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Automated finite elements



Code that captures mathematical structure

from firedrake import =
mesh = Mesh(...)

V = VectorFunctionSpace(mesh, "CG", 2)
. W = FunctionSpace(mesh, "CG", 1)
Find (u,p,T) € Vx W x Qst Q = FunctionSpace(mesh, "CG", 1)
Z=V+W=+Q
/VU'VV+(U'VU)'V Ra = Constant(...)
Ra Pr = Constant(...)
—pV v+ —Tg2-vdx =0 upT = Function(Z)
Pr u, p, T = split(upT)
/V-uqu:O v, q, S = TestFunctions(Z)
becs = [...]
/(U -VT)S + Pro'VT-VSdx =0 F = (inner(grad(u), grad(v))
+ inner(dot(grad(u), u), v)
V(v,q,T) eV xWxQ - inner(p, div(v))
+ (Ra/Pr)=inner(Txg, v)
+ inner(div(u), q)
+ inner(dot(grad(T), u), S)
+ (1/Pr)=inner(grad(T), grad(S)))=dx

solve(F == 0, upT, bcs=bcs)



The computer should work for you

- Mathematics just says “here is the integral to compute on each
element, do that everywhere”

- Code specifies an implementation

Assertion(s)
Having chosen a discretisation, writing the element integral is
“mechanical”.

With an element integral in hand, integrating over a mesh is “mechanical”.

Corollary

Computers are good at mechanical things, why don't we get the computer
to write them for us?



Firedrake www. firedrakeproject.org

[..] an automated system for the solution of par-

tial differential equations using the finite element
method.

- Written in Python.

- Finite element problems specified with embedded domain specific

language, UFL (Alnaes, Logg, @lgaard, Rognes, and Wells 2014) from the
FENICS project.

- Domain-specifc optimising compiler.
- Runtime compilation to optimised, low-level (C) code.

F. Rathgeber, D.A. Ham, L. Mitchell, M. Lange, F. Luporini, ATT. McRae, G.-T. Bercea, G.R. Markall, P.H.J. Kelly.

ACM Transactions on Mathematical Software (2016). arXiv: 1501.01809 [cs.MS]


www.firedrakeproject.org
https://arxiv.org/abs/1501.01809

Firedrake www. firedrakeproject.org

[..] an automated system for the solution of par-
tial differential equations using the finite element
method.

User groups at

Imperial, Oxford, Bath, Leeds, Durham, Kiel, Rice, Houston, Exeter, Buffalo,
Waterloo, Washington, Baylor, Edinburgh, ...

Fourth annual (and first USA) user meeting this February (Seattle).


www.firedrakeproject.org

Application: coastal ocean modelling

- Lower numerical mixing,
improved results.

- 3-8x faster than models with
similar quality of results.

- Differentiable: efficient adjoint.
- Used at Finnish Met Institute;

Earth Sciences at Imperial;

Institute for Infrastructure and
Surface salinity of the Columbia river plume. Credit T. Karng, Finnish Meteorological E nVi ronme nt (h e re).

Institute

- thetisproject.org

T. Karng, S.C. Kramer, L. Mitchell, D.A. Ham, M.D. Piggott, A.M. Baptista. Geoscientific Model Development

(2018). arXiv: 1711.08552 [physics.ao-ph]


thetisproject.org
https://arxiv.org/abs/1711.08552

Application: numerical weather prediction
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Challenge

Invert elliptic operator fast enough for operational forecasting.

High aspect ratio: black-box numerical solvers struggle.

Need scalable, custom multigrid solver.



Multigrid approach
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Developed custom tensor-product multigrid scheme, showed robustness
and scalability.

6 28 96 384 4536
# of cores

L. Mitchell, E.H. Mller. JCP (2016). arXiv: 1605.00492 [cs.MS]
Future directions
Multilevel solvers for hybridised discretisations.

Approach is being explored by UK Met Office in their next generation
dynamical core.


https://arxiv.org/abs/1605.00492

Preconditioning Navier-Stokes



Application challenge

Stationary incompressible Navier-Stokes
Forv € Ry, find (u,p) € H'(Q;RY) x L(Q) such that

—divQue(u)) + (u-Vu+Vp=f inQ,
divu =20 in Q,

u=g on Ip,

2ve(u)-n=pn only,

Why?
Fully implicit discretisations of transient problem; bifurcation analysis of
steady state.




Challenges for solvers

Desired properties

- Growth in time to solution is (at worst) O(nlogn) in number of degrees
of freedom (resolution).

- Convergence does not degrade with v — 0.

Direct methods Krylov methods
v Convergence independent of v v Time to solution O(nlogn)
X Time to solution O(n?) (3D), (with multilevel preconditioner)

X Convergence independent of v
challenging



Block preconditioning

Newton linearisation




Block preconditioning

Newton linearisation
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PDE-specific challenge
Find good approximations A" for A=" and S~ for .




Choosing A="and 5

Stokes (no advection) Silvester and A. J. Wathen (1994)

Multigrid for A=", 571 = —uM,"

v/ h-independent
X Only effective up to Re ~ 10 for Navier-Stokes.

PCD for Navier-Stokes Kay, Loghin, and A. Wathen (2002)

Multigrid for A~", approximate 5~' with convection-diffusion solves on
pressure space.

v h-independent
X Only effective up to Re ~ 100-1000



Performance of pressure convection-diffusion (PCD)

1/h  # degrees of freedom | Reynolds number

10 100 1000
24 8.34 x 102 22.0 40.4 1033
2° 3.20 x 10° 23.0 413 1377
26 1.25 x 10* 245 42.0 157.0
2/ 4.97 x 10* 255 427 1490
28 1.98 x 10° 26.0 44.0 137.0

Table 1: Average number of outer Krylov iterations per Newton step for the 2D
regularized lid-driven cavity problem with PCD preconditioner. Obtained with IFISS
v3.5, Q1 — Py element pair.



Augmented Lagrangian approach

SIAM J. Sc1. COMPUT. (© 2006 Society for Industrial and Applied Mathematics
Vol. 28, No. 6, pp. 2095-2113

AN AUGMENTED LAGRANGIAN-BASED APPROACH
TO THE OSEEN PROBLEM*

MICHELE BENZIf AND MAXIM A. OLSHANSKII

Abstract. We describe an effective solver for the discrete Oseen problem based on an aug-
mented Lagrangian formulation of the corresponding saddle point system. The proposed method is
a block triangular preconditioner used with a Krylov subspace iteration like BiCGStab. The crucial
ingredient is a novel multigrid approach for the (1,1) block, which extends a technique introduced by
Schoberl for elasticity problems to nonsymmetric problems. Our analysis indicates that this approach
results in fast convergence, independent of the mesh size and largely insensitive to the viscosity. We
present experimental evidence for both isoP2-P0 and isoP2-P1 finite elements in support of our con-
clusions. We also show results of a comparison with two state-of-the-art preconditioners, showing
the competitiveness of our approach.
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mented Lagrangian formulation of the corresponding saddle point system. The proposed method is
a block triangular preconditioner used with a Krylov subspace iteration like BiCGStab. The crucial
ingredient is a novel multigrid approach for the (1,1) block, which extends a technique introduced by
Schoberl for elasticity problems to nonsymmetric problems. Our analysis indicates that this approach
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clusions. We also show results of a comparison with two state-of-the-art preconditioners, showing
the competitiveness of our approach.

Observation

v Viscosity-robust preconditioning

X Only 2D, no further implementation until 2018



Objectives

- First general implementation of the method. v
- Extend the solver and discretisation to three dimensions. v/
- Extend approach to divergence-free discretisations. v/

1. Control Schur complement with an augmented Lagrangian term

2. Kernel-capturing multigrid relaxation
3. Robust multigrid prolongation

P.E. Farrell, L. Mitchell, F. Wechsung. SIAM SISC (2019). arXiv: 1810.03315 [math.NA]


https://arxiv.org/abs/1810.03315

Controlling the Schur complement

Continuous augmentation
Add ~ grad div u term to the momentum equation.

Doesn't change solution since divu =0

Theorem (Hestenes, Fortin, Glowinski, Olshanksii, ...)
As v — oo, the Schur complement is well approximated by
ST'=—(w+ )M,



Controlling the Schur complement

Continuous augmentation
Add ~ grad div u term to the momentum equation.

Doesn't change solution since divu =0

Theorem (Hestenes, Fortin, Glowinski, Olshanksii, ...)
As v — oo, the Schur complement is well approximated by
ST'=—(w+ VIM, .

Discrete augmentation

(5 2600

Doesn't change solution since Bu = 0.

Again, as vy — oo, S~"is well approximated by 5~ = —(v + )M, .



Conservation of misery

Good news

The Schur complement becomes easy to approximate as v — co

Bad news

Normal multigrid approaches for A=" don’'t work for A, := A + ’yBTMfB,
and get worse as v — oc.



Conservation of misery

Good news

The Schur complement becomes easy to approximate as v — co

Bad news

Normal multigrid approaches for A=" don’'t work for A, := A + ’yBTMfB,
and get worse as v — oc.

A—1 A—1
LU for A AMG for AJ

v =10"" 15 18
v =1 6 40
v =10 3 107

Outer Krylov iterations for different choices of Z\;T



Point smoother is not sufficient

- lgnorning advection, then the top-left block corresponds to
discretisation of

a,(u,v) = /szs(u) te(v)dx  + /nydivudivv dx

sym. pos. def. sym. pos. semi-def.




Point smoother is not sufficient

- lgnorning advection, then the top-left block corresponds to
discretisation of

a,(u,v) = /szs(u) te(v)dx  + /nydivudivv dx

sym. pos. def. sym. pos. semi-def.

- The semi-definite term is singular on all solenoidal fields = the
system becomes nearly singular as v — oo



Point smoother is not sufficient

- lgnorning advection, then the top-left block corresponds to
discretisation of

a,(u,v) = /szs(u) te(v)dx  + /nydivudivv dx

sym. pos. def. sym. pos. semi-def.

- The semi-definite term is singular on all solenoidal fields = the
system becomes nearly singular as v — oo
- To build a y-robust scheme we need (Schoberl 1999)
- a y-robust smoother;
- a prolongation operator with y-independent continuity constant;
= overlapping Schwarz smoother with decomposition that decomposes the
kernel. “The right blocks for block Jacobi”.



Discretisation requirements

- Need inf-sup stable pair for velocity and pressure
- Need a local basis for the kernel of div (for efficiency).

Low-order

2D P2 — P
3D (P @ FB)® — Py (FB cubic face bubbles)
= overlapping star patches

b
[ ]
[ ]
/




Divergence-free pair

Choose element pair from discrete subcomplex of Stokes complex
H? 229 Wi (curl) <% 12 12,

Divergence-free

+ Scott-Vogelius pair: P4 — P3¢ on barycentrically refined meshes
(R >d).

19



Numerical results — 3D (P; @ FB)® — P,

#ref.  #dofs Reynolds number
10 100 1000 2500 5000
Lid Driven Cavity
1 2.1x10° | 450 4.00 5.00 450  4.00
2 1.7 %107 | 450 433 450  4.00 4.00
3 13 %108 | 450 433 400 350 7.00
4 1.1x10° | 450 3.66 3.00 500 5.00
Backwards facing step

1 21x10% | 450 4.00 4.00 450 7.50
2 1.7 %107 | 5.00 400 333 400 10.00
3 1.3x10% | 650 450 3.50 3.00 8.00
4 1.0x10° | 750 350 250 3.00 6.00

Table 2: Average number of outer Krylov iterations per Newton step for two 3D

benchmark problems.
20



Computational performance — 3D

3D lid-driven cavity.
80 T T T T

60/\’/

40 | 1

Time [min]

20 |- :

48 384 3072 24576
[213] [16.9] [135] [1077]

Velocity streamlines at Reynolds number 5000. Credit
Cores

6 F. Wechsung, University of Oxford.
[DoFs x10°]

50 continuation steps
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Numerical results — 2D P} — Pdisc

#Href.  #dofs Reynolds number
10 100 1000 5000 10000

Lid Driven Cavity

9.3x10% | 250 233 233 550 8.50
3.7x10° | 200 2.00 200 4.00 6.00
1.5x10% | 200 167 167 250 3.50
59x10° | 200 167 150 1.50 4.00

~ W N R

Backwards facing step

1 1.0 x10° | 2.00 250 250 5.00 7.50
2 41%10° | 250 250 150 3.00 4.00
3 1.6 x 107 | 250 250 1.50 1.50 2.50

Table 3: Average number of outer Krylov iterations per Newton step for two 2D
benchmark problems.
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It is possible to solve the Navier-Stokes equations in a Reynolds-robust
way!

Even for exactly divergence-free discretisations.

Open source implementation at https://github.com/florianwechsung/alfi

Enabling mathematical software

General implementation enabled by new mathematical software
developments:

- Extensible block-preconditioning framework in Firedrake
R.C. Kirby, L. Mitchell. SIAM SISC (2018). arXiv: 1706.01346 [cs.MS]
- New preconditioner in PETSc and Firedrake for multigrid relaxation
schemes based on subspace correction methods
PE. Farrell, M.G. Knepley, L. Mitchell, F. Wechsung. arXiv: 1912.08516 [cs.MS]

23


https://github.com/florianwechsung/alfi
https://arxiv.org/abs/1706.01346
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Future directions




Idea

- Mathematics is the language used to derive optimal solvers.
- It should be the language we use to describe their implementation.

Challenges

- Is there appropriate language to describe these problems to a
computer?

- Not everything is a PDE, what then?

EEVEIGS

- Bring state-of-the-art numerical solvers to the masses.
- Enable more exploratory, and creative, mathematics.



- Broad interdisciplinary research agenda spanning:

- finite element discretisation and implementation;
- linear and non-linear solvers/preconditioners;

- high-performance computing;

- domain-specific compilers.

- Application areas:

- coastal ocean & freshwater outflow;
- renewable energy;

- numerical weather prediction.
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