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Sparse linear algebra
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Sparse linear algebra: motivation

We wish to solve
Ax = b

where A is sparse, normally coming from the discretisation of a
PDE.

I Recall, iterative methods for linear systems never need A itself.
I Fixed point iterations and Krylov subspace methods only ever

use A in context of matrix-vector product.

Corollaries
I Only need to provide matrix-vector product to solvers.
I If storing A, exploit sparse structure.
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Sparse matrix formats

I Rather than storing a dense array (with many zeros), store
only the non-zero entries, plus their locations.

I Data size becomes O(nnz) rather than O(nrowncol).
I For finite stencils (as from mesh-based discretisations)

asymptotically save O(ncol).

Name Easy insertion Fast Ax A + B

Coordinate (COO) Yes No Easy
CSR No Yes Hard2

CSC No Yes Hard2

ELLPACK No Yes Hard2

Table: Common sparse storage types. Saad 2003, § 3.4 provides a nice
discussion of various formats.

2unless A and B have matching sparsity
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Sparse matrix formats II: a zoo

Many formats
Operations with sparse matrices are bounded by the memory
bandwidth of the machine. The proliferation of slight variations to
the CSR format all attempt to exploit extra structure in the matrix
to increase performance through vectorisation and better cache
reuse.

Common interface
Fortunately, you shouldn’t have to care. A sparse matrix library
should offer a consistent interface to insert values, and perform
matrix operations, irrespective of the underlying format.
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Sparse matrix implementation: libraries

Maxim
The most important part of programming is knowing when not to
write your own code.

There are many full-featured sparse libraries available (serial and
parallel). When you need sparse linear algebra, take the time to
learn one.
Name Language Fortran? Python? Parallel PCs
PETSc3 C Yes Yes Yes Many
scipy.sparse4 Python No Yes No Some
EIGEN5 C++ No No No Some
Trilinos6 C++ No Yes Yes Many

Table: Some sparse libraries

3mcs.anl.gov/petsc
4docs.scipy.org/doc/scipy/reference/sparse.html
5eigen.tuxfamily.org
6trilinos.org 6

http://mcs.anl.gov/petsc
http://docs.scipy.org/doc/scipy/reference/sparse.html
http://eigen.tuxfamily.org
http://trilinos.org


Some advice

I We’ve seen already that iterative methods only need Ax.
I But, it is important to be able to precondition the solver.
I Assembled sparse matrix formats give you good performance,

and access to a wide suite of preconditioners.

Maxim
Always start by implementing problems with assembled operators.
Now you can try lots of things quickly and get your model working.
Then, and only then can you start worrying about further
performance optimisations.
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Preconditioning Krylov methods
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Questions upon encountering a matrix

1. What do you want to do with it?
I Compute Ax?
I Solve linear systems (or eigen-problems)?

2. What does the spectrum look like?
I Are the eigenvalues all distinct, or clustered?
I Symmetric positive definite? σ(A) ⊂ R+

I Nonsymmetric definite? σ(A) ⊂ {z ∈ C : R(z) > 0}
I Symmetric indefinite? σ(A) ⊂ R
I Nonsymmetric indefinite? σ(A) ∈ C

3. What is its sparsity?
4. Is there a better way of computing Ax than by starting with A?
5. Is there another matrix whose spectrum is similar, but is

“nicer”?
6. How can we precondition A?
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Krylov methods are not solvers

Assertion (Krylov solvers are not solvers)
Despite guarantees of convergence in exact arithmetic for CG (and
GMRES), in actual practical cases a bare Krylov method is almost
useless.

I Krylov methods converge fast if:
1. there is a low-degree polynomial with p(0) = 1 with

p(λi ) = 0 ∀λi , or
2. you’re lucky and you get a “special” right hand side.

I Convergence to a tolerance requires p(λi ) small. Achievable if
eigenvalues are clustered.

I For most operators we will encounter, the eigenvalues are
typically not clustered.
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Preconditioning to the rescue

Definition (Preconditioner)
A preconditioner P is a method for constructing a linear operator
P−1 = P(A,Ap) using a matrix A and some extra information Ap,
such that the spectrum of P−1A (or AP−1) is well-behaved.

I P−1 is dense, and P itself is often not available (and not
needed).

I Normally, A is not used by P. But often we make the choice
Ap = A.

I Often P can be a (matrix-based) “black-box”. Things like
Jacobi, Gauss-Seidel, (incomplete) factorisations fall into this
category.

I If you know something about A, you can often do better than
a black-box approach.
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If you’re writing a simulation

Direct solvers (LU factorisation)
Reasonable for medium-sized problems, robust but not scalable.

2D O(N
3/2
dof ) flops, O(Ndof logNdof) memory.

3D O(N2
dof) flops, O(N

4/3
dof ) memory.

1. Develop your problem at small scale, using a (sparse) direct
solver. “Get all the maths right”.

2. Switch to an iterative method, weep quietly as your problem
no longer converges.

3. Read the literature to find a robust h-independent
preconditioner (iterations constant irrespective of resolution).

4. ... (implementation).
5. Solve at scale (without waiting until next year).
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Choosing a preconditioner: connections to PDEs

I We often think of preconditioning in the context of “I have a
matrix system I want to solve”.

I However, there is a very deep connection between
preconditioning and functional analysis (and the theory of
PDEs).

I In particular, figuring out what an appropriate preconditioner
is.

I For more details, Kirby (2010) and Málek and Strakoš (2014)
provide a good introduction.
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A sketch for CG

I We can formulate Krylov methods in Hilbert spaces. Let

A : V → V ; b ∈ V .

I A Krylov method seeks an “optimal”

xm ∈ Km(A, b) = span{b,Ab,A2b, . . . ,Am−1b},

where Km is the Krylov basis.
I CG is appropriate if A is SPD and finds xm minimising the

A-norm of the error:

xm = argmin
y∈Km

〈Ay , y〉 − 2〈b, y〉

I Note that this construction requires that A : V → V .

14



Where’s the problem?

I For a discretisation of a PDE, we typically have

A : V → V ∗.

I Consider an H1 discretisation of the Laplacian. This maps
from H1 (the space of piecewise smooth functions) to its dual
H−1. But

H1 ⊂ L2 ⊂ H−1

I So now V ∗ 6= V . But CG requires that b,Ab, . . . ,∈ V .
I We can think of preconditioning as fixing this “type-error” by

choosing B : V ∗ → V and then solving the preconditioned
problem

BA : V → V ∗ → V .

I Analysis of the PDE tells you an appropriate choice of B .
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An exemplar problem
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A concrete example

Model problem

−∇2u(x , y) = f (x , y), in Ω = [−1, 1]2

u(x , y) = 0. on ∂Ω

Discretised with 5-point stencil on regular grid (expect O(h2)
convergence of error).
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Is my code correct?

First, I need to check that I have implemented things correctly

Two exact solutions

10−310−210−1100
10−8

10−6

10−4

10−2
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O(h2)
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L
2
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u(x , y) = sin(πx) sin(πy)

10−310−210−1100
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u(x , y) = sin(πx) sin(πy) exp(−10(x2 + y2))
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Spectrum

10−2 10−1 100 101

−0.5

0

0.5

1

R(λ)

C
(λ

)

Eigenvalues of ∇2, κ = 933.11
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Expected convergence

Recall that the A-norm of the error at the kth iteration is bounded
above by

||u∗ − uk ||A = ||ek ||A ≤ 2||e0||A
(√

κ− 1√
κ+ 1

)k

.

Where κ = |λmax/λmin| is the condition number of A (or the
preconditioned A as appropriate).

Poisson convergence
The Laplacian has an h-dependent condition number:

lim
h→0

κ ∼ O(h−2)

and so we expect CG to converge in O(h−1) iterations.
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Stopping criteria (a reminder)

CG minimises the A-norm of the error, but we don’t have access to
that while iterating (we don’t know the solution!). However, we
can bound the 2-norm of the error.

Theorem
If we require ||rk ||2 < λ−1

minδ then we guarantee ||u∗ − uk ||2 < δ.

Proof.

||u∗ − uk ||2 = ||A−1A(u∗ − uk)||2 ≤ ||A−1||2||(b − Auk)||2
= λ−1

min||rk ||2.

21



Stopping criteria (a reminder)

CG minimises the A-norm of the error, but we don’t have access to
that while iterating (we don’t know the solution!). However, we
can bound the 2-norm of the error.

Theorem
If we require ||rk ||2 < λ−1

minδ then we guarantee ||u∗ − uk ||2 < δ.

Proof.

||u∗ − uk ||2 = ||A−1A(u∗ − uk)||2 ≤ ||A−1||2||(b − Auk)||2
= λ−1

min||rk ||2.

21



Back to the model problem

We’ve seen that the unpreconditioned operator has a bad spectrum
for iterative solvers. Let’s try when u(x , y) = sin(πx) sin(πy)

10−310−210−1100

0.9
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1.1

1.2

h

It
er
at
io
ns

Iterations to converge product of sines solution
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We had a special right hand side

10−310−210−1
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Iterations to converge exponential hump solution
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Some preconditioned spectra
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Eigenvalues of ∇2, κ = 933.11
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Some preconditioned spectra
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With Jacobi, κ = 933.11
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Some preconditioned spectra
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With Gauss-Seidel, κ = 117.5
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Some preconditioned spectra
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With SSOR(ω = 1.3), κ = 20.06
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Some preconditioned spectra
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With ILU(4), κ = 7
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Back to convergence

10−310−210−1
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Iterations to converge exponential hump solution

Plain CG
G-S
SOR(ω = 1.3)
ILU(4)
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Compare (damped) Richardson

10−310−210−1

100

101

102

103

104

105 O(h−2)

h

It
er
at
io
ns

Iterations to converge exponential hump solution
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G-S
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ILU(4)
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What is going wrong?

I The asymptotic convergence rate is as expected, can we gain
an intuition for why we get this behaviour?

I It’s instructive to look at what happens to the error.
I Let’s choose the forcing such that u∗ = sin(πx) sin(πy)

I Initial guess, randomly choose u0(x , y) ∈ [−1, 1] satisfying the
zero Dirichlet conditions.

27



CG Richardson

Jacobi

G-S

ILU(4)

Iteration 0
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Intuition: what’s going on

I Poisson problem is globally coupled
I But splitting-based solvers only propagate information locally
I So as we increase the resolution more and more, everything

takes longer
I Stationary iterations like Jacobi, G-S, SOR are often called

smoothers
I They remove high frequency error very well, but take a long

time to damp the low frequency error.
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Multilevel methods

I Use a hierarchy of scales
I Use cheap smoothers to get a smooth error
I Move to a coarser grid (where the error looks rough again)
I Rinse and repeat

Optimality
Multigrid methods can be algorithmically optimal. Requiring
O(Ndof) work to reduce the error to within discretisation error.
If you’re interested in this, the classic text on multigrid is Brandt
1977, but there is a huge literature on this.
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Multilevel methods

10−310−210−1100
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Error after one “full multigrid” cycle

Exact solve
FMG
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Our favourite spectrum
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Eigenvalues of ∇2 preconditioned by multigrid V-cycle, κ = 1.11
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And convergence

10−310−210−1
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Iterations to converge exponential hump solution

Plain CG
ILU(4)
MG
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What is best for me?

Work precision diagrams
To judge which method to use for your problem, it is important to
consider the regime you’re interested in. Work precision diagrams
are useful for this.

10−610−510−410−310−210−1

10−4

10−3

10−2

10−1

100

101

102

L2 error

T
im

e
(s
)

No preconditioning
SOR(ω = 1.3)

Multigrid
Sparse LU
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Use libraries in your software

Maxim
The most important part of programming is knowing when not to
write your own code.

I You should not, except maybe for interest, implement all these
iterative methods (and preconditioners) yourself!

I There are many high-quality libraries available. Pick one, and
use it.

I I used PETSc to develop the example that produced the
results in these slides.
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My operator isn’t SPD

45



What to do

I CG (Hestenes and Stiefel 1952) minimises the A−norm of the
error. If A is not SPD, it doesn’t define a norm, so we can’t do
that

I Instead, minimise 2−norm of residual: ||b − Ax ||2.
I If A is symmetric (but indefinite), use MINRES or SYMMLQ

(Paige and Saunders 1975).
I If A is not symmetric, probably use GMRES (Saad and Schultz

1986).
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Asymmetry makes everything worse

I MINRES uses short recurrences and, like CG, uses bounded
memory

I GMRES needs to reorthogonalise the current subspace at every
step, therefore memory use grows with iteration count.

I Other non-symmetric methods (BICGSTAB, CGS, ...) have
worse convergence properties (or no guarantees).

GMRES issues
I Convergence very operator-dependent, see, for example

Nachtigal, Reddy, and Trefethen (1992) and Greenbaum,
Pták, and Strakoš (1996).

I Restarted GMRES makes things more complex, see Embree
(2003) for a nice review.

I Much harder to find good preconditioners for non-symmetric
systems.

47



What about multiple variables?

I Often, we need to solve a problem of more than one variable.
Stokes, Navier-Stokes, Cahn-Hilliard, MHD, combinations
thereof.

I “black-box” preconditioning is even less likely to work than for
single-variable systems.

I Many of the state-of-the art preconditioners for such problems
rely on block factorisations of the operator.
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Block systems I

Theorem
If a block matrix

A =

(
A BT

C 0

)
is preconditioned by

P =

(
A 0
0 CA−1BT

)
then the preconditioned matrix P−1A has at most four distinct
eigenvalues.
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Block systems II

Murphy, Golub, and A. J. Wathen (2000).
Writing

T =

(
I A−1BT

(CA−1BT )−1C 0

)
,

then

(T − I/2)2 =

(
I/4 + A−1BT (CA−1BT )−1C 0

0 I/4

)
.

Since A−1BT (CA−1BT )−1C is a projection[
(T − I/2)2 − I/4

]2
= (T − I/2)2 − I/4

and so
T (T − I )(T 2 − T − I ) = 0.

50



Some pointers

I Saad (2003) is good on stationary and Krylov iterations.
I Benzi, Golub, and Liesen (2005) is quite exhaustive on saddle

point systems
(

A BT
1

B2 −C

)
.

I A. J. Wathen (2015) is a recent (gentle) review article.
I Elman, Silvester, and A. Wathen (2014) covers saddle point

solvers in the context of fluid dynamics.
I Kirby (2010) and Mardal and Winther (2011) present an

interesting approach to designing preconditioners based on
ideas from functional analysis.
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Questions?
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