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Abstract

REST APIs have become key components of web services.
However, they often contain logic flaws resulting in server
side errors or security vulnerabilities. HTTP requests are used
as test cases to find and mitigate such issues. Existing meth-
ods to modify requests, including those using deep learn-
ing, suffer from limited performance and precision, relying
on undirected search or making limited usage of the contex-
tual information. In this paper we propose APIRL, a fully au-
tomated deep reinforcement learning tool for testing REST
APIs. A key novelty of our approach is the use of feedback
from a transformer module pre-trained on JSON-structured
data, akin to that used in API responses. This allows APIRL to
learn the subtleties relating to test outcomes, and generalise to
unseen API endpoints. We show APIRL can find significantly
more bugs than the state-of-the-art in real world REST APIs
while minimising the number of required test cases. We also
study how reward functions, and other key design choices,
affect learnt policies with a thorough ablation study.

1 Introduction
REpresentational State Transfer (REST) APIs have become
the standard way to interact with Web services and re-
sources. They are used by organisations such as Amazon,
Google, and OpenAI to integrate with a wide array of sys-
tems, processes, and resources. These APIs consist of oper-
ations, specified by a Uniform Resource Locator (URL) ac-
cessible by the Hyper Text Transfer Protocol (HTTP), and a
series of associated parameters. Atlidakis et al. (2019) show
bugs in these operations are typically hard to find, due to the
complex interactions, and diversity of APIs. Some bugs have
security implications that result in the extraction of informa-
tion or data manipulation, as summarised in the OWASP API
Security Top 10. Hence, it is crucial to test the robustness of
REST APIs using sophisticated techniques.

Automated software testing finds bugs or vulnerabilities
in an application by detecting abnormal behaviour. This au-
tomated process can be referred to as fuzz testing (fuzzing),
security testing, or robustness testing. For REST APIs test-
ing, this involves creating new HTTP request test cases or
mutating existing templates. Often, this is done at random
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or following some predefined heuristics. A common crite-
rion to practically estimate performance is code coverage.
However, as only a small portion of code contains bugs, it
can lead to a high number of executed tests.

Black-box testing has been applied to automatically gen-
erate test cases for REST APIs (Atlidakis et al. 2020; Liu
et al. 2022). While this has lead to improvements in REST
API testing, such approaches lack targeted search strategies,
or do not harness contextual information. This limits the po-
tential of frameworks due to the unique behaviour of end-
points, their diversity, and varying schema requirements. As
a result software testing models can be inefficient, requiring
a very large number of test cases to find bugs.

Recent research used attention-based neural networks to
predict mutations in test cases (Lyu, Xu, and Ji 2023). This is
a promising approach for REST API testing. Yet, current so-
lutions often only use simplistic feedback from HTTP status
codes to determine success, while the main body of HTTP
responses is either discarded, or only used for populating
data when testing (Corradini et al. 2022b; Liu et al. 2022).

Reinforcement Learning (RL) has shown potential in au-
tomated testing, and has been successful learning policies to
test compilers (Li et al. 2022a) and web applications (Lee,
Wi, and Son 2022; Zheng et al. 2021). These works have
demonstrated that using off-the-shelf RL methods such as
Deep Q-Networks (DQN) (2015) and Proximal Policy Op-
timisation (PPO) (2017) can harness feedback to find more
bugs, and improve efficiency. However, similar to REST API
testing, RL-based software testing often uses simple heuris-
tics as feedback (Lee, Wi, and Son 2022; Li et al. 2022a),
which may fail to fully capture the subtleties of the prob-
lem. While work from Kim et al. (2023) has shown that RL
can find bugs in REST APIs, it suffers from the same issue:
not harnessing contextual information for feedback. The key
challenge to do so arises from the variation across differ-
ent APIs and the diversity in individual endpoint responses.
Yet, if the information-rich data structure can be used for test
case generation, it could provide valuable feedback. To ad-
dress this challenge, we develop a novel deep RL agent that
mutates HTTP requests to find bugs in REST APIs.

Our RL problem formulation uses a transformer architec-
ture we pre-train to harness JSON and natural language in
the HTTP responses, providing feedback to facilitate adapta-
tion to operations after training. We then introduce a Markov
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Decision Process (MDP) for the mutation of HTTP requests
as a number of sequential changes from an initial HTTP re-
quest (referred to as request template). Between mutations,
the new test cases are submitted to an API, using the re-
sponse code and execution information to determine the re-
ward used in training. The trained policy uses the mutation
strategy to find bugs in unseen APIs with a minimal num-
ber of HTTP requests, overcoming a significant limitation
of web based testing approaches (Lee, Wi, and Son 2022).

In summary, the main contributions of this paper are:

• APIRL, a novel deep reinforcement learning based ap-
proach to testing REST APIs that learns how to ma-
nipulate varied HTTP requests to efficiently target bugs.
We release APIRL at https://github.com/ICL-ml4csec/
APIRL.

• A novel representation of the feedback obtained from
the API, combining a direct functional representation
of fixed outputs and a transformer-based embedding of
variable-length responses. This enables our RL agent to
benefit from richer information than in previous work.

• Insights on the subtleties of training an RL agent for real-
world tasks via an ablation study of both design choices
and 7 reward functions.

• The evaluation of APIRL across 26 REST APIs shows
significant improvement over state-of-the-art methods in
terms of bugs found, coverage, and test case efficiency.

2 Overview
APIRL is a new testing approach based on deep Q-learning
that mutates HTTP requests to find bugs in REST APIs, in-
dicated by 5XX response codes. We represent REST API
testing as an MDP for a deep RL agent: Figure 2 shows
the process and agent architecture. At a high level, an agent
takes actions to mutate HTTP request templates, which the
environment implements as API operations, receiving feed-
back that forms the reward. APIRL takes a HTTP request-
response pair as the input state st. Maximal information is
then extracted from functional features and an embedded
representation via a pre-trained transformer (Section 3.3).
Using diverse and variable length features such as HTTP
headers and body data, a neural network selects a corre-
sponding action at from Table 1 to mutate the HTTP request.

Using the agent-selected action, the environment then per-
forms concrete mutations on the HTTP request template
forming test cases. The model evaluates the test case per-
formance using the HTTP status code and the execution
trace of the REST API. We develop these to form varied re-
ward functions to study their effect in training (Section 3.4
and 4.5). The model evolves to optimise for the reward as it
performs more mutations, and performance evaluations.

We compare the learnt policy against a state-of-the-art
learning and non-learning tools. Finally, in an ablation study
we evaluate seven reward functions and key design choices.

3 Design
In this section, we define our RL-based REST API fuzzing
approach and detail the model design of APIRL.

"/users/v1/{username}/email":
put:
parameters:

- name: username
in: path
required: true
type: string

requestBody:
content:
application/json:

schema:
type: object
properties:
email:
type: string

required: true
responses:

’204’:
content: {}

Figure 1: Part of the OpenAPI specification for VAmPI

3.1 Preprocessing
The OpenAPI Specification is the standard for describing
REST APIs. It specifies the URL and HTTP method (POST,
GET, PUT, PATCH, and DELETE) to form an operation.
This specification is also is the standard starting point
for REST API fuzzing frameworks (Liu et al. 2022).
From a specification, we extract the operations and
their associated parameters. This forms a list of request
templates (HTTP method, URL, parameters details) for
the RL agent to mutate. For example, the operation in
Figure 1 would have a request template such as: (PUT,
/users/v1/{username}/email, {name:username,
in:path, required:true, type:string}). In Fig-
ure 1 the HTTP response code specified of ‘204’, indicates
a successful request. However, the response could be in
the range 400-499 (4XX) codes which handle bad requests
gracefully, or 500-599 (5XX) indicating a server error
or bug. In line with prior work, we define bugs as 5XX
responses which result in unique traces. (Kim, Sinha, and
Orso 2023; Corradini et al. 2022a; Arcuri 2021).

We also find related parameters to form valid requests, as
recommended by the literature (Martin-Lopez et al. 2021).
For more on this see Appendix A.

3.2 Actions
We provide the RL agent with a fixed action space of 23
actions at used in prior work (Atlidakis, Godefroid, and
Polishchuk 2019; Barabanov et al. 2022; Corradini et al.
2022b). We reimplement actions in the APIRL framework
using distinct values where possible, otherwise we provide
concrete definitions (Table 1). Actions are performed on re-
quests, independently of specific applications so APIRL does
not need further training or feedback from rewards when en-
countering new REST APIs, thus aiding generalisation.

Actions are detailed in Table 1, and can be broadly dev-
ided in three categories. Actions 1 and 2 that alter the au-
thorisation token by either refreshing the current authoriza-
tion token (if an endpoint allows for this), or switching to
an alternative authorization token if one has been provided.
Action 3, that allows the agent to switch to begin mutating
the next parameter for this operation. This then loops to the
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Figure 2: The REST API testing process using APIRL.

start of the parameters upon reaching the end. Finally, ac-
tions 4-23 that manipulate the request template to perform
REST API fuzzing functionality. We utilise those that may
trigger bugs by duplicating or removing parameters, using
default values, and finding alternative endpoints.

Using actions in Table 1 the agent mutates a request at
each timestep. After a mutation the request is sent to the
REST API and, in training, runtime information is collected
for the reward (Section 3.4). The episode then terminates if
a bug is found (as indicated by a 5XX status code) or if the
maximum number of timesteps have elapsed.

3.3 Observations
Making use of information from real world tasks for RL ob-
servations can be challenging due to the complexity, high di-
mensionality, or format (such as natural language). We aim
to make APIRL bridge this semantic gap with a pre-trained
RoBERTa (Liu et al. 2019) transformer model. APIRL’s
transformer takes as input the HTTP response from test
cases to produce a latent representation. APIRL can then
harness complex JSON and natural language from the struc-
ture, text, headers, and encoding of API responses. The la-
tent representation forms a vector of 768 features from the
RoBERTa transformer (its standard output feature dimen-
sion), ht in Figure 2. The observation further includes: the
HTTP method of the current operation, the HTTP response
code, the variable type of the parameter currently being ma-
nipulated, and the normalised index of this parameter out
of all parameters in the request template. These features are
represented as a vector of length four. Both vectors are com-
bined (ot in Figure 2) into a single vector of 772 (768 + 4)
features and passed to the DQN. See Section 4.1 for further
details on pre-training the transformer.

3.4 Reward
Two main signals can be used to guide REST API testing:
a) coverage of the REST API; and b) the HTTP response
code of the request. Coverage reflects the ability to explore
the API behaviour, blindly aiming to exercise as much of the
implementation code as possible, hoping to trigger bugs in
the process. On the other hand, the HTTP response code of
the request provides information to guide fuzzing, includ-
ing the validity of requests in terms of authorisation (e.g.
401), parameters (e.g. 200 or 400), and server-side errors or
bugs (e.g. 500). We define the reward for APIRL based on
the HTTP response code as it provides more nuanced feed-
back on test case performance (Eq. 1). We will consider al-

ternative rewards, including coverage, in an ablation study
(Section 4.5).

Rsc =


10, 5XX HTTP status response
1, 2XX HTTP status response
−1, Otherwise

(1)

Rsc incentivises the agent most for the desired behaviour
of finding bugs on the server-side of the REST API. How-
ever, as this can be a sparse reward, we provide interim feed-
back for performing correct requests. In all other cases we
discourage the behaviour using a negative reward (Sutton
and Barto 2018). This reward is consistent as training pro-
gresses so the agent learns to develop diverse requests, cov-
ering more of the back-end of the REST API.

3.5 Agent Architecture
To develop mutational strategies that can be dynamically al-
tered to specific operations and REST APIs, we develop a
deep RL agent based on the Deep Q-Network (DQN) (Mnih
et al. 2015) with Prioritised experience replay (Schaul et al.
2016). We implement the neural network in PyTorch, with
an input layer of size 772, and hidden layers of size 64, 96,
64, with an output layer of 23, corresponding to the actions
in Table 1. We use the ReLU activation function after each
hidden layer. The agent learns which mutation, or combi-
nation of mutations to apply, while reducing the computa-
tional complexity of the neural network. We use a standard
ε-greedy decay with ε = 1 (decaying by 0.999 after each
episode). We select γ = 0.9, α = 0.005, and batch size 128.
These are selected via gridsearch, further details and param-
eter values can be found in Appendix B.

4 Evaluation
4.1 Training
Training should result in an RL agent that can manipulate
HTTP requests, generalising to find bugs in different APIs.
Thus, we train APIRL on multiple endpoints, targeting each
operation for a set number of episodes. This form of cur-
riculum learning prevents over-fitting by dividing training
equally across diverse operations (Wahaibi, Foley, and Maf-
feis 2023). Specifically, APIRL is trained using an open-
source REST API containing known bugs: Generic Univer-
sity. APIRL trains on each of Generic University’s operations
for 10,000 episodes, with the maximum steps per episode of
10 (Appendix B).
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Action Type Action
Number Example Description

Auth Token Refresh 1 Refresh the any authorization token.
Switch Auth Token 2 Use the authorization of another user.
Switch Parameter 3 Change to the next parameter in request template.

Change Parameter Type 4 Int, String, Bool, Array,
Object

Randomly change the parameter value type to a
different one.

Duplicate Parameter 5 {parameter1:[value1, value1]} Duplicate the parameter value.
Remove Parameter 6 {} Remove the parameter from the request template.
Extension 7- 9 .txt, .pdf, .doc Append a file extension to the value of the parameter.

Append 10 {parameter1:[value1, newValue]} Convert the parameter to a JSON array and append
an additional value from observed values.

Request Method 11 POST→ PUT, PUT→ POST Change HTTP method from PUT to POST or POST to PUT.

Add Parameter 12 {parameter1:value1,
newParameter:newValue}

Add an additional parameter to the request template
from parameters related to the parameter.

Wildcard 13-15 *, .*, % Append a wildcard to the value of the parameter.
Change ID number 16-17 1, -1 Increment the Int value of the value by 1.
Set Parameter value 18-21 ’admin’, -1, 999999999 ,’’ Set the parameter value to a default value.
Set Existing Value 22 {parameter1:value2} Set the parameter value to a related value from the API.
Set admin 23 {parameter1:value1, admin:TRUE} Set admin: True in an Object.

Table 1: Mutation actions that can be applied by APIRL to the current operation.

We pre-train a RoBERTa transformer using HTTP re-
sponses from 103 different REST APIs, comprising 1283
operations. This has several advantages: limiting the bias
from HTTP responses in training, potential for overfitting,
and reduces instability in training the RL agent (Parisotto
et al. 2020). API specifications were taken from a public
OpenAPI specification platform (see Appendix C). A vo-
cabulary of 52,000 tokens is formed via Byte-Pair Encod-
ing (Gage 1994). The transformer is trained by masked lan-
guage modeling (2019). Through training the transformer
learns relationships between parameters, to provide a mean-
ingful, generalised, embedding for the agent (Adolphs and
Hofmann 2019). A gridsearch is used to select hyperparam-
eters as in Appendix B.

As the state-action space is target agnostic, the trained
policy can be used on unseen REST APIs without the high
number of training iterations required to reach optimal per-
formance. An advantage of this behaviour is no further
learning or feedback for the reward (e.g. code coverage) is
required. As such we run APIRL in black-box fashion.

4.2 Experiment Setup
To test APIRL we make several modifications to its setup: we
limit the number of episodes per operation to three, and re-
duce the probability of taking random actions (ε) to 5%. This
was seen to balance runtime and bug finding by reducing
wasted requests on true negatives or invalid actions. Experi-
ments are run on Ubuntu Linux, with 16GB RAM and Intel
core i7 8700k processor. To mitigate the intrinsic stochastic-
ity of approaches, we repeat each experiment five times.
REST APIs. We evaluate our framework on smaller REST
APIs, including: VAmPI, vAPI v1.3, and c{api}tal. We con-
duct large scale tests for bugs in APIs from large-scale
projects. Spree Commerce v4.4.0 (a popular e-commerce
platform with 12.5k stars on github) containing 2 APIs, 17
APIs from BitBucket v8.2.1 (a popular git hosting service
with over 15 million users), and 4 APIs from WordPress

v6.6.1 (an opensource web platform used in over 5 million
websites). These 26 APIs represent 823 separate operations.
We run tests on VAmPI, vAPI, and c{api}tal for a maximum
of 1.5 hours, and 10 hours on BitBucket, Spree Commerce
and Wordpress APIs, due to their complexity and increased
number of operations. Testing with such time limits is in
line with other studies (Liu et al. 2022; Kim et al. 2022).
Additionally, broader studies in fuzzing, such as by Böhme
et al. (2016) have shown that most fuzzers find the majority
of coverage early in testing, after which they asymptomati-
cally converge. Due to ethical concerns over data privacy, in-
tegrity, and availability, we do not test on live REST APIs, but
instead deploy them locally. Each REST API is initialised
with non-sensitive data. After each test we restore it to the
state prior to testing to remove any bias.

Baselines. In order to compare with the state of the art, we
select five black-box baselines. MINER (2023) builds call
sequences using feedback from executed requests and an at-
tention based neural network to generate mutational param-
eters. ARAT-RL (2023) is a tabular-Q-learning based REST
API tester. EvoMaster (2021) is based on evolutionary algo-
rithms and heuristics. RestTestGen (2022a) uses the specifi-
cation to generate Operation Dependency Graphs (ODGs) to
create call sequences. We also use Rand-APIRL, a variant of
our approach that selects actions at random. We also provide
each tool with the required authentication token.

Evaluation Criteria. We use several different criteria in our
evaluation. Line coverage (LoC) measures precise coverage
performance. Details on how this is collected can be seen
in Appendix F. Note that coverage cannot be collected from
BitBucket as it is closed-source (Liu et al. 2022), and Spree
Commerce does not support coverage collection across its
multi-server architecture. We use the request volume as rec-
ommended by Caturano et al. (2021). It represents how ‘in-
telligent’ an approach is, where better scanners achieve sim-
ilar results in fewer requests. The number of bugs found in
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Figure 3: Improvements of APIRL compared to baselines.

REST APIs is a key criteria and the goal of testing. Achiev-
ing high coverage of REST APIs may trigger logic flaws or
server-side errors, as indicated by a 5XX status code. We
define unique bugs as 5XX responses from each operation
that originate from different lines of source code. Detecting
bugs this way provides a simple and effective oracle within
the scope of this work (Arcuri 2021).

The experiment results are shown in Table 2, and the av-
erage improvement of APIRL over the respective baselines
is shown in Figure 3.

4.3 Coverage and Request Volume
Coverage is commonly used to determine tester perfor-
mance, with higher coverage increasing test completeness
to find more bugs. However, we also consider the efficiency
of approaches in terms of the requests used.

APIRL outperforms the random baseline in all cases, cov-
ering at least 7.0% more code, using 15.4% fewer requests.
The performance distributions differ between APIRL and
Rand-APIRL, with no overlap in their first standard devi-
ation. APIRL always uses the same number of requests in
c{api}tal as no bugs were found, resulting in all episodes
reaching maximum length. MINER consistently achieves
low coverage; where a lack of targeted mutations is apparent
from the significantly high number of requests in both Ta-
ble 2 and Figure 3. While ARAT-RL and RestTestGen uses
minimal requests in two case studies their performance is in-
consistent, as is their coverage performance. The evolution-
ary approach of EvoMaster reduces requests compared to
heuristic counterparts. Yet, on average, it requires 173.8%
more requests than APIRL, resulting in 38.9% less cover-
age. Overall, APIRL improves over RestTestGen, ARAT-
RL, and MINER by 13.6%, 49.7%, 40.6% respectively in
terms of coverage. The consistent performance of APIRL re-
sults in higher efficiency of coverage per request, on average
64.8% higher. The lower standard deviation of APIRL fur-
ther demonstrating the consistency in targeting mutations to
improve over both Rand-APIRL and state-of-the-art.

4.4 Bugs Found and Request Volume
We now investigate the ability to find bugs in the systems
under test. APIRL outperforms all baselines, finding at least
6.4% more bugs, and significantly more bugs on average
(Figure 3). APIRL finds these bugs with lower or compet-
itive standard deviation. It has a higher standard deviation
than its random counterpart only twice. Indeed Rand-APIRL
has an expectedly high standard deviation, which leads to

an overlap in number of bugs found in BitBucket, VAmPI,
and WordPress. Yet, the best case performance of Rand-
APIRL does not outperform APIRL, which finds more bugs
in fewer requests. ARAT-RL displays the worst bug find-
ing performance of all approaches, which combined with
the high number of requests results in low bugs found per
request. While EvoMaster and MINER find bugs across di-
verse REST APIs, they find 117.6% and 99.2% fewer bugs
than APIRL respectively. RestTestGen inconsistently finds
bugs due to its heuristic matching of parameter names for
creating the call graph ODG.

In BitBucket we see an anomaly: APIRL uses more re-
quests than other baselines. This is due to the larger number
of REST API endpoints that do not contain bugs. APIRL is
configured to have a maximum of 3 episodes and 10 requests
sent per episode, meaning that the upper limit of requests for
the 518 operations is 3 × 10 × 518 = 15, 540. In Spree we
see a different story, as APIRL achieves the lowest number
of requests of all approaches.

Using our state-action space improves results compared
to state-of-the-art as Rand-APIRL occasionally finds more
bugs. We reason the APIRL test framework gives it an ‘edge’
over the other testing strategies. However, APIRL uses the
state-action space effectively, always finding more bugs in
fewer test cases. Highlighting the ability of RL to efficiently
target mutations, even when testing on unseen REST APIs.

Of the 49 unique bugs 22.4% were unique to APIRL
and no other scanner. EvoMaster alone found a unique bug.
APIRL misses 7 bugs, 31.8%, as Rand-APIRL, and 68% less
than EvoMaster. MINER, and ARAT-RL find 5 of the 7 bugs
missed by APIRL, yet this has an increased cost in the num-
ber of requests required, and a lower overall number of bugs
found. Such bugs can be found by including additional keys-
values pairs in requests with default (and intentionally incor-
rect) values. APIRL can only include parameter keys from
the schema so it cannot trigger this functionality.

APIRL can trigger handling errors by inserting Int and
String objects, and removing required parameters. APIRL
learns to cast objects to alternative types, causing bugs in 7
endpoints in Spree which are missed by other approaches.
Furthermore, APIRL misses no bugs in WordPress, Spree,
or vAPI, . In WordPress’s POST wp/v2/posts/id1 oper-
ation APIRL triggers a Type error by inserting an additional
password parameter into the body of the request. Due to the
incorrect type being an Int and not a string, WordPress
correctly throws an error, however this results in an authen-
tication check using the password parameter. Finally, this at-
tempts to check the hashed POST password against the real
password, which throws a fatal error. A similar bug is found
in BitBucket by duplicating a parameter value in a request
such as "all": [true, true] this triggers a Type error
when the Array is cast as a Bool.

APIRL has also learnt to trigger unhandled SQL errors. In
VAmPI it inserts existing parameter values into the request
that fail unique constraints. In Spree Commerce APIRL in-
serts an additional parameter that is included in the SQL
query, leading to the query trying to access a column that

1https://core.trac.wordpress.org/ticket/61837
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Test Service Operations Metric EvoMaster RestTestGen ARAT-RL MINER Rand-APIRL APIRL

Capital 16
Unique Bugs 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

LoC 500.2 (21.7) 592.6 (9.9) 385.8 (74.2) 446 (0) 727.4 (11.3) 751.3 (11.1)
Requests 1670.2 (310.7) 1074.6 (0.5) 3437.8 (3574.9) 15785.4 (1113.5) 680 (0) 680 (0)

VAmPI 13
Unique Bugs 1.4 (1.1) 2.4 (0.5) 2 (1.4) 2 (0) 1.8 (1.3) 3 (0.7)

LoC 245.8 (83.2) 327.6 (42.8) 272.4 (10.4) 277 (0) 327.2 (51.4) 382.8 (8.7)
Requests 4564.6 (1190.6) 3990.6 (874.6) 2723 (2072.8) 10701.2 (150.7) 526.2 (11.8) 521 (4.4)

vAPI 17
Unique Bugs 5.5 (0.6) 6.4 (0.5) 2.2 (1.5) 6 (0) 7.6 (1.1) 9.5 (0.6)

LoC 362.2 (1.6) 349 (0) 359.2 (17.9) 344 (0) 362.8 (16.5) 385.7 (6.5)
Requests 629.75 (41.3) 1330.6 (68.5) 1375.6 (53.1) 1952.8 (500.7) 394.6 (70.4) 243.75 (14.2)

Spree 68 Unique Bugs 1.7 (1.5) 0 (0.0) 0.3 (0.6) 1.75 (1.5) 2.25 (1.0) 10.2 (0.8)
Requests 1657.0 (99.0) 2034.2 (1.0) 2169.3 (232.0) 16019.75 (2802.1) 1459.5 (78.0) 1128.6 (37.6)

BitBucket 518 Unique Bugs 6.2 (1.3) 0 (0) 3.4 (4.3) 6.3 (1.5) 5 (1) 6.6 (1.1)
Requests 1315.8 (438.6) 1194 (0) 1079.4 (595.3) 1485.25 (46.5) 10593.6 (11.9) 10562.8 (7.5)

WordPress 191
Unique Bugs 0.6 (1.3) 1.2 (0.4) 1 (1.0) 0.6 (0.5) 3 (2.8) 5.2 (3.5)

LoC 5658.5 (514.1) 7843.8 (105.8) 5295 (0.0) 5639.8 (331.6) 7995 (159.5) 8122.2 (117.5)
Requests 6327.6 (5138.8) 2298.4 (35.3) 5064.8 (889.7) 7373.6 (3380.3) 5685.3 (25.9) 5678.4 (55.4)

Table 2: Average unique bugs, LoC, and number of requests taken on each test service, with standard deviation shown in
brackets.

does not exist. An example of the long term strategy of
APIRL is shown by manipulating a series of PATCH requests
in Spree Commerce. By bypassing input sanitisation APIRL
causes an error by trying to access the attributes of the user.
Interested readers may refer to Appendix D.

4.5 Ablation Study
APIRL displays impressive performance, finding bugs in un-
seen REST APIs, in a minimal number of requests. How-
ever, we wish to determine the extent to which core elements
of APIRL contribute to performance. Thus, we conduct an
ablation study, presenting the results in Table 3. In partic-
ular, we vary rewards based on coverage (APIRL-cov) and
response code (APIRL), we ablate transformer embeddings
(APIRL-m), and change the RL training algorithm to PPO
(APIRL-p), see Appendix B for hyperparameters. Interested
readers may see Appendix E for a feature importance study
further confirming the utility of transformer embeddings.

Reward Variations. Finding the correct reward function
is fundamentally important as it provides the feedback for
learning. To prevent agents from finding exploitative strate-
gies in complex reward functions we design simple reward
functions (Sutton and Barto 2018). Prior work from Li et
al. (2022a) studied how reward functions alter behaviour of
RL agents when generating code for compiler testing. Fur-
ther work from Bates et al. (2023) showed the challenges of
designing rewards for RL applications in cyber-security.

Thus, we investigate reward functions for manipulation of
HTTP request templates in automated testing of REST APIs.
By using diverse sets of rewards based on different testing
signals, we can study how subtleties in rewards influence
learning policies that test real-world systems. While both
coverage and status code provide feedback for RL agents to
test REST APIs, it is unclear how they will affect the learn-
ing. As such we develop several reward variants:

• A coverage based reward (Rcov). Similar to Rsc, Rcov re-
wards most for increasing coverage (10), giving a smaller

APIRL
Variant

Successful
Requests

Error
Requests

Invalid
Requests Coverage LoC per

Request ×100

Rand-APIRL 88048 1019 14423 81.3% 6.575331

APIRL-r 83756 1533 6930 87.2% 7.914464
APIRL-u 91597 1436 2805 92.4% 8.069743
APIRL 90079 1591 2805 95.6% 8.469669

APIRL-m 90535 1562 2421 87.2% 7.721958
APIRL-p 100086 728 0 85.7% 7.115172

APIRL-arat 90222 1037 4531 90.7% 7.925243

APIRL-cov-r 93748 5256 5987 92.4% 7.366231
APIRL-cov-u 92150 5499 7961 97.6% 7.735177
APIRL-cov 87633 11197 6138 96.4% 7.670852

APIRL-cov-m 91936 4562 3498 92.4% 7.734189
APIRL-cov-p 104979 11 11 90.8% 7.237988

Table 3: Ablations of both APIRL and APIRL-cov. Lighter
colours represent poor performance, while darker colours
represent good performance.

reward for recovering the same code (1), and penalises
otherwise (−1). We refer to this agent as APIRL-cov.

• A sparse uniform reward. We train APIRL-u by reward-
ing 1 for 2XX and 5XX response codes and −1 other-
wise. Equally for APIRL-cov-u we train a coverage vari-
ant that rewards 1 for new unique LoC and −1 otherwise.

• A reward ratio. We train APIRL-r with status code ratio
of: r =

∑
(5XX + 2XX)/

∑
(XXX). We also train

APIRL-cov-r using r =
∑

(LoCnew)/
∑

(LoC).
• An ARAT-RL style reward. Similar to Rsc Kim et

al. (2023) design a status code based reward that gives 1
for 4XX and 5XX responses, penalising −1 for 2XX .
The model trained with this reward is APIRL-arat.

Effect of Reward Function. The variations of APIRL-cov
use a higher number of requests than APIRL equivalents,
which reduces the coverage per request. As APIRL models
try to find bugs quickly they terminate episodes early, which
in turn increases efficiency of coverage per request. Such
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results confirm APIRL-cov models indirectly finding bugs
by increasing coverage. Compared to learnt policies, Rand-
APIRL makes 108% more invalid requests (4XX), and has
the worst coverage and coverage per request of any model.

APIRL and APIRL-cov-u achieve the highest code cover-
age for each reward function type (request based, and LoC).
Additionally, APIRL finds the most error requests (5XX)
out of APIRL models, indicating both the breadth and depth
of the learnt model. The reward based ratio (APIRL-r and
APIRL-cov-r) achieves low coverage and successful requests
(2XX) in both reward ablations. This is likely due to dimin-
ishing returns, i.e. the delta of a single step has small impact
compared to the denominator as training progresses. Uni-
form rewards for APIRL-u, APIRL-cov-u show the inability
to differentiate between successful and error requests, result-
ing in high numbers of invalid requests and lower errored re-
quests. Similarly, APIRL-arat’s reward results in the model
being unable to distinguish between finding bugs, and the
undesirable behaviour of invalid requests. APIRL-cov finds
the most bugs of the ablations (89% more than the next
APIRL-cov variant). However, it achieves lower coverage in
comparison to APIRL-cov-u, as APIRL-cov can still receive
positive reward when recovering the same code.

These results highlight the intricacies of reward functions,
showing how even well considered rewards may not yield
the optimal outcome. Furthermore, coverage-based rewards
achieve better coverage compared to request-based. APIRL
is the best model in class, with more coverage, error re-
quests, and LoC per request.

Effect of Transformer. The ablation of transformer embed-
dings in APIRL-m leads to an 8.4% reduction in coverage.
Similarly, APIRL-cov achieves a higher coverage compared
to APIRL-cov-m. Thus, as in Table 3, transformer embed-
dings lead to the highest efficiency of LoC per request. The
non-transformer variants perform comparably in terms of
successful requests. However, both transformer based mod-
els find more bugs, with APIRL-cov finding the most errored
requests of any model. These results showcase the utility us-
ing the structured HTTP responses for feedback in learning.
As policies learns to effectively maximise the learning ob-
jective (finding bugs, or increasing coverage).

Effect of RL training algorithm. Using PPO leads to min-
imal invalid requests, and has the highest number of 2XXs.
However, it finds the fewest bugs and the lowest coverage,
6.8% and 9.9% lower coverage than APIRL-cov and APIRL.
Upon manual inspection it is due to the PPO model enter-
ing local-optima, replicating action sequences, rarely devi-
ating from these to maximises successful requests. We spec-
ulate the off-policy nature of DQN learns a general mutation
strategy, while PPO struggles to adjust over the curriculum.
Specifically, the replay buffer in the DQN architecture pro-
vides a history of experiences, resulting in a greater degree
of generalisation over the different REST API endpoints.

5 Related Work
Diverse techniques have been used to test REST APIs. Kim
et al. (2023) enhance the OpenAPI specification via NLP
techniques. MINER (2023) uses an attention based neural

network to generate parameters. RestTestGen (2022a) tra-
verses an ODG to develop call sequences. EvoMaster (2021)
presents an evolutionary algorithm that uses only the HTTP
response in black-box settings to guide its fitness function.
By comparison, APIRL parses direct feedback to a latent rep-
resentation resulting in significantly more bugs in fewer re-
quests. ARAT-RL (2023) uses separate Q-tables to priori-
tise parameters and value-mapping functions when testing
REST APIs. ARAT-RL also uses a reward based on response
code, however our extensive experiments show that such less
granular rewards can harm performance. Additionally, the
deep architecture of APIRL learns which parameters to in-
clude, how to manipulate values, and how to alter the HTTP
method and auth token.

Other RL approaches for fuzzing have used off-the-shelf
architectures, to find bugs in software (Böttinger, Godefroid,
and Singh 2018; Li et al. 2022b,a) These works use simi-
lar rewards based around code coverage, expressing it as a
function of how much new coverage is achieved. As our ex-
periments suggest, this can lead to diminishing returns as the
total coverage achieved increases, placing greater weight on
the rewards achieved early in training. APIRL demonstrates
the utility of consistent reward functions.

RL has also been used for automation tasks, often us-
ing simple heuristics (Zheng et al. 2021; Li et al. 2022a;
Böttinger, Godefroid, and Singh 2018; Li et al. 2022b) or
manually defined features (Foley and Maffeis 2022; Lee,
Wi, and Son 2022). RL has even been used to test GraphQL
APIs for denial-of-service by McFadden et al. (2024). Yet,
unlike APIRL, these approaches are limited in the feedback
they can use. Specifically, they are unable to a) use input of
unbound length, b) use diverse input that contains subtleties
relating to the test case, and c) generalise to unique, unseen
request-templates without the need for retraining.

6 Conclusions and Future Work
Testing REST APIs is key to ensuring the continued func-
tioning of web infrastructure. Thus, we propose a deep RL
framework to test for bugs using a combined state represen-
tation from manual features and a pre-trained transformer.
Our implementation, APIRL, leverages complex and varied
responses from REST APIs as feedback for learning. We
conduct an extensive ablation study of rewards and design
choices showing how they affect behaviour. We show that
APIRL consistently achieves higher code coverage and finds
more bugs than the SOTA, in a lower request budget. Bugs
we found have been reported and are either already fixed, or
in the process of being fixed.

In future work, other approaches could add in targeted or
guessable key-value pairs using known heuristics or gener-
ative methods (Lyu, Xu, and Ji 2023). Such approaches are
not present in APIRL, but could be added with enough engi-
neering effort. However, given the performance of APIRL in
Section 4, we believe this functionality serves limited pur-
pose. Furthermore, RL approaches could be trained and tai-
lored to specific APIs e.g. GraphQL. We believe this to be
interesting as we have already shown the potential for gen-
eralisation of APIRL in 26 different REST APIs.
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