

Flexible computational abstractions for complex preconditioners

Lawrence Mitchell^{1,*}

P. E. Farrell (Oxford) R. C. Kirby (Baylor) M. G. Knepley (Buffalo) F. Wechsung (Oxford) July 2, 2019

¹Department of Computer Science, Durham University *lawrence.mitchell@durham.ac.uk

Software setting

Firedrake (www.firedrakeproject.org) [...] is an automated system for the solution of partial differential equations using the finite element method.

- Finite element problems specified with *embedded* domain specific language, UFL from the FEniCS project.
- Runtime compilation to optimised, low-level (C) code.
- PETSc for meshes and (algebraic) solvers.

arXiv:1501.01809[cs.MS]

Advert

3rd Firedrake user meeting is in Durham 26 & 27 September 2019.

www.firedrakeproject.org/firedrake_19.html

Rayleigh-Bénard convection

$$-\Delta u + u \cdot \nabla u + \nabla p + \frac{\text{Ra}}{\text{Pr}}\hat{g}T = 0$$
$$\nabla \cdot u = 0$$
$$-\frac{1}{\text{Pr}}\Delta T + u \cdot \nabla T = 0$$

Newton

$$\begin{bmatrix} F & B^T & M_1 \\ C & 0 & 0 \\ M_2 & 0 & K \end{bmatrix} \begin{bmatrix} \delta u \\ \delta p \\ \delta T \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix}$$

solve(F == 0, upT, bcs=bcs)

What about the solver?

Coupled multigrid for Stokes/Navier-Stokes

In the SCGS scheme four velocites and one pressure corresponding to one finite difference node are simultaneously updated by inverting a (small) matrix of equations.

Vanka (1986)

p-independent preconditioners for elliptic problems

[Each subspace is generated from] $V_i^p = V^p \cap H_0^1(\Omega_i')$ where Ω_i' is the open square centered at the ith vertex

Pavarino (1993)

Multigrid for nearly incompressible elasticity

The suggested smoother is a block Jacobi smoother, which takes care of the kernel [...]. These kernel basis functions are captured by subspaces $V_{l,i}$ as shown

Schöberl (1999)

Multigrid in *H*(div) and *H*(curl)

To define the Schwarz smoothers, we can use a decomposition of V_h into local patches consisting of all elements surrounding either an edge or a vertex.

Arnold, Falk, and Winther (2000)

An augmented Lagrangian approach to the Oseen problem

We use a block Gauss-Seidel method [...] based on the decomposition $V_h = \sum_{i=0}^{l} V_i$. [...For] P2-P0 finite elements the natural choice is to gather nodel DOFs for velocity inside ovals [around a vertex]

Benzi and Olshanskii (2006)

Augmented Lagrangian for 3D Navier-Stokes

Farrell, Mitchell, and Wechsung (2018)

Smoothers all use block Jacobi/G-S with problem-specific choice of blocks.

- Decompose space (usually) based on some mesh decomposition
- Build and solve little problems on the resulting patches
- Combine additively or multiplicatively

Smoothers all use block Jacobi/G-S with problem-specific choice of blocks.

- Decompose space (usually) based on some mesh decomposition
- Build and solve little problems on the resulting patches
- Combine additively or multiplicatively

Challenge

Want to do this inside block preconditioners, and as a multigrid smoother.

Not sufficient to specify dof decomposition on a (single) global matrix.

PCPATCH

Requirements

- · Want flexible PC \Rightarrow change decomposition easily
- Need to nest inside more complex solvers

PCPATCH

Requirements

- · Want flexible PC \Rightarrow change decomposition easily
- Need to nest inside more complex solvers

Idea

- · Separate topological decomposition from algebraic operators
- User only provides topological description of patches
- Ask discretisation library to make the operators once decomposition is obtained

PCPATCH

Idea

- \cdot Separate topological decomposition from algebraic operators
- User only provides topological description of patches
- Ask discretisation library to make the operators once decomposition is obtained

Library support

- PETSc (mcs.anl.gov/petsc): DMPlex + PetscDS
 - -pc_type patch
- Firedrake (www.firedrakeproject.org): -pc_type python -pc_python_type firedrake.PatchPC
 - -snes_type python -snes_python_type firedrake.PatchSNES

- \cdot DMPlex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, **PCPATCH** determines the dofs that correspond to them
- Adjacency relations defined using topological queries: often star and closure

- \cdot DMPlex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, **PCPATCH** determines the dofs that correspond to them
- Adjacency relations defined using topological queries: often star and closure

star(vertex)

- DMPlex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, **PCPATCH** determines the dofs that correspond to them
- Adjacency relations defined using topological queries: often star and closure

- \cdot DMPlex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, **PCPATCH** determines the dofs that correspond to them
- Adjacency relations defined using topological queries: often star and closure

star(edge)

- DMPlex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, **PCPATCH** determines the dofs that correspond to them
- Adjacency relations defined using topological queries: often star and closure

• Each patch defined by set of mesh entities

Builtin

Specify patches by selecting:

- 1. Mesh entities $\{p_i\}$ to iterate over (e.g. vertices, cells)
- 2. Adjacency relation that gathers points in patch
 - **star** entities in star(*p_i*)
- vanka entities in closure(star(p_i))

User-defined

- 1. Custom adjacency relation (e.g. "only vertices in closure o star")
- 2. List of patches, plus iteration order \Rightarrow line-/plane-smoothers

- If we just want homogeneous Dirichlet, can use list of dofs to select from assembled global operator
- ✗ Doesn't work for other transmission conditions
- ✗ Doesn't work for nonlinear smoothers
- \Rightarrow Callback interface to get PDE library to assemble on each patch

Callbacks

```
/* Patch Jacobian */
UserComputeOp(PC, Vec state, Mat operator, Patch patch, void *userctx);
/* Patch Residual */
UserComputeF(PC, Vec state, Vec residual, Patch patch, void *userctx);
```

Examples

- For symmetric problems, can use kernel decomposition theorem of Schöberl (1999) and Lee, Wu, Xu, and Zikatanov (2007)
- Key challenge is to find a decomposition $\{V_i\}$ such that every u in the kernel \mathcal{N} can be written as $u = \sum_i u_i$ with $u_i \in V_i \cap \mathcal{N}$.

Characterising the kernel

Appropriate discrete de Rham complexes can help us finding the support of a basis for \mathcal{N} .

Find $u \in V \subset H(\operatorname{div})$ s.t. $(u, v)_{L^2} + \gamma(\operatorname{div} u, \operatorname{div} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V.$

L² de Rham complex

$$H^1 \xrightarrow{\operatorname{\mathsf{grad}}^{\perp}} H(\operatorname{\mathsf{div}}) \xrightarrow{\operatorname{\mathsf{div}}} L^2$$

Find $u \in V \subset H(\operatorname{div})$ s.t. $(u, v)_{L^2} + \gamma(\operatorname{div} u, \operatorname{div} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V.$

L² de Rham complex

femtable.org

Find $u \in V \subset H(\operatorname{div})$ s.t. $(u, v)_{L^2} + \gamma(\operatorname{div} u, \operatorname{div} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V.$

L² de Rham complex

femtable.org

- Exact sequence: $ker(div) = range(grad^{\perp})$
- Need patches containing support of the P_k basis functions \Rightarrow star around vertices

Find $u \in V \subset H(\operatorname{div})$ s.t. $(u, v)_{L^2} + \gamma(\operatorname{div} u, \operatorname{div} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V.$

-ksp_type cg
-pc_type mg
-mg_levels_
-pc_type python
<pre>-pc_python_type firedrake.PatchPC</pre>
-patch_
-pc_patch_construct_dim 0
-pc patch construct type star

Smoother \ γ	0	10 ⁻¹	10 ⁰	10 ¹	10 ²	10 ³
Point-Jacobi (<i>k</i> = 1)	11	27	49	68	86	103
Point-Jacobi (<i>k</i> = 2)	10	45	71	93	113	134
Block-Jacobi ($k = 1$)	6	11	12	12	12	12
Block-Jacobi (<i>k</i> = 2)	7	8	8	8	8	8

 Table 1: Iteration counts for multigrid preconditioned CG using RT_k elements.

H(div) and H(curl) multigrid in 3D (Arnold, Falk, and Winther 2000)

Find $u \in V \subset H(\operatorname{curl})$ s.t. $(u, v)_{L^2} + \gamma(\operatorname{curl} u, \operatorname{curl} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V.$

L² de Rham complex

$$H^1 \xrightarrow{\text{grad}} H(\text{curl}) \xrightarrow{\text{curl}} H(\text{div}) \xrightarrow{\text{div}} L^2$$

H(div) and H(curl) multigrid in 3D (Arnold, Falk, and Winther 2000)

Find $u \in V \subset H(\operatorname{curl})$ s.t. $(u, v)_{L^2} + \gamma(\operatorname{curl} u, \operatorname{curl} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V.$

L² de Rham complex

femtable.org

- Exact sequence: ker(curl) = range(grad), ker(div) = range(curl)
- *H*(curl): star around vertices
- *H*(div): star around edges

H(curl) multigrid in 3D (Arnold, Falk, and Winther 2000)

Find $u \in V \subset H(\operatorname{curl})$ s.t. $(u, v)_{L^2} + \gamma(\operatorname{curl} u, \operatorname{curl} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V.$

Smoother \ γ	0	10 ⁻¹	10 ⁰	10 ¹	10 ²	10 ³
Point-Jacobi (k = 1)	10	48	85	120	150	180
Point-Jacobi (<i>k</i> = 2)	22	115	211	293	370	446
Block-Jacobi (<i>k</i> = 1)	9	16	18	18	18	18
Block-Jacobi (<i>k</i> = 2)	9	12	12	12	12	12

Table 2: Iteration counts for multigrid preconditioned CG using Nedelecedge-elements of the first kind.

Find $u \in V \subset H(\operatorname{div})$ s.t. $(u, v)_{L^2} + \gamma(\operatorname{div} u, \operatorname{div} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V.$

Smoother \ γ	0	10 ⁻¹	10 ⁰	10 ¹	10 ²	10 ³
Point-Jacobi (<i>k</i> = 1)	11	63	109	146	180	221
Point-Jacobi (<i>k</i> = 2)	26	180	366	531	687	844
Block-Jacobi ($k = 1$)	12	30	36	36	37	37
Block-Jacobi (<i>k</i> = 2)	11	17	17	17	17	17

 Table 3: Iteration counts for multigrid preconditioned CG using Nedelec

 face-elements of the first kind.

Find $u \in V \subset H^1$ s.t. $(\operatorname{grad} u, \operatorname{grad} v) + \gamma(\operatorname{div} u, \operatorname{div} v) = (f, v) \quad \forall v \in V.$

2D Stokes complex

$$H^2 \xrightarrow{\operatorname{grad}^{\perp}} H^1 \xrightarrow{\operatorname{div}} L^2$$

- Decomposition must capture ker div = range grad^{\perp}.
- · Support of HCT element is on "macro" mesh \Rightarrow MacroStar

MacroStar

MacroStar

```
-ksp_type cg
-pc_type mg
-mg_levels_
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_
        -pc_patch_construct_dim 0
        -pc_patch_construct_type python
        -pc_patch_construct_python_type MacroStar
```

Just need to write custom adjacency to construct patch around each vertex

MacroStar

```
-ksp_type cg
-pc_type mg
-mg_levels_
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_
        -pc_patch_construct_dim 0
        -pc_patch_construct_type python
        -pc_patch_construct_python_type MacroStar
```

Just need to write custom adjacency to construct patch around each vertex

```
class MacroStar(OrderedRelaxation):
    def callback(self, dm, vertex):
        if dm.getLabelValue("MacroVertices", vertex) != 1:
            return None
        s = list(self.star(dm, vertex))
        closures = list(chain(*(self.closure(dm, e) for e in s)))
        want = [v for v in closures if dm.getLabelValue("MacroVertices", v) != 1]
        star = list(chain(*(self.star(dm, v) for v in want)))
        return s + star
```

Find $(u, p) \in V \times Q \subset (H^1)^d \times L^2$ s.t.

 $(\operatorname{grad} u, \operatorname{grad} v) - (p, \operatorname{div} v) - (\operatorname{div} u, q) = (f, v) \quad \forall (v, q) \in V \times Q.$

Vanka patch

Solve simultaneously for (u, p) on each pressure dof, gathering those velocity dofs that couple to the pressure dof.

- P2-P0: loop over cells, gather closure of star
- P2-P1: loop over vertices, gather closure of star

Find $(u, p) \in V \times Q \subset (H^1)^d \times L^2$ s.t.

 $(\operatorname{grad} u, \operatorname{grad} v) - (p, \operatorname{div} v) - (\operatorname{div} u, q) = (f, v) \quad \forall (v, q) \in V \times Q.$

Vanka patch

Solve simultaneously for (u, p) on each pressure dof, gathering those velocity dofs that couple to the pressure dof.

- P2-P0: loop over cells, gather closure of star
- P2-P1: loop over vertices, gather closure of star


```
-ksp_type cg
-pc_type mg
-mg_levels_
    -pc_type python
    -pc_python_type firedrake.PatchPC
    -patch_
        -pc_patch_construct_codim 0
        -pc_patch_construct_type vanka
        -pc_patch_exclude_subspaces 1
```

Find $(u, p) \in V \times Q \subset (H^1)^d \times L^2$ s.t.

 $(\operatorname{grad} u, \operatorname{grad} v) - (p, \operatorname{div} v) - (\operatorname{div} u, q) = (f, v) \quad \forall (v, q) \in V \times Q.$

Vanka patch

Solve simultaneously for (u, p) on each pressure dof, gathering those velocity dofs that couple to the pressure dof.

- P2-P0: loop over cells, gather closure of star
- P2-P1: loop over vertices, gather closure of star


```
-ksp_type cg
-pc_type mg
-mg_levels_
    -pc_type python
    -pc_python_type firedrake.PatchPC
    -patch_
        -pc_patch_construct_dim 0
        -pc_patch_construct_type vanka
        -pc_patch_exclude_subspaces 1
        -pc patch vanka dim 0
```

- **PCPATCH** provides simple and flexible interface for subspace correction methods
- Currently works with DMPlex + PetscDS and Firedrake
- Implements
 - Additive and multiplicative smoothing
 - · Simultaneous smoothing of multiple fields: monolithic approaches
 - Partition of unity (or not)
 - Nonlinear relaxation (Firedrake only)

Thanks!

References

- Alnæs, M. S., A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells (2014). "Unified Form Language: A Domain-specific Language for Weak Formulations of Partial Differential Equations". ACM Trans. Math. Softw. 40. doi:10.1145/2566630. arXiv: 1211.4047 [cs.MS].
- Arnold, D. N., R. S. Falk, and R. Winther (2000). "Multigrid in H(div) and H(curl)". Numerische Mathematik 85. doi:10.1007/s002110000137.
- Arnold, D. N., R. S. Falk, and R. Winther (July 1997). "Preconditioning in H(div) and Applications". Mathematics of Computation 66. doi:10.1090/S0025-5718-97-00826-0.
- Benzi, M. and M. A. Olshanskii (2006). "An Augmented Lagrangian-Based Approach to the Oseen Problem". SIAM Journal on Scientific Computing 28. doi:10.1137/050646421.
- Farrell, P. E., L. Mitchell, and F. Wechsung (2018). An augmented Lagrangian preconditioner for the 3D stationary incompressible Navier–Stokes equations at high Reynolds number. To appear in SIAM SISC. arXiv: 1810.03315 [math.NA].
- Lee, Y.-J., J. Wu, J. Xu, and L. Zikatanov (2007). "Robust subspace correction methods for nearly singular systems". Mathematical Models and Methods in Applied Sciences 17. doi:10.1142/s0218202507002522.
- Pavarino, L. F. (1993). "Additive Schwarz methods for the *p*-version finite element method". Numerische Mathematik 66. doi:10.1007/BF01385709.
- Rathgeber, F. et al. (2016). "Firedrake: automating the finite element method by composing abstractions". ACM Transactions on Mathematical Software 43. doi:10.1145/2998441. arXiv: 1501.01809 [cs.MS].
- Schöberl, J. (1999). "Multigrid methods for a parameter dependent problem in primal variables". Numerische Mathematik 84. doi:10.1007/s002110050465.
- Vanka, S. (1986). "Block-implicit multigrid solution of Navier-Stokes equations in primitive variables". Journal of Computational Physics 65. doi:10.1016/0021-9991(86)90008-2.