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Abstract
Deep learning approaches have achieved remarkable performance
in malware classification and detection. However, their success
relies on the availability of large, accurately labeled datasets: a
critical yet challenging requirement in the malware domain. In
practice, most malware datasets are automatically labeled using
outputs from antivirus engines, a process that often introduces
significant label noise. Such imperfections can severely degrade the
performance and generalizability of deep learning models.

To address this challenge, we introduce SLB, a framework de-
signed to robustly train deep learning–based malware systems
while simultaneously refining dataset labels. SLB begins by parti-
tioning the dataset into two subsets: a clean set containing samples
with reliable labels, and a noisy set with samples that may be misla-
beled, to which pseudo labels are assigned. As training progresses,
SLB continuously monitors the model’s predictions to dynamically
update both sets. Specifically, samples in the noisy set that consis-
tently receive predictions aligning with their (observed or pseudo)
labels are promoted to the clean set, whereas samples in the clean
set that exhibit unstable predictions are reclassified as noisy. This
iterative process not only enhances model performance but also
progressively corrects labeling errors.

We evaluated SLB on multiple security datasets with both syn-
thetic and real-world label noise across various deep learning archi-
tectures and ML algorithms. Experimental results show that SLB
significantly improves malware detection performance and reduces
overall noise. For example, on the Android binary dataset with 25%
injected label noise, SLB reduced the noise to below 1.5% while in-
creasing the macro F1 score from 74.51% to 96.03% and the accuracy
score from 87.66% to 98.68%.
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1 Introduction
Malware detection and classification have become pressing chal-
lenges in the cybersecurity landscape. In 2024 alone, AV-Test1 iden-
tified more than 100 million newmalware samples, illustrating both
the rapid proliferation of malicious software and the complexity
of detecting it in a timely manner. While traditional rule-based
techniques, such as signature matching, still play a role, the sheer
volume and polymorphism of contemporary threats demand more
adaptable strategies. Consequently, researchers have turned to deep
learning methods that leverage large, labeled malware datasets to
train models capable of identifying malicious variants with high
accuracy [18, 55]. These methods also allow for relatively efficient
updates using only modest amounts of new data, thereby keeping
pace with the fast-evolving nature of modern malware [7, 64].

Despite the growing success of deep learning, constructing large,
accurately labeled datasets for malware classification remains a
significant challenge. Ideally, every sample would be carefully val-
idated by multiple security experts to ensure high-quality anno-
tations, but this is infeasible when handling tens or hundreds of
thousands of samples. As a result, the community often relies on
automated labeling from Anti-Virus (AV) engines, with VirusTo-
tal (VT), an aggregator of multiple AV reports, being a popular
choice. To efficiently build large datasets, these reports are typically
combined using threshold-based heuristics [1, 5–7, 34, 36]. Unfor-
tunately, such heuristics can be error-prone because VT results
for the same file can change over time: a file initially flagged as
benign or grayware may later be reclassified as malicious, or it
may be assigned to a different family as more information emerges
[16, 29, 58, 61]. As a result, relying on these reports produces large
but imperfect datasets, where some samples inevitably end up with
incorrect labels, collectively referred to as label noise [16, 58, 61].

Imperfect datasets introduce two major complications for Ma-
chine Learning (ML) experiments. First, when learning-based mod-
els are trained on data with incorrect labels, they tend to overfit
these errors, which reduces their performance on real-world data
(i.e., the data encountered when the model is deployed in practice)
[29, 61]. Second, evaluating models on validation or holdout sets
that contain labeling errors yields misleading performance metrics.
Consequently, researchers may prematurely embrace approaches
that appear effective based on these flawed evaluations, even though
such methods may simply be learning noise rather than meaningful
patterns [58].

1https://portal.av-atlas.org/malware
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To address label noise in malware datasets, two principal re-
search directions have emerged. The first focuses on revising the
label combination process itself. Researchers might filter out less
reputable AV engines [1], collect multiple reports over extended
periods for greater consistency [5, 36], or apply secondary ML tools
to VT outputs to infer more reliable labels [40, 52]. Although these
techniques may help reduce the proportion of mislabeled samples,
each has inherent drawbacks. Extended data collection, for instance,
may delay the release of newly gathered datasets by months or even
years, limiting their immediate usefulness. Meanwhile, filtering
out specific AV engines is complicated by the correlated behavior
among AV products [58, 61].

The second direction addresses label noise during the training
process. This research area is relatively new, and to the best of our
knowledge, only three efforts [58, 61, 62] specifically target label
noise in malware datasets. Two of these [58, 62] focus on binary An-
droid detection and introduce additional constraints. MalWhiteOut
[58] requires prior domain knowledge, whereas Differential Train-
ing [62] demands multiple sequential training phases that are often
impractical in real-world contexts. The only approach that general-
izes to detection andmulti-class classification across a broader range
of malware datasets is MORSE [61], which adopts a Semi-Supervised
Learning (SSL) strategy. Technically, it trains the supervised loss on
a small curated clean subset and applies consistency regularization
to the remaining data. Although this setup reduces reliance on large
amounts of perfectly labeled data, the limited size of the strongly
supervised subset can restrict a deep model’s ability to learn ro-
bust patterns—particularly since larger labeled datasets generally
improve performance [48]. This highlights the need for methods
that can leverage imperfectly labeled malware data more effectively
without drastically shrinking the supervised training set.

In this work, we introduce Selective Label Bootstrapping (SLB),
a technique designed to mitigate label noise by progressively cor-
recting and expanding an automatically identified clean subset.
SLB operates in two stages. First, an ensemble of training epochs
partitions the dataset into (1) a high-confidence clean subset, con-
taining samples whose predictions consistently align with their
observed (given) labels, and (2) a noisy subset containing ambigu-
ous or inconsistently labeled samples. The noisy subset is assigned
pseudo-labels to address its uncertain annotations. Second, SLB
performs continuous label revision throughout training. Samples
in the noisy set that repeatedly match either their observed label or
pseudo-label are promoted to the clean subset, occasionally flipping
labels if necessary. Conversely, samples in the clean set that exhibit
inconsistent predictions are reclassified as noisy. This iterative cor-
rection mechanism steadily denoises the dataset, expands the clean
set, and reduces overall label noise. At the same time, the classifier
trained in parallel becomes increasingly resilient to noise and can
be used directly for multi-class classification or detection tasks.

We evaluated SLB on five diverse datasets, including VirusShare
2018 [27], Malware PE [61], and APIGraph [7], covering both real-
world (VT-based) and synthetic (randomly generated) label noise
at varying rates. At high noise levels (70% synthetic), SLB improved
the baseline model’s macro F1 score by 13.55% on VirusShare 2018
and 26.32% on Malware PE. Even under a real-world noise rate
of 31.44% in VirusShare 2018, SLB achieved a 10.12% macro F1
improvement, while having minimal effect in noise-free settings.

Moreover, SLB outperformed state-of-the-art label-noise handling
techniques for malware data, MORSE [61] and Differential Training
[62], while requiring fewer computational resources.

Beyond improving classification robustness, SLB substantially
revises dataset labels. For example, it reduced 25% injected noise
in APIGraph to below 1.5% and lowered 30% noise in Malware
PE to under 6%. This label refinement also boosts classical ML
models: on Malware PE with 70% noise, Random Forest (RF) [4]
accuracy increased from 59.36% to 86.33%. Furthermore, we eval-
uated SLB with advanced deep architectures (e.g., ResNet18 [13]),
conducted ablation studies of its core components, and performed
a hyperparameter sensitivity analysis. Collectively, these experi-
ments demonstrate that SLB generalizes across diverse models, each
of its components is crucial to overall effectiveness, and it remains
robust even under suboptimal hyperparameter settings.

In summary, the contributions of this work are as follows:
(1) We propose an ensemble-based data cleaning technique that

aggregates predictions across multiple epochs to identify
correctly labeled samples. This method partitions the dataset
into clean and noisy subsets, assigning high-quality pseudo-
labels to uncertain samples.

(2) We introduce a continuous revision strategy that dynami-
cally updates sample labels during training. This strategy
leverages both observed labels and assigned pseudo-labels,
employing a label-flipping mechanism to promote samples
from the noisy set to the clean set.

(3) We integrate these components into a single framework, SLB,
which continuously revises labels, reduces noise in malware
datasets, and simultaneously trains a robust classifier. To
encourage reproducibility and further research, we release
our code and datasets.2

(4) We extensively evaluate SLB across diverse deep learning ar-
chitectures (e.g., ResNet18), datasets (e.g., Android and Win-
dows), and ML algorithms (e.g., RF) under both real-world
and synthetic noise at varying levels. Our results demon-
strate that SLB substantially improves model robustness and
generalizationwhile yielding cleaner datasets. It outperforms
existing binary and multi-class label-noise handling methods
for malware and offers greater cost efficiency.

2 Background
This section provides essential background information. First, we
detail malware data collection and labeling methods, outlining their
capabilities, limitations, and challenges (§2.1). Second, we review
label noise handling techniques from non-security domains and
their applicability to malware detection (§2.2).

2.1 Malware Datasets Construction
Accessing large volumes of malicious and benign software is rel-
atively easy due to the abundance of online repositories and dis-
tribution platforms (e.g., AndroZoo3, VT4, and VirusShare5). For
instance, as of April 14, 2025, AndroZoo alone hosts more than 25

2https://doi.org/10.5281/zenodo.16924658
3https://androzoo.uni.lu
4https://www.virustotal.com
5https://www.virusshare.com
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million APK files. However, the primary challenge lies in accurately
labeling these software samples, a crucial step for training effective
ML models for malware detection and classification. The literature
identifies two main approaches to labeling: manual labeling and
VT-based labeling.
Manual labeling is the most reliable method, where security ex-
perts analyze each sample individually to assign its binary or multi-
class label. This can be achieved through dynamic and statistical
analysis of the sample’s code, behavior, and other characteristics,
or by reviewing previously published security reports and threat
intelligence data [16]. Despite its high accuracy, manual labeling
is slow, costly, and labor-intensive, making it impractical for large-
scale datasets. Studies estimate that labeling a single previously
unseen malware sample takes an average of 10 hours, emphasizing
the substantial time and resource demands of this approach [28].
VT-based labeling is the most widely used method due to its
scalability and ease of implementation. A software sample or its
hash is submitted to the VT platform, which returns detection re-
sults from multiple AV engines. Security experts then assign a label
based on predefined thresholds [1, 5, 19, 26, 34, 53, 56], often guided
by intuition or insights from previous dynamic analysis studies
[57, 69]. For instance, a sample is labeled as malware if at least four
AV engines detect it as malicious, while it is considered benign if
none flag it as such [34]. Despite its scalability, VT-based labeling
introduces label noise, leading to imperfectly labeled datasets. For
example, Joyce et al. [16] analyzed discrepancies between labels
obtained from previously published security reports and VT-based
labeling, finding that only 62.10% of binary labels and 46.78% of
multi-class labels matched.

2.2 Learning from Imperfectly Labeled data
Deep learning-based models require large and diverse datasets to
achieve strong generalization. However, manual labeling at scale is
costly and time-consuming, making it impractical for many fields
beyond security, including computer vision and natural language
processing. To address this challenge, researchers have explored al-
ternative approaches to label large datasets. For example, a common
strategy is using crowdsourcing platforms such as AmazonMechan-
ical Turk (MTurk), where multiple human annotators contribute to
dataset labeling [59, 60]. Although this method provides scalability,
it introduces variability in label quality due to differences in anno-
tator expertise, leading to potential human errors [14, 59]. Wei et
al. studied this issue by using MTurk to label CIFAR-10, assigning
each sample to three annotators [59]. Their analysis revealed that
even with majority voting, the dataset contained 9.03% label noise,
highlighting the challenges of ensuring annotation accuracy.

Due to these challenges, extensive research efforts have focused
on developing methods to mitigate label noise during model train-
ing across various domains. Figure 1 illustrates the most common
strategies, which are sample selection and label correction.
Sample selection identifies a subset of training data, known as the
clean set, that is likely free of label noise. The model is then trained
using only this subset, computing the supervised loss exclusively
on the selected samples. A common approach to constructing the
clean set is to use the small-loss trick, which assumes that samples
with low-loss values are more likely to be correctly labeled [12, 65].

(b)  Noisy Data (c)  Selection (d)  Correction

Noisy

(a)  Clean Data

Clean

Figure 1: Learning from Label Noise.

Based on this principle, the model selects low-loss samples and
trains only on them. Figure 1c illustrates this process, comparing it
to a training set that is noise-free (Figure 1a) and a noisy training
dataset (Figure 1b). As observed, the selection process favors eas-
ier samples—those in densely populated regions and far from the
decision boundary. Although this approach mitigates the effect of
label noise, it can result in an oversimplified decision boundary by
overlooking hard-to-classify, correctly labeled samples that are po-
tentially highly informative. To address this limitation, subsequent
research has incorporated non-selected samples into training by
down-weighting their influence [38, 44] or applying consistency
regularization techniques, such as Mean Teacher [51] and FixMatch
[45], to retain useful information [30, 66].
Label correction leverages the entire training dataset by revising
incorrectly labeled samples rather than discarding them (Figure
1d). The goal is to dynamically adjust incorrect labels during train-
ing, improving data quality and model reliability. Unlike sample
selection, which filters out suspected mislabeled data (Figure 1c),
label correction retains all data points, allowing more samples to
contribute to supervised learning and potentially enhancing model
performance. Reed et al. [37] introduced a bootstrapping method
that, in each training epoch, blends the original labels with the
model’s current predictions to gradually correct mislabeled data.
Lu and He [23] refined this approach using self-ensembling, which
blends the original labels with predictions aggregated over multiple
training epochs, resulting in more robust and reliable label correc-
tions. However, because these methods revise every sample, they
risk changing labels that were originally correct. To address this,
Zheng et al. [68] proposed error-bounded correction, modifying
labels only when the model is sufficiently confident, reducing the
risk of incorrect revising.
Applications to malware data. Despite their success in non-
security domains, these methods often struggle when applied di-
rectly to noisy malware datasets. Wang et al. [58] emphasized that
these methods require further revisions to achieve meaningful re-
sults onmalware datasets.Wu et al. [61] expanded on this by system-
atically evaluating eight label noise handling methods on malware
datasets and found that they underperformed. They attributed this
to three key reasons. First, real-world malware datasets contain a
significantly higher proportion of incorrect labels compared to other
datasets. Second, noise is distributed unevenly across classes, with
some being disproportionately affected. Third, malware datasets
often suffer from severe class imbalances, a challenge that these
methods are not inherently designed to handle effectively.
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3 SLB
In this Section, we introduce SLB, a framework designed to robustly
train malware classifiers under label noise while simultaneously
producing a cleaner dataset. We begin by formally defining the
problem setup (§3.1), then provide a high-level overview of the
framework (§3.2). Finally, we describe the two main components of
SLB: Data Split (§3.3) and Continuous Revision (§3.4).

3.1 Problem Definition
We consider a malware datasetD = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1, where each of the
𝑁 software samples is represented by a feature vector 𝑥𝑖 ∈ R𝑑 . De-
pending on the analysis technique, these features can be extracted
from static properties (e.g., strings, imports, section metadata) or
from dynamic behaviors (e.g., system call traces). Each sample be-
longs to one of 𝐾 classes, denoted by 𝑦𝑖 . In a multi-class malware
classification setting, these classes typically include multiple mali-
cious families plus a benign class, whereas in a malware detection
scenario, the task might be binary (benign vs. malicious).

In practice, large-scale labeling often relies on combining detec-
tion outputs frommultiple AV engines to form the observed label𝑦𝑖 .
However, discrepancies and errors in these AV outputs can create a
significant fraction of incorrect labels, such that 𝑦𝑖 ≠ 𝑦𝑖 . When a
Deep Neural Network (DNN) is trained on D̃ = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1 using
the cross-entropy loss

𝐿CE = − 1
𝑁

𝑁∑︁
𝑖=1

log 𝑝𝑖 (𝑦𝑖 ) (1)

where 𝑝𝑖 (𝑦𝑖 ) is the softmax probability of 𝑦𝑖 , it may overfit to misla-
beled samples, degrading detection and classification performance
in real-world scenarios [58, 61].

Our objective is twofold. First, we aim to learn a robust classifier

𝑓𝜃 : R𝑑 → {1, . . . , 𝐾}

that can effectively mitigate the impact of label noise and generalize
well on unseen data. Second, we seek to produce a revised dataset

D̂ = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1

whose labels 𝑦𝑖 closely approximate the true labels 𝑦𝑖 , formally:

𝑦𝑖 ≈ 𝑦𝑖 .

By systematically identifying and handling mislabeled samples, we
preserve the valuable diversity of the malware dataset, strengthen-
ing the classifier’s robustness and generalization while also leaving
behind a dataset with substantially fewer incorrect labels.

3.2 Overview of the SLB Framework
The SLB framework is built on two key ideas that help combat label
noise in malware datasets. The first idea leverages the tendency of
DNNs to learn simpler, correctly labeled examples more quickly
thanmislabeled or complex ones [2, 12]. By tracking the consistency
of each sample’s predictions over multiple training epochs, we
derive an initial partition of the dataset D̃ into a high-confidence
clean set D𝑐 and a noisy set D𝑛 . For samples deemed noisy, we
also generate a pseudo-label that may later replace the originally
observed label.

Algorithm 1 Data Split

Require: Noisy dataset D̃ = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1, epochs 𝑒 , class-balanced
loss hyperparameter 𝛽

1: Initialize model 𝑓 𝐷𝑆
𝜃

2: for 𝑡 = 1 to 𝑒 do ⊲ Model training
3: Train 𝑓 𝐷𝑆

𝜃
on D̃ using the loss:

4: 𝐿
noisy
CB = − 1

𝑁

∑𝑁
𝑖=1

1
EN𝑦̃𝑖

log
(
𝑝𝑖 (𝑦𝑖 )

)
, where EN𝑦̃𝑖 =

1−𝛽𝑛𝑦̃𝑖
1−𝛽

5: Save predicted label 𝑦𝑖,𝑡 for each sample 𝑥𝑖 in P𝑖
6: end for
7: D𝑐 ← ∅, D𝑛 ← ∅
8: for 𝑖 = 1 to 𝑁 do ⊲ Data partitioning
9: Compute consistency ratio:
10: 𝑟𝑖 =

| { 𝑦̂∈P𝑖 : 𝑦̂=𝑦̃𝑖 } |
𝑒

11: if 𝑟𝑖 = 1 then
12: Mark 𝑥𝑖 as clean:
13: D𝑐 ← D𝑐 ∪ {(𝑥𝑖 , 𝑦𝑖 )}
14: else
15: Derive pseudo-label:
16: 𝑦

maj
𝑖
← majority(P𝑖 )

17: Mark 𝑥𝑖 as noisy:
18: D𝑛 ← D𝑛 ∪ {(𝑥𝑖 , 𝑦𝑖 , 𝑦maj

𝑖
)}

19: end if
20: end for
21: return D𝑐 and D𝑛

The second idea addresses the fact that relying on a single, static
split can inadvertently discard genuinely correct but harder-to-
learn samples, while still keeping mislabeled examples in the clean
set. To resolve these issues, SLB incorporates a continuous revision
stage that periodically re-checks each sample’s predictions using
an Exponential Moving Average (EMA). During revision, samples
can move between D𝑐 and D𝑛 , and their assigned label can switch
between the observed label and the pseudo-label, depending on the
model’s evolving confidence.

3.3 Data Split
The first component of SLB is the Data Split, where we divide the
observed dataset

D̃ = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1

into a clean setD𝑐 and a noisy setD𝑛 . One widely used strategy for
this split is the small-loss trick [12, 61]. In this approach, the model
trains for a brief warm-up period, and the final-epoch training
losses are used to rank samples. Those with the lowest loss (e.g.,
the bottom 15% [61]) are designated as clean.

This simple strategy suffers from several limitations. Setting
the threshold is difficult without access to a clean validation set
or prior knowledge of the noise rate. Additionally, it struggles to
handle class-specific noise effectively, particularly when certain
classes are underrepresented or frequently mislabelled. Moreover,
it is highly sensitive to the choice of warm-up epoch; if the model
has not stabilized or begins to overfit during this period, it can lead
to substantial noise in the resulting clean set.

To address these challenges, we propose a method that automat-
ically adapts the size of the clean set based on the model’s evolving
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predictions during the warm-up period. Rather than relying on a
single epoch’s loss values, we collect and aggregate each sample’s
hard-label predictions across warm-up epochs. If the model con-
sistently predicts the same label as the observed label, we classify
the sample as clean; otherwise, we mark it as noisy. In this way, we
reduce the need for strict global thresholds or per-class adjustments,
and therefore, this method is more robust to different noise levels
and distributions. Algorithm 1 details the step-by-step process.

Epoch-wise Training and Prediction Consistency. To detect label
noise, we initially train a single DNN model, 𝑓 𝐷𝑆

𝜃
, for a predeter-

mined warm-up period consisting of 𝑒 epochs. At each epoch 𝑡
during this period, we obtain and record the model’s prediction
𝑦𝑖,𝑡 for every sample 𝑥𝑖 . These predictions are aggregated into a
prediction set:

P𝑖 = {𝑦𝑖,𝑡 | 𝑡 = 1, . . . , 𝑒}. (2)
Our method builds on the intuition that predictions for clean

samples generally stabilize quickly during early epochs, whereas
noisy samples exhibit noticeable fluctuations. This is distinct from
the existing ensemble-based approach [46], which relies on multiple
models and use early training snapshots to improve inference-time
prediction quality. Instead, we utilize the prediction consistency
from a single model’s multiple epochs explicitly for data cleansing
purposes prior to final training.

To measure the consistency of predictions, we define a con-
sistency ratio 𝑟𝑖 as the fraction of epochs in which the model’s
predicted label matches the observed (potentially noisy) label 𝑦𝑖 :

𝑟𝑖 =
|{𝑦 ∈ P𝑖 : 𝑦 = 𝑦𝑖 }|

𝑒
. (3)

Partitioning into Clean and Noisy Sets. After gathering predic-
tions from the epoch-wise warm-up period, we partition the dataset
into clean and noisy subsets based on the consistency of predictions.
Using the consistency ratio 𝑟𝑖 , computed as defined previously, we
apply a strict threshold to determine set membership:

D𝑐 =
{
(𝑥𝑖 , 𝑦𝑖 )

�� 𝑟𝑖 = 1
}
,

D𝑛 =
{
(𝑥𝑖 , 𝑦𝑖 , 𝑦maj

𝑖
)
�� 𝑟𝑖 < 1

}
.

(4)

Samples with complete prediction consistency across all epochs
(𝑟𝑖 = 1) are confidently labeled as clean and form the clean set D𝑐 .
These represent highly reliable examples that the model consis-
tently classifies correctly throughout the brief training phase.

Conversely, samples with any inconsistency (𝑟𝑖 < 1) are consid-
ered noisy D𝑛 . For these samples, we further compute a pseudo-
label, 𝑦maj

𝑖
, representing the most frequently predicted label across

the warm-up epochs:

𝑦
maj
𝑖

= majority
(
P𝑖
)
, (5)

where P𝑖 is the aggregated prediction set from epoch-wise training.
The clean set thus collects examples the epochs consistently

agrees upon, while the noisy set retains samples that exhibit any
disagreement. Crucially, storing both the observed label and the
majority-voted pseudo-label for noisy samples preserves opportu-
nities for future correction. By structuring the data in this way, we
ensure that the initial training can focus on high-confidence labels,

laying a strong foundation for the Continuous Revision phase that
will further interrogate D𝑛 and resolve lingering ambiguities.

Class-Balanced Loss. Although the above procedure helps distin-
guish clean vs. noisy samples, class imbalance can severely impede
its effectiveness. In many practical malware datasets, one class (i.e.,
the goodware class) can account for as much as 90% of the data,
leaving only 10% for malware samples [34]. If we then further split
those malware samples into multiple families, each family may
represent only a small fraction of the overall dataset. Under such
skewed conditions, empirical risk minimization drives the model to
prioritize the majority class, as this leads to the largest reduction in
training error. As a result, the model may show high consistency
on the majority class and, in some cases, even overfit to its noisy la-
bels. Meanwhile, truly correct samples in underrepresented classes
may never achieve perfect consistency, because the model lacks
sufficient incentive to learn their characteristics thoroughly.

To address these challenges, we adopt the Class-Balanced (CB)
loss [8] during model training. For each class 𝑦𝑏 with 𝑛𝑦𝑏 samples,
we compute its Effective Number (EN):

EN𝑦𝑏 =
1 − 𝛽𝑛𝑦𝑏

1 − 𝛽 , (6)

where 𝛽 ∈ [0, 1) is a hyperparameter that controls the degree of
penalization based on class size. Each sample’s loss term is weighted
by 1/EN𝑦̃𝑖 , thereby giving minority classes greater influence in
the training objective. Concretely, we modify the standard cross-
entropy loss in Eq. (1) to

𝐿
noisy
CB = − 1

𝑁

𝑁∑︁
𝑖=1

1
EN𝑦̃𝑖

log
(
𝑝𝑖 (𝑦𝑖 )

)
, (7)

where 𝑝𝑖 (𝑦𝑖 ) denotes the model’s softmax probability assigned
to the observed label 𝑦𝑖 . By re-weighting samples in this way, the
model learns to pay more attention to underrepresented classes,
which helps it better identify mislabeled examples within those
classes. This becomes especially valuable when the majority class
harbors significant noise, since otherwise the network might mem-
orize those incorrect labels and neglect the rare classes, ultimately
preventing truly correct minority-class samples from being recog-
nized as clean.

3.4 Continuous Revision
After partitioning the dataset into a clean subsetD𝑐 and a noisy sub-
set D𝑛 during the Data Split stage, SLB enters an iterative Continu-
ous Revision phase, as described in Algorithm 2. In contrast to prior
approaches that discard or ignore noisy samples entirely [12, 30],
our method accounts for the possibility that some noisy samples
may be correctly labeled or pseudo-labeled, and that some samples
in the clean set may be mislabeled. To handle this uncertainty, we
leverage both D𝑐 and D𝑛 to iteratively revise label quality and
expand the set of reliably labeled samples.

EMA Initialization from Epoch-wise Predictions. Before training
begins, we initialize an EMA of soft predictions for each sample 𝑥𝑖 .
Formally, we define:

𝑝
(0)
𝑖

=
1
𝑒

𝑒∑︁
𝑡=1

𝑝𝑖,𝑡 , (8)
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Algorithm 2 Continuous Revision

Require: Noisy dataset D̃, observed labels 𝑦𝑖 , origin flags 𝑜𝑖 ∈
{c, n}, pseudo-labels 𝑦maj

𝑖
, initial soft predictions 𝑝 (0)

𝑖
, total

epochs 𝑇 , warm-up𝑚 < 𝑇 , smoothing 𝛼 ∈ (0, 1)
1: Initialize model 𝑓𝜃
2: for 𝑟 = 1 to𝑚 do ⊲ Warm-up phase
3: Train 𝑓𝜃 for one epoch on D𝑐

0
4: for 𝑖 = 1 to 𝑁 do
5: 𝑝

(𝑟 )
𝑖

= softmax(𝑓𝜃 (𝑥𝑖 )); 𝑝
(𝑟 )
𝑖

= 𝛼𝑝
(𝑟 )
𝑖
+ (1−𝛼)𝑝 (𝑟−1)

𝑖

6: end for
7: end for
8: for 𝑖 = 1 to 𝑁 do ⊲ Derive initial hard labels
9: 𝑦

(𝑚)
𝑖

= arg max 𝑝 (𝑚)
𝑖

10: end for
11: D𝑐

𝑚+1 ← ∅, D𝑛
𝑚+1 ← ∅

12: for 𝑖 = 1 to 𝑁 do ⊲ Rebuild sets after warm-up
13: if 𝑦 (𝑚)

𝑖
= 𝑦𝑖 then

14: D𝑐
𝑚+1 ← D𝑐

𝑚+1 ∪ {(𝑥𝑖 , 𝑦𝑖 )}
15: else if 𝑜𝑖 = n ∧ 𝑦 (𝑚)

𝑖
= 𝑦

maj
𝑖

then
16: D𝑐

𝑚+1 ← D𝑐
𝑚+1 ∪ {(𝑥𝑖 , 𝑦

maj
𝑖
)}

17: else
18: D𝑛

𝑚+1 ← D𝑛
𝑚+1 ∪ {(𝑥𝑖 , 𝑦𝑖 , maj)}, where maj ← 𝑦𝑖 if

𝑜𝑖 = c, else 𝑦maj
𝑖

19: end if
20: end for
21: for 𝑡 =𝑚 + 1 to 𝑇 do ⊲ Continuous refinement
22: Train 𝑓𝜃 for one epoch on D𝑐

𝑡

23: for 𝑖 = 1 to 𝑁 do
24: 𝑝

(𝑡 )
𝑖

= softmax(𝑓𝜃 (𝑥𝑖 )); 𝑝
(𝑡 )
𝑖

= 𝛼𝑝
(𝑡 )
𝑖
+ (1−𝛼)𝑝 (𝑡−1)

𝑖

25: 𝑦
(𝑡 )
𝑖

= arg max 𝑝 (𝑡 )
𝑖

26: end for
27: D𝑐

𝑡+1 ← ∅, D𝑛
𝑡+1 ← ∅

28: for 𝑖 = 1 to 𝑁 do ⊲ Update label sets
29: if 𝑦 (𝑡 )

𝑖
= 𝑦𝑖 then

30: D𝑐
𝑡+1 ← D𝑐

𝑡+1 ∪ {(𝑥𝑖 , 𝑦𝑖 )}
31: else if 𝑜𝑖 = n ∧ 𝑦 (𝑡 )

𝑖
= 𝑦

maj
𝑖

then
32: D𝑐

𝑡+1 ← D𝑐
𝑡+1 ∪ {(𝑥𝑖 , 𝑦

maj
𝑖
)}

33: else
34: D𝑛

𝑡+1 ← D𝑛
𝑡+1 ∪ {(𝑥𝑖 , 𝑦𝑖 , maj)}, where maj ← 𝑦𝑖 if

𝑜𝑖 = c, else 𝑦maj
𝑖

35: end if
36: end for
37: end for
38: return D𝑐

𝑇+1, D
𝑛
𝑇+1, 𝑝

(𝑇+1)
𝑖

, and final model 𝑓𝜃

where 𝑝𝑖,𝑡 denotes the softmax output of the model 𝑓 𝐷𝑆
𝜃

at epoch 𝑡
during the Data Split stage. This aggregated prediction acts as an
ensemble-based “teacher” signal, smoothing out noisy fluctuations
from individual epochs and providing a stable initialization for
subsequent revision.

Warm-up Training on D𝑐 . We then perform a warm-up phase
by training a new model 𝑓𝜃 solely on the clean set 𝐷𝑐 for𝑚 epochs.
At the end of each epoch, the model produces soft predictions 𝑝 (𝑟 )

𝑖

for each sample 𝑥𝑖 from D̃, which are incorporated into the EMA:

𝑝
(𝑟 )
𝑖

= 𝛼 𝑝
(𝑟 )
𝑖
+ (1 − 𝛼) 𝑝 (𝑟−1)

𝑖
, (9)

where 𝛼 ∈ (0, 1) is a smoothing parameter and 𝑝 (0)
𝑖

is initialized
from the Data Split stage. After the final warm-up epoch, a hard
label is assigned to each sample based on the EMA:

𝑦
(𝑚)
𝑖

= arg max 𝑝 (𝑚)
𝑖

. (10)

These revised labels serve as the starting point for the iterative
revision process that follows.

Rebuilding the Datasets. Immediately after obtaining the updated
hard labels 𝑦 (𝑚)

𝑖
, we reassemble the dataset by revising the assign-

ments to D𝑐 and D𝑛 . Specifically, a sample 𝑥𝑖 ∈ D𝑐 is demoted to
D𝑛 if its revised label 𝑦 (𝑚)

𝑖
no longer matches its observed label 𝑦𝑖 .

Conversely, a sample 𝑥𝑖 ∈ D𝑛 is promoted to D𝑐 if 𝑦 (𝑚)
𝑖

matches
either its observed label 𝑦𝑖 or its pseudo-label 𝑦

maj
𝑖

.
This mechanism recognizes that the initial separation could be

imperfect, allowing incorrectly excluded samples to become part
of the clean set once the model’s predictions align. It also expels
from D𝑐 any samples that appear to have been mislabeled or were
too complex to retain their observed label.

Iterative Revision over 𝑇 Epochs. After the first reassembly, SLB
continues in iterative fashion for 𝑇 revision epochs. At the start of
each epoch 𝑡 , we train the model 𝑓𝜃 on the current revised clean
set D𝑐

𝑡 for one pass. Next, the newly obtained soft predictions
𝑝
(𝑡 )
𝑖

= softmax(𝑓𝜃 (𝑥𝑖 )) for each sample 𝑥𝑖 are used to update the
EMA:

𝑝
(𝑡 )
𝑖

= 𝛼 𝑝
(𝑡 )
𝑖
+ (1 − 𝛼) 𝑝 (𝑡−1)

𝑖
, (11)

A new hard label 𝑦 (𝑡 )
𝑖

= arg max𝑝 (𝑡 )
𝑖

is then derived. Finally, the
sets D𝑐

𝑡 and D𝑛
𝑡 are rebuilt by comparing 𝑦 (𝑡 )

𝑖
with each sample’s

observed label 𝑦𝑖 and pseudo-label 𝑦maj
𝑖

.
Repeating these steps over𝑇 epochs systematically adjusts which

samples reside in the clean or noisy subsets. If the EMA consistently
favors either 𝑦𝑖 or 𝑦

maj
𝑖

for a sample in D𝑛 , that sample migrates
into D𝑐 . Conversely, if a sample in D𝑐 conflicts with the model’s
revised predictions, it is moved to D𝑛 . This dynamic approach
ensures that the clean set is not fixed to its initial composition and
can gradually incorporate valid (but previously misjudged) samples
while filtering out entrenched mislabels. As a result, the classifier
benefits from a growing reservoir of high-quality labels and avoids
being constrained by early-stage partitioning errors.

Flipping Labels Between𝑦𝑖 and𝑦
maj
𝑖

. A critical facet of Continuous
Revision is the ability to flip a sample’s training label between the
observed label 𝑦𝑖 and the pseudo-label 𝑦maj

𝑖
. Specifically, a noisy

sample might initially joinD𝑐 with its observed label, yet the EMA
predictions could steadily favor𝑦maj

𝑖
. In that case, the label is flipped

to 𝑦maj
𝑖

in subsequent epochs to align with the model’s increasingly
confident predictions. Conversely, if the sample was integrated
with 𝑦maj

𝑖
but later stabilizes around 𝑦𝑖 , we revert the label to 𝑦𝑖 .

This dynamic relabeling mechanism is vital for correcting errors
that emerge during both the Data Split and early revision epochs.
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SLB Outputs. At the end of this iterative training, EMA updates,
and data reassembly, SLB yields three primary outcomes: (1) a ro-
bust classifier 𝑓𝜃 that is both more robust to label noise and better
generalizes to unseen samples, ultimately providing a more reliable
foundation for downstream malware detection or family classifica-
tion tasks, (2) a refined subsetD𝑐

𝑇+1 containing samples confidently
identified as correctly labeled; and (3) a revised dataset D̂, in which
labels are updated based on the final EMA probabilities 𝑝 (𝑇+1)

𝑖
,

capturing the full dataset while allowing for minor residual label
inaccuracies.

4 Evaluation
We evaluated SLB using five security-focused datasets that fea-
ture both real-world and synthesized label noise. In the following
subsections, we detail our experimental setup (§4.1), outline our
experiment design (§4.2), and present the results of our experiments
(§4.3, §4.4, and §4.5).

4.1 Experimental Setup
4.1.1 Hardware, Software, and Architecture. All experiments were
run on a Linux system (Ubuntu 22.04.5 LTS) with the following
hardware: an AMD EPYC 7502P 32-core processor, 128 GB of RAM,
and four NVIDIA A40 GPUs (each with 48 GB of memory). The
software environment comprised Python 3.8.2, PyTorch 2.1.2, and
CUDA 11.8. We used a MultiLayer Perceptron (MLP) with three
hidden layers containing 512, 256, and 128 neurons, respectively.
Each layer was initialized using Xavier initialization. The MLP
network was trained for 140 epochs (i.e., 𝑇 = 140) with the Adam
optimizer, a learning rate of 0.001, and a batch size of 128. All
experiments and baselines were executed with this configuration
unless otherwise stated.

4.1.2 Datasets. Weused five security datasets:Malware PE (PE) [61],
APIGraph 2017–2018 (AG) [7, 67], VirusShare 2018 (VS18) [27], CI-
CIDS 2017 (IDS17) [22, 43], and Virus-MNIST (VM) [31]. In addition,
we included a variant of PE and VS18 with real-world label noise,
denoted as PE-Real and VS18-Real. Below, we briefly describe each
dataset; additional details are provided in Appendix A.3.
Malware PE (PE). This dataset comprises 6,674 Windows exe-
cutable samples, comprising 500 benign files and 6,174 malicious
binaries from 11 families [61]. Each sample was labeled by at least
three security experts, each having over five years of professional
experience, making the dataset highly reliable and likely to be free
from label noise. To create a test partition, the authors randomly
selected 100 samples per class, leaving the remainder for training.
They also introduced a variant called PE-Real by injecting label
noise derived from VT reports. Specifically, if any AV engine as-
signed a label different from the given ground-truth, its label was
changed accordingly. This resulted in approximately 13.88% of the
labels being incorrect.
APIGraph 2017–2018 (AG). This Android dataset originates from
[67], with the version we used provided by [7]. It comprises 69,241
samples collected from 2017 to 2018, comprising 62,993 benign
and 6,248 malicious samples. The authors collected VT reports
between 2022 and 20236 and applied a threshold-based heuristic

6We thank Yizheng Chen for confirming the timeframe of VT report collection.

for labeling: a sample is labeled as malicious if at least sixteen
AV engines flag it, as benign if no detections are reported, and
samples with intermediate results (i.e., grayware) are discarded.
We randomly split the remaining samples into an 80% training set
(55,394 samples) and a 20% test set (13,847 samples).
VirusShare 2018 (VS18). This dataset originally comprised 28,543
Android samples [27], which we labeled by applying the threshold-
based heuristic described in [7] to VT reports that we scanned and
collected in 2025. Specifically, a sample was labeled as malicious if
at least sixteen AV engines flagged it, and as benign if no engines re-
ported detections. Samples with intermediate detection counts were
considered ambiguous (i.e., grayware) and excluded. Family labels
were assigned using AVClass2 [42]. However, we identified some
inconsistencies in the labeling. In particular, certain family names
were reported by only a single AV engine, and some samples had
conflicting or similarly weighted family assignments. For example,
the sample with MD5 hash 9c1349f4569637323b8aa5ff8688afd1
was assigned both the Triada and SMSReg families, each by two
engines. To address this, we applied an additional thresholding step:
a family label was only accepted if it was supported by more than
five AV engines. Otherwise, the sample was treated as grayware
and excluded from the dataset. After this procedure, 1,417 benign
samples and 8,529 malicious samples remained, distributed across
7 malware families. We randomly allocated 20% of the data for
testing (1,989 samples) and 80% for training (7,955 samples). To
simulate real-world label noise, we created VS18-Real by labeling
the training subset exclusively with a single AV engine, follow-
ing the methodology in [6, 61]. We selected the Lionic engine for
its comprehensive family coverage, which ultimately produced an
incorrect label rate of 31.44%.
CICIDS 2017 (IDS17). Although not malware-focused, this NIDS
dataset is included for its highly reliable labels. It was generated
in a controlled lab setting with prior knowledge of the attacker’s
identity and actions, which enabled precise label assignments and
minimized the risk of unrecognized label noise. The version used
here, obtained from [22], contains about 1.91 million samples repre-
senting 15 classes, with roughly 78.28% deemed benign. Owing to
its large size, we sampled 12,000 benign instances and 1,920 samples
from eight primary attack classes. We allocated 80% of this subset
for training (11,600 samples) and 20% for testing (2,320 samples).
Virus-MNIST (VM). This dataset is an image-based representation
of Windows portable executables [33]. It comprises 51,880 images,
including 2,516 benign samples and 49,364 malicious samples. We
used the version extended by [31]. The authors subdivided the ma-
licious class into nine distinct categories using K-means clustering.
The dataset comes with a pre-defined split, allocating 3,458 samples
to testing and 48,422 samples to training.

4.1.3 Baselines. We evaluate SLB against three baselines: Vanilla,
Differential Training (DT), and MORSE. Vanilla serves as a simple
baseline that trains directly on the noisy dataset D̃ without any
noise-handling mechanism. DT is a state-of-the-art approach for
noise mitigation in malware detection. It trains two DNNs over n
rounds; at the end of each round, it identifies suspicious samples and
flips their labels. For instance, if a sample is labeled malicious and
flagged as noisy, its label is flipped to benign. However, this binary
label-flipping strategy is not applicable to multi-class settings. To
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address this limitation, we re-engineered DT to support multi-class
datasets by replacing the binary flip rule with a pseudo-labeling
strategy inspired by SLB. Specifically, we aggregate per-epoch pre-
dictions during each round and assign the majority-voted label to
samples identified as noisy. We refer to this variant as DT modified
(DTm). This adjustment also improves DT’s performance on the bi-
nary dataset (see §4.3.1). MORSE is another state-of-the-art approach
for noise mitigation in malware classification. At each epoch, it
selects low-loss samples for supervised training and applies consis-
tency regularization to the remaining samples using the FixMatch
framework. For all methods (DT, MORSE, and SLB), we performed
a dedicated hyperparameter search, with full details provided in
Appendix A.2.

4.1.4 Metrics. We repeated each experiment ten times to reduce
randomness and obtain reliable performance estimates. For each
run, we computed two metrics. The first is accuracy (Acc), a stan-
dard measure of the proportion of correctly classified samples. Acc
is widely used to evaluate both label correction and model classi-
fication performance, especially under label noise [12, 23, 37, 38,
44, 65, 68]. However, as noted in prior work [61], label noise dis-
proportionately affects minority classes. In such cases, Acc alone
can be misleading because it may obscure poor performance on
underrepresented classes. To address this, we also report the macro
F1-score (mF1). This metric computes the F1-score, defined as the
harmonic mean of precision and recall, for each class and then av-
erages them. As a result, mF1 gives equal importance to all classes,
making it more robust to class imbalance and better suited for noisy,
imbalanced datasets. Final results are reported as the average across
all ten runs.

4.2 Experiment Design
We designed our experiments to comprehensively evaluate the
performance and robustness of SLB under diverse conditions. Our
evaluation covers three key dimensions:
Classification Performance (§4.3). We evaluate the effectiveness
of the final model 𝑓𝜃 produced by the Continuous Revision phase
across three settings: random label noise (§4.3.1), real-world noise
(§4.3.2), and clean datasets (§4.3.3). For synthetic noise, we inject
random label noise into clean datasets (PE, VS18, AG, IDS17) at rates
ranging from 10% to 70% to assess how performance deteriorates
as noise increases (§4.3.1). For real-world noise, we simulate label
inconsistencies based on VT reports to evaluate the robustness of
SLB and baseline methods under realistic conditions (§4.3.2). Finally,
we test SLB on noise-free datasets to verify that it does not degrade
performance when the labels are already accurate (§4.3.3).
Label Correction Performance (§4.4). We assess the quality of
the revised dataset D̂ produced by SLB through two experiments:
first, by comparing the corrected labels 𝑦𝑖 to the ground-truth clean
labels 𝑦𝑖 to quantify the accuracy of the correction process (§4.4.1);
and second, by training a variety of ML models on D̂ to evaluate
its downstream utility and generalization beyond our own training
framework (§4.4.2).
Sensitivity Analysis (§4.5). We examine SLB’s robustness to ar-
chitecture changes, dataset and model scaling, component ablation,
and hyperparameter variation. Specifically, we evaluate SLB on

Table 1: Performance on completely clean data (mean ± std)

Method PE VS18

Acc mF1 Acc mF1

Vanilla 94.12 ± 0.28 94.04 ± 0.27 82.01 ± 0.20 82.59 ± 0.94
SLB 94.31 ± 0.32 94.33 ± 0.31 82.21 ± 0.32 82.45 ± 0.60

Method IDS17 AG

Acc mF1 Acc mF1

Vanilla 99.54 ± 0.04 98.08 ± 0.19 99.36 ± 0.03 98.06 ± 0.09
SLB 99.06 ± 0.06 95.53 ± 0.48 99.29 ± 0.03 97.85 ± 0.09

advanced deep learning models with image-based malware repre-
sentations (§4.5.1); scale model capacity with larger datasets (§4.5.2);
ablate components such as continuous revision to measure their
contribution under real and synthetic noise (§4.5.3); and assess key
hyperparameters, namely the number of epochs 𝑒 for data split and
the warm-up period𝑚 for continuous revision (§4.5.4).

4.3 Classification Performance
4.3.1 Performance on Random Noise. We generate random label
noise by selecting a fixed percentage of samples from each class
and flipping their labels to a different class. This method, which is
widely used in both security [58, 61, 62] and non-security [12, 30]
research, allows us to control the noise rate and examine its effect
on model performance. In our experiments, we varied the noise
rate from 10% to 70% across four datasets (VS18, PE, IDS17, and
AG), as illustrated in Figure 2. The experimental results reveal three
key findings. First, SLB consistently mitigates the impact of label
noise across all tested noise rates. For instance, at a 10% noise rate,
SLB improves the mF1 score over the Vanilla baseline by 1.3% on
IDS17 and by 8.02% on AG. At higher noise levels, this advantage
grows even more pronounced: SLB surpasses the Vanilla baseline
by 30.62% on IDS17 (70% noise rate) and by 28.51% on AG (45%
noise rate). Similar gains are observed in terms of Acc, indicating
that SLB improves classification performance for both major and
minor classes.

Second, existing State-of-the-Art (SOTA) noise-handling tech-
niques such as MORSE and DT are more sensitive to specific datasets
and noise rates. Although MORSE performs well on AG and PE, it
often underperforms relative to the Vanilla baseline on VS18 and
IDS17. Meanwhile, DT and its re-engineered variant, DTm, show
noticeable improvements over Vanilla in most cases, yet their
effectiveness still varies by dataset. DTm achieves large performance
gains on VS18 and PE but less so on the other two datasets. No-
tably, DTm consistently outperforms DT on the binary AG dataset,
confirming the positive impact of our modifications.

Third, SLB generally surpasses these SOTA methods. For exam-
ple, under 70% noise on IDS17, SLB exceeds the best SOTA method
(DTm) by 28.76% (mF1) and 8.07% (Acc). At lower noise levels, SLB
also outperforms SOTA baselines across most datasets, with one
minor exception on the PE dataset, where MORSE achieves slightly
higher results: gains of 0.9% in mF1 and 1.01% in Acc at 10% noise,
and 0.56% in mF1 and 0.73% in Acc at 20% noise.
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Figure 2: Performance on synthetic noise datasets.
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Figure 3: Performance on real noise datasets.

4.3.2 Performance on Real Noise. So far, we have shown that SLB
can effectively mitigate random label noise. However, real-world
noise tends to be more complex and follows a different distribution.
To examine whether our framework can handle such complexities,
we evaluated SLB on two real-world noisy malware datasets: PE-
Real and VS18-Real. In these datasets, label noise was introduced
using threshold-based heuristics on VT reports, mirroring current
automatic labeling practices. The results, shown in Figure 3, reveal
three key points. First, SLB improves performance under real-world
noise, providing measurable gains over the Vanilla baseline. For
example, SLB increases the mF1 and Acc scores on PE-Real by 1.47%
and 1.02%, respectively, and on VS18-Real by 10.12% (mF1) and 11.1%
(Acc). Second, these improvements are particularly meaningful
because SLB’s performance approaches that of a model trained on a
noise-free dataset (Table 1). For instance, on PE-Real, SLB achieves
a 92.92% Acc, compared to 91.90% for the noisy Vanilla baseline
and 94.12% for a fully noise-free model. A similar pattern emerges
on VS18-Real, where SLB attains an 80.03% Acc, approaching the
noise-free model’s 82.01% while surpassing the Vanilla baseline’s
68.93%. Third, SLB consistently surpasses the SOTA techniques: on
VS18-Real, it outperforms the best baseline method in terms of mF1
(MORSE) by 3.68% and Acc (DTm) by 10.01%.

4.3.3 Performance on Clean Datasets. It is often challenging to
ascertain whether a malware dataset is entirely free of label noise.
Consequently, any noise handling technique should ideally have
minimal adverse impact when applied to clean data. To evaluate
this, we investigated the effect of SLB on completely clean datasets.
Table 1 summarizes the results of this experiment. Out of 8 measure-
ments, in 3 cases SLB outperformed Vanilla by 0.23% on average,
and in 4 cases it underperformed by the same amount (0.23%, on
average). In the worst-case scenario, the mF1 on the IDS17 dataset
decreased by 2.55%. Note that already at 10% noise SLB outperforms
Vanilla on the same dataset by 1.3%, and at 70% it outperforms
by 30.62%. This indicates that our approach is robust enough to be
worth applying when the noise level is low or uncertain, as it does
not significantly harm performance even on perfectly labeled data.

4.4 Label Correction Performance
4.4.1 Labels Accuracy. To evaluate the effectiveness of our label
correction process, we compute the accuracy of the final labels 𝑦𝑖
obtained from 𝑝

(𝑇+1)
𝑖

relative to the true labels 𝑦𝑖 . As shown in Fig-
ures 4 and 5, SLB substantially reduces the noise rate across different
datasets. For instance, in the VS18-Real dataset, the proportion of
correctly labeled samples increases from 68.56% to 80.72%. Under
random noise conditions, SLB also achieves notable improvements:
at a 70% noise rate, it lowers noise to under 15% in PE, 27% in VS18,
and 4% in IDS17. On the binary AG dataset with 45% noise rate, SLB
reduces it to below 9%.

4.4.2 Performance of ML Models. We show that SLB not only in-
creases the resilience of deep learning models to incorrect labels
but also produces corrected labels with high accuracy. Although
our initial focus was on deep learning, conventional ML algorithms
can also be effective for malware detection and classification (e.g.,
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Figure 4: Confusion matrices before and after label revision. Each subfigure is annotated with dataset name and noise rate (e.g.,
VS18-30 for VS18 with 30% noise).
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Figure 6: Performance of ML models with SLB-revised labels.

[3, 15]). Using SLB-revised labels, we trained five ML models (Sup-
port Vector Machine (SVM), RF, Decision Tree (DTree), Logistic
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Figure 7: Performance across complex architectures.
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Figure 8: SLB performance on large datasets and models.

Regression (LR), and K-Nearest Neighbors (KNN)) as well as an
MLP classifier. As shown in Figure 6, the revised labels substan-
tially improve their performance.
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Figure 9: Ablation study.

4.5 Sensitivity Analysis
4.5.1 Performance on Complex Architectures. While SLB demon-
strated strong performance on a simple deep learning model with
three hidden layers, real-world applications often rely on more
complex architectures. To assess its impact on such models, we inte-
grated SLB with three established image-based networks: ResNet18
(RN) [13], EfficientNet B0 (EN) [50], and ShuffleNet v2 (SN) [25]. Ex-
periments were conducted on the Virus-MNIST dataset [31], which
provides image-based representations of malware. Owing to the
high computational cost (e.g., ResNet18 comprises approximately
11.7 million parameters), we limited experiments to five runs. As
shown in Figure 7, SLB substantially improves performance on
the noisy dataset, suggesting that the framework generalizes well
across diverse deep learning architectures.

4.5.2 Large Datasets vs. Large Models. So far, we have shown that
SLB consistently improves performance across both simple and
complex models on relatively small datasets. An open question is
whether these benefits extend to large-scale settings, where both
dataset size and model capacity are substantially higher. To explore
this, we evaluate SLB under random label noise on two large bench-
marks: LargeIDS (the full IDS17 dataset) and LargeAG (the complete
APIGraph dataset from 2012–2018). For each dataset, we train three
networks of increasing capacity: a small model ([512, 256, 128]), a
medium model ([1024, 1024, 512]), and a large model ([1024, 2048,
1024]). To keep experiments computationally feasible, we fix the
batch size to 1024. As shown in Figure 8, SLB consistently produces
noise-resistant classifiers across different dataset sizes and model
capacities, suggesting that its robustness extends to larger and more
demanding scenarios.

4.5.3 Ablation Study. We conduct an ablation study with three al-
ternative configurations to systematically assess our design choices.
First, Clean Only omits the continuous revision step and trains
a new model solely on the initially identified clean set. Second,
Pseudo Labels also removes continuous revision but trains a new
model on the entire dataset, relying on pseudo labels generated
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Figure 10: Hyperparameter sensitivity.

by majority vote. Third, we explore a more complex partitioning
approach by training an ensemble of five models for 𝑒 epochs each,
generating 5 × 𝑒 predictions per sample during the data split. Fig-
ure 9 summarizes the results of these three configurations. Overall,
the findings show that preserving all SLB features yields the best
results. While Clean Only performs reasonably in some cases, it
is inadequate for datasets such as VS18-30 and VS18-Real. Pseudo
Labels outperforms the Vanilla baseline but usually falls short of
full SLB, aside from a slight mF1 advantage on VS18-Real. Finally,
Ensemble provides a small performance gain (up to 1.06% mF1 on
VS18-Real) but at the cost of higher computation, making it an
optional extension of SLB when resources permit.

4.5.4 Hyperparameters Sensitivity. Figure 10 shows the sensitivity
of SLB to its hyperparameters. As illustrated in Figure 10a, the hy-
perparameter 𝑒 has a measurable but modest effect on performance.
Notably, the PE-70 dataset exhibits the largest variation, with per-
formance decreasing by 3.81 when 𝑒 increases from 5 to 20. Based
on these observations, we recommend setting 𝑒 in the range of 5 to
15, which balances sufficient training iterations against the risk of
overfitting to noise. Figure 10b analyzes the impact of the hyperpa-
rameter𝑚. For most datasets, the difference between the minimum
and maximum performance values is modest (averaging around
0.384). However, VS18-Real is an exception; increasing𝑚 in this
dataset significantly degrades performance, with scores dropping
from 80.03 at𝑚 = 0 to 78.02 at𝑚 = 1, 71.88 at𝑚 = 3, and 65.23
at𝑚 = 5. This is because initial clean set contain approximately
20% noise. Consequently, we recommend keeping𝑚 low (between
0 and 3) to ensure prompt label corrections, enabling the SLB to
quickly eliminate any noise present in the initial clean set.

5 Discussion
Application and Generalization of SLB. Our results show that
SLB is effective across a wide range of settings, but several chal-
lenges remain before it can be confidently deployed in operational
environments. First, our real-label noise experiments have focused
primarily on VT reports, the most common labeling approach, even
though alternative methods (e.g., [16, 39, 63]) may produce differ-
ent noise patterns. Future work should systematically evaluate SLB
under these diverse labeling strategies. Second, while our real-label
noise experiments were conducted on two datasets (consistent with
current practices [58, 61]), a broader empirical study is needed to
build more comprehensive and representative benchmarks. Third,
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although we have demonstrated SLB’s potential beyond malware
classification, our exploration in other security domains has so
far been limited to a single NIDS dataset (IDS17). Future research
should extend our approach to a wider range of security problems.
Finally, although SLB has been validated on real datasets, its long-
term performance and robustness in operational settings remain to
be studied. Further research is therefore required to confirm SLB’s
effectiveness over time in real-world environments.
Overhead of SLB. SLB introduces two additional components com-
pared to the Vanilla baseline: a preliminary training phase for 𝑒
epochs to perform the data split and a continuous label revision
process during the main 𝑇 -epoch training phase. These steps incur
a modest overhead relative to the baseline. For example, on the
VS18-30 dataset, the Vanillamodel trains in approximately 44 sec-
onds, while SLB takes about 50 seconds. In contrast, SOTA methods
impose substantially higher costs, with MORSE taking roughly 133
seconds and DTm about 4284 seconds. Thus, we argue that the slight
extra cost of SLB is justified by its significant performance gains.
Label-flipping Attacks. SLB is designed to mitigate label noise
resulting from legitimate user labeling methods. However, a related
challenge is label flipping (or label poisoning) attacks, where an
attacker deliberately injects label noise into the training set. Such
attacks aim to degrade the classifier’s overall performance or induce
targeted misclassification [54]. We argue that most existing label
noise mitigation techniques may be susceptible to these adversarial
manipulations. Consequently, further research is needed to under-
stand how poisoned samples can be crafted to remain undetected
as clean, as well as to develop strategies to counter these attacks.
We consider this a critical avenue for future work.

6 Related Work
Deep Learning-based Malware Systems. Deep learning has
been widely applied to malware classification and detection, tack-
ling various challenges such as detection and classification [17,
24, 47], resilience against evolving malware [9, 10, 21, 67], and de-
tection/adaptation for both new malware variants and evolving
malware families [7, 9, 64]. For example, MalDozer [17] trains a
convolutional neural network on API calls for Android malware
classification. Meanwhile, APIGraph [67] leverages Android doc-
umentation to group related APIs, thereby enhancing resilience
against diverse malware implementations. CADE [64] adopts a con-
trastive learning approach to detect novel malware variants. Our
approach is related to these previous methods in that it addresses a
fundamental challenge in learning-based malware detection sys-
tems: label noise. Specifically, SLB leverages deep learning to im-
prove the quality of the training set labels, resulting in both a more
resilient model and a dataset with significantly reduced noise.
Learning from Noisy Malware Datasets. Malware datasets are
often prone to label noise, yet little research has addressed this issue
during training. To the best of our knowledge, only three works
explicitly tackle this challenge [58, 61, 62]. Wang et al. [58] adapt
Confident Learning [32] to extract a clean subset from an imper-
fectly labeled Android dataset. They relabel noisy samples using
app developer information (e.g., ID and name) by clustering samples
and assigning labels based on cluster majority. This approach is
Android-specific and assumes noisy samples have correctly labeled

counterparts from the same developer. Xu et al. [62] propose DT,
a framework for Android malware detection in low-noise, binary
settings. They train two DNN models: one on the full dataset and
another on a down-sampled subset. These models generate loss
vectors, which are processed by an ensemble of 13 outlier detection
algorithms (e.g., One-Class SVM). Detection thresholds are set using
a known containment rate (the actual noise rate). Noisy samples
are identified, and their labels flipped to the opposite class with
a random acceptance probability. Wu et al. [61] propose MORSE, a
framework applicable to any malware classifier for both binary and
multi-class tasks. In each epoch, MORSE splits data into two groups:
samples with lowest loss values are used for supervised learning,
and the rest for consistency regularization. For regularization, Fix-
Match is applied, where each sample is augmented twice—once
with weak and once with strong augmentation. Both are done us-
ing random replacement, where a subset of features is replaced
with features from two randomly selected samples, generating two
distinct augmented versions. In our experiments, we show that SLB
outperforms both DT and MORSE in classification performance while
incurring substantially lower training costs.
Other Related Work. Several studies [57, 69] examined VT report
dynamics and proposed threshold-based heuristics to smooth label
fluctuations over time. Although they provide valuable insights
into VT label evolution, their focus is on understanding dynamics
rather than directly reducing label noise. As a result, it remains
unclear whether these heuristics can lower noise levels in malware
datasets. Other works [41, 46] used ensemble learning to address
overfitting and enhance prediction reliability in DNN. For instance,
Salman and Liu [41] propose a classification-with-rejection strategy
that uses multiple models to filter out low-confidence predictions.
Stern et al. [46] train several models and collect snapshots from
each to build a large ensemble, which is then used at inference to
identify and correct mispredicted samples. In contrast, our approach
achieves effective noise filtration and label correction with a single
model during training. This eliminates the need to maintain large
ensembles at inference, resulting in a more efficient and practical
solution for mitigating label noise in malware datasets.

7 Conclusion
In this paper, we introduced SLB, a framework designed to mitigate
the adverse effects of label noise in imperfectly labeled malware
datasets. SLB leverages an ensemble of training epochs for noise
detection and employs a continuous revision strategy to iteratively
refine noisy labels during training. We evaluated SLB across various
architectures, noise types, and noise levels with two goals: produc-
ing a cleaner training dataset and developing a robust classifier. Our
experiments show that SLB effectively reduces label noise and yields
classifiers that are resilient to noise. However, our evaluation was
limited to VT reports and five datasets. Future work will investigate
additional labeling methods, more diverse datasets, and long-term
operational performance. Overall, SLB lays a strong foundation for
advancing label-noise mitigation in malware datasets.

Acknowledgments
The authors gratefully acknowledge VirusTotal for granting access
to their academic API for research use. Alotaibi’s research is funded



Deep Learning from Imperfectly Labeled Malware Data CCS ’25, October 13–17, 2025, Taipei, Taiwan

by a scholarship from the Deanship of Scientific Research at Najran
University, Kingdom of Saudi Arabia.

References
[1] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad

Rieck. 2014. DREBIN: Effective and Explainable Detection of Android Malware in
Your Pocket. In 21st Annual Network and Distributed System Security Symposium,
NDSS 2014, San Diego, California, USA, February 23-26, 2014.

[2] Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel
Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron C. Courville,
Yoshua Bengio, and Simon Lacoste-Julien. 2017. A Closer Look at Memorization
in Deep Networks. In Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, Vol. 70. PMLR,
233–242.

[3] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro.
2022. Transcending TRANSCEND: Revisiting Malware Classification in the
Presence of Concept Drift. In 43rd IEEE Symposium on Security and Privacy, SP
2022, San Francisco, CA, USA, May 22-26, 2022. IEEE, 805–823. doi:10.1109/SP46214.
2022.9833659

[4] Leo Breiman. 2001. Random forests. Machine learning 45 (2001), 5–32.
[5] Zhenquan Cai and Roland H. C. Yap. 2016. Inferring the Detection Logic and

Evaluating the Effectiveness of Android Anti-Virus Apps. In Proceedings of the
Sixth ACM on Conference on Data and Application Security and Privacy, CODASPY
2016, New Orleans, LA, USA, March 9-11, 2016. ACM, 172–182. doi:10.1145/2857705.
2857719

[6] Mahinthan Chandramohan, Hee Beng Kuan Tan, and Lwin Khin Shar. 2012.
Scalable malware clustering through coarse-grained behavior modeling. In 20th
ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE-20),
SIGSOFT/FSE’12, Cary, NC, USA - November 11 - 16, 2012. ACM, 27. doi:10.1145/
2393596.2393627

[7] Yizheng Chen, Zhoujie Ding, and David A. Wagner. 2023. Continuous Learning
for Android Malware Detection. In 32nd USENIX Security Symposium, USENIX
Security 2023, Anaheim, CA, USA, August 9-11, 2023. USENIX Association, 1127–
1144.

[8] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge J. Belongie. 2019. Class-
Balanced Loss Based on Effective Number of Samples. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June
16-20, 2019. Computer Vision Foundation / IEEE, 9268–9277. doi:10.1109/CVPR.
2019.00949

[9] Mirabelle Dib, Sadegh Torabi, Elias Bou-Harb, Nizar Bouguila, and Chadi Assi.
2022. EVOLIoT: A Self-Supervised Contrastive Learning Framework for Detecting
and Characterizing Evolving IoT Malware Variants. In ASIA CCS ’22: ACM Asia
Conference on Computer and Communications Security, Nagasaki, Japan, 30 May
2022 - 3 June 2022. ACM, 452–466. doi:10.1145/3488932.3517393

[10] Yujie Fan, Mingxuan Ju, Shifu Hou, Yanfang Ye, Wenqiang Wan, Kui Wang,
Yinming Mei, and Qi Xiong. 2021. Heterogeneous Temporal Graph Transformer:
An Intelligent System for Evolving Android Malware Detection. In KDD ’21: The
27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual
Event, Singapore, August 14-18, 2021. ACM, 2831–2839. doi:10.1145/3447548.
3467168

[11] Scott Freitas, Rahul Duggal, and Duen Horng Chau. 2022. MalNet: A Large-
Scale Image Database of Malicious Software. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management, Atlanta, GA,
USA, October 17-21, 2022. ACM, 3948–3952. doi:10.1145/3511808.3557533

[12] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor W.
Tsang, and Masashi Sugiyama. 2018. Co-teaching: Robust training of deep neural
networks with extremely noisy labels. In Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada. 8536–8546.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, 770–778. doi:10.1109/CVPR.2016.90

[14] Zeyu He, Chieh-Yang Huang, Chien-Kuang Cornelia Ding, Shaurya Rohatgi, and
Ting-Hao Kenneth Huang. 2024. If in a Crowdsourced Data Annotation Pipeline,
a GPT-4. In Proceedings of the CHI Conference on Human Factors in Computing
Systems, CHI 2024, Honolulu, HI, USA, May 11-16, 2024. ACM, 1040:1–1040:25.
doi:10.1145/3613904.3642834

[15] Roberto Jordaney, Kumar Sharad, Santanu Kumar Dash, ZhiWang, Davide Papini,
Ilia Nouretdinov, and Lorenzo Cavallaro. 2017. Transcend: Detecting Concept
Drift in Malware Classification Models. In 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017. USENIX Asso-
ciation, 625–642.

[16] Robert J Joyce, Dev Amlani, Charles Nicholas, and Edward Raff. 2023. Motif: A
malware reference dataset with ground truth family labels. Computers & Security
124 (2023), 102921.

[17] ElMouatez Billah Karbab, Mourad Debbabi, Abdelouahid Derhab, and Djedjiga
Mouheb. 2018. MalDozer: Automatic framework for android malware detection
using deep learning. Digital Investigation 24 Supplement (2018), S48–S59. doi:10.
1016/J.DIIN.2018.01.007

[18] Jinsung Kim, Younghoon Ban, Eunbyeol Ko, Haehyun Cho, and Jeong Hyun Yi.
2022. MAPAS: a practical deep learning-based android malware detection system.
International Journal of Information Security 21, 4 (2022), 725–738. doi:10.1007/
S10207-022-00579-6

[19] David Korczynski and Heng Yin. 2017. Capturing Malware Propagations with
Code Injections and Code-Reuse Attacks. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017. ACM, 1691–1708. doi:10.1145/3133956.3134099

[20] Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam Mamun, and
Ali A. Ghorbani. 2017. Characterization of Tor Traffic using Time based Features.
In Proceedings of the 3rd International Conference on Information Systems Security
and Privacy, ICISSP 2017, Porto, Portugal, February 19-21, 2017. SciTePress, 253–262.
doi:10.5220/0006105602530262

[21] Haodong Li, Guosheng Xu, Liu Wang, Xusheng Xiao, Xiapu Luo, Guoai Xu, and
HaoyuWang. 2024. MalCertain: Enhancing Deep Neural Network Based Android
Malware Detection by Tackling Prediction Uncertainty. In Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering, ICSE 2024, Lisbon,
Portugal, April 14-20, 2024. ACM, 150:1–150:13. doi:10.1145/3597503.3639122

[22] Lisa Liu, Gints Engelen, Timothy M. Lynar, Daryl Essam, and Wouter Joosen.
2022. Error Prevalence in NIDS datasets: A Case Study on CIC-IDS-2017 and
CSE-CIC-IDS-2018. In 10th IEEE Conference on Communications and Network
Security, CNS 2022, Austin, TX, USA, October 3-5, 2022. IEEE, 254–262. doi:10.1109/
CNS56114.2022.9947235

[23] Yangdi Lu and Wenbo He. 2022. SELC: Self-Ensemble Label Correction Improves
Learning with Noisy Labels. In Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022.
ijcai.org, 3278–3284. doi:10.24963/IJCAI.2022/455

[24] Jhu-Sin Luo and Dan Chia-Tien Lo. 2017. Binary malware image classification
using machine learning with local binary pattern. In 2017 IEEE International
Conference on Big Data (IEEE BigData 2017), Boston, MA, USA, December 11-14,
2017. IEEE Computer Society, 4664–4667. doi:10.1109/BIGDATA.2017.8258512

[25] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. 2018. ShuffleNet
V2: Practical Guidelines for Efficient CNN Architecture Design. In Computer
Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part XIV, Vol. 11218. Springer, 122–138. doi:10.1007/978-3-030-
01264-9_8

[26] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha Bach-
wani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar, Tony Wu, George
Yiu, Anthony D. Joseph, and J. D. Tygar. 2016. Reviewer Integration and Per-
formance Measurement for Malware Detection. In Detection of Intrusions and
Malware, and Vulnerability Assessment - 13th International Conference, DIMVA
2016, San Sebastián, Spain, July 7-8, 2016, Proceedings, Vol. 9721. Springer, 122–141.
doi:10.1007/978-3-319-40667-1_7

[27] Tomás Concepción Miranda, Pierre-François Gimenez, Jean-François Lalande,
Valérie Viet Triem Tong, and Pierre Wilke. 2022. Debiasing Android Mal-
ware Datasets: How Can I Trust Your Results If Your Dataset Is Biased? IEEE
Transactions on Information Forensics and Security (TIFS) 17 (2022), 2182–2197.
doi:10.1109/TIFS.2022.3180184

[28] Abedelaziz Mohaisen and Omar Alrawi. 2013. Unveiling Zeus: automated classi-
fication of malware samples. In 22nd International World Wide Web Conference,
WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013, Companion Volume. Inter-
national World Wide Web Conferences Steering Committee / ACM, 829–832.
doi:10.1145/2487788.2488056

[29] Aziz Mohaisen and Omar Alrawi. 2014. AV-Meter: An Evaluation of Antivirus
Scans and Labels. In Detection of Intrusions and Malware, and Vulnerability Assess-
ment - 11th International Conference, DIMVA 2014, Egham, UK, July 10-11, 2014.
Proceedings, Vol. 8550. Springer, 112–131. doi:10.1007/978-3-319-08509-8_7

[30] Duc Tam Nguyen, Chaithanya Kumar Mummadi, Thi-Phuong-Nhung Ngo, Thi
Hoai Phuong Nguyen, Laura Beggel, and Thomas Brox. 2020. SELF: Learning
to Filter Noisy Labels with Self-Ensembling. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.

[31] David A. Noever and Samantha E. Miller Noever. 2021. Virus-MNIST: A Bench-
mark Malware Dataset. CoRR abs/2103.00602 (2021). arXiv:2103.00602

[32] Curtis G. Northcutt, Lu Jiang, and Isaac L. Chuang. 2021. Confident Learning:
Estimating Uncertainty in Dataset Labels. Journal of Artificial Intelligence Research
(JAIR) 70 (2021), 1373–1411. doi:10.1613/JAIR.1.12125

[33] Angelo Oliveira. 2019. Malware Analysis Datasets: Raw PE as Image. doi:10.
21227/8brp-j220

[34] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and
Lorenzo Cavallaro. 2019. TESSERACT: Eliminating Experimental Bias in Malware
Classification across Space and Time. In 28th USENIX Security Symposium, USENIX
Security 2019, Santa Clara, CA, USA, August 14-16, 2019. USENIX Association,
729–746.

https://doi.org/10.1109/SP46214.2022.9833659
https://doi.org/10.1109/SP46214.2022.9833659
https://doi.org/10.1145/2857705.2857719
https://doi.org/10.1145/2857705.2857719
https://doi.org/10.1145/2393596.2393627
https://doi.org/10.1145/2393596.2393627
https://doi.org/10.1109/CVPR.2019.00949
https://doi.org/10.1109/CVPR.2019.00949
https://doi.org/10.1145/3488932.3517393
https://doi.org/10.1145/3447548.3467168
https://doi.org/10.1145/3447548.3467168
https://doi.org/10.1145/3511808.3557533
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/3613904.3642834
https://doi.org/10.1016/J.DIIN.2018.01.007
https://doi.org/10.1016/J.DIIN.2018.01.007
https://doi.org/10.1007/S10207-022-00579-6
https://doi.org/10.1007/S10207-022-00579-6
https://doi.org/10.1145/3133956.3134099
https://doi.org/10.5220/0006105602530262
https://doi.org/10.1145/3597503.3639122
https://doi.org/10.1109/CNS56114.2022.9947235
https://doi.org/10.1109/CNS56114.2022.9947235
https://doi.org/10.24963/IJCAI.2022/455
https://doi.org/10.1109/BIGDATA.2017.8258512
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1007/978-3-319-40667-1_7
https://doi.org/10.1109/TIFS.2022.3180184
https://doi.org/10.1145/2487788.2488056
https://doi.org/10.1007/978-3-319-08509-8_7
https://arxiv.org/abs/2103.00602
https://doi.org/10.1613/JAIR.1.12125
https://doi.org/10.21227/8brp-j220
https://doi.org/10.21227/8brp-j220


CCS ’25, October 13–17, 2025, Taipei, Taiwan Alotaibi et al.

[35] Miguel Quebrado, Edoardo Serra, and Alfredo Cuzzocrea. 2021. Android Malware
Identification and Polymorphic Evolution Via Graph Representation Learning.
In 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA,
December 15-18, 2021. IEEE, 5441–5449. doi:10.1109/BIGDATA52589.2021.9671437

[36] Moheeb Abu Rajab, Lucas Ballard, Noe Lutz, Panayiotis Mavrommatis, and Niels
Provos. 2013. CAMP: Content-Agnostic Malware Protection. In 20th Annual Net-
work and Distributed System Security Symposium, NDSS 2013, San Diego, California,
USA, February 24-27, 2013.

[37] Scott E. Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru
Erhan, and Andrew Rabinovich. 2015. Training Deep Neural Networks on Noisy
Labels with Bootstrapping. In 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings.

[38] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. 2018. Learning
to Reweight Examples for Robust Deep Learning. In Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, Vol. 80. PMLR, 4331–4340.

[39] Aleieldin Salem. 2021. Towards Accurate Labeling of Android Apps for Reliable
Malware Detection. In CODASPY ’21: Eleventh ACM Conference on Data and
Application Security and Privacy, Virtual Event, USA, April 26-28, 2021. ACM,
269–280. doi:10.1145/3422337.3447849

[40] Aleieldin Salem, Sebastian Banescu, and Alexander Pretschner. 2021. Maat:
Automatically Analyzing VirusTotal for Accurate Labeling and Effective Malware
Detection. ACM Transactions on Privacy and Security (TOPS) 24, 4 (2021), 25:1–
25:35. doi:10.1145/3465361

[41] Shaeke Salman and Xiuwen Liu. 2019. Overfitting Mechanism and Avoidance in
Deep Neural Networks. CoRR abs/1901.06566 (2019). arXiv:1901.06566

[42] Silvia Sebastián and Juan Caballero. 2020. AVclass2: Massive Malware Tag Ex-
traction from AV Labels. In ACSAC ’20: Annual Computer Security Applications
Conference, Virtual Event / Austin, TX, USA, 7-11 December, 2020. ACM, 42–53.
doi:10.1145/3427228.3427261

[43] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. 2018. Toward
Generating a New Intrusion Detection Dataset and Intrusion Traffic Characteri-
zation. In Proceedings of the 4th International Conference on Information Systems
Security and Privacy, ICISSP 2018, Funchal, Madeira - Portugal, January 22-24, 2018.
SciTePress, 108–116. doi:10.5220/0006639801080116

[44] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu
Meng. 2019. Meta-Weight-Net: Learning an Explicit Mapping For Sample Weight-
ing. In Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada. 1917–1928.

[45] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin
Raffel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. 2020. FixMatch:
Simplifying Semi-Supervised Learning with Consistency and Confidence. In
Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

[46] Uri Stern, Daniel Shwartz, and Daphna Weinshall. 2024. United We Stand: Using
Epoch-Wise Agreement of Ensembles to Combat Overfit. In Thirty-Eighth AAAI
Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Inno-
vative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on
Educational Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024,
Vancouver, Canada. AAAI Press, 15075–15082. doi:10.1609/AAAI.V38I13.29429

[47] Jiawei Su, Danilo Vasconcellos Vargas, Sanjiva Prasad, Daniele Sgandurra, Yaokai
Feng, and Kouichi Sakurai. 2018. Lightweight Classification of IoT Malware
Based on Image Recognition. In 2018 IEEE 42nd Annual Computer Software and
Applications Conference, COMPSAC 2018, Tokyo, Japan, 23-27 July 2018, Volume 2.
IEEE Computer Society, 664–669. doi:10.1109/COMPSAC.2018.10315

[48] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. 2017. Re-
visiting Unreasonable Effectiveness of Data in Deep Learning Era. In IEEE Inter-
national Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29,
2017. IEEE Computer Society, 843–852. doi:10.1109/ICCV.2017.97

[49] Tiezhu Sun, Nadia Daoudi, Weiguo Pian, Kisub Kim, Kevin Allix, Tegawendé F
Bissyandé, and Jacques Klein. 2024. Temporal-incremental learning for Android
malware detection. ACM Transactions on Software Engineering and Methodology
(2024).

[50] Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks. In Proceedings of the 36th International
Conference onMachine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, Vol. 97. PMLR, 6105–6114.

[51] Antti Tarvainen and Harri Valpola. 2017. Mean teachers are better role models:
Weight-averaged consistency targets improve semi-supervised deep learning re-
sults. In Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA. 1195–1204.

[52] Saravanan Thirumuruganathan, Mohamed Nabeel, Euijin Choo, Issa Khalil, and
Ting Yu. 2022. SIRAJ: A Unified Framework for Aggregation of Malicious Entity
Detectors. In 43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco,
CA, USA, May 22-26, 2022. IEEE, 507–521. doi:10.1109/SP46214.2022.9833725

[53] Kurt Thomas, Juan A. Elices Crespo, Ryan Rasti, Jean-Michel Picod, Cait Phillips,
Marc-André Decoste, Chris Sharp, Fabio Tirelo, Ali Tofigh, Marc-Antoine
Courteau, Lucas Ballard, Robert Shield, Nav Jagpal, Moheeb Abu Rajab, Panayiotis
Mavrommatis, Niels Provos, Elie Bursztein, and Damon McCoy. 2016. Investigat-
ing Commercial Pay-Per-Install and the Distribution of Unwanted Software. In
25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August
10-12, 2016. USENIX Association, 721–739.

[54] Zhiyi Tian, Lei Cui, Jie Liang, and Shui Yu. 2023. A Comprehensive Survey on
Poisoning Attacks and Countermeasures in Machine Learning. Comput. Surveys
55, 8 (2023), 166:1–166:35. doi:10.1145/3551636

[55] Danish Vasan, Mamoun Alazab, Sobia Wassan, Babak Safaei, and Zheng Qin.
2020. Image-Based malware classification using ensemble of CNN architectures
(IMCEC). Computers & Security 92 (2020), 101748. doi:10.1016/J.COSE.2020.101748

[56] Haoyu Wang, Junjun Si, Hao Li, and Yao Guo. 2019. RmvDroid: towards a
reliable Android malware dataset with app metadata. In Proceedings of the 16th
International Conference on Mining Software Repositories, MSR 2019, 26-27 May
2019, Montreal, Canada. IEEE / ACM, 404–408. doi:10.1109/MSR.2019.00067

[57] Jingjing Wang, Liu Wang, Feng Dong, and Haoyu Wang. 2023. Re-measuring
the Label Dynamics of Online Anti-Malware Engines from Millions of Samples.
In Proceedings of the 2023 ACM on Internet Measurement Conference, IMC 2023,
Montreal, QC, Canada, October 24-26, 2023. ACM, 253–267. doi:10.1145/3618257.
3624800

[58] Liu Wang, Haoyu Wang, Xiapu Luo, and Yulei Sui. 2022. MalWhiteout: Reducing
Label Errors in Android Malware Detection. In 37th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2022, Rochester, MI, USA,
October 10-14, 2022. ACM, 69:1–69:13. doi:10.1145/3551349.3560418

[59] Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, and Yang Liu.
2022. Learning with Noisy Labels Revisited: A Study Using Real-World Human
Annotations. In The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net.

[60] Jennifer Williams and Charlie Dagli. 2017. Twitter Language Identification Of
Similar Languages And Dialects Without Ground Truth. In Proceedings of the
Fourth Workshop on NLP for Similar Languages, Varieties and Dialects, VarDial
2017, Valencia, Spain, April 3, 2017. Association for Computational Linguistics,
73–83. doi:10.18653/V1/W17-1209

[61] Xian Wu, Wenbo Guo, Jia Yan, Baris Coskun, and Xinyu Xing. 2023. From Grim
Reality to Practical Solution: Malware Classification in Real-World Noise. In 44th
IEEE Symposium on Security and Privacy, SP 2023, San Francisco, CA, USA, May
21-25, 2023. IEEE, 2602–2619. doi:10.1109/SP46215.2023.10179453

[62] Jiayun Xu, Yingjiu Li, and Robert H. Deng. 2021. Differential Training: A Generic
Framework to Reduce Label Noises for Android Malware Detection. In 28th
Annual Network and Distributed System Security Symposium, NDSS 2021, virtually,
February 21-25, 2021.

[63] Ke Xu, Yingjiu Li, Robert H. Deng, Kai Chen, and Jiayun Xu. 2019. DroidEvolver:
Self-Evolving Android Malware Detection System. In IEEE European Symposium
on Security and Privacy, EuroS&P 2019, Stockholm, Sweden, June 17-19, 2019. IEEE,
47–62. doi:10.1109/EUROSP.2019.00014

[64] Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ahmadzadeh,
Xinyu Xing, and Gang Wang. 2021. CADE: Detecting and Explaining Concept
Drift Samples for Security Applications. In 30th USENIX Security Symposium,
USENIX Security 2021, August 11-13, 2021. USENIX Association, 2327–2344.

[65] Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor W. Tsang, and Masashi
Sugiyama. 2019. How does Disagreement Help Generalization against Label Cor-
ruption?. In Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, Vol. 97. PMLR, 7164–7173.

[66] Xiaobo Zhang, Yutao Liu, Hao Wang, Wei Wang, Panpan Ni, and Ji Zhang.
2023. CoSaR: Combating Label Noise Using Collaborative Sample Selection
and Adversarial Regularization. In Proceedings of the 32nd ACM International
Conference on Information and Knowledge Management, CIKM 2023, Birmingham,
United Kingdom, October 21-25, 2023. ACM, 3184–3194. doi:10.1145/3583780.
3614826

[67] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun
Zhang, Mi Zhang, and Min Yang. 2020. Enhancing State-of-the-art Classifiers
with API Semantics to Detect Evolved Android Malware. In CCS ’20: 2020 ACM
SIGSAC Conference on Computer and Communications Security, Virtual Event, USA,
November 9-13, 2020. ACM, 757–770. doi:10.1145/3372297.3417291

[68] Songzhu Zheng, Pengxiang Wu, Aman Goswami, Mayank Goswami, Dimitris N.
Metaxas, and Chao Chen. 2020. Error-Bounded Correction of Noisy Labels. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, Vol. 119. PMLR, 11447–11457.

[69] Shuofei Zhu, Jianjun Shi, Limin Yang, Boqin Qin, Ziyi Zhang, Linhai Song, and
Gang Wang. 2020. Measuring and Modeling the Label Dynamics of Online Anti-
Malware Engines. In 29th USENIX Security Symposium, USENIX Security 2020,
August 12-14, 2020. USENIX Association, 2361–2378.

[70] Binghui Zou, Chunjie Cao, Longjuan Wang, Sizheng Fu, Tonghua Qiao, and
Jingzhang Sun. 2024. FACILE: A capsule network with fewer capsules and richer
hierarchical information for malware image classification. Computers & Security
137 (2024), 103606. doi:10.1016/J.COSE.2023.103606

https://doi.org/10.1109/BIGDATA52589.2021.9671437
https://doi.org/10.1145/3422337.3447849
https://doi.org/10.1145/3465361
https://arxiv.org/abs/1901.06566
https://doi.org/10.1145/3427228.3427261
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1609/AAAI.V38I13.29429
https://doi.org/10.1109/COMPSAC.2018.10315
https://doi.org/10.1109/ICCV.2017.97
https://doi.org/10.1109/SP46214.2022.9833725
https://doi.org/10.1145/3551636
https://doi.org/10.1016/J.COSE.2020.101748
https://doi.org/10.1109/MSR.2019.00067
https://doi.org/10.1145/3618257.3624800
https://doi.org/10.1145/3618257.3624800
https://doi.org/10.1145/3551349.3560418
https://doi.org/10.18653/V1/W17-1209
https://doi.org/10.1109/SP46215.2023.10179453
https://doi.org/10.1109/EUROSP.2019.00014
https://doi.org/10.1145/3583780.3614826
https://doi.org/10.1145/3583780.3614826
https://doi.org/10.1145/3372297.3417291
https://doi.org/10.1016/J.COSE.2023.103606


Deep Learning from Imperfectly Labeled Malware Data CCS ’25, October 13–17, 2025, Taipei, Taiwan

Table 2: PE Malware Dataset Statistics

Class Training Samples Noise Rate (%) Testing Samples

Clean Noisy

Benign 749 400 0.00 100
VirLock 796 800 0.50 100
WannaCry 818 820 0.24 100
Upatre 656 340 3.23 100
Cerber 801 944 15.57 100
Urelas 467 472 1.05 100
WinActivator 59 66 10.60 100
Pykspa 632 644 1.86 100
Ramnit 160 224 29.46 100
Gamarue 127 508 75.00 100
InstallMonster 105 199 47.23 100
Locky 59 57 54.38 100

A Appendices
A.1 Implementation
We used the open-source implementation of MORSE provided by its
authors (https://github.com/nuwuxian/morse/) and the implemen-
tation of DT from [58] (https://github.com/MalTools/MalWhiteout/
tree/master/dt). To ensure fair comparison, all frameworks, includ-
ing SLB and the Vanilla, were trained with the same architecture,
hyperparameters (e.g., batch size), and initial weights. For each
experiment, we fixed the seeds (1–10) and initialized model weights
with Xavier initialization.

A.2 Hyperparameters Space
We performed a grid search to determine the optimal hyperparam-
eters for each method. Our search criterion was the highest mF1
score obtained using seed 1; once the best configuration was iden-
tified, we ran experiments with seeds 1 through 10. For random
noise experiments, we selected the hyperparameters that performed
best at a 10% noise rate and then applied this configuration consis-
tently across all noise levels. Although ideally we would perform
a separate grid search for each seed and noise rate, this approach
is computationally prohibitive; hence, we adopt this strategy as a
practical compromise between cost and tuning rigor.

For SLB, we tuned three parameters: epochs for the data split
𝑒 (Eq. 2), epochs before label flipping𝑚 (Eq. 10), and the CB loss
weight 𝛽 (Eq. 6). The EMA parameter 𝛼 was fixed at 0.95 (Eq. 9) due
to minimal impact. Search spaces were 𝑒 ∈ {2, 5, 10, 15, 20},𝑚 ∈
{0, 1, 3, 5}, and 𝛽 ∈ {0.0, 0.9999}, with 0.0 indicating no weighting.
For MORSE, which also uses CB loss, we tuned reweighting start
{20, 30, 40}. Other hyperparameters matched SLB: warm-up epochs
shared the same 𝑒 range, 𝛽 the same space, and 𝜖 ∈ {0.7, 0.9} per the
authors’ recommendations. For DT, we tuned rounds 𝑛 ∈ {3, 5, 7, 10}
and epochs per round 𝑒 ∈ {2, 5, 10, 15, 20}.

A.3 Datasets
PEMalware.Weused themulti-classWindows PEmalware dataset
from [61]. The dataset comprises 1,024 features derived from four
main sources: byte entropy histograms, PE imports, string his-
tograms, and PE metadata. Each sample has two labels: a ground-
truth label and a noisy label. Table 2 outlines the dataset’s details.
The noise rate indicates the fraction of samples incorrectly assigned
to a label; for example, among the 944 samples labeled as Cerber in
the noisy dataset, 15.57% are actually not Cerber.

Table 3: Dataset Statistics

(a) IDS17

Class Train Test

Benign 10 000 2000
DDoS 300 60
DoS Hulk 300 60
Portscan 250 50
Infiltration 250 50
DoS GoldenEye 200 40
DoS Slowloris 100 20
FTP-Patator 100 20
SSH-Patator 100 20

(b) Virus-MNIST

Class Examples Train Test

Benigna 2341 175
Adware 7188 496
Trojan 1 2832 205
Trojan 2 2228 176
Installer 738 58
Backdoor 1 6206 456
Crypto 14 374 1003
Backdoor 2 7003 491
Downloader 2398 173
Heuristic 3114 225

aThis class is completely benign

Table 4: VS18 Dataset Statistics

Class Training Samples Noise Rate (%) Testing Samples

Clean Noisy

Benign 1132 1680 32.61 283
Shedun 3146 1000 4.60 786
SMSReg 3119 3452 12.42 780
Hiddad 182 438 71.68 46
Gappusin 146 300 91.00 37
Wapron 117 382 70.94 29
Youmi 66 379 87.07 16
Dowgin 47 324 89.50 12

CIC-IDS2017. We used the enhanced multi-class CIC-IDS2017
dataset from [22], which contains packet captures and network
flows generated by CICFlowMeter [20]. Our experiments focused
on the network flows. Labels were derived from attacker/victim
IPs, ports, and timestamps, which we removed to prevent shortcut
learning. From the full dataset, we sampled 12,000 benign and 1,920
attack instances spanning eight primary attack classes. Table 3a
summarizes the distribution.
VirusShare 2018.Weused themulti-class Androidmalware dataset
of [27], which includes 215 features per app, covering character-
istics such as file size, embedded URLs (has_url), and requested
permissions (e.g., READ_SMS). The class distribution is shown in
Table 4.
APIGraph 2017–2018. We used the 2017 and 2018 portions of
the Android application dataset from [7], originally introduced in
[67]. This dataset was selected because (i) reports were collected
at multiple time points (before 2020 in [67] and 2022–2023 in [7]),
helping mitigate label noise; (ii) a strict threshold was applied, set
at sixteen AV engines; and (iii) it reflects real-world distributions,
with only 9% malicious samples. The dataset includes 1,159 features
(excluding the label), extracted with DREBIN [1].
Virus-MNIST.We used this dataset to evaluate SLB on advanced
architectures e.g., ResNet18; see Section 4.5.1), which are common
in image-based malware analysis [11, 35, 49, 70]. Virus-MNIST con-
verts PE malware files into 32𝑥32 grayscale images by sampling the
first 1024 bytes of each PE [31]. Unlike standard classification tasks,
the dataset includes a benign class, while malicious samples are
grouped into nine clusters via k-means to emulate an MNIST-like
distribution. Thus, the task shifts from labeling malware families
to identifying structurally similar clusters. The dataset distribution
is shown in Table 3b.

https://github.com/nuwuxian/morse/
https://github.com/MalTools/MalWhiteout/tree/master/dt
https://github.com/MalTools/MalWhiteout/tree/master/dt
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