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INTRODUCTION 
Intraoperative ultrasound (iUS) has become a popular 
tool in robot-assisted laparoscopic surgery to facilitate in 
situ pathology localisation. However, manually 
controlled ultrasound scanning can cause significant 
cognitive loads to surgeons, due to the need for 
maintaining optimal scanning orientation and consistent 
contact with the tissue, as well as covering a wide area 
for tumour detection and surveillance. In [1], an iUS 
probe has been controlled by an auxiliary robotic arm to 
provide guidance to the surgeon for tumour resection. 
Although an autonomous tumour dissection framework 
using the iUS has been proposed in [2] on planar tissue 
surfaces, a 6-DoF autonomous scanning approach that 
adapts to arbitrary tissue surfaces has yet to be presented. 
This paper proposes an automatic iUS scanning 
framework using the da Vinci® Research Kit (dVRK). 
Our framework consists of trajectory planning based on 
3D surface reconstruction, an automatic scanning via a 6-
DoF visual servoing guidance, tumour segmentation and 
reconstruction using the ultrasound images. 

MATERIALS AND METHODS 
This paper made use of a da Vinci® Patient Side 
Manipulator (PSM) via the dVRK [3] that provides 
kinematic control of the robot. A stereo laparoscope 
system provides SD (720x576) video streaming for both 
left and right channels at 25 Hz. A UST-533 linear array 
ultrasound probe (Aloka Medical, Japan) has been 
mounted in a custom-made clip that can be picked-up by 
the robot using Cadiere forceps. A marker (KeyDot®, 
Key Surgical Inc, USA) was attached on the probe to 
assist visual tracking and pose estimation. A customised 
PVA cryogel kidney phantom was utilised with similar 
elastic and chromatic properties to human tissue. 
The tissue surface is recovered from a disparity map 
using a stereo matching method [4]. The region for 
scanning is chosen by the user, and the scanning 
trajectory is planned adaptively to the 3D surface at the 
beginning of the task. To calculate the local poses (along 
the trajectory), which place the probe perpendicular to 
the surface, a local coordinate frame {S} on each surface 
point is defined using surface gradients and normals. To 
transform the trajectory from frame {S} to frame {M} 
(the marker frame), a matrix 𝐻"#  is used and defined 
based on the calibrated transducer’s position. These local 
poses also enforce that the centre of the transducer is 
aligned with the surface point. 
For every step of visual control, a desired marker pose in 
frame {C} is calculated as: 𝐻$"∗ = 𝐻$#∗ ∙ 𝐻#", where 𝐻$#∗ 

is current desired transformation from frame {C} to {S}. 
As shown in Fig. 1, a desired robot command 𝐻()∗  is 
calculated based on the current and desired marker pose, 
𝐻$"  and 𝐻$"∗ , in a camera frame {C} via: 𝐻()∗ =
𝐻() ∙ 𝐻)" ∙ 𝐻"$ ∙ 𝐻$"∗ ∙ 𝐻") . The transformation 𝐻)" 
between end-effector frame {E} and marker frame {M} 
is a constant which can be either measured or calibrated 
using a standard hand-eye calibration method. For every 
image in a video sequence, the marker is detected using 
a circular-grid detection method followed by a pose 
estimation step [5] that calculates the marker’s pose 𝐻$" 
in frame {C}. In order to improve the marker detection 
rate, we have included a tracking component based on 
pyramidal optical flow [6] to track the circular grid along 
time. 
To segment ultrasound images that contain tumours, 
speckle noises are removed by applying a Butterworth 
second order filter followed by an active contour [7] 
segmentation given a manually chosen seed region. The 
boundary and holes of the segmented tumour region are 
smoothed and filled by a set of morphological operations. 
The boundary is represented as a number of points where 
each point has correspondence across ultrasound images. 
In order to reconstruct a 3D model of the tumour using 
the ultrasound images, we need to transform the 
segmented boundary points from a 2D image coordinate 
frame to the 3D camera frame {C}. To this end, an 
ultrasound coordinate frame {U} is defined in which each 
pixel of the ultrasound image can be represented as a 3D 
point 𝑝+ . For 𝑁 segmented boundary points 𝑝+(𝑖) are 
then transformed to frame {C} via : 	  𝑝𝐶 𝑖 = 𝐻$" ∙ 𝐻"+ ∙
𝑝𝑈 𝑖 , 𝑖 ∈ [1,𝑁], where 𝐻"+  can be found via calibration 
and measurement. A 3D model of the tumour can then be 
created by connecting all the corresponding boundary 
points. 

 
 
Fig. 1 Coordinate frames defined in this paper: surface frame 
{S}, marker frame {M}, end-effector frame {E}, robot base 
frame {B}, ultrasound image frame {U} and camera frame {C}. 
 



 
 
Fig. 2 A 3D visual comparison between the CT ground truth (a) 
and reconstructed models of proposed framework (b-c). The 
10mm and 15mm tumours are coloured in red and green 
respectively. The green points in b-c show planned trajectory 
for the ultrasound scanning, where the yellow arrows indicate 
the scanning direction. 
 

 
 
Fig. 3 Top row: the reconstructed tumour is overlaid on 
laparoscopic images to provide an augmented view for tumour 
localisation and diagnosis. Bottom row: ultrasound image is 
overlaid according to current position of the probe. Left and 
right column show examples of the 10mm and 15mm tumour 
respectively. 

RESULTS 
To validate the overall accuracy of the proposed 
framework, two spherical tumours (diameter: 10mm and 
15mm) are implanted in the kidney phantom. The ground 
truth (position and size) of the tumours is obtained from 
a CT model of the phantom. Fiducial markers are placed 
on the phantom in order to assist validation. Each tumour 
is scanned autonomously while ultrasound images with 
pose information 𝐻$+ are recorded. As shown in Fig. 2, 
two tumour models are reconstructed from the ultrasound 
images using the described method. To compare the 
reconstructed models with the ground truth, spheres are 
fit to the CT and reconstructed models, such that the 
centre position and diameter can be calculated. The errors 
of centre position are 2.70mm and 2.80mm while the 

errors of diameter are 0.57mm and 0.43mm for 10mm 
and 15mm tumours, respectively. 
We provide two Augmented Reality (AR) methods of 
visualisation to assist tumour localisation and diagnosis. 
As shown in the top row of Fig. 3, reconstructed tumour 
models are overlaid on the laparoscopic images, 
displaying the location and size of the tumour relative to 
the phantom. In order to have better perception of depth 
and shape of the tumour, inverse realism [8] technique is 
used. The second visualisation is shown in the bottom 
row where an ultrasound image is projected and drawn 
on the laparoscopic image in real-time. The advantage is 
to provide surgeons both laparoscopic and ultrasound 
view simultaneously during autonomous scan without 
distraction. For a 15x10mm region, average scanning 
time is approximately 90 seconds, which is mainly 
affected by the scanning path planned at the beginning of 
the task. 

DISCUSSION 
This paper proposed a supervised autonomous ultrasound 
scanning framework for the robot-assisted laparoscopic 
surgery. It provides smooth scanning motion and 
maintains optimal orientation using the reconstructed 
surface. By using stereo vision for motion planning, 
robust marker detection and tracking, the robot is able to 
conduct a smooth ultrasound scanning on a non-planar 
tissue surface autonomously. Different visualisation 
techniques have been used to present the scanning results 
of tumours. Both qualitative and quantitative results have 
demonstrated the feasibility of the framework to detect 
tumour size and position accurately. Future work will 
focus on considering tissue deformation and testing the 
proposed framework in in vivo user studies and further 
improving the surgical AR visualisation. 
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