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Software setting

Firedrake (www.firedrakeproject.org) [..] is an automated
system for the solution of partial differential equations using the
finite element method.

- Finite element problems specified with embedded domain specific
language, UFL from the FENICS project.

- Runtime compilation to optimised, low-level (C) code.

- PETSc for meshes and (algebraic) solvers.
arXiv: 1501.01809 [cs.MS]

3rd Firedrake user meeting is in Durham 26 & 27 September 2019.

www.firedrakeproject.org/firedrake_19.html
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UFL makes it easy to write down many complex PDEs

Rayleigh-Bénard convection from firedrake import =
mesh = ...
V = VectorFunctionSpace(mesh, "CG", 2)
—Au+u-Vu+Vp+ E@T =0 W = FunctionSpace(mesh, "CG", 1)
Pr Z=V+W=*W
V-u=0 Ra = Constant(200)
Pr = Constant(6.18)

1 _ upT = Function(Z)
—prol U VIi=0 u, p, T = split(upT)

v, q, S = TestFunctions(Z)
Newton bcs = ...

FB" M| [du fi F = (inner(grad(u), grad(v))
C 0 0 opl = |fz inner(dot(grad(u), u), v)
inner(p, div(v))
M0 K or f3 (Ra/Pr)+inner(T+g, v)
inner(div(u), q)
inner(dot(grad(T), u), S)
(1/Pr) = inner(grad(T), grad(S)))=dx

+ o+ o+ o+ 1+

solve(F == 0, upT, bcs=bcs)



What about the solver?



Some motivating schemes

Coupled multigrid for Stokes/Navier-Stokes
In the SCGS scheme four velocites and one pressure corresponding to one

finite difference node are simultaneously updated by inverting a (small)
matrix of equations.

U112, > Ui,

Vanka (1986)



Some motivating schemes

p-independent preconditioners for elliptic problems

[Each subspace is generated from] VP = VP N HZ)(Q;) where Q; is the open
square centered at the ith vertex

Qi) L,
Q,“ Q;,

Pavarino (1993)



Some motivating schemes

Multigrid for nearly incompressible elasticity

The suggested smoother is a block Jacobi smoother, which takes care of
the kernel [...]. These kernel basis functions are captured by subspaces V
as shown

Schoberl (1999)



Some motivating schemes

Multigrid in H(div) and H(curl)
To define the Schwarz smoothers, we can use a decomposition of V}, into

local patches consisting of all elements surrounding either an edge or a
vertex.

A A A A

Arnold, Falk, and Winther (2000)




Some motivating schemes

An augmented Lagrangian approach to the Oseen problem

We use a block Gauss-Seidel method [...] based on the decomposition
Vy = Zf‘:o V:. [...For] P2-PO finite elements the natural choice is to gather
nodel DOFs for velocity inside ovals [around a vertex]

Benzi and Olshanskii (2006)



Some motivating schemes

Augmented Lagrangian for 3D Navier-Stokes

Newton solver with line search|

Krylov solver (FGMRES)

Block preconditioner

Approximate Schur complement inverse |

F-cycle on augmented momentum block|

Coarse grid solver
LU factorization

Prolongation operator

Local solves over coarse cells |

Additive star iteration

Farrell, Mitchell, and Wechsung (2018)



Unifying observation

Smoothers all use block Jacobi/G-S with problem-specific choice of blocks.

- Decompose space (usually) based on some mesh decomposition
- Build and solve little problems on the resulting patches

- Combine additively or multiplicatively



Unifying observation

Smoothers all use block Jacobi/G-S with problem-specific choice of blocks.

- Decompose space (usually) based on some mesh decomposition
- Build and solve little problems on the resulting patches

- Combine additively or multiplicatively

Challenge

Want to do this inside block preconditioners, and as a multigrid smoother.

Not sufficient to specify dof decomposition on a (single) global matrix.



PCPATCH
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PCPATCH

- Separate topological decomposition from algebraic operators
- User only provides topological description of patches

- Ask discretisation library to make the operators once decomposition is
obtained

Library support

- PETSc (mcs.anl.gov/petsc): DMPlex + PetscDS
-pc_type patch

- Firedrake (www.firedrakeproject.org):
-pc_type python -pc_python_type firedrake.PatchPC

-snes_type python -snes_python_type firedrake.PatchSNES


mcs.anl.gov/petsc
www.firedrakeproject.org

Describing patches

- DMP1lex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, PCPATCH determines the

dofs that correspond to them
- Adjacency relations defined using topological queries: often star and

closure



Describing patches

- DMP1lex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, PCPATCH determines the

dofs that correspond to them
- Adjacency relations defined using topological queries: often star and

closure

star(vertex)



Describing patches

- DMP1lex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, PCPATCH determines the

dofs that correspond to them
- Adjacency relations defined using topological queries: often star and

closure

closure(star(vertex))



Describing patches

- DMP1lex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, PCPATCH determines the

dofs that correspond to them
- Adjacency relations defined using topological queries: often star and

closure

star(edge)



Describing patches

- DMP1lex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, PCPATCH determines the

dofs that correspond to them
- Adjacency relations defined using topological queries: often star and

closure

closure(star(edge))



Describing patches

- Each patch defined by set of mesh entities

Builtin
Specify patches by selecting:
1. Mesh entities {p;} to iterate over (e.g. vertices, cells)

2. Adjacency relation that gathers points in patch

star entities in star(p;)
vanka entities in closure(star(p;))

User-defined

1. Custom adjacency relation (e.g. “only vertices in closure o star”)
2. List of patches, plus iteration order = line-/plane-smoothers



Patch assembly

- If we just want homogeneous Dirichlet, can use list of dofs to select
from assembled global operator
X Doesn't work for other transmission conditions
X Doesn't work for nonlinear smoothers
= Callback interface to get PDE library to assemble on each patch

Callbacks

/* Patch Jacobian */

UserComputeOp(PC, Vec state, Mat operator, Patch patch, void =*userctx);
/* Patch Residual */

UserComputeF(PC, Vec state, Vec residual, Patch patch, void *userctx);



Examples




Which subspace to choose?

- For symmetric problems, can use kernel decomposition theorem of
Schoberl (1999) and Lee, Wu, Xu, and Zikatanov (2007)

- Key challenge is to find a decomposition {V;} such that every u in the
kernel A can be written as u = 3, u; with u; € ViN V.

Characterising the kernel
Appropriate discrete de Rham complexes can help us finding the support
of a basis for V.



H(div) multigrid in 2D (Arnold, Falk, and Winther 1997)

Find u € V.C H(div) st.  (u,Vv);z +~(divu,divv) = (f,v). Y eV.
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H(div) multigrid in 2D (Arnold, Falk, and Winther 1997)

Find u e V. C H(div) st.  (u,v);z +y(divu,divv). = (f,v). WY eV.

L2 de Rham complex

femtable.org
- Exact sequence: ker(div) = range(grad™) ) T
- Need patches containing support of the P, basis
functions = star around vertices

-
-


femtable.org

H(div) multigrid in 2D (Arnold, Falk, and Winther 1997)

Find u € V. C H(div) st.  (u,v);z +v(divu,divv) = (f,v). W eV.

-ksp_type cg
-pc_type mg
-mg_levels_ 9 e
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_ *
-pc_patch_construct_dim 0
-pc_patch_construct_type star

-

-

Smoother \ 5 o 107" 100 10" 102 103

Point-Jacobi (k
Point-Jacobi (k
(
(

11 27 49 68 86 103
10 45 71 93 113 134

6 11 12 12 12 12
7 8 8 8 8 8

Table 1: Iteration counts for multigrid preconditioned CG using RT, elements.

Block-Jacobi
Block-Jacobi

R
R

1)
2)
1)
2)

1



H(div) and H(curl) multigrid in 3D (Arnold, Falk, and Winther 2000)

Findu € V C H(curl) st. (u,v)2 +~(curlu,curlv): = (f,v): Vv eV.

> de Rham complex

H' 29, H(curl) < H(div) 2% 12


femtable.org

H(div) and H(curl) multigrid in 3D (Arnold, Falk, and Winther 2000)

Findu € V C H(curl) st. (u,v)2 +~(curlu,curlv): = (f,v): Vv eV.
> de Rham complex

£ H(curl) <o,y H(div) —

a

P, PiA(A) N1} Pi(a)

- Exact sequence: s ’
ker(curl) = range(grad), 4 1
ker(div) = range(curl) N '

- H(curl): star around vertices 4 3 +

4
v v

- H(div): star around edges


femtable.org

H(curl) multigrid in 3D (Arnold, Falk, and Winther 2000)

Find u € V C H(curl) st. (u,v); +~v(curlu,curlv)2 = (f,v): YveV.

-ksp_type cg
-pc_type mg
-mg_levels_
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_
-pc_patch_construct_dim 0
-pc_patch_construct_type star

Smoother \

o 107" 10° 10" 102 10
1

Point-Jacobi (k= 1) 0 48 85 120 150 180
Point-Jacobi (kR =2) | 22 115 211 293 370 446

(
Block-Jacobi (kR =1 9 16 18 18 18 18
Block-Jacobi (kR =2) | 9 12 12 12 12 12

Table 2: Iteration counts for multigrid preconditioned CG using Nedelec
edge-elements of the first kind.



H(div) multigrid in 3D (Arnold, Falk, and Winther 2000)

Find u € V. C H(div) st.  (u,v);z +v(divu,divv) = (f,v). W eV.

-ksp_type cg 4
-pc_type mg
-mg_levels_ T e
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_ < > >
-pc_patch_construct_dim 1
-pc_patch_construct_type star M

-

-

Smoother \ v o 10" 10° 10" 10> 10°

Point-Jacobi (k=1) | 11 63 109 146 180 221
Point-Jacobi (k=2) | 26 180 366 531 687 844

12 30 36 36 37 37
11 17 17 17 17 17

(
Block-Jacobi (kR =
Block-Jacobi (k

1
2
Table 3: Iteration counts for multigrid preconditioned CG using Nedelec

face-elements of the first kind.
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Nearly incompressible elasticity

FindueV c H' st (gradu,gradv) + y(divu,divv) = (f,v) YveV.

2D Stokes complex

HZ grad® H1 div L2

- Decomposition must capture kerdiv = range grad=.
- Support of HCT element is on “macro” mesh = MacroStar












MacroStar

-ksp_type cg
-pc_type mg
-mg_levels_
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_
-pc_patch_construct_dim 0
-pc_patch_construct_type python
-pc_patch_construct_python_type MacroStar

Just need to write custom adjacency to construct patch around each vertex

16



MacroStar

-ksp_type cg
-pc_type mg
-mg_levels_
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_
-pc_patch_construct_dim 0
-pc_patch_construct_type python
-pc_patch_construct_python_type MacroStar

Just need to write custom adjacency to construct patch around each vertex

class MacroStar(OrderedRelaxation):
def callback(self, dm, vertex):
if dm.getlLabelvalue("MacroVertices", vertex) != 1:
return None
s = list(self.star(dm, vertex))
closures = list(chain(*(self.closure(dm, e) for e in s)))
want = [v for v in closures if dm.getlLabelValue("MacroVertices", v) != 1]
star = list(chain(*(self.star(dm, v) for v in want)))
return s + star

16



Vanka for Stokes

Find (u,p) € Vx Q C (H"Y x L? st.
(gradu,gradv) — (p,divv) — (divu,q) = (f,v) V(v,q) €V x Q.

Vanka patch

Solve simultaneously for (u, p) on each pressure dof, gathering those
velocity dofs that couple to the pressure dof.
- P2-P0: loop over cells, gather closure of star

- P2-P1: loop over vertices, gather closure of star



Vanka for Stokes

Find (u,p) € Vx Q C (H"Y x L? st.

(gradu,gradv) — (p,divv) — (divu,q) = (f,v)
Vanka patch

Y(v,q) € V x Q.

Solve simultaneously for (u, p) on each pressure dof, gathering those
velocity dofs that couple to the pressure dof.

- P2-P0: loop over cells, gather closure of star
- P2-P1: loop over vertices, gather closure of star

-ksp_type cg
-pc_type mg
-mg_levels_
* \¢ -pc_type python
4 ¢ -pc_python_type firedrake.PatchPC
-patch_
¢ P -pc_patch_construct_codim 0
-pc_patch_construct_type vanka
4 * -pc_patch_exclude_subspaces 1




Vanka for Stokes

Find (u,p) € Vx Q C (H"Y x L? st.
(gradu,gradv) — (p,divv) — (divu,q) = (f,v) V(v,q) €V x Q.

Vanka patch

Solve simultaneously for (u, p) on each pressure dof, gathering those
velocity dofs that couple to the pressure dof.
- P2-PO0: loop over cells, gather closure of star

- P2-P1: loop over vertices, gather closure of star

-ksp_type cg
-pc_type mg
-mg_levels_
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_
-pc_patch_construct_dim 0
-pc_patch_construct_type vanka
-pc_patch_exclude_subspaces 1
-pc_patch_vanka_dim 0



Conclusions

- PCPATCH provides simple and flexible interface for subspace
correction methods

- Currently works with DMPlex + PetscDS and Firedrake

- Implements

- Additive and multiplicative smoothing

- Simultaneous smoothing of multiple fields: monolithic approaches
- Partition of unity (or not)

- Nonlinear relaxation (Firedrake only)

Thanks!
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