
SOLVER COMPOSITION ACROSS THE PDE/LINEAR ALGEBRA1

BARRIER∗2

ROBERT C. KIRBY† AND LAWRENCE MITCHELL‡3

Abstract. The efficient solution of discretizations of coupled systems of partial differential equa-4
tions (PDEs) is at the core of much of numerical simulation. Significant effort has been expended on5
scalable algorithms to precondition Krylov iterations for the linear systems that arise. With few ex-6
ceptions, the reported numerical implementation of such solution strategies is specific to a particular7
model setup, and intimately ties the solver strategy to the discretization and PDE, especially when8
the preconditioner requires auxiliary operators. In this paper, we present recent improvements in the9
Firedrake finite element library that allow for straightforward development of the building blocks of10
extensible, composable, preconditioners that decouple the solver from the model formulation. Our11
implementation extends the algebraic composability of linear solvers offered by the PETSc library by12
augmenting operators, and hence preconditioners, with the ability to provide any necessary auxiliary13
operators. Rather than specifying up front the full solver configuration, tied to the model, solvers14
can be developed independently of model formulation and configured at runtime. We illustrate with15
examples from incompressible fluids and temperature-driven convection.16

Key words. iterative methods, preconditioning, composable solvers, multiphysics17

AMS subject classifications. 65N22, 65F08, 65F1018

1. Introduction. For over a decade now, domain-specific languages for numer-19

ical partial differential equations (henceforth PDEs) such as Sundance [30, 29], FEn-20

iCS [28], and now Firedrake [40] have enabled users to efficiently generate algebraic21

systems from a high-level description of the variational problems. Both FEniCS and22

Firedrake make use of the Unified Form Language [1] as a description language for23

the weak forms of PDEs, converting it into efficient low-level code for form evalua-24

tion. They also share a Python interface that, for the intersection of their feature25

sets, is nearly source-compatible. These high-level PDE codes succeed by connecting26

a rich description language for PDEs to effective lower-level solver libraries such as27

PETSc [5, 4] or Trilinos [21] for the requisite, and performance-critical, numerical28

(non)linear algebra.29

These high-level PDE projects utilize the solver packages in an essentially unidi-30

rectional way: the residuals are evaluated, Jacobians formed, and are then handed off31

to mainly algebraic techniques. Hence, the codes work at their best when (composi-32

tions of) existing black-box matrix techniques effectively solve the algebraic systems.33

However, in many situations the best preconditioners require additional structure be-34

yond a purely algebraic (matrix and vector-level) problem description. Many of the35

preconditioners for block systems based on block factorizations require discretizations36

of differential operators not contained in the original problem. These include the37

pressure-convection-diffusion (PCD) approximation for Navier-Stokes [25, 16], and38

preconditioners for models of phase separation [24, 19]. An alternate approach to39

∗

Funding: RCK is supported by the National Science Foundation Computing and Communica-
tions Foundations grant number 1525697 and also acknowledges support from the PRISM Center at
Imperial College, London [ESPRC grant number EP/L000407/1] for sabbatical support. LM is sup-
ported by the Engineering and Physical Sciences Research Council [grant number EP/M011054/1].
This work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk).
†Department of Mathematics, Baylor University, One Bear Place #97328, Waco, TX 76798-7328,

USA (robert kirby@baylor.edu)
‡Department of Computing and Department of Mathematics, Imperial College London, South

Kensington Campus, London SW7 2AZ, UK (lawrence.mitchell@imperial.ac.uk)

1

This manuscript is for review purposes only.

http://www.archer.ac.uk
mailto:robert\protect _kirby@baylor.edu
mailto:lawrence.mitchell@imperial.ac.uk


2 ROBERT C. KIRBY AND LAWRENCE MITCHELL

derive preconditioners for block systems is to use arguments from functional analysis40

to arrive at block-diagonal preconditioners. While these are often representable as41

the inverse of an assembled operator, in some cases, a mesh and parameter indepen-42

dent preconditioner that arises from such an analysis requires the action of the sum43

of inverses. An example is the preconditioner suggested in [32, example 4.2] for the44

time-dependent Stokes problem.45

While a high-level PDE engine makes it possible to obtain these new operators46

at low user cost, additional care is required to develop a clean, extensible interface.47

For example, the PCD preconditioner has been implemented using Sundance and48

Playa [23], although the resulting code tightly fused the description of the problem49

with a highly specialized specification of the preconditioner. Similarly, in the FEniCS50

project, cbc.block [31] allows the model developer to write complex block precondi-51

tioners as a composition of high-level “symbolic” linear algebra operations; Trilinos52

provides similar functionality through Teko [12]. However, in these codes one must53

specify up front how to perform the block decomposition. Switching to a different pre-54

conditioner requires changing the model code, and there is no high-level manipulation55

of variational problems within the blocks. Ideally, one would like a mechanism to im-56

plement the specialized preconditioner as a separate component, leaving the original57

application code essentially unchanged.58

Extensibility of fundamental types such as solvers, preconditioners, and matrices59

has long been a main concern of the PETSc project. For example, the action of a finite60

difference stencil applied to a vector can be wrapped behind a matrix “shell” inter-61

face and used interchangeably with explicit sparse matrices for many purposes. Users62

can similarly provide custom types of Krylov methods or preconditioners. Thanks to63

petsc4py [13], such extensions can also be implemented in Python as well as C. More-64

over, PETSc provides powerful tools to switch between (compositions of) existing and65

custom tools either in the application source code or through command-line options.66

In this work, we enable the rapid development of high-performance precondition-67

ers as PETSc extensions using Firedrake and petsc4py. To facilitate this, we have68

developed a custom matrix type that embeds the complete Firedrake problem de-69

scription (UFL variational forms, function spaces, meshes, etc) in a Python context70

accessible to PETSc. As a happy byproduct, this enables low-memory matrix-free71

evaluation of matrix-vector products. This also allows us to produce PETSc pre-72

conditioners in petsc4py that act on this new matrix type, accessing the PDE-level73

information as needed. For example, a PCD preconditioner can access the meshes74

and function spaces to create bilinear forms for, and hence assemble, the needed75

mass, stiffness, and convection-diffusion operators on the pressure space and PETSc76

KSP (linear solver) contexts for the inverses. Moreover, once such preconditioners are77

available in a globally importable module, it is now possible to use them instead of78

existing algebraic preconditioners by a straightforward runtime modification of solver79

configuration options. So, we use our PDE language not only to generate problems80

to feed to the solver, but also to extend that solver’s capabilities.81

Our discussion and implementation will focus on Firedrake as the top-level PDE82

library and PETSc as the solver library. Firedrake already relies heavily on PETSc83

through petsc4py and has a nearly pure Python implementation. Provided one is84

content with the Python interface, it should not be terribly difficult to adapt these85

techniques for use in FEniCS. Regarding solver libraries, the idiom and usage of86

Trilinos and PETSc (if not their actual capabilities) differ considerably, so we make87

no speculation as to the difficulties associated with adapting our techniques in that88

direction.89

This manuscript is for review purposes only.



COMPOSITION ACROSS THE PDE/LINEAR ALGEBRA BARRIER 3

In the rest of the paper, we set up certain model problems in section 2. After90

this, in section 3 we survey certain algorithms that go beyond the current mode of91

algebraically preconditioning assembled matrices. These include matrix-free methods,92

Schwarz-type preconditioners, and preconditioners that require auxiliary differential93

operators. It turns out that a proper implementation of the first of these, matrix-free94

methods, provides a very clean way to communicate PDE-level problem information95

between PETSc matrices and custom preconditioners, and we describe the implemen-96

tation of this and relevant modifications to Firedrake in section 4. Finally, we give97

examples demonstrating the efficacy of our approach to the model problems of interest98

in section 5.99

2. Some model applications.100

2.1. The Poisson equation. It is helpful to fix some target applications and101

describe things we would like to expedite within our top-level code.102

A usual starting point is to consider a second-order scalar elliptic equation. Let103

Ω ⊂ Rd, where d = 1, 2, 3, be a domain with boundary Γ. We let κ : Ω→ R+ be some104

positive-valued coefficient. On the interior of Ω, we seek a function u satisfying105

(1) −∇ · (κ∇u) = f106

subject to the boundary condition u = uΓD
on ΓD and ∇u · n = g on ΓN .107

After the usual technique of multiplying by a test function and integrating by108

parts, we reach the weak form of seeking u ∈ VΓ ⊂ V such that109

(2) (κ∇u,∇v) = (f, v)−
〈
g,
∂v

∂n

〉
110

for all v ∈ V0 ⊂ V , where V is the finite element space, V0 the subspace with vanishing111

trace on ΓD. Here (·, ·) denotes the standard L2 inner product over Ω, and 〈·, ·〉 that112

over Γ.113

The finite element method leads to a linear system:114

(3) Au = f,115

where A is symmetric and positive-definite (positive semi-definite if ΓD = ∅), and116

the vector f includes both the forcing term and contributions from the boundary117

conditions.118

2.2. The Navier-Stokes equations. Moving beyond the simple Poisson oper-119

ator, the incompressible Navier-Stokes equations provide challenge.120

− 1

Re
∆u + u · ∇u +∇p = 0,(4a)121

∇ · u = 0(4b)122123

together with suitable boundary conditions.124

Among the diverse possible methods, we shall focus here on inf-sup stable mixed125

finite element spaces such as Taylor-Hood [9]. This is merely for simplicity of explica-126

tion and does not represent a limitation of our approach or implementation. Taking127

VΓ to be subset of the discrete velocity space satisfying any strongly imposed bound-128

ary conditions and W the pressure space, we have the weak form of seeking u, p in129

This manuscript is for review purposes only.



4 ROBERT C. KIRBY AND LAWRENCE MITCHELL

VΓ ×W such that130

1

Re
(∇u,∇v) + (u · ∇u,v)− (p,∇ · v) = 0,(5a)131

(∇ · u, w) = 0(5b)132133

for all v, w ∈ V0 × W , where V0 is the velocity subspace with vanishing Dirichlet134

boundary conditions.135

Relative to the Poisson equation, we now have several additional challenges. The136

nonlinearity may be addressed by Newton linearization, and UFL provides automatic137

differentiation to produce the Jacobian. We also have multiple finite element spaces,138

one of which is vector-valued. Further, for each nonlinear iteration, the required linear139

system is larger and more complicated, a block-structured saddle point system of the140

form141

(6)

[
F −Bt

B 0

] [
u
p

]
=

[
f1

f2

]
.142

We discuss approaches to preconditioning iterative methods for this system in sec-143

tion 3.144

2.3. Rayleigh-Bénard convection. Many applications rely on coupling other145

processes to the Navier-Stokes equations. For example, Rayleigh-Bénard convec-146

tion [11] includes thermal variation in the fluid, although we take the Boussinesq147

approximation that temperature variations affect the momentum balance only as a148

buoyant force. We have, after nondimensionalisation,149

−∆u + u · ∇u +∇p = −Ra

Pr
Tgẑ,(7a)150

∇ · u = 0,(7b)151

−Pr∆T + u · ∇T = 0,(7c)152153

where Ra is the Rayleigh number, Pr is the Prandtl number, g is the acceleration due154

to gravity, and ẑ the upward-pointing unit vector. The problem is usually posed on155

rectangular domains, with no-slip boundary conditions on the fluid velocity. The tem-156

perature boundary conditions typically involve imposing a unit temperature difference157

in one direction with insulating boundary conditions in the others.158

After discretization and Newton linearization, one obtains a block 3× 3 system159

(8)

 F −Bt M1

B 0 0
M2 0 K

u
p
T

 =

f1

f2

f3

 .160

Here, the F and B matrices are as obtained in the Navier-Stokes equations (with161

Re = 1). The M1 and M2 terms arise from the temperature/velocity coupling, and162

K is the convection-diffusion operator for temperature.163

Alternately, letting164

N =

[
F −Bt

B 0

]
,(9a)165

M̃1 =

[
M1

0

]
,(9b)166

M̃2 =
[
M2 0

]
,(9c)167168

This manuscript is for review purposes only.



COMPOSITION ACROSS THE PDE/LINEAR ALGEBRA BARRIER 5

we can write the stiffness matrix as block 2× 2 matrix169

(10)

[
N M̃1

M̃2 K

]
.170

Formulating the matrix in this way allows us to consider composing some (possi-171

bly custom) solver technique for Navier-Stokes with other approaches to handle the172

temperature equation and coupling.173

3. Solution techniques. Via UFL, Firedrake has a succinct, high-level descrip-174

tion of these equations and can readily linearize and assemble discrete operators.175

When efficient techniques for the discrete system exist within PETSc, obtaining the176

solution is as simple as providing the proper options. When direct methods are ap-177

plicable, simple options like -ksp type preonly -pc type lu suffice – possibly aug-178

mented with the selection of a package to perform the factorization like MUMPS [2]179

or UMFPACK [14]. Similarly, when iterative methods with black-box precondition-180

ers such as incomplete factorization or algebraic multigrid fit the bill, options such181

as -ksp type cg -pc type hypre work. PETSc also provides many block precon-182

ditioner mechanisms via FieldSplit, allowing users to specify PETSc solvers for183

inverting the relevant blocks [10]. Firedrake automatically enables this by specifying184

index sets for each function space, passing the information to PETSc when it initial-185

izes the solver. A key feature of PETSc is that these choices can be made at runtime186

via options, without modifying the user code that specifies the PDE to solve.187

As we stated in the introduction, however, many techniques for preconditioning188

require information beyond what can be learned by an inspection of matrix entries189

and user-specified options. It is our goal now to survey some of these techniques in190

more detail, after which we describe our implementation of custom PETSc precon-191

ditioners to utilize application-specific problem descriptions in a clean, efficient, and192

user-friendly way.193

3.1. Matrix-free methods. Switching from a low order method to a higher-194

order simply requires changing a parameter in the top-level Firedrake application195

code. However, such a small change can profoundly affect the overall performance196

footprint. Assembly of stiffness matrices becomes more expensive, both in terms197

of time and space, as the order increases. An alternative, that does not have the198

same space and time constraints is to use a matrix-free implementation of the matrix-199

vector product. This is sufficient for Krylov methods, although not for algebraic200

preconditioners requiring matrix entries.201

Rather than producing a sparse matrix A, one provides a function that, given202

a vector x, computes the product Ax. Abstractly, consider a bilinear form a on a203

discrete space V with basis {ψi}Ni=1. The N ×N stiffness matrix Aij = a(ψj , ψi) can204

be applied to a vector x as follows. Any vector x is isomorphic to some function u ∈ V205

via the identification x↔ u =
∑N

j=1 xjψj . Then, via linearity,206

(Ax)i =

N∑
j=1

Aijxj =

N∑
j=1

a(ψi, ψj)xj

= a(ψi,

N∑
j=1

xjψj) = a(ψi, u).

(11)207

Just like matrices or load vectors, this can be computed by assembling elementwise208

contributions in the standard way, considering u to be just some given member of V .209

This manuscript is for review purposes only.



6 ROBERT C. KIRBY AND LAWRENCE MITCHELL

In the presence of strongly-enforced boundary conditions, the bilinear form acts210

on a subspace V0 ⊂ V . When a matrix is explicitly assembled, one typically either211

edits (or removes) rows and columns to incorporate the boundary conditions. Care212

must be taken in enforcing the boundary conditions to ensure that the matrix-free213

action agrees with the matrix that would have been assembled.214

Typically, such an approach has a much lower startup cost than an explicit sparse215

matrix since no assembly is required. Forgoing an assembled matrix also saves con-216

siderably on memory usage. Moreover, the arithmetic intensity (ai) of matrix-free217

operator application is almost always higher than that of an assembled matrix (sparse218

matrix multiplication has ai ≈ 1/6 [20]). Matrix-free methods are therefore an in-219

creasingly good match to modern memory bandwidth-starved hardware, where the220

balanced arithmetic intensity is ai ≈ 10. The algorithmic complexity is either the same221

(O(p2d) for degree p elements in d dimensions), or better (O(pd+1)) if a structured222

basis can be exploited through sum factorisation. On simplex elements, the latter op-223

timisation is not currently available through the form compiler in Firedrake. Thus we224

will expect our matrix-free operator applications to have the same algorithmic scaling225

as assembled matrices (though with different constant factors). If we can exploit the226

vector units in modern processors effectively, we can expect that matrix-free applica-227

tions will be at least competitive with, and often faster than, assembled matrices (for228

example [33] demonstrate significant benefits, relative to assembled matrices, for Q2229

operator application on hexahedra).230

3.2. Preconditioning high-order discretizations: additive Schwarz. Matrix-231

free methods preclude algebraic preconditioners such as incomplete factorization or232

algebraic multigrid. Depending on the available smoothers, if a mesh hierarchy is233

available, geometric multigrid is a possibility [7, 8]. Here, we discuss a family of ad-234

ditive Schwarz methods. Originally proposed by Pavarino in [37, 38], these methods235

fall within the broad family of subspace correction methods [44].236

These two-level methods decompose the finite element space into a low order space237

on the original mesh and the high-order space restricted to local pieces of the mesh,238

such as patches of cells around each vertex. Any member of the original finite element239

space can be written as a combination of items from this collection of subspaces,240

although the decomposition in this case is certainly not orthogonal. One obtains a241

preconditioner for the original finite element operator by additively combining the242

(possibly approximate) inverses of the restrictions of the original operator to these243

spaces. Schöberl [42] showed for the symmetric coercive case that the preconditioned244

system has eigenvalue bounds independent of both mesh size and polynomial degree245

and gave computational examples from elasticity confirming the theory. Although not246

covered by Schöberl’s analysis, these methods have also been applied with success to247

the Navier-Stokes equations [39].248

This approach is generic in that it can be attempted for any problem. Given a249

bilinear form over a function space of degree k, one can programmatically build the250

lowest-order instance of the function space and set up the vertex patches for the mesh.251

Then, one can easily modify the bilinear form to operate on the new subspaces and252

perform the subspace correction. We have developed such a generic implementation,253

parametrized over the UFL problem description.254

One drawback of this method is the relatively high memory cost of storing the255

patch-wise Cholesky or LU factors, especially at high order and in 3D. One may further256

decompose the local patch spaces through “spider vertices” to reduce the memory257

required and still retain a powerful method [42]. Such refinements are possible within258

This manuscript is for review purposes only.



COMPOSITION ACROSS THE PDE/LINEAR ALGEBRA BARRIER 7

our framework, although we have not pursued them to date.259

3.3. Block preconditioners and Schur complement approximations. Hav-260

ing motivated matrix-free methods and preconditioners for higher-order discretiza-261

tions in the simple case of the Poisson operator, we now return to the Navier-Stokes262

equations introduced earlier. In particular, we are interested in preconditioners for263

the Jacobian stiffness matrix (6).264

Block factorization of the system matrix provides a starting point for many pow-265

erful preconditioners [6, 16, 18]. Consider the block LDU factorization of the system266

matrix in (6) as267

(12)

[
F −Bt

B 0

]
=

[
I 0

BF−1 I

] [
F 0
0 S

] [
I −F−1Bt

0 I

]
,268

where I is the identity matrix of the proper size and S = BF−1Bt is the Schur269

complement. The inverse of this matrix is then given by270

(13)

[
F −Bt

B 0

]−1

=

[
I F−1Bt

0 I

] [
F−1 0

0 S−1

] [
I 0

−BF−1 I

]
.271

Since this is the exact inverse, applying it in a preconditioning phase leads to Krylov272

convergence in a single iteration if all blocks are inverted exactly. Note that inverting273

the Schur complement matrix S either requires assembling it as a dense matrix or274

else using a Krylov method where the matrix action is computed implicitly via two275

matrix-vector products and an inner solve to produce F−1.276

Two kinds of approximations lead to more practical methods. For one, it is277

possible to neglect either or both of the triangular factors. This gives a structurally278

simpler preconditioner, at the cost (assuming exact inversion of S) of a slight increase279

in the iteration count. For example, it is common to use only the lower triangular280

part of the matrix, giving a preconditioning matrix of the form281

(14) P =

[
F 0
B S

]
282

which has inverse283

(15) P−1 =

[
F−1 0

0 S−1

] [
I 0

−BF−1 I

]
.284

Using P as a left preconditioner, P−1A is readily seen to give a unit upper trian-285

gular matrix, and it is known that GMRES will converge in two (very expensive)286

iterations since the resulting preconditioned matrix system has a quadratic minimal287

polynomial [36].288

Given the cost of inverting S, it is also desirable to devise a suitable approx-289

imation. A simple approach is to use a pressure mass matrix, which gives mesh-290

independent but rather large eigenvalue bounds [17]. More sophisticated approxima-291

tions are well-documented in the literature [16]. For our purposes, we will consider one292

in particular, the pressure convection-diffusion (hence PCD) preconditioner [25, 15].293

It is based on the approximation294

(16) S−1 =
(
BF−1Bt

)−1 ≈ K−1
p FpM

−1
p ≡ X−1,295

This manuscript is for review purposes only.



8 ROBERT C. KIRBY AND LAWRENCE MITCHELL

where Kp is the Laplace operator acting on the pressure space, Mp is the mass matrix,296

and Fp is a discretization of the convection-diffusion operator297

(17) Lp ≡ − 1

Re
∆p+ u0 · ∇p,298

with u0 the velocity at the current Newton iterate. Although this requires solving299

linear systems, the mass and stiffness matrices are far cheaper to invert than F .300

While one could use this approximation to precondition a Krylov solver for S,301

it is far more typical to replace S−1 with X−1. For example, using the triangular302

preconditioner (14) gives the further approximation in a block preconditioner:303

(18) P̃−1 =

[
F−1 0

0 X−1

] [
I 0

−BF−1 I

]
=

[
F−1 0

0 K−1
p FpM

−1
p

] [
I 0

−BF−1 I

]
.304

Although bypassing the solution of the Schur complement system increases the outer305

iteration count, it typically results in a much more efficient overall method. Also,306

note that only the action of the off-diagonal blocks is required for the preconditioner307

so that a matrix-free treatment is appropriate.308

Preconditioning strategies for the Navier-Stokes equations can quickly find their309

way into problems coupling other processes to fluids. We return now to the Bénard310

convection stiffness matrix (10), where N is itself the Navier-Stokes stiffness matrix311

in (6). Block preconditioners based on this formulation, replacing N−1 with a very312

inexact solve via PCD-preconditioned GMRES, proved more effective than techniques313

based on 3×3 preconditioners [22]. Here, we present a lower-triangular block precon-314

ditioner rather than the upper-triangular one in [22] with similar practical results.315

A block Gauss-Seidel preconditioner for (10) can be taken as316

(19) P =

[
N 0

M̃2 K

]
,317

the inverse of which requires evaluation of N−1 and K−1:318

(20) P−1 =

[
N−1 0

0 I

] [
I 0

−M̃2 I

] [
I 0
0 K−1

]
.319

Replacing these inverses with approximations/preconditioners Ñ−1 and K̃−1 gives320

(21) P̃−1 =

[
Ñ−1 0

0 I

] [
I 0

−M̃2 I

] [
I 0

0 K̃−1

]
.321

At this point, replacing Ñ−1 with the block preconditioner (18) recovers a block322

lower-triangular 3× 3 preconditioner:323

(22)

P̃−1 =

F−1 0 0
0 K−1

p FpM
−1
p 0

0 0 I

 I 0 0
−BF−1 I 0

0 0 I

 I 0 0
0 I 0
−M2 0 I

I 0 0
0 I 0

0 0 K̃−1

 .324

4. Implementation. The core object in our implementation is an appropriately325

designed “implicit” matrix that provides matrix-vector actions and also makes PDE-326

level discretization information available to custom preconditioners within PETSc.327

Here, we describe this class, how it interacts with both Firedrake and PETSc, and328

how it provides the requisite functionality. Then, we demonstrate how it cleanly329

provides the proper information for custom preconditioners.330

This manuscript is for review purposes only.



COMPOSITION ACROSS THE PDE/LINEAR ALGEBRA BARRIER 9

4.1. Implicit matrices. First, we note that Firedrake deals with matrices at331

two different levels. A Firedrake-level Matrix instance maintains symbolic information332

(the bilinear form, boundary conditions). It in turn contains a PETSc Mat (typically333

in some sparse format), which is used when creating solvers.334

Our implicit matrices mimic this structure, adding an ImplicitMatrix sibling335

class to the existing Matrix, lifting shared features into a common MatrixBase class.336

Where the ImplicitMatrix differs is that its PETSc Mat now has type python (rather337

than a normal sparse format such as aij). To provide the appropriate matrix-vector338

actions, the ImplicitMatrix instance provides an ImplicitMatrixContext instance339

to the PETSc Mat1. This context object contains the PDE-level information – the340

bilinear form and boundary conditions – necessary to implement matrix-vector prod-341

ucts. Moreover, this context object enables building custom preconditioners since it342

is available from within the “low-level” PETSc Mat.343

UFL’s adjoint function, which reverses the test and trial function in a bilinear344

form, also makes it straightforward to provide the action of the matrix transpose,345

needed in some Krylov methods [41, §7.1]. The implicit matrix constructor simply346

stashes the action of the original bilinear form and its adjoint, and the multiplication347

and transposed multiplication are nearly identical using Firedrake’s assemble method348

with boundary conditions appropriately enforced.349

We enable FieldSplit preconditioners on implicit matrices by means of over-350

loading submatrix extraction. The PETSc interface to submatrix extraction does not351

presuppose any particular block structure. Instead, the function receives integer index352

sets corresponding to rows and columns to be extracted into the submatrix. Since353

the PDE-level description operates at the level of fields, we only support extraction of354

submatrices that correspond to (some subset of) the fields that the matrix contains.355

Our method determines whether a provided index set is a concatenation of a subset356

of the index sets defining the different fields and returns the list of integer labels of357

the fields in the subset. While this implementation compares index sets by value358

and therefore increases in expense as the number of per-process degrees of freedom359

increases, it must only be carried out once per solve (be it linear or non-linear), since360

the index set structure does not change. We have not found it to be a measureable361

fraction of the solution time in our implementation.362

Splitting implicit matrices offers an efficient alternative to splitting already-assembled363

sparse matrices. Currently, splitting a standard assembled matrix into blocks requires364

the allocation and copying of the subblocks. While PETSc also includes a “nested”365

matrix type (essentially an array of pointers to matrices), collecting multiple fields366

into a single block (e.g. the pressure and velocity in Bénard convection) requires that367

the user code state up front the order in which nesting occurs. This would mean368

that editing/recompilation of the code is necessary to switch between precondition-369

ing approaches that use different variable splittings, contrary to our goal of efficient370

high-level solver configuration and customization.371

The typical user interface in Firedrake involves interacting with PETSc via a372

VariationalSolver, which takes charge of configuring and calling the PETSc linear373

and nonlinear solvers. It allocates matrices and sets the relevant callback functions374

for Jacobian and residual evaluation to be used inside SNES (PETSc’s nonlinear solver375

object). Switching between implicit and standard sparse matrices is now facilitated376

through additional PETSc database options, so that the type of Jacobian matrix377

1Owing to the cross-language issues and lack of proper inheritance mechanisms in C, this is the
standard way of implementing new types from Python in PETSc.

This manuscript is for review purposes only.



10 ROBERT C. KIRBY AND LAWRENCE MITCHELL

is set with -mat type and the, possibly different, preconditioner matrix type with378

-pmat type. This latter option facilitates using assembled matrices for the matrix-379

vector product, while still providing PDE-level information to the solver. In this way,380

enabling matrix-free methods simply requires an options change in Firedrake and no381

other user modification.382

4.2. Preconditioners. It is helpful to briefly review certain aspects of the383

PETSc formalism for preconditioners. One can think of (left) preconditioning as384

converting a linear system385

(23) b−Ax = 0386

into an equivalent system387

(24) P̂ (b−Ax) = 0,388

where P̂ (·) applies an approximation of the inverse of the preconditioning matrix P389

to the residual2.390

Then, given a current iterate xi, we have the residual391

(25) ri = b−Axi.392

PETSc preconditioners are specified to act on residuals, so that P̂ (ri) then gives an393

approximation to the error ei = x− xi. This enables sparse direct methods to act as394

preconditioners, converting the residual into the exact (up to roundoff error) residual,395

and direct solvers nonetheless conform to the KSP interface (e.g. -ksp type preonly396

-pc type lu).397

PETSc preconditioners are built in terms of both the system matrix A and a possi-398

bly different “preconditioning matrix” Ap (for example, preconditioning a convection-399

diffusion operator with the Laplace operator). So then, P̂ = P̂ (A,Ap) is a method for400

constructing an (approximation to) the inverse of A. Preconditioner implementations401

must provide PETSc with an apply method that computes y ← P̂ x. Creation of the402

data (for example, an incomplete factorization) necessary to apply the preconditioner403

is carried out in a setUp method.404

Firedrake now provides Python-level scaffolding to expedite the implementation405

of preconditioners that act on implicit matrices. Instead of manipulating matrix406

entries like ILU or algebraic multigrid, these preconditioners use the UFL problem407

description from the Python context contained in the incoming matrix P to do what408

is needed. Hence, these preconditioners can be parametrized not over particular409

matrices, but over bilinear forms. To demonstrate the generality of our approach, we410

have implemented several such examples.411

4.2.1. Assembled preconditioners. While one can readily define block pre-412

conditioners using implicit matrices, the best methods for inverting the diagonal413

blocks may in fact be algebraic. This illustrates a critical use case of our simplest414

preconditioner acting on implicit matrices. We have defined a generic preconditioner415

AssembledPC whose setUp method simply forces the assembly of an underlying bi-416

linear form and then sets up a sub-preconditioner (typically an algebraic one) acting417

on the sparse matrix. Then, the apply method simply forwards to that of the sub-418

preconditioner. For example, to use an implicit matrix-vector product but incomplete419

factorization on an assembled matrix for the preconditioner, one might use options420

like421

2We use this notation since it possible that P̂ is not a linear operator.

This manuscript is for review purposes only.



COMPOSITION ACROSS THE PDE/LINEAR ALGEBRA BARRIER 11

� �422
-mat_type matfree423
-pc_type python424
-pc_python_type firedrake.AssembledPC425
-assembled_pc_type ilu426 � �427

As mentioned, FieldSplit preconditioners provide a critical use case, enabling428

one to leave the overall matrix implicit, and assemble only those blocks that are429

required. In particular, the off-diagonal blocks never require assembly, and this can430

result in significant memory savings.431

4.2.2. Schur complement approximations. Our next example, Schur com-432

plement approximations, is more specialized but very relevant to the problems in fluid433

mechanics expressed above. PETSc provides two pathways to define preconditioners434

for the Schur complement, such as (16). Within the source code, one may pass to the435

function PCFieldSplitSetSchurPre a matrix which will be used by a preconditioner436

to construct an approximation to the Schur complement. Alternatively, PETSc can437

automatically construct some approximations that may be obtained by algebraic ma-438

nipulations of the original operator (such as the SIMPLE or LSC approximations [16]).439

While the latter may be configured using only runtime options, the former requires440

that the user pick apart the solver and call PCFieldSplitSetSchurPre on the appro-441

priate PC object. Enabling this preconditioning option, or incorporating it into larger442

coupled systems requires modification of the model source code.443

Since our implicit matrices and their subblocks contain the UFL problem spec-444

ification, a preconditioner acting on the Schur complementment block has complete445

freedom to utilize the UFL bilinear form to set up auxiliary operators. We have446

implemented two Schur complement approximations suitable for incompressible flow,447

an inverse mass matrix and the PCD preconditioner, both of which follow a similar448

pattern. The setUp function extracts the pressure function space from the UFL bilin-449

ear form and defines and assembles bilinear forms for the auxiliary operators. It also450

defines user-configurable KSP contexts as needed (e.g. for the Kp and Mp operators in451

(16)). The PCD preconditioner also requires a subsequent update phase in which the452

Fp matrix is updated as the Jacobian evolves. The apply method simply performs453

the correct combination of matrix-vector products and linear solves.454

The high-level Python syntax of petsc4py and Firedrake combine to allow a very455

concise implementation in these cases. In the case of PCD, we specify the initial and456

subsequent setup methods plus application method in less than 150 lines of code,457

including Python doc strings and hooks into the PETSc viewer system.458

User data. The PCD preconditioner requires a very slight modification of the459

application code. In particular, UFL does not expose named parameters. That is,460

one may not ask the variational problem what the Reynolds number is. Also, it is not461

obvious to the preconditioner which piece of the current Newton state corresponds to462

the velocity, which is needed in constructing Fp. To address such difficulties, Fire-463

drake’s VariationalSolver classes can take an arbitrary Python dictionary of user464

data, which is available inside the implicit matrix, and hence to the precondition-465

ers. This facility requires documentation, but fits with the general PETSc idiom of466

allowing all callbacks to user code to provide a generic “application context”.467

4.2.3. Additive Schwarz. Our additive Schwarz implementation requires both468

more involved UFL manipulation and low-level implementation details. We have469

implemented it as a Python preconditioner that defers to a PETSc PCCOMPOSITE to470

perform the composition, but extracts and manipulates the symbolic description of471

the problem to create two Python preconditioners, one for the P1 subproblem and472

This manuscript is for review purposes only.



12 ROBERT C. KIRBY AND LAWRENCE MITCHELL

one for the local, high-degree, patch problems.473

The P1 preconditioner requires us to construct the P1 discretization of the given474

operator, plus restriction and prolongation operators between the global Pk and P1475

spaces. UFL provides a utility to make the first of these straightforward – we just476

replace the test and trial functions in the original expression graph with test and477

trial functions taken from the P1 space on the same mesh. The second is a bit478

more involved. We rely on the fact that the P1 basis functions on a cell are naturally479

embedded in the Pk space, and hence their interpolant in Pk is exact. Using FIAT [26]480

to construct this interpolant on a single cell, we then generate a cell kernel that is481

called for every coarse element in the mesh to produce the prolongation operator as482

a sparse matrix. Optionally, this can also occur in a matrix-free fashion.483

Setting up and solving the patch problems presents more complications. During484

a startup phase, we must query the mesh to discover and store the cells in each vertex485

patch. At this time, we also construct the sets of global degrees of freedom involved486

in each patch, setting up indirections between patch-level and processor-level degrees487

of freedom.488

Our implementation leverages PETSc’s DMPlex representation of computational489

meshes [27], that Firedrake uses, to iterate over and query the mesh to construct490

this information. Due to the repeated low-level instructions required for this, we491

have implemented this in C as a normal PETSc preconditioner. Our implementation492

requires that the high-level “problem aware” preconditioner, in Python, initialise the493

patch preconditioner with the problem-specific data. This includes the function space494

description, identification of any Dirichlet nodes in the space, along with a callback495

to construct the patch operator. This callback is effectively the low-level code created496

when calling assemble on a UFL form. As is usual with PETSc objects, all aspects497

of the subsolves are configurable at runtime. Application of the patch inverses can498

either store and reuse matrices and factorizations (at the cost of high memory usage)499

or build, invert, and discard matrices patch-by-patch. This has much lower memory500

usage, but is computationally more expensive without access to either fast patch501

inverses or fast patch assembly routines.502

5. Examples and results. We now present some examples and weak scaling503

results using Firedrake, and the new preconditioning framework we have developed.504

All results in this study were conducted on ARCHER, a Cray XC30 hosted at the505

University of Edinburgh. Each compute node contains two 2.7 GHz, 12-core E5-506

2697v2 (Ivy Bridge) processors, for a total of 24 cores per node, with a guaranteed507

not to exceed floating point performance of 518.4 Gflop/s. The spec sheet memory508

bandwidth is 119.4 GB/s per node, and we measured a STREAM triad [35] bandwidth509

of 74.1 GB/s when using 24 pinned MPI processes3. All experiments were performed510

with 24 MPI ranks per node (i.e. fully populated) with processes pinned to cores. For511

all experiments, we use regular simplicial meshes4 of the unit d-cube with piecewise512

linear coordinate fields.513

5.1. Operator application. Without access to fast, sum-factored algorithms,514

forming element tensors has complexity O(p3d) for Jacobian matrices, and O(p2d) for515

residual evaluation. Similarly, matrix-vector products for assembled sparse matrices516

require O(p2d) work, as do matrix-free applications (although the constants can be517

very different). Since Firedrake does not currently implement sum-factored algorithms518

3The compiler did not generate non-temporal stores for this code.
4These meshes are nonetheless treated as unstructured by Firedrake.

This manuscript is for review purposes only.



COMPOSITION ACROSS THE PDE/LINEAR ALGEBRA BARRIER 13

on simplices, we expect that our matrix-free implementation to have the same time519

complexity as assembled sparse matrix-vector application. An advantage is that we520

have constant memory usage per degree of freedom (modulo surface-to-volume effects).521

Figure 1 shows performance of our implementation for a Poisson operator discre-522

tised with piecewise polynomial Lagrange basis functions. We see that we broadly523

observe the expected algorithmic behavior (barring in three dimensions, as explained524

in the figure). Assembled matrix-vector multiplication is faster than matrix-free ap-525

plication, although not by much for the two-dimensional case, at the cost of higher526

memory consumption per degree of freedom and the need to first assemble the matrix527

(costing approximately 10 matrix-free actions).

1
(213k)
(169k)

2
(213k)
(169k)

3
(270k)
(291k)

4
(213k)
(291k)

5
(213k)
(329k)

6
(202k)

7
(255k)

Polynomial degree
(2D dofs/process)
(3D dofs/process)

10
7

10
8

10
9

do
fs

/s
ec

on
d

Assemble AIJ [2D]
MatMult AIJ [2D]
MatMult matrix-free [2D]

Assemble AIJ [3D]
MatMult AIJ [3D]
MatMult matrix-free [3D]

(a) Degrees of freedom per second processed
for matrix assembly and matrix-vector products.
The performance of matrix-free operator action
and assembly at degree 5 in 3D becomes notice-
ably worse because the data for tabulated basis
functions spills from the fastest cache.

1 2 3 4 5 6 7
Polynomial degree

10
2

10
3

By
te

s/
do

f

AIJ [2D]
Matrix-free [2D]

AIJ [3D]
Matrix-free [3D]

(b) Bytes of memory per degree of freedom. For
the matrix-free case, memory usage is not quite
constant, since Firedrake stores the ghosted rep-
resentation, and so a surface-to-volume term ap-
pears in the memory per dof (more noticeable in
three dimensions).

Fig. 1. Performance of matrix-vector products for a Poisson operator discretised on simplices
in two and three dimensions (48 MPI processes).

528
The same story appears for more complex problems, and we show one example,529

the operator for Rayleigh-Bénard convection discretised using Pk+1-Pk-Pk elements, in530

Figure 2. In two dimensions, the matrix-free action is faster than assembled operator531

application, and in three dimensions the cost is less than a factor 1.5 greater (even532

at lowest order). Given the high cost of matrix assembly, any iterative method that533

requires fewer than 10 matrix-vector products will be better off matrix-free, even534

before memory savings are considered.535

To determine if these timings are good in absolute terms, we use a roofline model536

[43]. The arithmetic intensity for assembled matrix-vector products is calculated537

following [20]. For matrix assembly and matrix-free operator application, we count538

effective flops in the element kernel by traversing the intermediate representation of539

the generated code, the required data movement assumes a perfect cache model for540

any fields (each degree of freedom is only loaded for main memory once), and includes541

the cost of moving the indirection maps. The spec sheet memory bandwidth per node542

is 119.4 GB/s, and we measure a STREAM triad bandwidth of 74.1 GB/s per node;543

the guaranteed not to exceed floating point performance is 518.4 Gflop/s per node (one544

AVX multiplication and one AVX addition issued per cycle per core). As evidenced545

in Figure 3, there is almost no extra performance available for the application of546

This manuscript is for review purposes only.



14 ROBERT C. KIRBY AND LAWRENCE MITCHELL

1
(300k)
(282k)

2
(347k)
(258k)

3
(260k)
(128k)

4
(273k)

Polynomial degree
(2D dofs/process)
(3D dofs/process)

10
6

10
7

10
8

do
fs

/s
ec

on
d

Assemble AIJ [3D]
MatMult AIJ [3D]
MatMult matrix-free [3D]
Assemble Nest [3D]
MatMult Nest [3D]

Assemble AIJ [2D]
MatMult AIJ [2D]
MatMult matrix-free [2D]
Assemble Nest [2D]
MatMult Nest [2D]

(a) Degrees of freedom per second processed for
matrix assembly and matrix-vector products.

1 2 3 4
Polynomial degree of scalar space

10
2

10
3

By
te

s/
do

f

AIJ [3D]
Matrix-free [3D]
Nest [3D]

AIJ [2D]
Matrix-free [2D]
Nest [2D]

(b) Bytes of memory per degree of freedom.

Fig. 2. Performance of matrix-vector products for the Rayleigh-Bénard equation discretised on
simplices in two and three dimensions (48 MPI processes).

assembled operators: the matrix-vector product achieves close to the machine peak547

in all cases. In contrast, the matrix-free actions, with significantly higher arithmetic548

intensity, are quite a distance from machine peak: this suggests a direction for future549

optimisation efforts in Firedrake.

2
4

2
2

2
0

2
2

2
4

2
6

2
8

Arithmetic intensity [flop/byte]

2
2

2
4

2
6

2
8

2
10

G
flo

p/
s

Peak B
W 239 GB/s

Triad BW 148 GB/s

1 AVX mul + 1 AVX add/cycle 1037 Gflop/s

1 AVX op/cycle 518 Gflop/s

1 scalar op/cycle 130 Gflop/s

Increasing degree

Assemble AIJ [2D]
MatMult AIJ [2D]
MatMult matrix-free [2D]

Assemble AIJ [3D]
MatMult AIJ [3D]
MatMult matrix-free [3D]

(a) Performance of assembly and matrix-vector
products for the Poisson operator. The assem-
bled matrix achieves performance close to ma-
chine peak, while matrix-free products (and ma-
trix assembly) are a way away.

2
4

2
2

2
0

2
2

2
4

2
6

2
8

Arithmetic intensity [flop/byte]

2
2

2
4

2
6

2
8

2
10

G
flo

p/
s

Peak B
W 239 GB/s

Triad BW 148 GB/s

1 AVX mul + 1 AVX add/cycle 1037 Gflop/s

1 AVX op/cycle 518 Gflop/s

1 scalar op/cycle 130 Gflop/s

Increasing degree

Assemble AIJ [2D]
MatMult AIJ [2D]
MatMult matrix-free [2D]
Assemble Nest [2D]
MatMult Nest [2D]

Assemble AIJ [3D]
MatMult AIJ [3D]
MatMult matrix-free [3D]
Assemble Nest [3D]
MatMult Nest [3D]

(b) Performance of assembly and matrix-vector
products for the Rayleigh-Bénard operator. The
nest matrix has higher arithmetic intensity than
the aij matrix due to using a blocked CSR for-
mat for the diagonal velocity block. As with the
Poisson operator, assembled matrices achieve al-
most machine peak, whereas the matrix-free op-
erator has room for improvement.

Fig. 3. Roofline plots for the experiments of Figure 1 and Figure 2.

550

5.2. Runtime solver composition.551

5.2.1. Poisson. We now consider solving the Poisson problem (2) in three di-552

mensions. We choose as domain a regularly meshed unit cube, Ω = [0, 1]d, and apply553

This manuscript is for review purposes only.



COMPOSITION ACROSS THE PDE/LINEAR ALGEBRA BARRIER 15

homogenous Dirichlet conditions on ∂Ω, along with a constant forcing term. For554

low degree discretizations, “black-box” algebraic multigrid methods are robust and555

provide high performance. Their performance, however, degrades with increasing ap-556

proximation degree. Here we show how we can plug in the additive Schwarz approach557

described in subsection 3.2 to provide a preconditioner with mesh and degree inde-558

pendent iteration counts. The preconditioner itself is not fully independent of these559

parameters because the time to solution increases: we are not using an O(n) coarse560

grid solve, instead using algebraic multigrid V cycles. TODO: rework better to say561

only that iteration counts are constant, to be mesh and degree-independent in terms562

of time we need an O(n)563

The main cost of this preconditioner is the application of the (dense) patch in-564

verses, the cost of our implementation is therefore quite high. We also comment that565

if patch operators are not stored between iterations, the overall memory footprint of566

the method is quite small. Developing fast algorithms to build and invert these patch567

operators is the subject of ongoing work.568

In Table 1 we compare the algorithmic and runtime performance of hypre’s569

boomerAMG algebraic multigrid solver applied directly to a P4 discretization with570

the additive Schwarz approach. The only changes to the application file were in the571

specification of the runtime solver options. The provided solver options are shown572

in Appendix B.1 for the hypre preconditioner and Appendix B.2 for the Schwarz573

approach.574

Table 1
Krylov iterations, and time to solution for P4 Poisson problem using hypre and the Schwarz

preconditioner described in subsection 3.2 as the problem is weakly scaled. The required number of
Krylov iterations grows slowly for the hypre preconditioner, but is constant for Schwarz. However,
the overall time to solution is still lower with hypre.

DoFs (×106) MPI processes Krylov its Time to solution (s)
hypre schwarz hypre schwarz

2.571 24 19 19 5.62 9.48
5.545 48 20 19 6.45 10.6
10.22 96 20 19 6.17 10.3
20.35 192 21 18 6.53 10.7
43.99 384 22 19 7.53 11.9
81.18 768 22 19 7.52 11.7
161.9 1536 23 19 8.98 13
350.4 3072 24 19 8.56 14
647.2 6144 26 19 9.32 13.9
1291 12288 28 19 10.2 17.3
2797 24576 29 19 13 22.5

5.2.2. FieldSplit examples. Merely being able to solve the Poisson equation575

is a relatively uninteresting proposition. The power in our (and PETSc’s) approach576

is the ease of composition, at runtime, of scalable building blocks to provide pre-577

conditioners for complex problems. To demonstrate this, we consider solving the578

Rayleigh-Bénard equations for stationary convection (7).579

A block preconditioner for this problem was developed in [22], but its perfor-580

mance was only studied in two-dimensional systems, and the implementation of the581

preconditioner was tightly coupled with the problem. The components of this pre-582

conditioner are: an inexact inverse of the Navier-Stokes equations, for which the583

This manuscript is for review purposes only.



16 ROBERT C. KIRBY AND LAWRENCE MITCHELL

block preconditioners discussed in [18] provide mesh-independent iteration counts;584

an inexact inverse of the scalar (temperature) convection diffusion operator. For585

the Navier-Stokes block we approximate the Schur complement with the pressure-586

convection-diffusion approach (which requires information about the discretization587

inside the preconditioner). The building blocks are an approximate inverse for the ve-588

locity convection-diffusion operator, and approximate inverses for pressure mass and589

stiffness matrices. For moderate velocities, the velocity convection-diffusion operator590

can be treated with algebraic multigrid. Similarly, the pressure mass matrix can be591

inverted well with only a few iterations of a splitting-based method (e.g. point Ja-592

cobi), while multigrid is again good for the stiffness matrix. Finally, the temperature593

convection-diffusion operator can again be treated with algebraic multigrid.594

Using the notation of (18) and (22), we need approximate inverses Ñ−1 and K̃−1.595

Where Ñ−1 itself needs approximate inverses F̃−1, K−1
p , and M−1

p . We can make596

different choices for all of these inverses, as well as to apply operators in a matrix-free597

manner or not, the matrix format for assembled operators, and convergence tolerance598

for all approximate inverses. These options (and others) can all be configured at599

runtime, while maintaining a single code base for the specification of the underlying600

PDE model, merely by modifying solver options.601

Explicitly assembling the Jacobian and inverting with a direct solver requires a602

relatively short options list: Appendix B.3. Conversely, to implement the precon-603

ditioner of (22), with algebraic multigrid for all approximate inverses (except the604

pressure mass matrix), and the operator applied matrix-free, we need significantly605

more options. These are shown in full in Appendix B.4.606

5.2.3. Algorithmic and parallel scalability. Firedrake and PETSc are de-607

signed such that the user of the library need not worry in detail about distributed608

memory parallelisation, provided they respect the collective semantics of operations.609

Since our implementation of solvers and preconditioners operates at the level of public610

APIs, we only need to be careful that we use the correct communicators when con-611

structing auxiliary objects. Parallelisation therefore comes “for free”. In this section,612

we show that our approach scales to large problem sizes, with scalability limited only613

by the performance of the building block components of the solver.614

We consider the algorithmic performance of the Rayleigh-Bénard problem (7) in615

a regularly meshed unit cube, Ω = [0, 1]3. We choose as boundary conditions:616

u = 0 on ∂Ω(26a)617

∇p · n = 0 on ∂Ω(26b)618

T = 1 on the plane x = 0(26c)619

T = 0 on the plane x = 1(26d)620

∇T · n = 0 otherwise(26e)621622

and take Ra = 200 and Pr = 6.18. The constant pressure nullspace is projected out623

in the linear solver. The solution to this problem is shown in Figure 4.624

We perform a weak scaling experiment (increasing both the number of degrees of625

freedom, and computational resource) to study any mesh dependence in our solver.626

For the full set of solver options see Appendix B.4. Newton iterations reduce the627

residual by 108 in three iterations, with only a weak increase in the number of Krylov628

iterations, as seen in Table 2. The scalability does not look as good as these results629

would suggest, with only 20% parallel efficiency for this weakly scaled problem on630

6144 cores. Looking at the inner solves indicates the problem, although the outer631

This manuscript is for review purposes only.



COMPOSITION ACROSS THE PDE/LINEAR ALGEBRA BARRIER 17

Fig. 4. Solution to the Rayleigh-Bénard problem of (7) with boundary conditions as specified
in (26), and g pointing up. Shown are streamlines of the velocity field coloured by the magnitude of
the velocity, and isosurfaces of the pressure.

Table 2
Newton iteration counts, total Krylov iterations, and time to solution for Rayleigh-Bénard

convection as the problem is weakly scaled. The required number of linear iterations grows slowly as
the mesh is refined, however the time to solution grows much faster.

DoFs (×106) MPI processes Newton its Krylov its Time to solution (s)
0.7405 24 3 16 31.7
1.488 48 3 16 36.3
2.973 96 3 17 43.9
5.769 192 3 17 47.3
11.66 384 3 17 56
23.39 768 3 17 64.9
45.54 1536 3 18 85.2
92.28 3072 3 18 120
185.6 6144 3 19 167

Krylov solve performs well, our approximate inner preconditioners are not fully mesh632

independent. Table 3 shows the total number of iterations for both the Navier-Stokes633

solve and the temperature solve as part of the application of the outer preconditioner.634

In addition to iteration counts increasing, the time to compute a single iteration also635

increases. This is observable more clearly in the previous results for the Poisson636

operator (Table 1). This is due to sub-optimal scalability of the algebraic multigrid637

that is used for all the building blocks in these solves. Our results for the Poisson638

This manuscript is for review purposes only.



18 ROBERT C. KIRBY AND LAWRENCE MITCHELL

Table 3
Total iterations for Navier-Stokes and temperature solves (with average iterations per outer

linear solve in brackets) for the nonlinear solution of the Rayleigh-Bénard problem. We see weak
mesh dependence in the per-solve iteration counts. When multiplied up by the slight mesh dependence
in the outer solve, this results in a noticeable inefficiency.

DoFs (×106) Navier-Stokes iterations Temperature iterations
0.7405 329 (20.6) 107 (6.7)
1.488 338 (21.1) 110 (6.9)
2.973 365 (21.5) 132 (7.8)
5.769 358 (21.1) 133 (7.8)
11.66 373 (21.9) 137 (8.1)
23.39 378 (22.2) 139 (8.2)
45.54 403 (22.4) 151 (8.4)
92.28 420 (23.3) 154 (8.6)
185.6 463 (24.4) 174 (9.2)

equation using hypre’s boomerAMG appear similar to previously reported results on639

weak scalability from the hypre team [3], and so we do not expect to gain much640

improvement here without changing the solver. This can, however, be done without641

modification to the existing solver: as soon as a better option is available, we can just642

drop it in.643

6. Conclusions and future outlook. We have presented our approach in Fire-644

drake extending the existing solver interface to support matrix-free operators, and the645

necessary preconditioning infrastructure. Our approach is extensible and composable646

with existing algebraic solvers supported through PETSc. In particular, it removes647

much of the friction in developing block preconditioners requiring auxiliary opera-648

tors. The performance of such preconditioners for complex problems still relies on649

having good approximate inverses for the blocks, but our composable approach can650

seamlessly take advantage of any such advances.651

Appendix A. Code availability. For reproducibility, we cite archives of the652

exact software versions that were used to produce the results in this paper. The653

experimentation and job submission framework (along with the plotting scripts and654

raw results) is available as [46]. The Additive Schwarz preconditioner from subsec-655

tion 3.2 is [53]. For all components of the Firedrake project, we used recent versions:656

COFFEE [45], FIAT [47], FInAT [48], Firedrake [49], PETSc [50], petsc4py [51],657

PyOP2 [52], TSFC [54], and UFL [55].658

Appendix B. Full solver parameters.659

B.1. Poisson: hypre. We use hypre’s boomerAMG algebraic multigrid im-660

plementation, and select more aggressive coarsening strategies to obtain a lower-661

complexity coarse grid operator than the default.662 � �663
-ksp_type cg -ksp_rtol 1e-8 -mat_type aij664
-pc_type hypre -pc_hypre_type boomeramg665
-pc_hypre_boomeramg_P_max 4666
-pc_hypre_boomeramg_no_CF667
-pc_hypre_boomeramg_agg_nl 1668
-pc_hypre_boomeramg_agg_num_paths 2669
-pc_hypre_boomeramg_coarsen_type HMIS670
-pc_hypre_boomeramg_interp_type ext+i671 � �672

This manuscript is for review purposes only.



COMPOSITION ACROSS THE PDE/LINEAR ALGEBRA BARRIER 19

B.2. Poisson: schwarz. We use exact inverses for the patch problems, and673

PETSc’s GAMG algebraic multigrid for the P1 inverse. The telescoping precondi-674

tioner [34] for the low-order P1 operator is used to reduce the number of active MPI675

processes, since it has many fewer degrees of freedom than the P4 operator.676 � �677
-ksp_type cg -ksp_rtol 1e-8 -mat_type matfree678
-pc_type python -pc_python_type ssc.SSC679
-ssc_pc_composite_type additive680
-ssc_sub_0_pc_patch_save_operators True681
-ssc_sub_0_pc_patch_sub_mat_type seqaij682
-ssc_sub_0_sub_ksp_type preonly683
-ssc_sub_0_sub_pc_type lu684
-ssc_sub_1_lo_pc_type telescope685
-ssc_sub_1_lo_pc_telescope_reduction_factor 6686
-ssc_sub_1_lo_telescope_ksp_max_it 4687
-ssc_sub_1_lo_telescope_ksp_type richardson688
-ssc_sub_1_lo_telescope_pc_type gamg689 � �690

B.3. Rayleigh-Bénard: direct. To invert the full linearised Jacobian with a691

direct solver (here we use MUMPS [2]), we use the options:692 � �693
-mat_type aij694
-ksp_type preonly695
-pc_type lu696
-pc_factor_mat_solver_package mumps697 � �698

B.4. Rayleigh-Bénard: iterative. To configure the nonlinear iteration, and699

then also split the Navier-Stokes block from the temperature block, we use:700 � �701
-snes_type newtonls -snes_rtol 1e-8 -snes_linesearch_type basic702
-ksp_type fgmres -ksp_gmres_modifiedgramschmidt703
-mat_type matfree704
-pc_type fieldsplit705
-pc_fieldsplit_type multiplicative706
-pc_fieldsplit_0_fields 0,1707
-pc_fieldsplit_1_fields 2708 � �709

now we configure the temperature solve to use GMRES and algebraic multigrd.710 � �711
-prefix_push fieldsplit_1_712
-ksp_type gmres713
-ksp_rtol 1e-4,714
-pc_type python715
-pc_python_type firedrake.AssembledPC716
-assembled_mat_type aij717
-assembled_pc_type telescope718
-assembled_pc_telescope_reduction_factor 6719
-assembled_telescope_pc_type hypre720
-assembled_telescope_pc_hypre_boomeramg_P_max 4721
-assembled_telescope_pc_hypre_boomeramg_agg_nl 1722
-assembled_telescope_pc_hypre_boomeramg_agg_num_paths 2723
-assembled_telescope_pc_hypre_boomeramg_coarsen_type HMIS724
-assembled_telescope_pc_hypre_boomeramg_interp_type ext+i725
-assembled_telescope_pc_hypre_boomeramg_no_CF True726
-prefix_pop727 � �728

Finally we configure the Navier-Stokes solve to use GMRES with a lower Schur com-729

plement factorization as a preconditioner, and the pressure-convection-diffusion ap-730

proximation for the schur complement.731 � �732
-prefix_push fieldsplit_0_733
-ksp_type gmres734
-ksp_gmres_modifiedgramschmidt735
-ksp_rtol 1e-2736
-pc_type fieldsplit737
-pc_fieldsplit_type schur738
-pc_fieldsplit_schur_fact_type lower739

This manuscript is for review purposes only.



20 ROBERT C. KIRBY AND LAWRENCE MITCHELL

740
-prefix_push fieldsplit_0_741
-ksp_type preonly742
-pc_type python743
-pc_python_type firedrake.AssembledPC744
-assembled_mat_type aij745
-assembled_pc_type hypre746
-assembled_pc_hypre_boomeramg_P_max 4747
-assembled_pc_hypre_boomeramg_agg_nl 1748
-assembled_pc_hypre_boomeramg_agg_num_paths 2749
-assembled_pc_hypre_boomeramg_coarsen_type HMIS750
-assembled_pc_hypre_boomeramg_interp_type ext+i751
-assembled_pc_hypre_boomeramg_no_CF752
-prefix_pop753

754
-prefix_push fieldsplit_1_755
-ksp_type preonly756
-pc_type python757
-pc_python_type firedrake.PCDPC758
-pcd_Fp_mat_type matfree759
-pcd_Kp_ksp_type preonly760
-pcd_Kp_mat_type aij761
-pcd_Kp_pc_type telescope762
-pcd_Kp_pc_telescope_reduction_factor 6763
-pcd_Kp_telescope_pc_type ksp764
-pcd_Kp_telescope_ksp_ksp_max_it 3765
-pcd_Kp_telescope_ksp_ksp_type richardson766
-pcd_Kp_telescope_ksp_pc_type hypre767
-pcd_Kp_telescope_ksp_pc_hypre_boomeramg_P_max 4768
-pcd_Kp_telescope_ksp_pc_hypre_boomeramg_agg_nl 1769
-pcd_Kp_telescope_ksp_pc_hypre_boomeramg_agg_num_paths 2770
-pcd_Kp_telescope_ksp_pc_hypre_boomeramg_coarsen_type HMIS771
-pcd_Kp_telescope_ksp_pc_hypre_boomeramg_interp_type ext+i772
-pcd_Kp_telescope_ksp_pc_hypre_boomeramg_no_CF773

774
-pcd_Mp_mat_type aij775
-pcd_Mp_ksp_type richardson776
-pcd_Mp_pc_type sor777
-pcd_Mp_ksp_max_it 2778
-prefix_pop779
-prefix_pop780 � �781

REFERENCES782

[1] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, Unified Form Lan-783
guage: a domain-specific language for weak formulations of partial differential equations,784
ACM Transactions on Mathematical Software, 40 (2014), https://doi.org/10.1145/2566630,785
https://arxiv.org/abs/1211.4047.786

[2] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent, Multifrontal parallel distributed symmet-787
ric and unsymmetric solvers, Computer methods in applied mechanics and engineering,788
184 (2000), pp. 501–520, https://doi.org/10.1016/S0045-7825(99)00242-X.789

[3] A. H. Baker, R. D. Falgout, T. Gamblin, T. V. Kolev, M. Schulz, and U. M. Yang,790
Scaling algebraic multigrid solvers: on the road to exascale, in Competence in High Per-791
formance Computing 2010: Proceedings of an International Conference on Competence792
in High Performance Computing, June 2010, Schloss Schwetzingen, Germany, C. Bischof,793
H.-G. Hegering, W. E. Nagel, and G. Wittum, eds., Berlin, Heidelberg, 2012, Springer794
Berlin Heidelberg, pp. 215–226, https://doi.org/10.1007/978-3-642-24025-6 18.795

[4] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,796
V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp,797
B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Users Manual, Tech. Report798
ANL-95/11 - Revision 3.7, Argonne National Laboratory, 2016.799

[5] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient management of paral-800
lelism in object oriented numerical software libraries, in Modern Software Tools in Scientific801
Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhäuser Press, 1997,802
pp. 163–202, https://doi.org/10.1007/978-1-4612-1986-6 8.803

[6] M. Benzi, G. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta804
Numerica, 14 (2005), pp. 1–137, https://doi.org/10.1017/S0962492904000212.805

This manuscript is for review purposes only.

https://doi.org/10.1145/2566630
https://arxiv.org/abs/1211.4047
https://doi.org/10.1016/S0045-7825(99)00242-X
https://doi.org/10.1007/978-3-642-24025-6_18
https://doi.org/10.1007/978-1-4612-1986-6_8
https://doi.org/10.1017/S0962492904000212


COMPOSITION ACROSS THE PDE/LINEAR ALGEBRA BARRIER 21

[7] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Mathematics of Com-806
putation, 31 (1977), pp. 333–390, https://doi.org/10.1090/S0025-5718-1977-0431719-X.807

[8] A. Brandt and O. Livne, Multigrid Techniques, Society for Industrial and Applied Mathe-808
matics, 2011, https://doi.org/10.1137/1.9781611970753.809

[9] S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, vol. 15810
of Texts in Applied Mathematics, Springer, New York, third edition ed., 2008.811

[10] J. Brown, M. G. Knepley, D. A. May, L. C. McInnes, and B. F. Smith, Composable812
linear solvers for multiphysics, in Proceedings of the 2012 11th International Symposium813
on Parallel and Distributed Computing, ISPDC ’12, Washington, DC, USA, 2012, IEEE814
Computer Society, pp. 55–62, https://doi.org/10.1109/ISPDC.2012.16.815

[11] G. F. Carey and T. J. Oden, Finite Elements: Fluid Mechanics Vol., VI, Prentice-Hall, Inc.,816
1986.817

[12] E. C. Cyr, J. N. Shadid, and R. S. Tuminaro, Teko: A block preconditioning capability with818
concrete example applications in Navier-Stokes and MHD, SIAM Journal on Scientific819
Computing, 38 (2016), pp. S307–S331, https://doi.org/10.1137/15M1017946.820

[13] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, Parallel distributed computing using821
Python, Advances in Water Resources, 34 (2011), pp. 1124–1139, https://doi.org/10.1016/822
j.advwatres.2011.04.013. New Computational Methods and Software Tools.823

[14] T. A. Davis, Algorithm 832: UMFPACK V4.3-an unsymmetric-pattern multifrontal method,824
ACM Transactions on Mathematical Software, 30 (2004), pp. 196–199, https://doi.org/10.825
1145/992200.992206.826

[15] H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, Block precon-827
ditioners based on approximate commutators, SIAM Journal on Scientific Computing, 27828
(2006), pp. 1651–1668, https://doi.org/10.1137/040608817.829

[16] H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, A taxon-830
omy and comparison of parallel block multi-level preconditioners for the incompressible831
Navier–Stokes equations, Journal of Computational Physics, 227 (2008), pp. 1790–1808,832
https://doi.org/10.1016/j.jcp.2007.09.026.833

[17] H. Elman and D. Silvester, Fast nonsymmetric iterations and preconditioning for Navier-834
Stokes equations, SIAM Journal on Scientific Computing, 17 (1996), pp. 33–46, https:835
//doi.org/10.1137/0917004.836

[18] H. Elman, D. Silvester, and A. Wathen, Finite elements and fast iterative solvers, Oxford837
University Press, second edition ed., 2014.838

[19] P. E. Farrell and J. W. Pearson, A preconditioner for the Ohta-Kawasaki equation, 2016,839
https://arxiv.org/abs/1603.04570.840

[20] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith, Towards realistic perfor-841
mance bounds for implicit CFD codes, in Parallel CFD 1999, D. Keyes, A. Ecer, J. Pe-842
riaux, and N. Satofuka, eds., North-Holland, 2000, pp. 241–248, https://doi.org/10.1016/843
B978-044482851-4.50030-X.844

[21] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda,845
R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K.846
Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley, An847
overview of the Trilinos project, ACM Transactions on Mathematical Software, 31 (2005),848
pp. 397–423, https://doi.org/10.1145/1089014.1089021.849

[22] V. E. Howle and R. C. Kirby, Block preconditioners for finite element discretization of850
incompressible flow with thermal convection, Numerical Linear Algebra with Applications,851
19 (2012), pp. 427–440, https://doi.org/10.1002/nla.1814.852

[23] V. E. Howle, R. C. Kirby, K. Long, B. Brennan, and K. Kennedy, Playa: high-853
performance programmable linear algebra, Scientific Programming, 20 (2012), pp. 257–273,854
https://doi.org/10.1155/2012/606215.855

[24] B. Jessic, D. Kay, M. Stoll, and A. J. Wathen, Fast solvers for Cahn-Hilliard inpaint-856
ing, SIAM Journal on Imaging Sciences, 7 (2014), pp. 67–97, https://doi.org/10.1137/857
130921842.858

[25] D. Kay, D. Loghin, and A. Wathen, A preconditioner for the steady-state Navier-Stokes859
equations, SIAM Journal on Scientific Computing, 24 (2002), pp. 237–256, https://doi.860
org/10.1137/S106482759935808X.861

[26] R. C. Kirby, Algorithm 839: FIAT, a new paradigm for computing finite element ba-862
sis functions, ACM Transactions on Mathematical Software, 30 (2004), pp. 502–516,863
https://doi.org/10.1145/1039813.1039820.864

[27] M. G. Knepley and D. A. Karpeev, Mesh Algorithms for PDE with Sieve I: Mesh Dis-865
tribution, Scientific Programming, 17 (2009), pp. 215–230, https://doi.org/10.1155/2009/866
948613.867

This manuscript is for review purposes only.

https://doi.org/10.1090/S0025-5718-1977-0431719-X
https://doi.org/10.1137/1.9781611970753
https://doi.org/10.1109/ISPDC.2012.16
https://doi.org/10.1137/15M1017946
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1145/992200.992206
https://doi.org/10.1145/992200.992206
https://doi.org/10.1145/992200.992206
https://doi.org/10.1137/040608817
https://doi.org/10.1016/j.jcp.2007.09.026
https://doi.org/10.1137/0917004
https://doi.org/10.1137/0917004
https://doi.org/10.1137/0917004
https://arxiv.org/abs/1603.04570
https://doi.org/10.1016/B978-044482851-4.50030-X
https://doi.org/10.1016/B978-044482851-4.50030-X
https://doi.org/10.1016/B978-044482851-4.50030-X
https://doi.org/10.1145/1089014.1089021
https://doi.org/10.1002/nla.1814
https://doi.org/10.1155/2012/606215
https://doi.org/10.1137/130921842
https://doi.org/10.1137/130921842
https://doi.org/10.1137/130921842
https://doi.org/10.1137/S106482759935808X
https://doi.org/10.1137/S106482759935808X
https://doi.org/10.1137/S106482759935808X
https://doi.org/10.1145/1039813.1039820
https://doi.org/10.1155/2009/948613
https://doi.org/10.1155/2009/948613
https://doi.org/10.1155/2009/948613


22 ROBERT C. KIRBY AND LAWRENCE MITCHELL

[28] A. Logg, K.-A. Mardal, and G. N. Wells, eds., Automated solution of differential equations868
by the finite element method: the FEniCS book, vol. 84, Springer, 2012, https://doi.org/869
10.1007/978-3-642-23099-8.870

[29] K. Long, R. C. Kirby, and B. van Bloemen Waanders, Unified embedded parallel finite ele-871
ment computations via software-based Fréchet differentiation, SIAM Journal on Scientific872
Computing, 32 (2010), pp. 3323–3351, https://doi.org/10.1137/09076920X.873

[30] K. R. Long, Sundance rapid prototyping tool for parallel PDE optimization, in Large-Scale874
PDE-Constrained Optimization, L. T. Biegler, M. Heinkenschloss, O. Ghattas, and B. van875
Bloemen Waanders, eds., Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 331–876
341, https://doi.org/10.1007/978-3-642-55508-4 20.877

[31] K.-A. Mardal and J. B. Haga, Automated solution of differential equations by the finite878
element method: the FEniCS book, in Logg et al. [28], ch. Block preconditioning of systems879
of PDEs, https://doi.org/10.1007/978-3-642-23099-8.880

[32] K.-A. Mardal and R. Winther, Preconditioning discretizations of systems of partial dif-881
ferential equations, Numerical Linear Algebra with Applications, 18 (2011), pp. 1–40,882
https://doi.org/10.1002/nla.716.883

[33] D. A. May, J. Brown, and L. Le Pourhiet, pTatin3D: High-performance methods for long-884
term lithospheric dynamics, in Proceedings of the International Conference for High Per-885
formance Computing, Networking, Storage and Analysis, SC ’14, Piscataway, NJ, USA,886
2014, IEEE Press, pp. 274–284, https://doi.org/10.1109/SC.2014.28.887

[34] D. A. May, P. Sanan, K. Rupp, M. G. Knepley, and B. F. Smith, Extreme-scale multi-888
grid components within PETSc, in Proceedings of the Platform for Advanced Scien-889
tific Computing Conference, PASC ’16, New York, NY, USA, 2016, ACM, pp. 5:1–5:12,890
https://doi.org/10.1145/2929908.2929913, https://arxiv.org/abs/1604.07163.891

[35] J. D. McCalpin, Memory Bandwidth and Machine Balance in Current High Performance892
Computers, IEEE Computer Society Technical Committee on Computer Architecture893
Newsletter, (1995), pp. 19–25.894

[36] M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for indefinite895
linear systems, SIAM Journal on Scientific Computing, 21 (2000), pp. 1969–1972, https:896
//doi.org/10.1137/S1064827599355153.897

[37] L. F. Pavarino, Additive Schwarz methods for the p-version finite element method, Numerische898
Mathematik, 66 (1993), pp. 493–515, https://doi.org/10.1007/BF01385709.899

[38] L. F. Pavarino, Schwarz methods with local refinement for the p-version finite element method,900
Numerische Mathematik, 69 (1994), pp. 185–211, https://doi.org/10.1007/s002110050087.901

[39] L. F. Pavarino and T. Warburton, Overlapping Schwarz methods for unstructured spectral902
elements, Journal of Computational Physics, 160 (2000), pp. 298–317, https://doi.org/10.903
1006/jcph.2000.6463.904

[40] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. McRae, G.-T.905
Bercea, G. R. Markall, and P. H. J. Kelly, Firedrake: automating the finite ele-906
ment method by composing abstractions, ACM Transactions on Mathematical Software,907
43 (2016), pp. 24:1–24:27, https://doi.org/10.1145/2998441, https://arxiv.org/abs/1501.908
01809.909

[41] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied910
Mathematics, second edition ed., 2003, https://doi.org/10.1137/1.9780898718003.911

[42] J. Schöberl, J. M. Melenk, C. Pechstein, and S. Zaglmayr, Additive Schwarz precondi-912
tioning for p-version triangular and tetrahedral finite elements, IMA Journal of Numerical913
Analysis, 28 (2008), pp. 1–24, https://doi.org/10.1093/imanum/drl046.914

[43] S. Williams, A. Waterman, and D. Patterson, Roofline: An insightful visual performance915
model for multicore architectures, Communications of the ACM, 52 (2009), pp. 65–76,916
https://doi.org/10.1145/1498765.1498785.917

[44] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM review, 34918
(1992), pp. 581–613, https://doi.org/10.1137/1034116.919

[45] Zenodo/COFFEE, COFFEE: A Compiler for Fast Expression Evaluation, Dec. 2016, https:920
//doi.org/10.5281/zenodo.208989.921

[46] Zenodo/composable-solvers, composable-solvers: experimentation framework for compos-922
able block preconditioners, June 2017, https://doi.org/10.5281/zenodo.802277.923

[47] Zenodo/FIAT, FIAT: The Finite Element Automated Tabulator, June 2017, https://doi.org/924
10.5281/zenodo.802269.925

[48] Zenodo/FInAT, FInAT: a smarter library of finite elements, June 2017, https://doi.org/10.926
5281/zenodo.802275.927

[49] Zenodo/Firedrake, Firedrake: an automated finite element system, June 2017, https://doi.928
org/10.5281/zenodo.802271.929

This manuscript is for review purposes only.

https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1137/09076920X
https://doi.org/10.1007/978-3-642-55508-4_20
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1002/nla.716
https://doi.org/10.1109/SC.2014.28
https://doi.org/10.1145/2929908.2929913
https://arxiv.org/abs/1604.07163
https://doi.org/10.1137/S1064827599355153
https://doi.org/10.1137/S1064827599355153
https://doi.org/10.1137/S1064827599355153
https://doi.org/10.1007/BF01385709
https://doi.org/10.1007/s002110050087
https://doi.org/10.1006/jcph.2000.6463
https://doi.org/10.1006/jcph.2000.6463
https://doi.org/10.1006/jcph.2000.6463
https://doi.org/10.1145/2998441
https://arxiv.org/abs/1501.01809
https://arxiv.org/abs/1501.01809
https://arxiv.org/abs/1501.01809
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1093/imanum/drl046
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1137/1034116
https://doi.org/10.5281/zenodo.208989
https://doi.org/10.5281/zenodo.208989
https://doi.org/10.5281/zenodo.208989
https://doi.org/10.5281/zenodo.802277
https://doi.org/10.5281/zenodo.802269
https://doi.org/10.5281/zenodo.802269
https://doi.org/10.5281/zenodo.802269
https://doi.org/10.5281/zenodo.802275
https://doi.org/10.5281/zenodo.802275
https://doi.org/10.5281/zenodo.802275
https://doi.org/10.5281/zenodo.802271
https://doi.org/10.5281/zenodo.802271
https://doi.org/10.5281/zenodo.802271


COMPOSITION ACROSS THE PDE/LINEAR ALGEBRA BARRIER 23

[50] Zenodo/PETSc, PETSc: Portable, Extensible Toolkit for Scientific Computation, June 2017,930
https://doi.org/10.5281/zenodo.802273.931

[51] Zenodo/petsc4py, petsc4py: The Python interface to PETSc, June 2017, https://doi.org/10.932
5281/zenodo.802274.933

[52] Zenodo/PyOP2, PyOP2: Framework for performance-portable parallel computations on un-934
structured meshes, June 2017, https://doi.org/10.5281/zenodo.802272.935

[53] Zenodo/SSC, SSC: subspace corrections in Firedrake & PETSc, June 2017, https://doi.org/936
10.5281/zenodo.802279.937

[54] Zenodo/TSFC, TSFC: The Two Stage Form Compiler, June 2017, https://doi.org/10.5281/938
zenodo.802268.939

[55] Zenodo/UFL, UFL: The Unified Form Language, June 2017, https://doi.org/10.5281/zenodo.940
802270.941

This manuscript is for review purposes only.

https://doi.org/10.5281/zenodo.802273
https://doi.org/10.5281/zenodo.802274
https://doi.org/10.5281/zenodo.802274
https://doi.org/10.5281/zenodo.802274
https://doi.org/10.5281/zenodo.802272
https://doi.org/10.5281/zenodo.802279
https://doi.org/10.5281/zenodo.802279
https://doi.org/10.5281/zenodo.802279
https://doi.org/10.5281/zenodo.802268
https://doi.org/10.5281/zenodo.802268
https://doi.org/10.5281/zenodo.802268
https://doi.org/10.5281/zenodo.802270
https://doi.org/10.5281/zenodo.802270
https://doi.org/10.5281/zenodo.802270

	Introduction
	Some model applications
	The Poisson equation
	The Navier-Stokes equations
	Rayleigh-Bénard convection

	Solution techniques
	Matrix-free methods
	Preconditioning high-order discretizations: additive Schwarz
	Block preconditioners and Schur complement approximations

	Implementation
	Implicit matrices
	Preconditioners
	Assembled preconditioners
	Schur complement approximations
	Additive Schwarz


	Examples and results
	Operator application
	Runtime solver composition
	Poisson
	FieldSplit examples
	Algorithmic and parallel scalability


	Conclusions and future outlook
	Appendix A. Code availability
	Appendix B. Full solver parameters
	Poisson: hypre
	Poisson: schwarz
	Rayleigh-Bénard: direct
	Rayleigh-Bénard: iterative

	References

