
Solver composition across the PDE/linear
algebra divide

Lawrence Mitchell1,* Rob Kirby2,†

28th May 2018
1Departments of Computing and Mathematics, Imperial College London
∗lawrence.mitchell@imperial.ac.uk

2Department of Mathematics, Baylor University
†robert_kirby@baylor.edu

1

UFL makes it easy to write complex PDEs

Rayleigh-Bénard convection

−∆u+ u · ∇u+∇p+
Ra
Pr
ĝT = 0

∇ · u = 0

− 1
Pr

∆T + u · ∇T = 0

Newton F BT M1

C 0 0
M2 0 K


δuδp
δT

 =

f1f2
f3



from firedrake import *
mesh = Mesh(...)
V = VectorFunctionSpace(mesh, "CG", 2)
W = FunctionSpace(mesh, "CG", 1)
Q = FunctionSpace(mesh, "CG", 1)
Z = V * W * Q
Ra = Constant(200)
Pr = Constant(6.18)
upT = Function(Z)
u, p, T = split(upT)
v, q, S = TestFunctions(Z)
bcs = [...] # no-flow + temp gradient
nullspace = MixedVectorSpaceBasis(

Z, [Z.sub(0), VectorSpaceBasis(constant=True),
Z.sub(2)])

F = (inner(grad(u), grad(v))
+ inner(dot(grad(u), u), v)
- inner(p, div(v))
+ (Ra/Pr)*inner(T*g, v)
+ inner(div(u), q)
+ inner(dot(grad(T), u), S)
+ (1/Pr) * inner(grad(T), grad(S)))*dx

solve(F == 0, upT, bcs=bcs, nullspace=nullspace)

2

UFL makes it easy to write complex PDEs

Ohta–Kawasaki

ut −∆w + σ(u−m) = 0
w + ε2∆u− u(u2 − 1) = 0

Implicit timestepping + Newton[
(1+∆tθσ)M ∆tθK
−ε2K −ME M

][
δu
δw

]
=

[
f1
f2

]

from firedrake import *
mesh = Mesh(...)
V = FunctionSpace(mesh, "CG", 1)
Z = V*V
ε = Constant(0.02)
σ = Constant(100)
dt = Constant(eps**2)
θ = Constant(0.5)
v, q = TestFunctions(Z)
z = Function(Z)
z0 = Function(Z)
u, w = split(z)
u0, w0 = split(z0)
uθ = (1 - θ)*u0 + θ*u
wθ = (1 - θ)*w0 + θ*w
dfdu = u**3 - u
F = ((u - u0)*v

+ dt*dot(grad(wθ), grad(v))
+ dt*σ*(uθ - m)*v
+ w*q - dfdu*q
- ε**2*dot(grad(u), grad(q)))*dx

while t < ...:
z0.assign(z)
solve(F == 0, z)

2

What about the solvers?

Direct

• Great for small problems;
• wait forever for large problems.

Iterative

• Need good preconditioners;
• For many problems, algebraic manipulation of the
operator is insufficient.

3

A wishlist

• Access to standard block preconditioners
• Easy specification of auxiliary operators
• “Simple” configuration
• Arbitrary nesting: smoothers inside splits, multigrid, etc…
• Easy to extend

Claim
All of these things are possible (straightforward?) if the solver
library can call back to the PDE library to create operators.

4

Idea

• Endow discretised operators with PDE-level information:
• what bilinear form
• which function spaces
• boundary conditions

• Enable standard fieldsplitting on these operators.
• Write custom preconditioners that can utilise the
information in appropriately.

Extend PETSc with Firedrake-level PCs

• PETSc already provides algebraic composition of solvers.
• Firedrake can provide auxiliary operators
• We just need to combine these appropriately.

5

Idea

• Endow discretised operators with PDE-level information:
• what bilinear form
• which function spaces
• boundary conditions

• Enable standard fieldsplitting on these operators.
• Write custom preconditioners that can utilise the
information in appropriately.

Extend PETSc with Firedrake-level PCs

• PETSc already provides algebraic composition of solvers.
• Firedrake can provide auxiliary operators
• We just need to combine these appropriately.

5

This sounds like hard work

Fortunately, petsc4py makes it easy to write these PCs.
class MyPC(object):

def setUp(self, pc):
A, P = pc.getOperators()
A and P are shell matrices, carrying the symbolic
discretisation information.
So I have access to the mesh, function spaces, etc...
Can inspect options dictionary here
do whatever

def apply(self, pc, r, e):
Compute approximation to error given current residual
e← A−1r

solve(..., solver_parameters={"pc_type": "python",
"pc_python_type": "MyPC"})

PETSc manages all the splitting and nesting already. So this
does the right thing inside multigrid, etc…

6

Implementation: two parts

A new matrix type
A shell matrix that implements matrix-free actions, and
contains the symbolic information about the bilinear form.

y ← Ax A = assemble(a, mat_type="matfree")

Could do this all with assembled matrices if desired.

Custom preconditioners
These matrices do not have entries, we create preconditioners
that inspect the UFL and do the appropriate thing.

y ← Ã−1x
solve(a == L, x,

{"mat_type": "matfree",
"pc_type": "python",
"pc_python_type": "AssembledPC"})

7

A simple example

Matrix-free actions with AMG on the assembled operator.

a = u*v*dx + dot(grad(u), grad(v)*dx)
opts = {”ksp_type”: ”cg”,

”mat_type”: ”matfree”,
”pc_type”: ”python”,
”pc_python_type”: ”AssembledPC”,
”assembled_pc_type”: ”hypre”}

solve(a == L, x, solver_parameters=opts)

A−1 ≈ K(A,A−1p)

Ax

assemble(action(a, x))

A−1p

Ap ←assemble(a)

hypre(Ap)

8

A more complicated example

A preconditioner for the Ohta–Kawasaki equation (Farrell and
Pearson 2017)

ut −∆w + σ(u−m) = 0
w + ε2∆u− u(u2 − 1) = 0

Newton iteration at each timestep solves[
(1+∆tθσ)M ∆tθK
−ε2K −ME M

][
δu
δw

]
=

[
f1
f2

]

9

A more complicated example

Preconditioning strategy:[
[(1+∆tθσ)M]−1 0

0 S−1

][
I 0

(ε2K + ME) [(1+∆tθσ)M]−1 I

][
(1+∆tθσ)M ∆tθK
−ε2K − ME M

]
.

Where

S = M+ (ε2K +ME) [(1+∆tθσ)M]−1∆tθK

is inverted iteratively, preconditioned by

S−1 ≈ S−1p = Ŝ−1MŜ−1

with
Ŝ = M+ ε

√
(∆tθ)/(1+∆tθσ)K.

9

Implementation

class OKPC(PCBase):
def initialize(self, pc):

_, P = pc.getOperators()
ctx = P.getPythonContext()
User information about ∆t, θ, etc...
dt, θ, ε, σ = ctx.appctx["parameters"]
V = ctx.a.arguments()[0].function_space()
c = (dt * θ)/(1 + dt * θ * σ)
w = TrialFunction(V)
q = TestFunction(V)
Ŝ = 〈q, w〉 + ε

√
c 〈∇q,∇w〉, c = ∆tθ

1+∆tθσ
op = assemble(inner(w, q)*dx + ε*sqrt(c)*inner(grad(w), grad(q))*dx)
self.ksp = KSP().create(comm=pc.comm)
self.ksp.setOptionsPrefix(pc.getOptionsPrefix + "hats_")
self.ksp.setOperators(op.petscmat, op.petscmat)
self.ksp.setFromOptions()
mass = assemble(w*q*dx)
self.mass = mass.petscmat
...

def apply(self, pc, x, y):
t1, t2 = self.work
t1 ← Ŝ−1x
self.ksp.solve(x, t1)
t2 ← Mt1
self.mass.mult(t1, t2)
y ← Ŝ−1t2 = Ŝ−1MŜ−1x
self.ksp.solve(t2, y)

10

Rayleigh-Bénard solver

For each Newton step, solve

K


 F BT M1

C 0 0
M2 0 K

 , J


using a preconditioner from Howle and Kirby (2012):

J =

K
([

F BT

C 0

]
,N

)
0

0 I


 I 0 −M1

0 I 0
0 0 I


 I 0 0
0 I 0
0 0 K (K,K)


with

N =

[
F 0
0 K(Sp,K (Lp,L) FpK (Mp,M))

][
I 0
−C I

][
K (F,F) 0

0 I

]
and

Sp = −CK (F,F)BT .

Kirby and Mitchell (2018, §B.4) shows full solver configuration. 11

Weak scaling

Limited by performance of algebraic solvers on subblocks.

DoFs (×106) MPI processes Newton its Krylov its Time (s)
0.7405 24 3 16 31.7
2.973 96 3 17 43.9
11.66 384 3 17 56
45.54 1536 3 18 85.2
185.6 6144 3 19 167

DoFs (×106) Navier-Stokes iterations Temperature iterations
Total per solve Total per solve

0.7405 329 20.6 107 6.7
2.973 365 21.5 132 7.8
11.66 373 21.9 137 8.1
45.54 403 22.4 151 8.4
185.6 463 24.4 174 9.2

12

Weak scaling

Limited by performance of algebraic solvers on subblocks.

DoFs (×106) MPI processes Newton its Krylov its Time (s)
0.7405 24 3 16 31.7
2.973 96 3 17 43.9
11.66 384 3 17 56
45.54 1536 3 18 85.2
185.6 6144 3 19 167

DoFs (×106) Navier-Stokes iterations Temperature iterations
Total per solve Total per solve

0.7405 329 20.6 107 6.7
2.973 365 21.5 132 7.8
11.66 373 21.9 137 8.1
45.54 403 22.4 151 8.4
185.6 463 24.4 174 9.2

12

Schwarz smoothers

This approach works well for block solvers, what else can I do?

Building blocks

• Decomposition of mesh into patches

: PETSc

• Operators on each patch

: Firedrake

• Solvers for each patch

: PETSc

• Boundary conditions

: Homogeneous Dirichlet only for now

Idea

• PETSc PC using DMPlex to provide patches
• Callback interface provides operator on each patch to
PCApply

• Normal KSP on each patch to do the solve

13

Schwarz smoothers

This approach works well for block solvers, what else can I do?

Building blocks

• Decomposition of mesh into patches: PETSc
• Operators on each patch

: Firedrake

• Solvers for each patch

: PETSc

• Boundary conditions

: Homogeneous Dirichlet only for now

Idea

• PETSc PC using DMPlex to provide patches
• Callback interface provides operator on each patch to
PCApply

• Normal KSP on each patch to do the solve

13

Schwarz smoothers

This approach works well for block solvers, what else can I do?

Building blocks

• Decomposition of mesh into patches: PETSc
• Operators on each patch: Firedrake
• Solvers for each patch

: PETSc

• Boundary conditions

: Homogeneous Dirichlet only for now

Idea

• PETSc PC using DMPlex to provide patches
• Callback interface provides operator on each patch to
PCApply

• Normal KSP on each patch to do the solve

13

Schwarz smoothers

This approach works well for block solvers, what else can I do?

Building blocks

• Decomposition of mesh into patches: PETSc
• Operators on each patch: Firedrake
• Solvers for each patch: PETSc
• Boundary conditions

: Homogeneous Dirichlet only for now

Idea

• PETSc PC using DMPlex to provide patches
• Callback interface provides operator on each patch to
PCApply

• Normal KSP on each patch to do the solve

13

Schwarz smoothers

This approach works well for block solvers, what else can I do?

Building blocks

• Decomposition of mesh into patches: PETSc
• Operators on each patch: Firedrake
• Solvers for each patch: PETSc
• Boundary conditions: Homogeneous Dirichlet only for now

Idea

• PETSc PC using DMPlex to provide patches
• Callback interface provides operator on each patch to
PCApply

• Normal KSP on each patch to do the solve

13

Schwarz smoothers

This approach works well for block solvers, what else can I do?

Building blocks

• Decomposition of mesh into patches: PETSc
• Operators on each patch: Firedrake
• Solvers for each patch: PETSc
• Boundary conditions: Homogeneous Dirichlet only for now

Idea

• PETSc PC using DMPlex to provide patches
• Callback interface provides operator on each patch to
PCApply

• Normal KSP on each patch to do the solve
13

Patch definition

Patch described by set of entities on which dofs are free.

Builtin
Specify patches by selecting:

1. Entities to iterate over (vertices, cells, …);
2. Adjacency relation that gathers “free” dofs. Some builtin:
star all dofs in star of entity

vanka all dofs in closure of star of entity

User-defined
Write short function to define patches “by hand”.

Implementation
github.com/wence-/ssc, available in PETSc RSN.

14

github.com/wence-/ssc

Example: P2-P1 Stokes

Monolithic multigrid with Vanka smoother on each level.
solver_parameters = {

"mat_type": "matfree",
Flex-gmres due to nonlinear PC (gmres as smoother)
"ksp_type": "fgmres",
"pc_type": "mg",
"mg_levels": {

"ksp_type": "gmres",
"ksp_max_it": 2,
"pc_type": "python",
"pc_python_type": "ssc.PatchPC",
"patch_pc_patch_construction_type": "vanka",
"patch_pc_patch_construction_dim": 0, # patches over vertices
"patch_pc_patch_vanka_dim": 0, # what entities are in the constraint space?
"patch_pc_patch_exclude_subspace": 1, # which subspace to exclude?
"patch_pc_patch_sub_mat_type": "seqaij",
"patch_sub_ksp_type": "preonly",
"patch_sub_pc_type": "lu",
"patch_sub_pc_factor_shift_type": "nonzero"

},
"mg_coarse_pc_type": "lu",

}
solve(F == 0, u, solver_parameters=solver_parameters)

15

Example: P2-P1 Stokes

Schur complement only requires change of options.
solver_parameters = {

"mat_type": "matfree",
"ksp_type": "gmres",
"ksp_monitor": None,
"pc_type": "fieldsplit",
Use diag(A−1, S−1) as PC
"pc_fieldsplit_type": "schur",
"pc_fieldsplit_schur_factorization_type": "diag",
"fieldsplit_0": {

AMG on velocity block
"ksp_type": "preonly",
"pc_type": "python",
"pc_python_type": "firedrake.AssembledPC",
"assembled_pc_type": "hypre",

},
"fieldsplit_1": {

Inverse mass matrix to precondition S
"ksp_type": "richardson",
"pc_type": "firedrake.MassInvPC",

}
}
solve(F == 0, u, solver_parameters=solver_parameters)

15

Conclusions

• Composable solvers, using PDE library to easily develop
complex block preconditioners.

• Model formulation decoupled from solver configuration.
• Automatically takes advantage of any improvements in
both PETSc and Firedrake.

• Same approach works for Schwarz-like methods.

www.firedrakeproject.org

Kirby and Mitchell (2018) arXiv:1706.01346[cs.MS]

16

www.firedrakeproject.org
http://www.arxiv.org/abs/1706.01346

References

Brown, J. et al. (2012). “Composable Linear Solvers for Multiphysics”. Proceedings of the 2012 11th
International Symposium on Parallel and Distributed Computing. ISPDC ’12. Washington, DC,
USA: IEEE Computer Society. doi:10.1109/ISPDC.2012.16.

Farrell, P. E. and J. W. Pearson (2017). “A preconditioner for the Ohta-Kawasaki equation”. SIAM
Journal on Matrix Analysis and Applications 38. arXiv: 1603.04570 [ma.NA].

Howle, V. E. and R. C. Kirby (2012). “Block preconditioners for finite element discretization of
incompressible flow with thermal convection”. Numerical Linear Algebra with Applications 19.
doi:10.1002/nla.1814.

Kirby, R. C. and L. Mitchell (2018). “Solver composition across the PDE/linear algebra barrier”. SIAM
Journal on Scientific Computing 40. doi:10.1137/17M1133208. arXiv: 1706.01346 [cs.MS].

http://dx.doi.org/10.1109/ISPDC.2012.16
http://arxiv.org/abs/1603.04570
http://dx.doi.org/10.1002/nla.1814
http://dx.doi.org/10.1137/17M1133208
http://arxiv.org/abs/1706.01346

	Appendix

