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Abstract

Deep learning techniques are increasingly being incorporated into
NIDS. However, the evaluation of such deep learning models of-
ten assumes static data distributions and overlooks the effects of
randomness and environmental variation. As a result, the reported
performance may not reflect the NIDS behaviour during real-world
deployment. This paper investigates the impact of stochastic and
environmental factors on the evaluation of deep learning models
for NIDS, with a focus on shift-aware models that detect and adapt
to data shift, representing state-of-the-art systems for long-term
deployment. We examine two baselines under controlled variations
to analyse the impact of each factor on the reproducibility and
fairness of the results, revealing that the F; score can vary largely
due to these, even minor, variations. All of the explored factors
affect the reproducibility of the results, and some can significantly
skew performance. Based on our findings, we provide practical
recommendations to support reproducible and fair evaluations of
deep learning-based NIDS systems.
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1 Introduction

Deep Neural Networks (DNNs) power some of the most accurate
Network Intrusion Detection Systems (NIDS) available today, of-
ten achieving F; scores above 95% in closed-world environments
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[2]. However, these detectors learn decision boundaries from a sin-
gle snapshot of network traffic. As the protected network evolves
through new applications, routing policies, or attacker tooling, the
underlying data distribution shifts and accuracy declines. Conse-
quently, a modern NIDS must be shift-aware: it must detect dis-
tribution changes, adapt rapidly, and do so with a limited budget
for annotation by human analysts. A common strategy is a three-
stage control loop: first, identify that a shift has occurred; second,
query a budget-constrained subset of flows for labelling by analysts;
and third, fine-tune the model on the newly labelled set. Recent
frameworks such as CADE [6] and INSOMNIA [1] address parts of this
loop, but they are typically evaluated with a single run, implicitly
assuming deterministic performance.

It is known that DNNs exhibit substantial variance due to hidden
factors, including random seeds, weight initialisation, hyperparam-
eters, hardware, framework implementation, and determinism flags
[4]. In a shift-aware NIDS, several stages are chained (shift detec-
tion, sample selection, finetuning [1, 6]), so small variances can
cascade and amplify, yet their joint impact has never been mea-
sured. We close this gap with the first systematic variance audit
of shift-aware DNN-based NIDS: a factorial study over the 6 main
variance sources (see Table 1) spanning 630 controlled runs.

2 Methodology

In this preliminary study we focus on two representative, state-of-
the-art, DNN-based baselines.

The first baseline is INSOMNIA [1], an uncertainty-sampling and
pseudo-labelling framework evaluated on the 5 days of CICIDS-
2017 [3]. Days 1-2 are used for pre-training; days 3-5 introduce
staged attacks for adaptation.

The second baseline is CADE [6], a contrastive-learning detector
targeting novel classes, evaluated on CSE-CIC-IDS-2018 [5]. Three
one-class-held-out experiments (SSH-Patator, DoS Hulk, Infiltra-
tion) are averaged, following the original protocol.

Table 1 lists the six sources of variablity we manipulate. The ten
training seeds [57,305,5,9667,405,750,1038,840,63,988] are
reused across all experiments. To isolate weight initialisation noise,
every run is repeated with three fixed Xavier-uniform schemes
applied to layers 1 to 3 and the output layer, using seed tuples
[1004,77,259,35], [8,358,200,35], and [487,22,900,7].

3 Results

The overall performance variation across the complete factorial
design is visualised in Figure 1 for CADE and Figure 2 for INSOMNIA.
We first outline the main trends revealed by these aggregates, then
examine the influence of each individual factor in detail.
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Table 1: Controlled factors and levels.

Factor Levels / Notes
Training seed (s) 10 values
Weight initialisation (w) 3 tuples

Model Architecture (a)
GPU model (g)
Framework (f)
Deterministic (d)

2 fixed sets from independent hyperparameter searches
NVIDIA Tesla T4, A40, A100-MIG

TensorFlow 2.10 vs. PyTorch 2.1
TF_DETERMINISTIC_OPS, TF_CUDNN_DETERMINISM, or
of f; PyTorch uses
torch.use_deterministic_algorithms(True) etc.

Experimental setup
TensorFlow PyTorch
40 T4 A40 T4
Not Not " Not Not "
Deterministic Deterministic Deterministic Deterministic
Weightinit] Seed | Deterministic Deterministic Deterministic Deterministic
1 [ : 72.07]
2 95.41] 75.92 75.92)
3 X 75.7| 77.12] 77.12]
4 94.59 9466 9464 95.01] 96.25) 96.25 96.14 96.14]
1 5 9581 95.33 96.24| 96.26 95.96) 95.96) 96.03 96.03]
6 9.78 94.68) 95.42 96.42) 96.42 82| 822
7 92.3] 95.48 8169 86.2) 97.52) 9752 98.67] 98.67]
8 94.8] 4.5 95.32) 95.32) 71.98 71.98]
) 89.16) 93.12) 92.78 92.78 95.31 95.31
10 95.06 893 94.69
1 97.76 9615 95.51] 95.75
2 98.81 96.49) 95.66 95.81 0.0 0.0
3 96.03 92.89 98.21 98.17) 83.5] 83.8
4 95.61] 95.67 98.21 98.28
2 5 96.22 96.15) 96.14] 98.47, 84.28] 84.28]
6 93.58] 96.72) 98.48] 95.65
7 9.01] 95.75) 9.5 98.08 98.11] 9811 95.52 95.52]
8 95.67] 99.08] 94.82| 95.36 96.91] 96.91 98.4| 98.4]
) 94.6] 99.19) 96.01] 95.99
10 94.9) 96.04 95.79) 9% 96.35) 96.35 96.46) 96.46]
_1- 95.63 94.77 9.4 9| % 96.92 96.92
2 7612 76,51 935 77.04 95.77] 95.77] 96.19) 96.19)
3 9562 96.86) 75.86 96.24] 96.24| 76.45 76.45)
4 95.24] 76.98 93.84 98.5| 96.27] 96.27] 9%.3| %3]
3 5 81.31] 95.86 76.36 9623 %73 %73 98.95 98.95]
6 9455 98.88| 89.15) 91.05) 91.05)
7 80.3] 57.01] 76.77] 87.43) 96.63 9663 95.79 95.79)
8 95.27 95.02) 95.55) 77.94 99.05) 99.05 96.27] 96.27]
[ 77.29) 76.29)
10 94.73 98.88] 94.04 98.39) 98.39 9%.1] 9%.1]

Figure 1: F; scores for all of our experimental setups and
seeding combinations on CADE.

Table 2: Aggregated F1 ranges across all experimental factors.

Minimum Mean Maximum

INSOMNIA 65.28 80.99 89.42
CADE 66.44 87.15 99.19

3.1 Aggregated performance distributions

Across all 630 controlled runs (390 INSOMNIA, 240 CADE) the F;
varies dramatically (Table 2). For example, in one setting, INSOMNIA
scores as low as 65.28% under a combination of factors but climbs
to almost 90% under another. This 24-point swing highlights how
seemingly minor choices in randomness and environment can dom-
inate the headline results, and need to be controlled to ensure
reproducibility and objective model comparison.

3.2 Factor analysis

3.2.1 Hyperparameters. To isolate architectural effects we repeated
the nondeterministic hyperparameter search described in INSOMNIA
twice, yielding two distinct configurations, H; and Hy. Each was
trained with the full randomness sweep: ten training seeds s € S
crossed with the three weight initialisation tuples w € W (|S| x
|[W| = 30 runs per configuration). Table 3 reports the aggregated
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Table 3: Effect of hyperparameter sets on INSOMNIA (T4 + Ten-
sorFlow + deterministic).

Minimum Mean Maximum
H; 66.33 77.76 87.22
H; 82.35 86.78 89.25
A +16.02 +9.02 +2.03

F; distributions. Switching from H; to Hy shifts the mean F; by
up to 9%, showing that seemingly minor architectural tweaks can
dominate overall performance and therefore must be disclosed in
any fair comparison.

3.2.2  Weight initialisation. Although weight initialisation is rarely
documented, our results show it can be as influential as the training
seed. To isolate its effect we freeze all other factors and vary only
the weight factor w. Even this single change produces large swings:
on CADE running deterministic TensorFlow on a T4 GPU, the F;
leaps from 66.66 % for (s=1, w1) to 95.75 % for (s=1, wy) (Figure 1).
Averaged over all ten seeds, the same setup shifts the mean from
88.16 % (w1) to 96.41 % (w2). These findings underline that w must
be reported and swept alongside the conventional training seed to
ensure fair and reproducible comparisons.

3.23 GPU model. Because independent researchers replicating
baselines will often do so on whatever heterogeneous GPUs they
have at hand, we run our randomness tests on two distinct graphics
cards to see whether a change in the card biases the results. With
a single run the gap can appear large. For example, CADE on an
A40 (nondeterministic TensorFlow, wi, s = 2) reports a noticeably
higher score than the same code on a T4. Once we average across
multiple runs, however, the effect nearly disappears. For INSOMNIA
(deterministic TensorFlow) the mean F; score is 78.18% on a T4
compared with 79.29% on an A100, a relative difference of just 1.1%.
CADE tells a similar story: 91.47% on an A40 versus 89.38% on a
T4, a 2.1% gap. In short, according to our experiments, run-to-run
variance overwhelms any GPU-specific bias, and averaging only a
few repetitions is enough to neutralise hardware effects.

3.2.4  Frameworks. The choice of deep learning framework is itself
a confounding variable, so we evaluate every baseline in the field’s
two dominant frameworks: TensorFlow and PyTorch. A one-off
measurement is unreliable: on an NVIDIA T4, CADE in deterministic
TensorFlow (w=1, s=3) scores 94.9%, whereas the same configu-
ration in PyTorch manages only 77.2%. Repeating the experiment
over seed and weight intialisation values and averaging attenuates
the discrepancy: TensorFlow stabilises at 91.47% and PyTorch at
86.40%, for a difference of ~ 5%. INSOMNIA shows a similar pattern
(79.29% vs. 77.60%). Consequently, cross-framework comparisons
are acceptable when a 5% swing is tolerable, but only if results are
aggregated over multiple runs; otherwise, any single figure is apt
to mislead.

3.25 Determinism. We isolate the impact of enabling determin-
istic operations in deep learning frameworks (factor d), a practice
commonly recommended for reproducibility. As with other environ-
mental factors, individual trial results exhibit considerable variance,
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Setup
Parameter Set 1 Parameter Set 2
Tensorflow Pytorch Tensorflow Pytorch
T4 A100 T4 A100 T4 I A100 A100
_ Not o . ND.l o y No.l ) Deterministic No.( ) D P No.( . D . I Not .
Weight Init Seed Deterministic Deterministic D D Deterministic Deterministic
1 80.47) 81.40) 81.40 82.48 82.48) 87.32| 87.32)
2 82.32] 80.70 84.16 84.16 84.82 84.82 87.24 86.68| 86.68|
3 | 79.04] 78.48 78.84 87.39 86.65 8177
4 80.42) 82.38 80.08 84.47 79.39) 79.39) 87.21] 81.30 77.06|
1 5 87.41) 82.21 78.76| 78.76| 86.83]
6 77.35 78.71 85.46| 85.46| 86.71] 85.54] 84.25) 84.25)
7 Bl.77| 81.44 82.30 79.78 79.19 79.19 80.94 80.94) 87.37| 87.25) 87.19|
8 81.82] 84.82) 83.74) 86.70) 82.56) 82.71] 82.71]
9 79.39 82.23 86.79 87.50 77.00 77.00, 83.81 83.81] 84.64) 84.71] 81.31]
10 81.89) 82.08) 78.61 86.92|
1 79.61 85.40 81.49 81.49 87.60 84.31 87.31] 87.31] 87.31]
2 81.53 81.48 87.76 87.76 87.22) 85.03| 82.72| 84.37| 84.37,
3 79.06 86.14] 84.92 81.73) 81.73] 86.98| 86.85| 84.19| 84.76| 84.76)
4 78.88| 84.96 79.72 79.64 79.64, 78.69 78.69) 86.14) 87.30| 85.84)
2 5 78.42) 78.78| 78.78| 82.45 82.45 87.21] 87.30) 85.39| 85.39|
6 82.36 81.67 86.39 80.48 80.48, 81.26 81.26) 82.35 87.10| 87.14) 85.72] 85.72]
7 78.61] 79.95 82.04) 83.19) 83.19) 82.43 82.43 87.34] 87.38| 87.38
8 80.90 79.34 80.19 77.88 81.00 81.00 82.46 84.57,
9 85.45| 80.32] 82.03) 80.17) 80.17| 86.52| 86.52|
10 79.60] 83.29) 78.69) 86.69) 83.45 83.45 8529  88.22] 80.95 87.50] 87.50]
1 87.00) 87.45|
2 81.88| 87.19 81.54 85.36) 82.56) 82.56) 82.08 8208]  88.20] 84.50) 87.09)
3 8609' 81.70 82.46 80.29 80.29, 78.77, 78.77| 86.92 84.79|
4 80.29) 84.71) 82.13) 82.71 82.71 86.32| 82.02]
3 5 80.89 87.35 79.51 79.51 77.23) 77.23) 82.99] 87.48|
6 84.55 78.11] 78.11] 86.47] 84.43) 84.65] 84.65|
7 79.21 87.10 80.48 81.01 81.01 79.29, 79.29) 87.88|
8 87.22) 84.87) 83.05) 87.37) 82.95) 82.95) 80.46| 80.46| 86.37| 86.37|
9 80.49 79.66 82.14 78.12 78.12 86.79 86.79] 84.28] 8628 8817
10 52A78| 78.47 80.79 81.23 81.23| 77.21 77.21 87.81] 85.71] 87.22] 87.22]

Figure 2: F; scores for all of our experimental setups and seeding combinations on INSOMNIA.

but averaging across runs mitigates this effect. On an NVIDIA A100,
INSOMNIA in TensorFlow improves from an average F; of 75.83 to
79.29 when determinism is enabled (+3.46%). Similarly, for CADE
on an A40, the mean increases from 87.45 to 91.47 (+4.02%). These
results highlight the importance of reporting whether deterministic
operations are enabled, as the averaged performance can vary by
up to 4%.

4 Conclusions

We have shown that seemingly minor implementation choices can
change shift-aware DNN-based NIDS F; scores by up to =33 per-
centage points (e.g., CADE from 66.44% to 99.19%), often eclipsing the
improvements attributed to new algorithms. Single-architecture
and single-seed evaluations, though convenient, are inadequate
and risk misrepresenting performance. We therefore advocate a
variance-aware evaluation protocol:

(1) Report distributions (min/mean/max/std) over >10 seeds
and 3 weight initializations; single runs are misleading. As
a rule of thumb, 15 runs mixing seeds and initializations
approximate the full distribution (average error < 2 points,
95th percentile ~4), balancing accuracy and cost.

(2) Record GPU model and enable framework-level determinism
for reproducibility. In our experiments, determinism also
modestly improves average performance.

(3) If model hyperparameter selection is non-deterministic, test
multiple configurations; a single choice can mask strengths
and weaknesses.

Adopting this protocol, which reports distributions across seeds,
initializations, and architectures, is essential for trustworthy and
reproducible benchmarking going forward. Beyond research, we
recommend security operations teams perform pre-deployment

variance audits on their own infrastructure to avoid misleading
expectations and identify the most reliable model.

Future Work. We plan to extend this study to additional shift-
aware DNN-based NIDS baselines and to examine the impact of
randomness in other security domains, such as malware detection,
where similar issues are likely to arise. We also aim to explore
the feasibility of community-driven benchmarking platforms that
programmatically control these factors, enabling fairer and more
reliable comparisons across frameworks.
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