
Symbolic numerical computing

Lawrence Mitchell1,∗
C.J. Cotter, D.A. Ham, M. Homolya, T. Kärnä, P.H.J. Kelly, R.C. Kirby, E.H. Müller, …

25th January 2018
1Departments of Computing and Mathematics, Imperial College London
∗lawrence.mitchell@imperial.ac.uk

Outline

• Overview of some recent research
• Fast solvers for numerical weather prediction
• Automated finite elements

• In depth
• Compiling finite element problems

• Future directions

1

Recent highlights

Numerical weather prediction


M2 −∆t

2 D
T −∆t

2 Q
∆t
2 c

2D M3 0
∆t
2 N

2QT 0 Mb



U

P

B

 =


M2Ru

M3Rp

MbRb



Challenge
Invert elliptic operator fast enough for operational forecasting.

High aspect ratio: black-box numerical solvers struggle.

Need scalable, custom multigrid solver.

2

Multigrid approach

((
j

i

bandwidth

m

n

0,0

1,0 1,1 1,2

2,1 2,2 2,3 2,4

3,3 3,4 3,5 3,6

1

2

3

4

5

6

7

8

9

10

11

12

Δx
Δz

colu
mn1

column2
column3

3841 6 96 153624
of cores

0

5

10

15

20

25

tim
e

[s
]

 1.1mio

 4.6mio

18.4mio

73.4mio

293.6mio

1174.4mio

1 node

geometric MG
hypre BoomerAMG
total
Setup + 1st iteration

Developed custom tensor-product multigrid scheme, showed
robustness and scalability.

Research impact
Approach is used by UK Met Office in their next generation
dynamical core.

Providing a weather forecast to you in 2025.

3

Automated finite elements

Challenge

• Simulation software needs to exploit fine-grained
parallelism.

• Most code intimately intertwines the numerical algorithm
with its implementation.

• To apply program transformations, we have to unpick,
understand, and reimplement.

• Every time the hardware changes.
• Most researchers do not have the skills necessary to be
application and HPC experts.

4

Firedrake www.firedrakeproject.org

[…] an automated system for the solution of partial
differential equations using the finite element
method.

• Written in Python.
• Finite element problems specified with embedded
domain specific language.

• Domain-specific optimising compiler.
• Runtime compilation to low-level (C) code.
• Transparently parallel.

F. Rathgeber, D.A. Ham, LM, M. Lange, F. Luporini, A.T.T. McRae, G.-T. Bercea, G.R. Markall,

P.H.J. Kelly. ACM Transactions on Mathematical Software, 2016.

arXiv:1501.01809[cs.MS]
5

www.firedrakeproject.org
http://www.arxiv.org/abs/1501.01809

Highlights

• Dramatically simplifies numerical model development.
Often from months/years to days/weeks.

• Delivers “better than most humans” computational
performance.

• New code separates mathematics from implementation.
More portable to future architectures.

• Enables productive interdisciplinary collaboration.

Future research direction

• Code transformations for efficient execution on GPUs

6

Impact & use

Academic

• Used by research groups at Imperial, Baylor, Kiel, Exeter,
Oxford, Leeds, Waterloo, Buffalo, Washington, …

• Teaching tool at Waterloo, Imperial.

Industrial

• Guides design of computational and numerical schemes
in UK Met Office’s next forecasting system.

• Optimisation of tidal turbine array placement.

7

Compiling finite element problems

Exploit mathematical abstractions

Compute y← ∇2x using finite differences.

yi,j = xi−1,j + xi+1,j + xi,j−1 + xi,j+1 − 4xi,j

Before 1953
...
faddp %st, %st(1)
movl -8(%ebp), %edx
movl %edx, %eax
sall $2, %eax
addl %edx, %eax
leal 0(,%eax,4), %edx
addl %edx, %eax
sall $2, %eax
movl %eax, %edx
movl -4(%ebp), %eax
addl %edx, %eax
subl $101, %eax
flds x.3305(,%eax,4)
flds .LC0
fmulp %st, %st(1)
faddp %st, %st(1)
fstps y.3307(,%ecx,4)
...

Pen and paper

Machine code

Manual

8

Exploit mathematical abstractions

Compute y← ∇2x using finite differences.

yi,j = xi−1,j + xi+1,j + xi,j−1 + xi,j+1 − 4xi,j

1953–present: Formula Translation

PROGRAM MAIN
PARAMETER (N=100)
REAL X(N,N), Y(N,N)
[...]
DO 10 J=2,N-1

DO 20 I=2,N-1
Y(I,J)=X(I-1,J)+X(I+1,J)+

$ X(I,J-1)+X(I,J+1)+4*X(I,J)
20 CONTINUE
10 CONTINUE

[...]
END

Pen and paper

Low-level code

Machine code

Manual

Automated

8

Fit to the mathematics

a(u, v) =
∫
Ω
∇u · ∇vdx ∀v ∈ V

V = FiniteElement("Lagrange",
triangle, 1)

u = TrialFunction(V)
v = TestFunction(V)
F = dot(grad(u), grad(v))*dx

Pen and paper

High-level code

Low-level code

Machine code

Manual

Automated

Automated

9

TSFC: an optimising compiler for finite elements

Translate UFL into low-level code for performing an element
integral.

M. Homolya, LM, F. Luporini, D.A. Ham. arXiv:1705.03667[cs.MS]

• Element integral∫
e
∇u · ∇vdx

V = FiniteElement("Lagrange", triangle, 1)
u = TrialFunction(V)
v = TestFunction(V)
a = dot(grad(u), grad(v))*dx

• Is transformed to a tensor algebra expression

∑
q
wq |d|

∑
i5

∑
i3

Ki3,i5
[
E(1)q,k E(2)q,k

]
i3

∑
i4

Ki4,i5
[
E(1)q,j E(2)q,j

]
i4


• Multiple optimisation passes aim to minimise FLOPs
required to evaluate this expression. 10

http://www.arxiv.org/abs/1705.03667

TSFC: an optimising compiler for finite elements

Translate UFL into low-level code for performing an element
integral.

M. Homolya, LM, F. Luporini, D.A. Ham. arXiv:1705.03667[cs.MS]

void cell_integral(double A[3][3],
double coords[3][2]) {

static const double t10[3] = {...};
static const double t12[3] = {...};
double t13[3];
double t14[3];
double t0 = (-1 * coords[0][1]);
double t1 = (t0 + coords[1][1]);
double t2 = (-1 * coords[0][0]);
double t3 = (t2 + coords[1][0]);
double t4 = (t0 + coords[2][1]);
double t5 = (t2 + coords[2][0]);
double t6 = ((t3 * t4) + (-1 * (t5 * t1)));
double t7 = ((-1 * t1) / t6);
double t8 = (t4 / t6);
double t9 = (t3 / t6);
double t11 = ((-1 * t5) / t6);

for (int k0 = 0; k0 < 3; k0++) {
t13[k0] = (t11 * t12[k0]) + (t9 * t10[k0]);
t14[k0] = (t8 * t12[k0]) + (t7 * t10[k0]);

}
double t15 = (0.5 * fabs(t6));
for (int j0 = 0; j0 < 3; j0++) {

double t16 = ((t11 * t12[j0])
+ (t9 * t10[j0]));

double t17 = ((t8 * t12[j0])
+ (t7 * t10[j0]));

for (int k0 = 0; k0 < 3; k0++) {
A[j0][k0] += t15 * ((t17 * t14[k0])

+ (t16 * t13[k0]));
}

}
}

10

http://www.arxiv.org/abs/1705.03667

TSFC: compiler passes

Vectorisation
Align and pad data structures, then use intrinsics or rely on C
compiler.

Loop transformations & flop reduction
Solve ILP problem to drive factorisation, code motion, and
common subexpression elimination.

Sum factorisation
Some finite elements use tensor product basis functions

ϕi,q := ϕ(j,k),(p,r) = φj,pφk,r

These permit low-complexity algorithms for evaluation of
integrals.

11

Automated, not just for toy problems

Find u ∈ V ⊂ H(curl) s.t.∫
curl u · curl v dx =

∫
B · v dx ∀v ∈ V.

NCE = FiniteElement("NCE", hexahedron, degree)
Q = VectorElement("Q", hexahedron, degree)
u = Coefficient(NCE) # Solution in H(curl)
B = Coefficient(Q) # Coefficient in H1

v = TestFunction(NCE)
F = (dot(curl(u), curl(v)) - dot(B, v))*dx

1 2 4 8 16 32
103

105

107

109

1011

O(p6)

O(p4)

Polynomial degree
FL
OP
s

FLOPs to evaluate F

Naïve
With sum factorisation

12

Application: coastal ocean modelling

New model

• Better solutions than previous model in group.
• 4-8x faster than models with comparative quality of
results.

• Is differentiable: can use for PDE-constrained
optimisation.

• Only 1.5 person years.
13

Future research

High performance solvers

• In most cases, after discretising a PDE, we need to solve a
(non)linear problem.

• Designing robust, scalable solvers is a vast area of
research in applied mathematics.

• Papers often only present (serial) proof of concept.

Idea

• Mathematics is the language used to derive optimal
solvers.

• It should be the language we use to describe their
implementation.

14

Challenges

• How to capture the mathematical building blocks in
computer code?

• What does the compiler for this look like?
• How can it be portable across new computer hardware?

Rewards

• Bring state-of-the-art numerical solvers to the masses.
• Cross-fertilisation with programming language design.
• Enable more exploratory, and creative, mathematics.

15

Summary

• Broad interdisciplinary research agenda spanning:
• Programming languages
• Compiler design
• Numerical methods & (non)linear algebra

• Application areas:
• coastal ocean & freshwater outflow
• renewable energy
• numerical weather prediction

16

Lecture excerpt

Definition
recursion noun

see: recursion.

17

Building from the bottom

• Many problems in computing lend themselves to a
recursive formulation

• Enumerate a few base cases, and a general rule

The Fibonacci sequence: Fn

0, 1, 1, 2, 3, 5, 8, 11, . . .

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2 n ≥ 2

18

Building from the bottom

• Many problems in computing lend themselves to a
recursive formulation

• Enumerate a few base cases, and a general rule

The Fibonacci sequence: Fn

0, 1, 1, 2, 3, 5, 8, 11, . . .

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2 n ≥ 2

18

Building from the bottom

• Many problems in computing lend themselves to a
recursive formulation

• Enumerate a few base cases, and a general rule

The Fibonacci sequence: Fn

0, 1, 1, 2, 3, 5, 8, 11, . . .

F0 = 0

F1 = 1
Fn = Fn−1 + Fn−2 n ≥ 2

18

Building from the bottom

• Many problems in computing lend themselves to a
recursive formulation

• Enumerate a few base cases, and a general rule

The Fibonacci sequence: Fn

0, 1, 1, 2, 3, 5, 8, 11, . . .

F0 = 0
F1 = 1

Fn = Fn−1 + Fn−2 n ≥ 2

18

Building from the bottom

• Many problems in computing lend themselves to a
recursive formulation

• Enumerate a few base cases, and a general rule

The Fibonacci sequence: Fn

0, 1, 1, 2, 3, 5, 8, 11, . . .

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2 n ≥ 2

18

Computing Fn

Require: n ≥ 0 and n integer
function Fibonacci(n) ▷ The nth Fibonacci number

if n = 0 then
return 0

else if n = 1 then
return 1

else
return Fibonacci(n− 1) + Fibonacci(n− 2)

end if
end function

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2 n ≥ 2

19

Would you use this approach?

• To compute F1?

• How about F10?
• or F50?

0 10 20 30 40

10−5

10−4

10−3

10−2

10−1

100
101

n

Ti
m
e
(s
ec
on
ds
)

20

Would you use this approach?

• To compute F1?
• How about F10?

• or F50?

0 10 20 30 40

10−5

10−4

10−3

10−2

10−1

100
101

n

Ti
m
e
(s
ec
on
ds
)

20

Would you use this approach?

• To compute F1?
• How about F10?
• or F50?

0 10 20 30 40

10−5

10−4

10−3

10−2

10−1

100
101

n

Ti
m
e
(s
ec
on
ds
)

20

Would you use this approach?

• To compute F1?
• How about F10?
• or F50?

0 10 20 30 40

10−5

10−4

10−3

10−2

10−1

100
101

n

Ti
m
e
(s
ec
on
ds
)

20

Memoise, memoise, memoise

• We do far too much work!

• Let’s draw the call tree for F5
• At each level, we split in two, and recurse
• There are approximately n levels.
• So this does around 2n calculations
• But many of them are the same, so why not remember
them?

21

Memoise, memoise, memoise

• We do far too much work!
• Let’s draw the call tree for F5

• At each level, we split in two, and recurse
• There are approximately n levels.
• So this does around 2n calculations
• But many of them are the same, so why not remember
them?

21

Memoise, memoise, memoise

• We do far too much work!
• Let’s draw the call tree for F5
• At each level, we split in two, and recurse

• There are approximately n levels.
• So this does around 2n calculations
• But many of them are the same, so why not remember
them?

21

Memoise, memoise, memoise

• We do far too much work!
• Let’s draw the call tree for F5
• At each level, we split in two, and recurse
• There are approximately n levels.

• So this does around 2n calculations
• But many of them are the same, so why not remember
them?

21

Memoise, memoise, memoise

• We do far too much work!
• Let’s draw the call tree for F5
• At each level, we split in two, and recurse
• There are approximately n levels.
• So this does around 2n calculations

• But many of them are the same, so why not remember
them?

21

Memoise, memoise, memoise

• We do far too much work!
• Let’s draw the call tree for F5
• At each level, we split in two, and recurse
• There are approximately n levels.
• So this does around 2n calculations
• But many of them are the same, so why not remember
them?

21

An improved algorithm

Require: n ≥ 0 and n integer
function Fibonacci(n, table) ▷ The nth Fibonacci number

if n < 2 then
return n

else if n ∈ table then
return table[n]

else
F← Fibonacci(n− 1, table) + Fibonacci(n− 2, table)
table[n]← F
return F

end if
end function

22

An improved algorithm

0 10 20 30 40
0

10

20

30

n

Ti
m
e
(s
ec
on
ds
)

Original

0 1,000 2,000 3,000 4,000 5,000

1

2

3

4
·10−3

n

Ti
m
e
(s
ec
on
ds
)

With lookup table

• Now we only calculate each Fn once.
• So runtime is now proportional to n. At the cost of storing
n values.

• Challenge: is this the best you can do?

22

What’s in a name?

• This trick, replacing repeated computation by a lookup of
the result, is called dynamic programming.

• Coined by Richard Bellman in the 1950s

dynamic […] has a very interesting property as an
adjective, […] it’s impossible to use the word dynamic
in a pejorative sense.

23

	Recent highlights
	Compiling finite element problems
	Future research
	Lecture excerpt

