If you've scheduled loops, you've gone too far

Lawrence Mitchell^{1,*}

24th October 2017

¹Departments of Computing and Mathematics, Imperial College London *lawrence.mitchell@imperial.ac.uk

Imperial College London

Write data parallel code

as any fule kno

Write data/task parallel code

as any fule kno

Lemma

You can't trust computational scientists to write good code.

Corollary

Make it "impossible" to not write good code.

DSLs for finite elements

Find $(u, p, T) \in V \times W \times Q$ s.t.

$$\int \nabla u \cdot \nabla v + (u \cdot \nabla u) \cdot v$$
$$-p \nabla \cdot v + \frac{\text{Ra}}{\text{Pr}} Tg\hat{z} \cdot v \, dx = 0$$
$$\int \nabla \cdot uq \, dx = 0$$
$$\int (u \cdot \nabla T)S + \text{Pr}^{-1} \nabla T \cdot \nabla S \, dx = 0$$
$$\forall (v, q, T) \in V \times W \times Q$$

DSLs for finite elements

Find $(u, p, T) \in V \times W \times Q$ s.t.

$$\int \nabla u \cdot \nabla v + (u \cdot \nabla u) \cdot v$$
$$-p \nabla \cdot v + \frac{\text{Ra}}{\text{Pr}} Tg\hat{z} \cdot v \, dx = 0$$
$$\int \nabla \cdot uq \, dx = 0$$
$$(u \cdot \nabla T)S + \text{Pr}^{-1} \nabla T \cdot \nabla S \, dx = 0$$

 $\forall (v, q, T) \in V \times W \times Q$

from firedrake import * mesh = Mesh(...) V = VectorFunctionSpace(mesh, "CG", 2) W = FunctionSpace(mesh, "CG", 1) Q = FunctionSpace(mesh, "CG", 1) Z = V * W * 0Ra = Constant(200)Pr = Constant(6.18)upT = Function(Z)u, p, T = split(upT) v. a. S = TestFunctions(Z) bcs = [...] # no-flow + temp gradient nullspace = MixedVectorSpaceBasis(Z. [Z.sub(0). VectorSpaceBasis(constant=True). $Z_{sub}(2)$ F = (inner(grad(u), grad(v)))+ inner(dot(grad(u), u), v) - inner(p, div(v)) + (Ra/Pr)*inner(T*g, v) + inner(div(u). a) + inner(dot(grad(T), u), S) + (1/Pr) * inner(grad(T), grad(S)))*dx

solve(F == 0, upT, bcs=bcs, nullspace=nullspace)

+ a DSL for solver configuration

```
-snes type newtonls
-snes rtol 1e-8
-snes linesearch type basic

    ksp type fgmres

    ksp gmres modifiedgramschmidt

-mat type matfree
-pc type fieldsplit
-pc fieldsplit type multiplicative
-pc fieldsplit 0 fields 0.1
-pc fieldsplit 1 fields 2
-prefix push fieldsplit 1
  -ksp type gmres
  -ksp rtol 1e-4,
  -pc type python
  -pc python type firedrake.AssembledPC
  -assembled mat type aij
  -assembled pc type telescope
  -assembled pc telescope reduction factor 6
  -assembled telescope pc type hypre
  -assembled telescope pc hypre boomeramg P max 4
  -assembled telescope pc hypre boomeramg agg nl 1
  -assembled_telescope_pc_hypre_boomeramg_agg_num_paths 2
  -assembled telescope pc hypre boomeramg coarsen type HMIS
  -assembled telescope pc hypre boomeramg interp type ext+i
  -assembled telescope pc hypre boomeramg no CF True
-prefix pop
-prefix_push fieldsplit 0
  -ksp type gmres
  -ksp gmres modifiedgramschmidt
  -ksp rtol 1e-2
  -pc type fieldsplit
  -pc fieldsplit type schur
  -pc fieldsplit schur fact type lower
```

-prefix push fieldsplit 0 -ksp type preonly -pc type python -pc python type firedrake.AssembledPC -assembled mat type aij -assembled pc type hypre -assembled pc hypre boomeramg P max 4 -assembled pc hypre boomeramg agg nl 1 -assembled pc hypre boomeramg agg num paths 2 -assembled pc hypre boomeramg coarsen type HMIS -assembled pc hypre boomeramg interp type ext+i -assembled pc hypre boomerame no CF -prefix pop -prefix push fieldsplit 1 -ksp type preonly -pc type python -pc python type firedrake.PCDPC -pcd Fp mat type matfree -pcd Kp ksp type preonly -pcd Kp mat type aij -pcd Kp pc type telescope -pcd Kp pc telescope reduction factor 6 -pcd Kp telescope pc type ksp -pcd Kp telescope ksp ksp max it 3 -pcd Kp telescope ksp ksp type richardson -pcd Kp telescope ksp pc type hypre -pcd Kp telescope ksp pc hypre boomeramg P max 4 -pcd Kp telescope ksp pc hypre boomeramg agg nl 1 -pcd Kp telescope ksp pc hypre boomeramg agg num paths 2 -pcd Kp telescope ksp pc hypre boomeramg coarsen type HMIS -pcd Kp telescope ksp pc hypre boomeramg interp type ext+i -pcd Kp telescope ksp pc hypre boomeramg no CF -pcd Mp mat type aii -pcd Mp ksp type richardson -pcd Mp pc type sor -pcd Mp ksp max it 2 -prefix pop -prefix pop

Firedrake www.firedrakeproject.org

[...] an automated system for the solution of partial differential equations using the finite element method.

- Written in Python.
- Finite element problems specified with *embedded* domain specific language, UFL (Alnæs, Logg, Ølgaard, Rognes, and Wells 2014) from the FEniCS project.
- *Runtime* compilation to low-level (C) code.
- Explicitly data parallel API.

F. Rathgeber, D.A. Ham, LM, M. Lange, F. Luporini, A.T.T. McRae, G.-T. Bercea, G.R. Markall,

P.H.J. Kelly. TOMS, 2016. arXiv: 1501.01809 [cs.MS]

Code transformation

- Represent fields as expansion in some basis $\{\phi_i\}$ for the discrete space.
- Integrals are computed by numerical quadrature on mesh elements.

$$\int_{\Omega} F(\phi_i)\phi_j \,\mathrm{d} x \to \sum_{e \in \mathcal{T}} \sum_{q} w_q F(\phi_i(q))\phi_j(q)$$

• Need to evaluate ϕ_j and $F(\phi_i)$, defined by basis coefficients $\{f_i\}_{i=1}^N$, at quadrature points $\{q_j\}_{j=1}^Q$.

$$\mathcal{F}_q = \left[\Phi f\right]_q = \sum_i \phi_{i,q} f_i$$

• Φ is a $Q \times N$ matrix of basis functions evaluated at quadrature points.

• For degree p elements in d dimensions. $N, Q = \mathcal{O}(p^d)$.

- For degree p elements in d dimensions. $N, Q = \mathcal{O}(p^d)$.
- So I need $\mathcal{O}(p^{2d})$ operations. Right?

- For degree p elements in d dimensions. $N, Q = \mathcal{O}(p^d)$.
- So I need $\mathcal{O}(p^{2d})$ operations. Right?
- Well not always....

Exploiting structure

Often, ϕ might have a tensor decomposition.

.)

$$\phi_{i,q}(x,y,\ldots) := \varphi_{j,p}(x)\varphi_{k,r}(y)\ldots$$

and so

$$F_{(p,r)} = \sum_{j,k} \phi_{(j,k),(p,r)} f_{j,k}$$
$$= \sum_{j,k} \varphi_{j,p} \varphi_{k,r} f_{j,k}$$
$$= \sum_{j} \varphi_{j,p} \sum_{k} \varphi_{k,r} f_{j,k}$$

at the cost of some temporary storage, this requires only $\mathcal{O}(dp^{d+1})$ operations.

Tensions

- You want the granularity of the data parallel operation to be small
- That way the programmer has less chance to get it wrong
- But, can you then get the "good" algorithm?

Tensions

- You want the granularity of the data parallel operation to be small
- That way the programmer has less chance to get it wrong

Will your blas library notice if

• But, can you then get the "good" algorithm?

Will your compiler hoist into array temporaries?

```
for (p = 0; p < L; p++)
for (r = 0; r < L; r++)
for (j = 0; j < M; j++)
for (k = 0; k < M; k++)
F[L*p+r][j*M+k] += f(p,j)*g(r,k)</pre>
PHI has Kronecker-product
structure?
double PHI[L][M] = {{ ... }};
dgemv(PHI, Fi, Fq)
```

Scheduling

- Front-end DSL matches finite elements
- Compiler frontend removes finite element specific constructs \rightarrow DAG representation of tensor-algebra.
- These operations can have structure (e.g. tensor-product decomposition)
- Transformations on the DAG to minimise op-count, perhaps promote vectorisation.
- \cdot Scheduling \leftrightarrow topological sort of DAG
- Opportunity to introduce hardware- and problem-guided heuristics, and optimisation passes

Homolya, LM, Luporini, Ham. arXiv: 1705.03667 [cs.MS]

Homolya, Kirby, Ham. In preparation

- \checkmark A DSL should elegantly capture mathematical structure
- ✓ things expressible in the mathematics can be compiled to efficient code and algorithms!
- ✗ All else cannot be compiled, need graceful degradation.
- ✗/✓ Greatest advantages come when you incorporate them at the top level.

Thanks!

- Alnæs, M. S., A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells (2014). "Unified Form Language: A Domain-specific Language for Weak Formulations of Partial Differential Equations". ACM Trans. Math. Softw. 40. doi:10.1145/2566630. arXiv: 1211.4047 [cs.MS].
- Homolya, M., L. Mitchell, F. Luporini, and D. A. Ham (2017). *TSFC: a structure-preserving form compiler*. arXiv: 1705.03667 [cs.MS].
- Rathgeber, F., D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. McRae, G.-T. Bercea, G. R. Markall, and P. H. J. Kelly (2016). "Firedrake: automating the finite element method by composing abstractions". ACM Transactions on Mathematical Software 43. doi:10.1145/2998441. arXiv: 1501.01809 [cs.MS].