
MPE: Numerical Methods
Christmas Lectures

Lawrence Mitchell∗

Autumn term 2017

Sparse linear algebra: motivation
We wish to solve

Ax = b

where A is sparse, normally coming from the discretisation of a PDE.

• Recall, iterative methods for linear systems never need A itself.

• Fixed point iterations and Krylov subspace methods only ever use A
in context of matrix-vector product.

Corollaries

• Only need to provide matrix-vector product to solvers.

• If storing A, exploit sparse structure.

Sparse matrix formats

• Rather than storing a dense array (with many zeros), store only the
non-zero entries, plus their locations.

• Data size becomes O(nnz) rather than O(nrowncol).

• For finite stencils (as from mesh-based discretisations) asymptotically
save O(ncol).

∗lawrence.mitchell@imperial.ac.uk

1

Name Easy insertion Fast Ax A+B
Coordinate (COO) Yes No Easy
CSR No Yes Hard1

CSC No Yes Hard1

ELLPACK No Yes Hard1

Table 1: Common sparse storage types. Saad 2003, § 3.4 provides a nice
discussion of various formats.

Name Language Fortran? Python? Parallel PCs
PETSc2 C Yes Yes Yes Many
scipy.sparse3 Python No Yes No Some
EIGEN4 C++ No No No Some
Trilinos5 C++ No Yes Yes Many

Table 2: Some sparse libraries

Sparse matrix formats II: a zoo

Many formats
Operations with sparse matrices are bounded by the memory bandwidth of
the machine. The proliferation of slight variations to the CSR format all
attempt to exploit extra structure in the matrix to increase performance
through vectorisation and better cache reuse.

Common interface
Fortunately, you shouldn’t have to care. A sparse matrix library should
offer a consistent interface to insert values, and perform matrix operations,
irrespective of the underlying format.

Sparse matrix implementation: libraries

Maxim
The most important part of programming is knowing when not to write your
own code.

There are many full-featured sparse libraries available (serial and paral-
lel). When you need sparse linear algebra, take the time to learn one.

Some advice

• We’ve seen already that iterative methods only need Ax.

• But, it is important to be able to precondition the solver.

2

• Assembled sparse matrix formats give you good performance, and ac-
cess to a wide suite of preconditioners.

Maxim
Always start by implementing problems with assembled operators. Now you
can try lots of things quickly and get your model working. Then, and only
then can you start worrying about further performance optimisations.

Questions upon encountering a matrix

1. What do you want to do with it?

• Compute Ax?

• Solve linear systems (or eigen-problems)?

2. What does the spectrum look like?

• Are the eigenvalues all distinct, or clustered?

• Symmetric positive definite? σ(A) ⊂ R+

• Nonsymmetric definite? σ(A) ⊂ {z ∈ C : R(z) > 0}
• Symmetric indefinite? σ(A) ⊂ R
• Nonsymmetric indefinite? σ(A) ∈ C

3. What is its sparsity?

4. Is there a better way of computing Ax than by starting with A?

5. Is there another matrix whose spectrum is similar, but is “nicer”?

6. How can we precondition A?

Krylov methods are not solvers

Assertion 1 (Krylov solvers are not solvers). Despite guarantees of conver-
gence in exact arithmetic for CG (and GMRES), in actual practical cases a
bare Krylov method is almost useless.

• Krylov methods converge fast if:

1. there is a low-degree polynomial with p(0) = 1 with p(λi) = 0 ∀λi,
or

2. you’re lucky and you get a “special” right hand side.

3

• Convergence to a tolerance requires p(λi) small. Achievable if eigenval-
ues are clustered.

• For most operators we will encounter, the eigenvalues are typically not
clustered.

Preconditioning to the rescue

Definition 1 (Preconditioner). A preconditioner P is a method for con-
structing a linear operator P−1 = P(A,Ap) using a matrix A and some extra
information Ap, such that the spectrum of P−1A (or AP−1) is well-behaved.

• P−1 is dense, and P itself is often not available (and not needed).

• Normally, A is not used by P . But often we make the choice Ap = A.

• Often P can be a (matrix-based) “black-box”. Things like Jacobi,
Gauss-Seidel, (incomplete) factorisations fall into this category.

• If you know something about A, you can often do better than a black-
box approach.

If you’re writing a simulation

Direct solvers (LU factorisation)
Reasonable for medium-sized problems, robust but not scalable.

2D O(N
3/2
dof) flops, O(Ndof logNdof) memory.

3D O(N2
dof) flops, O(N

4/3
dof) memory.

1. Develop your problem at small scale, using a (sparse) direct solver.
“Get all the maths right”.

2. Switch to an iterative method, weep quietly as your problem no longer
converges.

3. Read the literature to find a robust h-independent preconditioner (it-
erations constant irrespective of resolution).

4. ... (implementation).

5. Solve at scale (without waiting until next year).

4

Choosing a preconditioner: connections to PDEs

• We often think of preconditioning in the context of “I have a matrix
system I want to solve”.

• However, there is a very deep connection between preconditioning and
functional analysis (and the theory of PDEs).

• In particular, figuring out what an appropriate preconditioner is.

• For more details, Kirby (2010) and Málek and Strakoš (2014) provide
a good introduction.

A sketch for CG

• We can formulate Krylov methods in Hilbert spaces. Let

A : V → V ; b ∈ V.

• A Krylov method seeks an “optimal”

xm ∈ Km(A, b) = span{b, Ab,A2b, . . . , Am−1b},
where Km is the Krylov basis.

• CG is appropriate if A is SPD and finds xm minimising the A-norm of
the error:

xm = arg min
y∈Km

〈Ay, y〉 − 2〈b, y〉

• Note that this construction requires that A : V → V .

Where’s the problem?

• For a discretisation of a PDE, we typically have

A : V → V ∗.

• Consider an H1 discretisation of the Laplacian. This maps from H1

(the space of piecewise smooth functions) to its dual H−1. But

H1 ⊂ L2 ⊂ H−1

• So now V ∗ 6= V . But CG requires that b, Ab, . . . ,∈ V .

• We can think of preconditioning as fixing this “type-error” by choosing
B : V ∗ → V and then solving the preconditioned problem

BA : V → V ∗ → V.

• Analysis of the PDE tells you an appropriate choice of B.

5

A concrete example

Model problem

−∇2u(x, y) = f(x, y), in Ω = [−1, 1]2

u(x, y) = 0. on ∂Ω

Discretised with 5-point stencil on regular grid (expect O(h2) convergence of
error).

Is my code correct?
First, I need to check that I have implemented things correctly

Two exact solutions

10−310−210−1100
10−8

10−6

10−4

10−2

100

O(h2)

h

L
2

er
ro

r

u(x, y) = sin(πx) sin(πy)

10−310−210−1100
10−8

10−6

10−4

10−2

O(h2)

h

L
2

er
ro

r

u(x, y) = sin(πx) sin(πy) exp(−10(x2 + y2))

6

Spectrum

10−2 10−1 100 101

−0.5

0

0.5

1

R(λ)

C
(λ

)

Eigenvalues of ∇2, κ = 933.11

Expected convergence
Recall that the A-norm of the error at the kth iteration is bounded above

by

||u∗ − uk||A = ||ek||A ≤ 2||e0||A
(√

κ− 1√
κ+ 1

)k

.

Where κ = |λmax/λmin| is the condition number of A (or the preconditioned
A as appropriate).

Poisson convergence
The Laplacian has an h-dependent condition number:

lim
h→0

κ ∼ O(h−2)

and so we expect CG to converge in O(h−1) iterations.

Stopping criteria (a reminder)
CG minimises the A-norm of the error, but we don’t have access to that

while iterating (we don’t know the solution!). However, we can bound the
2-norm of the error.

Theorem 2. <2-> If we require ||rk||2 < λ−1minδ then we guarantee ||u∗ −
uk||2 < δ.

7

Proof.

||u∗ − uk||2 = ||A−1A(u∗ − uk)||2 ≤ ||A−1||2||(b− Auk)||2
= λ−1min||rk||2.

Back to the model problem
We’ve seen that the unpreconditioned operator has a bad spectrum for

iterative solvers. Let’s try when u(x, y) = sin(πx) sin(πy)

10−310−210−1100

0.9

1

1.1

1.2

h

It
er
at
io
ns

Iterations to converge product of sines solution

We had a special right hand side

10−310−210−1

100

101

102

103 O(h−1)

h

It
er
at
io
ns

Iterations to converge exponential hump solution

8

Some preconditioned spectra

10−2 10−1 100 101

−0.5

0

0.5

1

R(λ)

C
(λ

)

Eigenvalues of ∇2, κ = 933.11

10−2 10−1 100 101

−0.5

0

0.5

1

R(λ)

C
(λ

)

With Jacobi, κ = 933.11

9

10−2 10−1 100 101

−0.5

0

0.5

1

R(λ)

C
(λ

)

With Gauss-Seidel, κ = 117.5

10−2 10−1 100 101

−0.5

0

0.5

1

R(λ)

C
(λ

)

With SSOR(ω = 1.3), κ = 20.06

10

10−2 10−1 100 101

−0.5

0

0.5

1

R(λ)

C
(λ

)

With ILU(4), κ = 7

Back to convergence

10−310−210−1

100

101

102

103

O(h−1)

h

It
er
at
io
ns

Iterations to converge exponential hump solution

Plain CG
G-S
SOR(ω = 1.3)
ILU(4)

Compare (damped) Richardson

11

10−310−210−1

100

101

102

103

104

105 O(h−2)

h

It
er
at
io
ns

Iterations to converge exponential hump solution

Richardson
G-S
SOR(ω = 1.3)
ILU(4)

What is going wrong?

• The asymptotic convergence rate is as expected, can we gain an intu-
ition for why we get this behaviour?

• It’s instructive to look at what happens to the error.

• Let’s choose the forcing such that u∗ = sin(πx) sin(πy)

• Initial guess, randomly choose u0(x, y) ∈ [−1, 1] satisfying the zero
Dirichlet conditions.

12

CG Richardson

Jacobi

G-S

ILU(4)

Iteration 0

CG Richardson

Jacobi

G-S

ILU(4)

Iteration 1

13

CG Richardson

Jacobi

G-S

ILU(4)

Iteration 2

CG Richardson

Jacobi

G-S

ILU(4)

Iteration 3

14

CG Richardson

Jacobi

G-S

ILU(4)

Iteration 4

CG Richardson

Jacobi

G-S

ILU(4)

Iteration 5

15

CG Richardson

Jacobi

G-S

ILU(4)

Iteration
10

CG Richardson

Jacobi

G-S

ILU(4)

Iteration
15

16

CG Richardson

Jacobi

G-S

ILU(4)

Iteration
20

CG Richardson

Jacobi

G-S

ILU(4)

Iteration
30

17

CG Richardson

Jacobi

G-S

ILU(4)

Iteration
40

Intuition: what’s going on

• Poisson problem is globally coupled

• But splitting-based solvers only propagate information locally

• So as we increase the resolution more and more, everything takes longer

• Stationary iterations like Jacobi, G-S, SOR are often called smoothers

• They remove high frequency error very well, but take a long time to
damp the low frequency error.

Multilevel methods

• Use a hierarchy of scales

• Use cheap smoothers to get a smooth error

• Move to a coarser grid (where the error looks rough again)

• Rinse and repeat

18

Optimality
Multigrid methods can be algorithmically optimal. Requiring O(Ndof) work
to reduce the error to within discretisation error.

If you’re interested in this, the classic text on multigrid is Brandt 1977,
but there is a huge literature on this.

10−310−210−1100
10−9

10−7

10−5

10−3

10−1

O(h2)

h

L
2
er
ro
r

Error after one “full multigrid” cycle

Exact solve
FMG

Our favourite spectrum

10−2 10−1 100 101

−0.5

0

0.5

1

R(λ)

C
(λ

)

Eigenvalues of ∇2 preconditioned by multigrid V-cycle, κ = 1.11

And convergence

19

10−310−210−1

100

101

102

103

O(h−1)

h

It
er
at
io
ns

Iterations to converge exponential hump solution

Plain CG
ILU(4)
MG

What is best for me?

Work precision diagrams
To judge which method to use for your problem, it is important to consider
the regime you’re interested in. Work precision diagrams are useful for this.

10−610−510−410−310−210−1

10−4

10−3

10−2

10−1

100

101

102

L2 error

T
im

e
(s
)

No preconditioning
SOR(ω = 1.3)

Multigrid
Sparse LU

Use libraries in your software

Maxim
The most important part of programming is knowing when not to write your
own code.

• You should not, except maybe for interest, implement all these iterative
methods (and preconditioners) yourself!

• There are many high-quality libraries available. Pick one, and use it.

20

• I used PETSc to develop the example that produced the results in these
slides.

What to do

• CG (Hestenes and Stiefel 1952) minimises the A−norm of the error. If
A is not SPD, it doesn’t define a norm, so we can’t do that

• Instead, minimise 2−norm of residual: ||b− Ax||2.

• If A is symmetric (but indefinite), use MINRES or SYMMLQ (Paige
and Saunders 1975).

• If A is not symmetric, probably use GMRES (Saad and Schultz 1986).

Asymmetry makes everything worse

• MINRES uses short recurrences and, like CG, uses bounded memory

• GMRES needs to reorthogonalise the current subspace at every step,
therefore memory use grows with iteration count.

• Other non-symmetric methods (BICGSTAB, CGS, ...) have worse con-
vergence properties (or no guarantees).

GMRES issues

• Convergence very operator-dependent, see, for example Nachtigal,
Reddy, and Trefethen (1992) and Greenbaum, Pták, and Strakoš
(1996).

• Restarted GMRES makes things more complex, see Embree (2003) for
a nice review.

• Much harder to find good preconditioners for non-symmetric systems.

What about multiple variables?

• Often, we need to solve a problem of more than one variable. Stokes,
Navier-Stokes, Cahn-Hilliard, MHD, combinations thereof.

• “black-box” preconditioning is even less likely to work than for single-
variable systems.

• Many of the state-of-the art preconditioners for such problems rely on
block factorisations of the operator.

21

Block systems

Theorem 3. If a block matrix

A =

(
A BT

C 0

)
is preconditioned by

P =

(
A 0
0 CA−1BT

)
then the preconditioned matrix P−1A has at most four distinct eigenvalues.

Murphy, Golub, and A. J. Wathen (2000). Writing

T =

(
I A−1BT

(CA−1BT)−1C 0

)
,

then
(T − I/2)2 =

(
I/4 + A−1BT (CA−1BT)−1C 0

0 I/4

)
.

Since A−1BT (CA−1BT)−1C is a projection[
(T − I/2)2 − I/4

]2
= (T − I/2)2 − I/4

and so
T (T − I)(T 2 − T − I) = 0.

Some pointers

• Saad (2003) is good on stationary and Krylov iterations.

• Benzi, Golub, and Liesen (2005) is quite exhaustive on saddle point
systems

(
A BT

1
B2 −C

)
.

• A. J. Wathen (2015) is a recent (gentle) review article.

• Elman, Silvester, and A. Wathen (2014) covers saddle point solvers in
the context of fluid dynamics.

• Kirby (2010) and Mardal and Winther (2011) present an interesting
approach to designing preconditioners based on ideas from functional
analysis.

22

Questions?
References

References
Benzi, M., G. H. Golub, and J. Liesen (2005). “Numerical solution of sad-

dle point problems”. In: Acta Numerica 14, pp. 1–137. doi: 10.1017/
S0962492904000212.

Brandt, A. (1977). “Multi-level adaptive solutions to boundary-value prob-
lems”. In: Mathematics of Computation 31.138, pp. 333–390.

Elman, H., D. Silvester, and A. Wathen (2014). Finite elements and fast
iterative solvers. Second edition. Oxford University Press.

Embree, M. (2003). “The Tortoise and the Hare: Restart GMRES”. In: SIAM
Review 45.2, pp. 259–266. doi: 10.1137/S003614450139961.

Greenbaum, A., V. Pták, and Z. Strakoš (1996). “Any Nonincreasing Con-
vergence Curve is Possible for GMRES”. In: SIAM Journal on Ma-
trix Analysis and Applications 17.3, pp. 465–469. doi: 10 . 1137 /
S0895479894275030.

Hestenes, M. R. and E. Stiefel (1952). “Methods of conjugate gradients for
solving linear systems”. In: Journal of Research of the National Bureau of
Standards 49.6, pp. 409–436.

Kirby, R. C. (2010). “From Functional Analysis to Iterative Methods”. In:
SIAM Review 52.2, pp. 269–293. doi: 10.1137/070706914.

Málek, J. and Z. Strakoš (2014). Preconditioning and the Conjugate Gradient
Method in the Context of Solving PDEs. Philadelphia, PA: Society for
Industrial and Applied Mathematics. doi: 10.1137/1.9781611973846.

Mardal, K.-A. and R. Winther (2011). “Preconditioning discretizations of
systems of partial differential equations”. In: Numerical Linear Algebra
with Applications 18.1, pp. 1–40. doi: 10.1002/nla.716.

Murphy, M. F., G. H. Golub, and A. J. Wathen (2000). “A Note on Precon-
ditioning for Indefinite Linear Systems”. In: SIAM Journal on Scientific
Computing 21.6, pp. 1969–1972. doi: 10.1137/S1064827599355153.

Nachtigal, N., S. Reddy, and L. Trefethen (1992). “How fast are nonsym-
metric matrix iterations?” In: SIAM Journal on Matrix Analysis and . . .
13.3, pp. 778–795. doi: 10.1137/0613049.

Paige, C. C. and M. A. Saunders (1975). “Solution of sparse indefinite sys-
tems of linear equations”. In: SIAM Journal on Numerical Analysis 12.4,
pp. 617–629. doi: 10.1137/0712047.

23

http://dx.doi.org/10.1017/S0962492904000212
http://dx.doi.org/10.1017/S0962492904000212
http://dx.doi.org/10.1137/S003614450139961
http://dx.doi.org/10.1137/S0895479894275030
http://dx.doi.org/10.1137/S0895479894275030
http://dx.doi.org/10.1137/070706914
http://dx.doi.org/10.1137/1.9781611973846
http://dx.doi.org/10.1002/nla.716
http://dx.doi.org/10.1137/S1064827599355153
http://dx.doi.org/10.1137/0613049
http://dx.doi.org/10.1137/0712047

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. Second edi-
tion. Society for Industrial and Applied Mathematics. doi: 10.1137/1.
9780898718003.

Saad, Y. and M. H. Schultz (1986). “GMRES: a generalized minimal residual
algorithm for solving nonsymmetric linear systems”. In: SIAM Journal
on Scientific and Statistical Computing 7.3, pp. 856–869. doi: 10.1137/
0907058.

Wathen, A. J. (2015). “Preconditioning”. In: Acta Numerica 24, pp. 329–376.
doi: 10.1017/S0962492915000021.

24

http://dx.doi.org/10.1137/1.9780898718003
http://dx.doi.org/10.1137/1.9780898718003
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1017/S0962492915000021

