

Imperial Colleg

Solver composition across the PDE/linear algebra divide

Lawrence Mitchell^{1,*} Rob Kirby^{2,†} 28th May 2018

¹Departments of Computing and Mathematics, Imperial College London *lawrence.mitchell@imperial.ac.uk

²Department of Mathematics, Baylor University †robert_kirby@baylor.edu

Rayleigh-Bénard convection

$$-\Delta u + u \cdot \nabla u + \nabla p + \frac{\text{Ra}}{\text{Pr}}\hat{g}T = 0$$
$$\nabla \cdot u = 0$$
$$-\frac{1}{\text{Pr}}\Delta T + u \cdot \nabla T = 0$$

Newton

$$\begin{bmatrix} F & B^T & M_1 \\ C & 0 & 0 \\ M_2 & 0 & K \end{bmatrix} \begin{bmatrix} \delta u \\ \delta p \\ \delta T \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix}$$

from firedrake import * mesh = Mesh(...) V = VectorFunctionSpace(mesh, "CG", 2) W = FunctionSpace(mesh, "CG", 1) Q = FunctionSpace(mesh, "CG", 1) Z = V * W * ORa = Constant(200)Pr = Constant(6.18)upT = Function(Z)u, p, T = split(upT)v, q, S = TestFunctions(Z) bcs = [...] # no-flow + temp gradient nullspace = MixedVectorSpaceBasis(Z, [Z.sub(0), VectorSpaceBasis(constant=True), Z.sub(2)]) F = (inner(grad(u), grad(v)))+ inner(dot(grad(u), u), v) - inner(p. div(v)) + (Ra/Pr)*inner(T*g. v) + inner(div(u), q) + inner(dot(grad(T), u), S) + (1/Pr) * inner(grad(T), grad(S)))*dx

solve(F == 0, upT, bcs=bcs, nullspace=nullspace)

UFL makes it easy to write complex PDEs

Ohta-Kawasaki

$$u_t - \Delta w + \sigma(u - m) = 0$$

$$w + \epsilon^2 \Delta u - u(u^2 - 1) = 0$$

Implicit timestepping + Newton

$$\begin{bmatrix} (1 + \Delta t \theta \sigma) M & \Delta t \theta K \\ -\epsilon^2 K - M_E & M \end{bmatrix} \begin{bmatrix} \delta u \\ \delta w \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$

```
from firedrake import *
mesh = Mesh(...)
V = FunctionSpace(mesh, "CG", 1)
Z = V * V
\epsilon = Constant(0.02)
\sigma = \text{Constant}(100)
dt = Constant(eps**2)
\theta = \text{Constant}(0.5)
v, q = TestFunctions(Z)
z = Function(Z)
z\theta = Function(Z)
u, w = split(z)
u0, w0 = split(z0)
u_{\theta} = (1 - \theta) * u \Theta + \theta * u
W_{\theta} = (1 - \theta) * W \theta + \theta * W
dfdu = u**3 - u
F = ((\mu - \mu \theta)) * v
       + dt*dot(grad(w<sub>0</sub>), grad(v))
      + dt*\sigma*(u<sub>0</sub> - m)*v
      + w*g - dfdu*g
      - \epsilon * * 2 * dot(grad(u), grad(q))) * dx
while t < ...:
     z0.assign(z)
     solve(F == 0, z)
```

What about the solvers?

Direct

- Great for small problems;
- wait forever for large problems.

Iterative

- Need good preconditioners;
- For many problems, algebraic manipulation of the operator is insufficient.

- Access to standard block preconditioners
- Easy specification of auxiliary operators
- "Simple" configuration
- Arbitrary nesting: smoothers inside splits, multigrid, etc...
- Easy to extend

Claim

All of these things are possible (straightforward?) if the solver library can call back to the PDE library to create operators.

Idea

- Endow discretised operators with PDE-level information:
 - what bilinear form
 - which function spaces
 - boundary conditions
- Enable standard fieldsplitting on these operators.
- Write custom preconditioners that can utilise the information in appropriately.

Idea

- Endow discretised operators with PDE-level information:
 - what bilinear form
 - which function spaces
 - boundary conditions
- Enable standard fieldsplitting on these operators.
- Write custom preconditioners that can utilise the information in appropriately.

Extend PETSc with Firedrake-level PCs

- PETSc already provides *algebraic* composition of solvers.
- Firedrake can provide auxiliary operators
- We just need to combine these appropriately.

Fortunately, petsc4py makes it easy to write these PCs.

PETSc manages all the splitting and nesting already. So this does the right thing *inside* multigrid, etc...

A new matrix type

A shell matrix that implements matrix-free actions, and contains the symbolic information about the bilinear form.

$$y \leftarrow Ax$$
 A = assemble(a, mat_type="matfree")

Could do this all with assembled matrices if desired.

Custom preconditioners

These matrices do not have entries, we create preconditioners that inspect the UFL and do the appropriate thing.

```
y \leftarrow \tilde{A}^{-1}x
solve(a == L, x,

{"mat_type": "matfree",

"pc_type": "python",

"pc_python_type": "AssembledPC"})
```

A simple example

Matrix-free actions with AMG on the assembled operator.

A preconditioner for the Ohta–Kawasaki equation (Farrell and Pearson 2017)

$$u_t - \Delta w + \sigma(u - m) = 0$$
$$w + \epsilon^2 \Delta u - u(u^2 - 1) = 0$$

Newton iteration at each timestep solves

$$\begin{bmatrix} (1 + \Delta t \theta \sigma) M & \Delta t \theta K \\ -\epsilon^2 K - M_E & M \end{bmatrix} \begin{bmatrix} \delta u \\ \delta w \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$

A more complicated example

Preconditioning strategy:

$$\begin{bmatrix} ((1 + \Delta t\theta\sigma)M]^{-1} & 0\\ 0 & S^{-1} \end{bmatrix} \begin{bmatrix} I & 0\\ (\epsilon^{2}K + M_{E})\left[(1 + \Delta t\theta\sigma)M\right]^{-1} & I \end{bmatrix} \begin{bmatrix} (1 + \Delta t\theta\sigma)M & \Delta t\thetaK\\ -\epsilon^{2}K - M_{E} & M \end{bmatrix}$$

Where

$$S = M + (\epsilon^{2}K + M_{E}) \left[(1 + \Delta t\theta\sigma)M \right]^{-1} \Delta t\theta K$$

is inverted iteratively, preconditioned by

$$S^{-1} \approx S_p^{-1} = \hat{S}^{-1}M\hat{S}^{-1}$$

with

$$\hat{S} = M + \epsilon \sqrt{(\Delta t \theta)/(1 + \Delta t \theta \sigma)} K.$$

Implementation

```
class OKPC(PCBase):
     def initialize(self, pc):
          _, P = pc.getOperators()
          ctx = P.getPythonContext()
          # User information about \Delta t, \theta, etc...
          dt, \theta, \epsilon, \sigma = ctx.appctx["parameters"]
          V = ctx.a.arguments()[0].function space()
          c = (dt * \theta)/(1 + dt * \theta * \sigma)
          w = TrialFunction(V)
          a = TestFunction(V)
          # \hat{S} = \langle q, w \rangle + \epsilon \sqrt{c} \langle \nabla q, \nabla w \rangle, c = \frac{\Delta t \theta}{1 + \Delta t \theta \sigma}
          op = assemble(inner(w, q)*dx + \epsilon*sqrt(c)*inner(grad(w), grad(q))*dx)
          self.ksp = KSP().create(comm=pc.comm)
          self.ksp.setOptionsPrefix(pc.getOptionsPrefix + "hats_")
          self.ksp.setOperators(op.petscmat. op.petscmat)
          self.ksp.setFromOptions()
          mass = assemble(w*g*dx)
          self.mass = mass.petscmat
     def apply(self, pc, x, y):
          t1. t2 = self.work
          # t_1 \leftarrow \hat{S}^{-1}x
          self.ksp.solve(x, t1)
          # t_2 \leftarrow M t_1
          self.mass.mult(t1, t2)
          # v \leftarrow \hat{S}^{-1}t_2 = \hat{S}^{-1}M\hat{S}^{-1}x
          self.ksp.solve(t2. v)
```

Rayleigh-Bénard solver

For each Newton step, solve

$$\mathcal{K} \left(\begin{bmatrix} F & B^T & M_1 \\ C & 0 & 0 \\ M_2 & 0 & K \end{bmatrix}, \mathbb{J} \right)$$

using a preconditioner from Howle and Kirby (2012):

$$\mathbb{J} = \begin{bmatrix} \mathcal{K}\left(\begin{bmatrix} F & B^{\mathsf{T}} \\ C & 0 \end{bmatrix}, \mathbb{N}\right) & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} I & 0 & -\mathcal{M}_1 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & \mathcal{K}(\mathcal{K}, \mathbb{K}) \end{bmatrix}$$

with

$$\mathbb{N} = \begin{bmatrix} F & 0 \\ 0 & \mathcal{K}(S_p, \mathcal{K}(L_p, \mathbb{L}) \ F_p \ \mathcal{K}(M_p, \mathbb{M})) \end{bmatrix} \begin{bmatrix} I & 0 \\ -C & I \end{bmatrix} \begin{bmatrix} \mathcal{K}(F, \mathbb{F}) & 0 \\ 0 & I \end{bmatrix}$$

and

$$S_p = -C\mathcal{K}(F,\mathbb{F})B^T.$$

Kirby and Mitchell (2018, §B.4) shows full solver configuration.

Limited by performance of algebraic solvers on subblocks.

DoFs (×10 ⁶)	MPI processes	Newton its	Krylov its	Time (s)
0.7405	24	3	16	31.7
2.973	96	3	17	43.9
11.66	384	3	17	56
45.54	1536	3	18	85.2
185.6	6144	3	19	167

Limited by performance of algebraic solvers on subblocks.

DoFs (×10 ⁶)	MPI pro	cesses	ses Newton its		rylov its	Time (s)	
0.7405	24		3		16	31.7	
2.973	96		3		17	43.9	
11.66	384		3		17	56	
45.54	1536		3		18	85.2	
185.6	614	44	3		19	167	
DoFs (×10 ⁶)	Navier	Navier-Stokes iterations		Tem	emperature iterations		
	Iotal	per	solve	Iota	t pei	per solve	
0.7405	329	20.6		107		6.7	
2.973	365	21.5		132		7.8	
11.66	373	21.9		137		8.1	
45.54	403	22.4		151		8.4	
195.6	4.63	244		17/		9.2	

- Decomposition of mesh into patches
- \cdot Operators on each patch
- \cdot Solvers for each patch
- Boundary conditions

- Decomposition of mesh into patches: PETSc
- \cdot Operators on each patch
- \cdot Solvers for each patch
- Boundary conditions

- Decomposition of mesh into patches: PETSc
- Operators on each patch: Firedrake
- \cdot Solvers for each patch
- Boundary conditions

- Decomposition of mesh into patches: PETSc
- Operators on each patch: Firedrake
- Solvers for each patch: PETSc
- Boundary conditions

- Decomposition of mesh into patches: PETSc
- Operators on each patch: Firedrake
- Solvers for each patch: PETSc
- Boundary conditions: Homogeneous Dirichlet only for now

This approach works well for block solvers, what else can I do? Building blocks

- Decomposition of mesh into patches: PETSc
- Operators on each patch: Firedrake
- Solvers for each patch: PETSc
- Boundary conditions: Homogeneous Dirichlet only for now

Idea

- PETSc PC using DMPlex to provide patches
- Callback interface provides operator on each patch to PCApply
- Normal KSP on each patch to do the solve

Patch described by set of entities on which dofs are free. Builtin

Specify patches by selecting:

- 1. Entities to iterate over (vertices, cells, ...);
- Adjacency relation that gathers "free" dofs. Some builtin: star all dofs in star of entity vanka all dofs in closure of star of entity

User-defined

Write short function to define patches "by hand".

Implementation

github.com/wence-/ssc, available in PETSc RSN.

Example: P2-P1 Stokes

Monolithic multigrid with Vanka smoother on each level.

```
solver parameters = {
    "mat type": "matfree",
    # Flex-gmres due to nonlinear PC (gmres as smoother)
    "ksp type": "fgmres",
    "pc type": "mg",
    "mg levels": {
        "ksp type": "gmres",
        "ksp max it": 2.
        "pc type": "python".
        "pc_python_type": "ssc.PatchPC",
        "patch_pc_patch_construction_type": "vanka",
        "patch_pc_patch_construction_dim": 0, # patches over vertices
        "patch_pc_patch_vanka_dim": 0,  # what entities are in the constraint space?
        "patch pc patch exclude subspace": 1, # which subspace to exclude?
        "patch pc patch sub mat type": "segaij",
        "patch sub_ksp_type": "preonly",
        "patch_sub_pc_type": "lu",
        "patch_sub_pc_factor_shift_type": "nonzero"
    },
    "mg_coarse_pc_type": "lu",
solve(F == 0, u, solver parameters=solver parameters)
```

Example: P2-P1 Stokes

Schur complement only requires change of options.

```
solver parameters = {
    "mat type": "matfree",
    "ksp_type": "gmres",
    "ksp monitor": None,
    "pc type": "fieldsplit",
    # Use diag(A^{-1}, S^{-1}) as PC
    "pc fieldsplit_type": "schur",
    "pc fieldsplit schur factorization type": "diag",
    "fieldsplit 0": {
        # AMG on velocity block
        "ksp_type": "preonly",
        "pc type": "python",
        "pc_python_type": "firedrake.AssembledPC",
        "assembled pc type": "hypre",
    }.
    "fieldsplit 1": {
        # Inverse mass matrix to precondition S
        "ksp type": "richardson",
        "pc_type": "firedrake.MassInvPC".
    }
solve(F == 0, u, solver parameters=solver parameters)
```

Conclusions

- Composable solvers, using PDE library to easily develop complex block preconditioners.
- Model formulation decoupled from solver configuration.
- Automatically takes advantage of any improvements in both PETSc and Firedrake.
- Same approach works for Schwarz-like methods.

www.firedrakeproject.org

Kirby and Mitchell (2018) arXiv: 1706.01346 [cs.MS]

- Brown, J. et al. (2012). "Composable Linear Solvers for Multiphysics". Proceedings of the 2012 11th International Symposium on Parallel and Distributed Computing. ISPDC '12. Washington, DC, USA: IEEE Computer Society. doi:10.1109/ISPDC.2012.16.
- Farrell, P. E. and J. W. Pearson (2017). "A preconditioner for the Ohta-Kawasaki equation". *SIAM Journal on Matrix Analysis and Applications* **38**. arXiv: **1603.04570** [ma.NA].
- Howle, V. E. and R. C. Kirby (2012). "Block preconditioners for finite element discretization of incompressible flow with thermal convection". *Numerical Linear Algebra with Applications* **19**. doi:10.1002/nla.1814.
- Kirby, R. C. and L. Mitchell (2018). "Solver composition across the PDE/linear algebra barrier". SIAM Journal on Scientific Computing 40. doi:10.1137/17M1133208. arXiv: 1706.01346 [cs.MS].