for processor counts P = 16, 32,
64, 128,. . ., 524288 (running one process per core) on the Argonne BG/Q,
Mira. The times are for mpi allreduce on vectors vp, which implements

v =
P�1X

p=0

vp (18)

and redistributes v to each processor p for v and vp 2 lRm. Figure 3
includes timings for (18) implemented in software and hardware. The
software times are close to the model (14). By contrast, the hardware times are bounded by 3 to 5 times
the ping-pong model (5). The dashed lines in the figure show this model (black) and this bracketing interval
(red). A reasonable complexity bound for all-reduce is thus to replace (14) by

Tall-reduce = Car ↵ ta, (19)

where Car=3–5.
If we use (19) in the CG complexity estimate, we arrive at new granularity bounds deriving from the

updated formula,

TcCG

TaCG
=

6(↵+ �(n/P )
2
3 ) + 2Car ↵

27n/P
 1, (20)

which is once again independent of P . For BG/Q-based parameters with Car = 5, we find the inequality
(20) is satisfied when

n/P � 2200, (21)

which is almost as low as the point-Jacobi granularity limit (12) and remarkably close to the Navier-Stokes
break-even point of Fig. 1.

3. Geometric Multigrid

Even with the best-fit property, CG iteration does not achieve order-independent convergence rates. A truly
scalable Poisson solver requires a multilevel strategy. Here, we consider geometric multigrid as a model
multilevel solver. In particular, we consider the following V-cycle.
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From Fischer, Heisey, and Min (2015).

• Hardware-level
allreduce on
BlueGene is P
independent.

• On the full machine,
a reduction costs 5α.
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Round again

Tc = 6
(
α+ β(N/P)2/3

)
ta +(((((((2 · 2 log2 Pαta + 2 · 5αta.

Now we have P-independent scaling behaviour, N/P ≈ 2100.

Using only a single reduction, we can get to N/P ≈ 1500.

8x more strong scaling on P = 109, with no increase in power
consumption.

A similar analysis can be done for multilevel algorithms,
e.g. for Poisson N/P ≈ 10000 (constant reduction complexity).
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Some data points

3-D incompressible Navier-Stokes for reactor cooling, NEK5000.
High order, spectral element. 60% time in multigrid Poisson
solves.
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Some data points

3-D non-hydrostatic baroclinic instability 3km resolution,
Gordon Bell prize 2016. Low order, finite volume. Most time in
multigrid Helmholtz solve.
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Some data points

3-D nonlinear Stokes for mantle convection, Gordon Bell prize
2015. High order, finite element. Time split between viscous
and pressure-Poisson multigrid solves.
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Latency hurts

• When strong-scaling mesh codes, you don’t care about
network bandwidth.

• Decreasing α is important, pester your vendor!
• Faster cores (relative to network) means worse strong
scaling.

• Faster code means worse strong scaling.
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Some thoughts on climate codes

Conjecture
Operational climate models make nowhere near optimal use
of current hardware.

Extrapolating current SYPD to larger problems is perhaps not
useful, unless we think the current models are good.

• More work means scaling should improve.
• Will column-wise data decomposition start to hurt?
• Lobby for power spend on interconnect, not cores?
• Don’t forget to focus on minimising time-to-solution first.
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What might we do?



Improving SYPD

• Better serial performance. Is it the case that current
codes make efficient use of hardware?

• High order? Only useful if we can use fewer dofs. Are
models in the asymptotic region where we expect
exponential accuracy gains from high order
discretisations?

• Better strong scaling. Necessary to counteract timestep
restrictions with increasing resolution.
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Better serial performance

• Ground up rewrites of models?
• Optimising “line by line” doesn’t work, we’re stuck in local
minima. e.g. changes in data layout require a large scale
changes if the data model is implicit.

• Look for opportunities to reduce algorithmic complexities
• Yang et al. (2016) and Rudi et al. (2015) are examples of
what you can do for single components.
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High order?

• High order, flop heavy, schemes are more suited to
modern architectures

• But often not in asymptotic convergence region
• Need to have competitive performance per dof
• FE probably preferable to FV or FD, since minimal stencil
(less comms).
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Addressing latency

• Reducing α has a big effect on scaling limits
• α → α/10 would allow scaling Poisson multigrid to
N/P ≈ 900. 10x in time to solution for same power.

• Similarly, hardware reductions are really important.
• Would we be happy if vendors spent more of the power
budget on network and less on chips?

24



Reducing communication

τ-FAS

• τ formulation of multigrid (Brandt (1977), Brandt and Livne
(2011, §8.3)) admits low data transfer implementation
(Brandt and Diskin 1994).

• Performance modelling and results for 27 point FV Poisson
problem in Adams et al. (2016).

• Worthwhile to try if you already have a FAS for your
problem?
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Tiling to amortise latency

• Diamond tiling is a well known optimisation in computer
science for stencil codes.

• Typically used for better cache usage.
• Can be extended to hide network latency.
• Good analysis in Malas et al. (2015)
• “Rediscovered” in Alhubail and Wang (2016).
• Explicit schemes only.
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Asynchronous algorithms

• Harden against OS jitter by removing barriers
• Hide latency
• Potential for soft error recovery
• Is MTTF really a problem? The same things were being
warned of petascale systems.
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Asynchronous algorithms

• Harden against OS jitter by removing barriers
• Hide latency
• Potential for soft error recovery
• Is MTTF really a problem? The same things were being
warned of petascale systems.

Pipelined Krylov methods

• Use asynchronous reductions Ghysels et al. (2013).
• Not aware of any group other than Vanroose’s that shows
such performance improvements.

• Best suited to simple preconditioners.
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Asynchronous algorithms

• Harden against OS jitter by removing barriers
• Hide latency
• Potential for soft error recovery
• Is MTTF really a problem? The same things were being
warned of petascale systems.

s-step Krylov methods

• AKA communication avoiding Krylov.
• Mostly work from Demmel’s group.
• Again, don’t work with “good” preconditioners.
• Erin Carson’s thesis (Carson 2015) is an excellent, and
honest, summary of the current state.

27



Is time parallel the answer?

• At some point, traditional timestepping will stop scaling
• Time parallel is perhaps a way around this
• Need to be honest. Can we get speedups relative to the
best “traditional” model?

• Are we better off running bigger ensembles? Better data
assimilation?
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Questions?
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