A8
P Durham

University

Flexible computational abstractions for complex
preconditioners

Lawrence Mitchell"
P.E. Farrell (Oxford) R. C. Kirby (Baylor) M. G. Knepley (Buffalo) F. Wechsung (Oxford)

July 2, 2019

"Department of Computer Science, Durham University
“lawrence.mitchell@durham.ac.uk

Software setting

Firedrake (www.firedrakeproject.org) [..] is an automated
system for the solution of partial differential equations using the
finite element method.

- Finite element problems specified with embedded domain specific
language, UFL from the FENICS project.

- Runtime compilation to optimised, low-level (C) code.

- PETSc for meshes and (algebraic) solvers.
arXiv: 1501.01809 [cs.MS]

3rd Firedrake user meeting is in Durham 26 & 27 September 2019.

www.firedrakeproject.org/firedrake_19.html

www.firedrakeproject.org
https://arxiv.org/abs/1501.01809
www.firedrakeproject.org/firedrake_19.html

UFL makes it easy to write down many complex PDEs

Rayleigh-Bénard convection from firedrake import =
mesh = ...
V = VectorFunctionSpace(mesh, "CG", 2)
—Au+u-Vu+Vp+ E@T =0 W = FunctionSpace(mesh, "CG", 1)
Pr Z=V+W=*W
V-u=0 Ra = Constant(200)
Pr = Constant(6.18)

1 _ upT = Function(Z)
—prol U VIi=0 u, p, T = split(upT)

v, q, S = TestFunctions(Z)
Newton bcs = ...

FB" M| [du fi F = (inner(grad(u), grad(v))
C 0 0 opl = |fz inner(dot(grad(u), u), v)
inner(p, div(v))
M0 K or f3 (Ra/Pr)+inner(T+g, v)
inner(div(u), q)
inner(dot(grad(T), u), S)
(1/Pr) = inner(grad(T), grad(S)))=dx

+ o+ o+ o+ 1+

solve(F == 0, upT, bcs=bcs)

What about the solver?

Some motivating schemes

Coupled multigrid for Stokes/Navier-Stokes
In the SCGS scheme four velocites and one pressure corresponding to one

finite difference node are simultaneously updated by inverting a (small)
matrix of equations.

U112, > Ui,

Vanka (1986)

Some motivating schemes

p-independent preconditioners for elliptic problems

[Each subspace is generated from] VP = VP N HZ)(Q;) where Q; is the open
square centered at the ith vertex

Qi) L,
Q,“ Q;,

Pavarino (1993)

Some motivating schemes

Multigrid for nearly incompressible elasticity

The suggested smoother is a block Jacobi smoother, which takes care of
the kernel [...]. These kernel basis functions are captured by subspaces V
as shown

Schoberl (1999)

Some motivating schemes

Multigrid in H(div) and H(curl)
To define the Schwarz smoothers, we can use a decomposition of V}, into

local patches consisting of all elements surrounding either an edge or a
vertex.

A A A A

Arnold, Falk, and Winther (2000)

Some motivating schemes

An augmented Lagrangian approach to the Oseen problem

We use a block Gauss-Seidel method [...] based on the decomposition
Vy = Zf‘:o V:. [...For] P2-PO finite elements the natural choice is to gather
nodel DOFs for velocity inside ovals [around a vertex]

Benzi and Olshanskii (2006)

Some motivating schemes

Augmented Lagrangian for 3D Navier-Stokes

Newton solver with line search|

Krylov solver (FGMRES)

Block preconditioner

Approximate Schur complement inverse |

F-cycle on augmented momentum block|

Coarse grid solver
LU factorization

Prolongation operator

Local solves over coarse cells |

Additive star iteration

Farrell, Mitchell, and Wechsung (2018)

Unifying observation

Smoothers all use block Jacobi/G-S with problem-specific choice of blocks.

- Decompose space (usually) based on some mesh decomposition
- Build and solve little problems on the resulting patches

- Combine additively or multiplicatively

Unifying observation

Smoothers all use block Jacobi/G-S with problem-specific choice of blocks.

- Decompose space (usually) based on some mesh decomposition
- Build and solve little problems on the resulting patches

- Combine additively or multiplicatively

Challenge

Want to do this inside block preconditioners, and as a multigrid smoother.

Not sufficient to specify dof decomposition on a (single) global matrix.

PCPATCH

PCPATCH

- Want flexible PC = change decomposition easily

- Need to nest inside more complex solvers

PCPATCH

- Want flexible PC = change decomposition easily

- Need to nest inside more complex solvers

- Separate topological decomposition from algebraic operators

- User only provides topological description of patches

- Ask discretisation library to make the operators once decomposition is
obtained

PCPATCH

- Separate topological decomposition from algebraic operators
- User only provides topological description of patches

- Ask discretisation library to make the operators once decomposition is
obtained

Library support

- PETSc (mcs.anl.gov/petsc): DMPlex + PetscDS
-pc_type patch

- Firedrake (www.firedrakeproject.org):
-pc_type python -pc_python_type firedrake.PatchPC

-snes_type python -snes_python_type firedrake.PatchSNES

mcs.anl.gov/petsc
www.firedrakeproject.org

Describing patches

- DMP1lex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, PCPATCH determines the

dofs that correspond to them
- Adjacency relations defined using topological queries: often star and

closure

Describing patches

- DMP1lex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, PCPATCH determines the

dofs that correspond to them
- Adjacency relations defined using topological queries: often star and

closure

star(vertex)

Describing patches

- DMP1lex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, PCPATCH determines the

dofs that correspond to them
- Adjacency relations defined using topological queries: often star and

closure

closure(star(vertex))

Describing patches

- DMP1lex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, PCPATCH determines the

dofs that correspond to them
- Adjacency relations defined using topological queries: often star and

closure

star(edge)

Describing patches

- DMP1lex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, PCPATCH determines the

dofs that correspond to them
- Adjacency relations defined using topological queries: often star and

closure

closure(star(edge))

Describing patches

- Each patch defined by set of mesh entities

Builtin
Specify patches by selecting:
1. Mesh entities {p;} to iterate over (e.g. vertices, cells)

2. Adjacency relation that gathers points in patch

star entities in star(p;)
vanka entities in closure(star(p;))

User-defined

1. Custom adjacency relation (e.g. “only vertices in closure o star”)
2. List of patches, plus iteration order = line-/plane-smoothers

Patch assembly

- If we just want homogeneous Dirichlet, can use list of dofs to select
from assembled global operator
X Doesn't work for other transmission conditions
X Doesn't work for nonlinear smoothers
= Callback interface to get PDE library to assemble on each patch

Callbacks

/* Patch Jacobian */

UserComputeOp(PC, Vec state, Mat operator, Patch patch, void =*userctx);
/* Patch Residual */

UserComputeF(PC, Vec state, Vec residual, Patch patch, void *userctx);

Examples

Which subspace to choose?

- For symmetric problems, can use kernel decomposition theorem of
Schoberl (1999) and Lee, Wu, Xu, and Zikatanov (2007)

- Key challenge is to find a decomposition {V;} such that every u in the
kernel A can be written as u = 3, u; with u; € ViN V.

Characterising the kernel
Appropriate discrete de Rham complexes can help us finding the support
of a basis for V.

H(div) multigrid in 2D (Arnold, Falk, and Winther 1997)

Find u € V.C H(div) st. (u,Vv);z +~(divu,divv) = (f,v). Y eV.

> de Rham complex

4 .
H' 220 H(div) 2% 12

femtable.org

H(div) multigrid in 2D (Arnold, Falk, and Winther 1997)

Find u e V. C H(div) st. (u,v);z +y(divu,divv). = (f,v). WY eV.

L2 de Rham complex

femtable.org

femtable.org

H(div) multigrid in 2D (Arnold, Falk, and Winther 1997)

Find u e V. C H(div) st. (u,v);z +y(divu,divv). = (f,v). WY eV.

L2 de Rham complex

femtable.org
- Exact sequence: ker(div) = range(grad™)) T
- Need patches containing support of the P, basis
functions = star around vertices

-
-

femtable.org

H(div) multigrid in 2D (Arnold, Falk, and Winther 1997)

Find u € V. C H(div) st. (u,v);z +v(divu,divv) = (f,v). W eV.

-ksp_type cg
-pc_type mg
-mg_levels_ 9 e
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_ *
-pc_patch_construct_dim 0
-pc_patch_construct_type star

-

-

Smoother \ 5 o 107" 100 10" 102 103

Point-Jacobi (k
Point-Jacobi (k
(
(

11 27 49 68 86 103
10 45 71 93 113 134

6 11 12 12 12 12
7 8 8 8 8 8

Table 1: Iteration counts for multigrid preconditioned CG using RT, elements.

Block-Jacobi
Block-Jacobi

R
R

1)
2)
1)
2)

1

H(div) and H(curl) multigrid in 3D (Arnold, Falk, and Winther 2000)

Findu € V C H(curl) st. (u,v)2 +~(curlu,curlv): = (f,v): Vv eV.

> de Rham complex

H' 29, H(curl) < H(div) 2% 12

femtable.org

H(div) and H(curl) multigrid in 3D (Arnold, Falk, and Winther 2000)

Findu € V C H(curl) st. (u,v)2 +~(curlu,curlv): = (f,v): Vv eV.
> de Rham complex

£ H(curl) <o,y H(div) —

a

P, PiA(A) N1} Pi(a)

- Exact sequence: s ’
ker(curl) = range(grad), 4 1
ker(div) = range(curl) N '

- H(curl): star around vertices 4 3 +

4
v v

- H(div): star around edges

femtable.org

H(curl) multigrid in 3D (Arnold, Falk, and Winther 2000)

Find u € V C H(curl) st. (u,v); +~v(curlu,curlv)2 = (f,v): YveV.

-ksp_type cg
-pc_type mg
-mg_levels_
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_
-pc_patch_construct_dim 0
-pc_patch_construct_type star

Smoother \

o 107" 10° 10" 102 10
1

Point-Jacobi (k= 1) 0 48 85 120 150 180
Point-Jacobi (kR =2) | 22 115 211 293 370 446

(
Block-Jacobi (kR =1 9 16 18 18 18 18
Block-Jacobi (kR =2) | 9 12 12 12 12 12

Table 2: Iteration counts for multigrid preconditioned CG using Nedelec
edge-elements of the first kind.

H(div) multigrid in 3D (Arnold, Falk, and Winther 2000)

Find u € V. C H(div) st. (u,v);z +v(divu,divv) = (f,v). W eV.

-ksp_type cg 4
-pc_type mg
-mg_levels_ T e
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_ < > >
-pc_patch_construct_dim 1
-pc_patch_construct_type star M

-

-

Smoother \ v o 10" 10° 10" 10> 10°

Point-Jacobi (k=1) | 11 63 109 146 180 221
Point-Jacobi (k=2) | 26 180 366 531 687 844

12 30 36 36 37 37
11 17 17 17 17 17

(
Block-Jacobi (kR =
Block-Jacobi (k

1
2
Table 3: Iteration counts for multigrid preconditioned CG using Nedelec

face-elements of the first kind.
14

Nearly incompressible elasticity

FindueV c H' st (gradu,gradv) + y(divu,divv) = (f,v) YveV.

2D Stokes complex

HZ grad® H1 div L2

- Decomposition must capture kerdiv = range grad=.
- Support of HCT element is on “macro” mesh = MacroStar

MacroStar

-ksp_type cg
-pc_type mg
-mg_levels_
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_
-pc_patch_construct_dim 0
-pc_patch_construct_type python
-pc_patch_construct_python_type MacroStar

Just need to write custom adjacency to construct patch around each vertex

16

MacroStar

-ksp_type cg
-pc_type mg
-mg_levels_
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_
-pc_patch_construct_dim 0
-pc_patch_construct_type python
-pc_patch_construct_python_type MacroStar

Just need to write custom adjacency to construct patch around each vertex

class MacroStar(OrderedRelaxation):
def callback(self, dm, vertex):
if dm.getlLabelvalue("MacroVertices", vertex) != 1:
return None
s = list(self.star(dm, vertex))
closures = list(chain(*(self.closure(dm, e) for e in s)))
want = [v for v in closures if dm.getlLabelValue("MacroVertices", v) != 1]
star = list(chain(*(self.star(dm, v) for v in want)))
return s + star

16

Vanka for Stokes

Find (u,p) € Vx Q C (H"Y x L? st.
(gradu,gradv) — (p,divv) — (divu,q) = (f,v) V(v,q) €V x Q.

Vanka patch

Solve simultaneously for (u, p) on each pressure dof, gathering those
velocity dofs that couple to the pressure dof.
- P2-P0: loop over cells, gather closure of star

- P2-P1: loop over vertices, gather closure of star

Vanka for Stokes

Find (u,p) € Vx Q C (H"Y x L? st.

(gradu,gradv) — (p,divv) — (divu,q) = (f,v)
Vanka patch

Y(v,q) € V x Q.

Solve simultaneously for (u, p) on each pressure dof, gathering those
velocity dofs that couple to the pressure dof.

- P2-P0: loop over cells, gather closure of star
- P2-P1: loop over vertices, gather closure of star

-ksp_type cg
-pc_type mg
-mg_levels_
* \¢ -pc_type python
4 ¢ -pc_python_type firedrake.PatchPC
-patch_
¢ P -pc_patch_construct_codim 0
-pc_patch_construct_type vanka
4 * -pc_patch_exclude_subspaces 1

Vanka for Stokes

Find (u,p) € Vx Q C (H"Y x L? st.
(gradu,gradv) — (p,divv) — (divu,q) = (f,v) V(v,q) €V x Q.

Vanka patch

Solve simultaneously for (u, p) on each pressure dof, gathering those
velocity dofs that couple to the pressure dof.
- P2-PO0: loop over cells, gather closure of star

- P2-P1: loop over vertices, gather closure of star

-ksp_type cg
-pc_type mg
-mg_levels_
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_
-pc_patch_construct_dim 0
-pc_patch_construct_type vanka
-pc_patch_exclude_subspaces 1
-pc_patch_vanka_dim 0

Conclusions

- PCPATCH provides simple and flexible interface for subspace
correction methods

- Currently works with DMPlex + PetscDS and Firedrake

- Implements

- Additive and multiplicative smoothing

- Simultaneous smoothing of multiple fields: monolithic approaches
- Partition of unity (or not)

- Nonlinear relaxation (Firedrake only)

Thanks!

References

>

Alnaes, M. S, A. Logg, K. B. Plgaard, M. E. Rognes, and G. N. Wells (2014). “Unified Form Language: A
Domain-specific Language for Weak Formulations of Partial Differential Equations”. ACM Trans. Math.
Softw. 40. d0i:10.1145/2566630. arXiv: 1211.4047 [cs.MS].

Arnold, D. N, R. S. Falk, and R. Winther (2000). “Multigrid in H(div) and H(curl)". Numerische
Mathematik 85. doi:10.1007/s002110000137.

Arnold, D. N, R. S. Falk, and R. Winther (July 1997). “Preconditioning in H(div) and Applications”.
Mathematics of Computation 66. doi:10.1090/S0025-5718-97-00826-0.

Benzi, M. and M. A. Olshanskii (2006). “An Augmented Lagrangian-Based Approach to the Oseen
Problem”. SIAM Journal on Scientific Computing 28. doi:10.1137/050646421.

Farrell, P. E,, L. Mitchell, and F. Wechsung (2018). An augmented Lagrangian preconditioner for the 3D
stationary incompressible Navier-Stokes equations at high Reynolds number. To appear in SIAM
SISC. arXiv: 1810.03315 [math.NA].

Lee, Y.-J, J. Wu, J. Xu, and L. Zikatanov (2007). “Robust subspace correction methods for nearly
singular systems”. Mathematical Models and Methods in Applied Sciences 17.
doi:10.1142/50218202507002522.

Pavarino, L. F. (1993). “Additive Schwarz methods for the p-version finite element method”.
Numerische Mathematik 66. doi:10.1007/BF01385709.

Rathgeber, F. et al. (2016). “Firedrake: automating the finite element method by composing
abstractions”. ACM Transactions on Mathematical Software 43. doi:10.1145/2998441. arXiv:
1501.01809 [cs.MS].

Schoberl,). (1999). “Multigrid methods for a parameter dependent problem in primal variables”.
Numerische Mathematik 84. doi:10.1007/s002110050465.

Vanka, S. (1986). “Block-implicit multigrid solution of Navier-Stokes equations in primitive variables”.
Journal of Computational Physics 65. doi:10.1016/0021-9991(86)90008-2.

http://dx.doi.org/10.1145/2566630
https://arxiv.org/abs/1211.4047
http://dx.doi.org/10.1007/s002110000137
http://dx.doi.org/10.1090/S0025-5718-97-00826-0
http://dx.doi.org/10.1137/050646421
https://arxiv.org/abs/1810.03315
http://dx.doi.org/10.1142/s0218202507002522
http://dx.doi.org/10.1007/BF01385709
http://dx.doi.org/10.1145/2998441
https://arxiv.org/abs/1501.01809
http://dx.doi.org/10.1007/s002110050465
http://dx.doi.org/10.1016/0021-9991(86)90008-2

	PCPATCH
	Examples
	Appendix

