Towards Reproducible Attack Scenarios With
Automated Labeling

Jiayi Xie
Imperial College London
j-xie24 @imperial.ac.uk

Abstract—Intrusion detection research is limited by a shortage
of usable datasets that are shareable, precisely labeled, and
not locked to a single telemetry footprint. We present RAS, a
work-in-progress framework for Reproducible Attack Scenarios.
RAS turns a scenario definition into a shareable package and
uses container or VM instrumentation to execute behaviors,
collect logs, and assign deterministic event-level labels from
an artifact list. Packages declare hosts and topology, behavior
scripts, collection points, and preprocessing hooks. We exercised
RAS on a vulnerable web server scenario. With minimal edits
we created multiple derivative scenarios that varied benign and
malicious workloads, and we replayed the base scenario with
additional IDS telemetry by enabling Suricata, without changing
behaviors or labels. These early results indicate that RAS can
generate labeled datasets with predictable characteristics while
preserving reproducibility and extensibility.

Index Terms—Intrusion Detection, Network Security, Com-
puter Security

I. MOTIVATION & BACKGROUND

Modern intrusion detection research aims to identify previ-
ously unseen attacks, yet progress is throttled by weaknesses
in the datasets we use to develop and evaluate methods. We
outline three issues and how they distort conclusions.

1) Scarcity of usable datasets. There is a general shortage
of usable datasets for benchmarking intrusion detection
systems [1], datasets that are large enough, diverse in
behavior, and legally shareable. Many available corpora
are too small for meaningful evaluation or cannot be
redistributed due to licensing and privacy constraints.

2) Coarse-grained and ambiguous ground truth. Ground
truth is, in some cases, supplied at a level that is too
coarse to support fair evaluation. Researchers then infer
ground truth that vary from work to work, leading
to inconsistent metrics and limited comparability. For
example, batch-level labels can make models look strong
even when per-event or per-process accuracy is weak [2].

3) Rigid telemetry. Most datasets lock you into the signals
captured at collection time, making it hard to add or
swap sensors or change fidelity. For example, network-
only sets exclude endpoint-centric methods; host-only
sets exclude flow and DNS-aware methods. Researchers
cannot easily attach Zeek alongside Sysmon, or simply
eBPF probes.

To address these problems, we propose RAS, a work-in-
progress framework to turn intrusion detection datasets into

Abdullah Aldaihan
Imperial College London
a.aldaihan23 @imperial.ac.uk

Sergio Maffeis
Imperial College London
sergio.maffeis @imperial.ac.uk

(Scenaric |\ RAS
Configuration

Host & Topology

Defintions j
Behavior Scripts
Labeling Artifacts
Prcessing Scripts

\ >/

Scenario

Configuration |
Orchestration
T =

___] Processing &
Parsing

Labeling

Collection

A 4

Labeled Events

J

Instrumentation

Orchesteration Provider

X

PROXMOX

docker

Fig. 1. RAS architecture overview.

shareable scenario packages. The objectives are simple: (i)
enable creation of datasets with minimal effort, (ii) automate
labeling using node-level artifacts, and (iii) facilitate derivative
datasets with additional telemetry.

II. APPROACH

RAS is an orchestration framework for the automated
production of attack scenarios datasets (Figure 1). Given a
scenario configuration, it parses the configuration and then
instruments the scenario environment with VMs or containers,
collects logs, and produces labeled events. The reusable unit
is a scenario configuration bundle that can be easily shared
and distributed.

Host and Topology Definitions. The bundle declares the
hosts in the scenario and how they are connected. Each host
specifies a base image (for example, a Docker Alpine image),
collection points (a simple list of files or directories to pull if
collection is needed), and any host-specific configuration, such
as a listening port. In addition, the definitions may include
a network collection point where tcpdump captures transit
traffic. Finally, the scenario configuration defines when each
host is spun up, the startup order, and how long it remains
active.

Behavior Scripts. Behavior scripts define the host workload,
whether malicious or benign. They are a cornerstone to
creating derivative scenarios with alternative behavior to test
specific hypotheses and observe how detection systems react.
Scripts can specify, for example, how a benign host interacts
with services, how a malicious user proceeds through initial
access and exploitation, and what post-exploitation impact
occurs.

JuiceShop Web App

Nginx Proxy

Attacker Nodes Benign User Nodes

Fig. 2. Web-exploitation scenario with OWASP Juice Shop and Ngnix

TABLE 1
SCENARIO CONFIGURATIONS AND OBSERVED ATTACK RATIOS FOR FOUR

SAMPLES

S . Benign Attack Durati Dataset

cenarlo Nodes Nodes uration Size

Balanced 1 1 60min 221.9 MB

Stress 2 3 30min 111.1 MB

Realistic 3 1 120min 360 MB

APT 3 2 360min 1.03 GB

Labeling Artifacts. To automate labeling, the bundle includes
an artifact list (for example, domains, IP addresses, executable
names, file paths, hash prefixes, payload tags). The labeling
rule is simple: if a log event contains one of the malicious
artifacts, the event is labeled malicious. Additionally, artifacts
can be scoped to a time window to bound labeling to the
intended phase of the scenario.

Raw Log Processing Hooks. Preprocessing hooks are user-
defined scripts that transform raw logs into a specific format
before labeling them. For example, to join log sources together,
or to transform network traffic dump (PCAP) into specific CSV
schema. Hooks are invoked after the execution of a scenario
terminates. Without them, RAS labels still performs default
artifact-based labeling, but users can provide hooks to extend
or replace this step with their own parsing or labeling methods.

III. PRELIMINARY RESULTS

Implementation. We implemented RAS as a command-line
tool in Python, using Docker as the instrumentation backend.
This early version provisions containers from a scenario bun-
dle, executes workloads, pulls the declared collection points,
and applies artifact-based labeling to produce event-level
ground truth.

Base Scenario. We implemented a base scenario (Figure 2)
consisting of a vulnerable web application (OWASP Juice
Shop') served behind an Nginx reverse proxy used to log all
inbound HTTP requests. The environment includes a variable,
configurable number of benign and malicious clients. Benign
clients are built from Alpine Linux images and scripted to
browse, add items to cart, place orders, and check out; inter-
action delays are randomized to avoid perfectly periodic traffic.

Uhttps://owasp.org/www-project-juice-shop/

TABLE 11
SURICATA ON/OFF COMPARISON (3-RUN AVERAGE).

Mode TotalFlows AttackFlows BenignFlows AttackRatio
(App)

Suricata off 2123 111.7 100.7 52.6% (+2.6)

Suricata on 142.3 68.7 73.7 483% (-1.7)

Malicious clients use Kali Linux base images to run exploita-
tion steps. We define multiple attacker variants: some fail
to exploit, others are partially successful, and one completes
exploitation and establishes a C2 channel. Each variant inserts
bounded random waits (up to 60 seconds) between steps
to preserve behavior and to prevent detection systems from
making spurious correlations. All hosts are connected with
the target over a simple virtual bridge.

Experiment 1: Behavior Variants. We instantiated four
variants that share the same environment but differ in client
workloads and attacker paths. As shown in Table I, the
dataset size scales with scenario complexity and duration,
these changes are simple few lines edits, configuring which
behavior script to run for each host and how many of them.
Running the scenario is simple as well, a single command line
invocation.

Experiment 2: Additional Telemetry. We replayed the base
scenario with the addition of a monitoring host that runs Suri-
cata. All traffic to JuiceShop was first forwarded to Suricata
and then to JuiceShop, with no changes to behaviors. As
summarized in Table II, total flows decreased on average from
212.3 to 142.3, but the attack share remained near the target
(52.6% vs. 48.3% a shift of only a few percentage points). The
decrease in flows occurred because of resources constraints,
which resulted in some packets being dropped from the main
bridge connecting benign and malicious hosts with Suricata.

IV. FUTURE WORK

We plan to expand RAS along two fronts: broader scenario
coverage and a virtualization-based instrumentation layer. We
plan to exercise the current implementation across a wider set
of scenarios that features a variety of application and attack
tactics. Our goal is to confirm that observed characteristics
track configuration targets, and that labels remain stable across
runs. In parallel, we will add a Proxmox backend alongside
Docker to support full system virtualization. Proxmox will
enable scenarios that require kernels-level visibility, including
kernel-level attacks and advanced monitoring such as eBPF
and audit frameworks.

REFERENCES

[1] A. Kenyon, L. Deka, and D. Elizondo, “Are public intrusion datasets fit
for purpose characterising the state of the art in intrusion event datasets,”
Computers & Security, vol. 99, p. 102022, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404820302959

[2] B. Jiang, T. Bilot, N. El Madhoun, K. Al Agha, A. Zouaoui, S. Igbal,
X. Han, and T. Pasquier, “Orthrus: Achieving high quality of attribution
in provenance-based intrusion detection systems,” in Security Symposium
(USENIX Sec’25). USENIX, 2025.

