Symbolic numerical computing

Lawrence Mitchell"*
C.J. Cotter, D.A. Ham, M. Homolya, T. Karna, P.H.J. Kelly, R.C. Kirby, E.H. Muller, ...

25th January 2018

TDepartments of Computing and Mathematics, Imperial College London
*lawrence.mitchell@imperial.ac.uk

EPSRC Imperial College
Engineering and rhys\cal Sciences London

Research Council

« Qverview of some recent research

- Fast solvers for numerical weather prediction
- Automated finite elements

- In depth
- Compiling finite element problems

- Future directions

Recent highlights

Numerical weather prediction

M, —AtpT —4lQ\ /U MRy
8D Ms 0 P|=|MRy
AnzQ’ 0 M, B MyRy

Challenge
Invert elliptic operator fast enough for operational forecasting.

High aspect ratio: black-box numerical solvers struggle.

Need scalable, custom multigrid solver.

Multigrid approach

25 *—e geometric MG
=8 hypre BoomerAMG
a column2 — total
m Olimp 20{| -~ Setup + 1st iteration
& @@% T Lnode
Az o
O g 2 AR,
& = oM ONG
EEEE 10 OIRORONON
— V4 4
— AS SO
bandwidth y < G0N E ﬁ E
4 avavavg) 5|
m > Sh 1 -
Bii--g:iiiis--o---0
1 6 28 96 38h 1536
of cores

Developed custom tensor-product multigrid scheme, showed
robustness and scalability.

Research impact
Approach is used by UK Met Office in their next generation
dynamical core.

Providing a weather forecast to you in 2025.

Automated finite elements

Challenge
- Simulation software needs to exploit fine-grained
parallelism.

- Most code intimately intertwines the numerical algorithm
with its implementation.

- To apply program transformations, we have to unpick,
understand, and reimplement.

- Every time the hardware changes.

- Most researchers do not have the skills necessary to be
application and HPC experts.

Firedrake www. firedrakeproject.org

[...] an automated system for the solution of partial
differential equations using the finite element
method.

- Written in Python.

- Finite element problems specified with embedded
domain specific language.

- Domain-specific optimising compiler.

- Runtime compilation to low-level (C) code.

- Transparently parallel.

F. Rathgeber, D.A. Ham, LM, M. Lange, F. Luporini, ATT. McRae, G.-T. Bercea, G.R. Markall,
PH.J. Kelly. ACM Transactions on Mathematical Software, 2016.
arXiv: 1501.01809 [cs.MS]

www.firedrakeproject.org
http://www.arxiv.org/abs/1501.01809

Highlights

- Dramatically simplifies numerical model development.
Often from months/years to days/weeks.

- Delivers “better than most humans” computational
performance.

- New code separates mathematics from implementation.
More portable to future architectures.

- Enables productive interdisciplinary collaboration.

Future research direction

+ Code transformations for efficient execution on GPUs

Impact & use

Academic

- Used by research groups at Imperial, Baylor, Kiel, Exeter,
Oxford, Leeds, Waterloo, Buffalo, Washington, ...

- Teaching tool at Waterloo, Imperial.

Industrial

- Guides design of computational and numerical schemes
in UK Met Office’s next forecasting system.

- Optimisation of tidal turbine array placement.

Compiling finite element problems

Exploit mathematical abstractions

Compute y + V2x using finite differences.

Yij = Xieaj + Xigrj + Xijo1 + Xijpq — 4

Before 1953

faddp %st, %st(1)
movl -8(%ebp), %edx
movl %edx, %eax Pen and paper
sall $2, %eax

addl %edx, %eax

leal 0(,%eax,4), %edx
addl %edx, %eax

sall $2, %eax

movl %eax, %edx

movl -4(%ebp), %eax Manual
addl %edx, %eax

subl $101, %eax

flds X.3305(,%eax,4)

flds .LCco

fmulp %st, %st(1)

faddp %st, %st(1) Machine code

fstps y.3307(,%ecx,4)

Exploit mathematical abstractions

Compute y + V2x using finite differences.

Yij = Xieaj + Xigrj + Xijo1 + Xijpq — 4

1953-present: Formula Translation

PROGRAM MAIN | Pen and paper|

PARAMETER (N=100)
REAL X(N,N), Y(N,N)
[...1 Manual
DO 10 J=2,N-1
DO 20 I=2,N-1
Y(I,3)=X(I-1,3)+X(I+1,3)+
X(I,3-1)+X(I,3+1)+4+X(I,3)
20 CONTINUE
10 CONTINUE Automated
[...]
END

| Low-level code |

| Machine code |

Fit to the mathematics

| Pen and paper |

Manual

a(u,v) = /QV“ -Vvdx wveV | High-level code |

V = FiniteElement("Lagrange", Automated
triangle, 1)

u = TrialFunction(V) | Low-level code |

v = TestFunction(V)

F = dot(grad(u), grad(v))+dx Automated

| Machine code |

TSFC: an optimising compiler for finite elements

Translate UFL into low-level code for performing an element
integral.

M. Homolya, LM, F. Luporini, D.A. Ham. arXiv: 1705.03667 [cs.MS]

- Element integral

V = FiniteElement("Lagrange", triangle, 1)
u = TrialFunction(V)
/evu Vvdx v = TestFunction(V)

a = dot(grad(u), grad(v))=dx
- Is transformed to a tensor algebra expression

S (Sealih @) (Sl 1)
q Is i3

- Multiple optimisation passes aim to minimise FLOPs

required to evaluate this expression. 0

http://www.arxiv.org/abs/1705.03667

TSFC: an optimising compiler for finite elements

Translate UFL into low-level code for performing an element
integral.

M. Homolya, LM, F. Luporini, D.A. Ham. arXiv: 1705.03667 [cs.MS]

void cell_integral(double A[3][3],
double coords[3][2]) {
static const double t10[3] = {...};
static const double t12[3] = {...};
double t13[3];
double t14[3];

for (int k0 = 0; kO < 3; kO++) {
t13[k0] (t11 = t12[ke]) + (t9 * t10[ke]);
t14[ko] (t8 = t12[k0]) + (t7 * t10[ke]);
}
double t15 = (0.5 = fabs(t6));
for (int joO = 0; jO < 3; jo++) {

double t0 = (-1 * coords[0][1]); _ .
double t1 = (t® + coords[11[1]); doublenelepal((ead tlz[JQ])
double t2 = (-1 * coords[0][0]); o (= Ll
! double t17 = ((t8 * ti12[jel)
double t3 = (t2 + coords[1][0]);
+ (17 « t10[j0]));
double t4 = (t0 + coords[2][1]);
for (int ko = 0; k& < 3; ko++) {
double t5 = (t2 + coords[2][0]); AL301[KO] += t15 + ((t17 = t14[Kke])
double t6 = ((t3 * t4) + (-1 % (t5 * t1))); + (16 * t13[k01));
double t7 = ((-1 * t1) / t6); } '
double t8 = (t4 / t6); }
double t9 = (t3 / t6);

double t11 = ((-1 = t5) / t6);

10

http://www.arxiv.org/abs/1705.03667

TSFC: compiler passes

Vectorisation
Align and pad data structures, then use intrinsics or rely on C
compiler.

Loop transformations & flop reduction
Solve ILP problem to drive factorisation, code motion, and
common subexpression elimination.

Sum factorisation
Some finite elements use tensor product basis functions

Bi,q = PGR),(p,r) = PipPhir

These permit low-complexity algorithms for evaluation of
integrals.

"

Automated, not just for toy problems

FLOPs to evaluate F

10"+
H 9 1
Find u € V. C H(curl) s.t. o O
[a
S 0
/curlu-curlvdx:/8~vdx YveVv. B
105 +
NCE = FiniteElement("NCE", hexahedron, degree)
Q = VectorElement("Q", hexahedron, degree) 3 L
u = Coefficient(NCE) # Solution in H(curl) 10° ¢ t t t t |
B = Coefficient(Q) # Coefficient in H' 1 2 4 8 16 32
v = TestFunction(NCE) .
F = (dot(curl(u), curl(v)) - dot(B, v))=dx Polynomlal degree

—_ Naive
--- With sum factorisation

12

Application: coastal ocean modelling

Thetis

New model

- Better solutions than previous model in group.
- 4-8x faster than models with comparative quality of
results.
- Is differentiable: can use for PDE-constrained
optimisation.
- Only 1.5 person years.
13

Future research

High performance solvers

- In most cases, after discretising a PDE, we need to solve a
(non)linear problem.

- Designing robust, scalable solvers is a vast area of
research in applied mathematics.

- Papers often only present (serial) proof of concept.

Idea

- Mathematics is the language used to derive optimal
solvers.

- It should be the language we use to describe their
implementation.

14

Challenges

- How to capture the mathematical building blocks in
computer code?

- What does the compiler for this look like?

- How can it be portable across new computer hardware?

Rewards
- Bring state-of-the-art numerical solvers to the masses.
- Cross-fertilisation with programming language design.

- Enable more exploratory, and creative, mathematics.

15

- Broad interdisciplinary research agenda spanning:
- Programming languages
- Compiler design
- Numerical methods & (non)linear algebra

- Application areas:

- coastal ocean & freshwater outflow
- renewable energy
- numerical weather prediction

Lecture excerpt

Definition
recursion noun

see: recursion.

Building from the bottom

- Many problems in computing lend themselves to a
recursive formulation

- Enumerate a few base cases, and a general rule

Building from the bottom

- Many problems in computing lend themselves to a
recursive formulation

- Enumerate a few base cases, and a general rule

The Fibonacci sequence: Fj,

0,1,1,2,3,5,8,11,...

Building from the bottom

- Many problems in computing lend themselves to a
recursive formulation

- Enumerate a few base cases, and a general rule

The Fibonacci sequence: Fj,

0,1,1,2,3,5,8,11,...

Fo=0

Building from the bottom

- Many problems in computing lend themselves to a
recursive formulation

- Enumerate a few base cases, and a general rule
The Fibonacci sequence: Fj,

0,1,1,2,3,5,8,11,...

Fo=0
Fi=1

Building from the bottom

- Many problems in computing lend themselves to a
recursive formulation

- Enumerate a few base cases, and a general rule
The Fibonacci sequence: Fj,

0,1,1,2,3,5,8,11,...

Fo =0
Fr=1
Fh=Fr1+Fr2 n>2

Computing F,

Require: n > 0 and n integer
function FiBoNAcci(n) > The nt Fibonacci number
if n =0 then
return 0
else if n =1then
return 1
else
return FIBONACCI(n — 1) + FIBONACCI(n — 2)
end if
end function

Fo=0
Fi=1

Fh=Fr1+Fr2 n>2
19

Would you use this approach?

- To compute F4?

20

Would you use this approach?

- To compute F4?
- How about Fp?

20

Would you use this approach?

- To compute F4?
- How about Fp?
* or F50?

20

Would you use this approach?

- To compute F4?
- How about Fp?
* or F50?

»]OW 4

Time (seconds)
>
L

20

Memoise, memoise, memoise

+ We do far too much work!

21

Memoise, memoise, memoise

+ We do far too much work!

- Let’s draw the call tree for Fs

21

Memoise, memoise, memoise

- We do far too much work!
- Let’s draw the call tree for Fs

- At each level, we split in two, and recurse

21

Memoise, memoise, memoise

- We do far too much work!
- Let’s draw the call tree for Fs
- At each level, we split in two, and recurse

- There are approximately n levels.

21

Memoise, memoise, memoise

- We do far too much work!

- Let’s draw the call tree for Fs

- At each level, we split in two, and recurse
- There are approximately n levels.

- So this does around 2" calculations

21

Memoise, memoise, memoise

- We do far too much work!

- Let’s draw the call tree for Fs

- At each level, we split in two, and recurse
- There are approximately n levels.

- So this does around 2" calculations

- But many of them are the same, so why not remember
them?

21

An improved algorithm

Require: n > 0 and n integer
function FiBoNAcci(n, table) > The nth Fibonacci number
if n <2 then
return n
else if n € table then
return table[n]
else
F < FIBONACCI(n — 1,table) + FIBONACCI(n — 2, table)
table[n] < F
return F
end if
end function

22

An improved algorithm

Time (seconds)

30

20 +

10 1

Original , With lookup table
10~
4 T
3 3¢
o
o
1)
8 24
(&)
£
=1
10 20 30 40 0 1,000 2,000 3,000 4,000 5,000
n n

- Now we only calculate each F, once.

- So runtime is now proportional to n. At the cost of storing

n values.

- Challenge: is this the best you can do?

22

What's in a name?

- This trick, replacing repeated computation by a lookup of
the result, is called dynamic programming.

- Coined by Richard Bellman in the 1950s
dynamic [...] has a very interesting property as an

adjective, [...] it's impossible to use the word dynamic
In a pejorative sense.

23

	Recent highlights
	Compiling finite element problems
	Future research
	Lecture excerpt

