A Hybrid Graph Neural Network Approach for
Detecting PHP Vulnerabilities™

Rishi Rabheru®
Department of Computing
Imperial College London, UK

Hazim Hanif
Department of Computing
Imperial College London, UK;
rishi.rabherul6@imperial.ac.uk Faculty of Computer Science and Information Technology

Sergio Maffeis
Department of Computing
Imperial College London, UK
sergio.maffeis @imperial.ac.uk

University of Malaya, Malaysia
m.md-hanif19 @imperial.ac.uk

Abstract—We validate our approach in the wild by discovering
4 novel vulnerabilities in established WordPress plugins. This
paper presents DeepTective, a deep learning-based approach
to detect vulnerabilities in PHP source code. Our approach
implements a novel hybrid technique that combines Gated
Recurrent Units and Graph Convolutional Networks to detect
SQLi, XSS and OSCI vulnerabilities leveraging both syntactic
and semantic information. We evaluate DeepTective and compare
it to the state of the art on an established synthetic dataset
and on a novel real-world dataset collected from GitHub. Ex-
perimental results show that DeepTective outperformed other
solutions, including recent machine learning-based vulnerability
detection approaches, on both datasets. The gap is noticeable
on the synthetic dataset, where our approach achieves very high
classification performance, but grows even wider on the realistic
dataset, where most existing tools fail to transfer their detection
ability, whereas DeepTective achieves an F1 score of 88.12%.

Index Terms—Vulnerability detection; PHP vulnerabilities;
Graph neural networks; Software security.

I. INTRODUCTION

PHP remains the most common server-side language on the
web, especially among the long tail of medium and small size
websites. Due to the amount of economic activity taking place
online, PHP web applications remain a tempting target for
malicious actors looking to exploit security vulnerabilities for
financial gain or in pursue of other illicit ends.

In order to prevent the compromise of PHP web applications
there has been a steady and growing trend by developers, secu-
rity firms and white hat hackers to find, fix and disclose PHP
vulnerabilities [2]. The research community has also devoted
a significant amount of effort to the automated discovery of
PHP vulnerabilities, leveraging static, flow, and taint analysis
techniques [3]-[5] as well as data mining approaches [6]—
[10]. These solutions are very efficient in analysing large
quantities of code, but tend to suffer from limited detection
performance, in terms of false positives or false negatives.
Following recent advances in deep learning and natural lan-
guage processing, security researchers started to develop deep

A preliminary version of this paper was presented as a poster in [1].
8This author was affiliated with Imperial College London during most of
the work for this paper.

978-1-6654-2141-6/22/$31.00 ©2022 IEEE

learning approaches to detect software vulnerabilities in C and
C++ programs [11]-[13]. Only very recently we have seen
the first applications of deep learning to PHP vulnerability
discovery [14]-[16]. Both these approaches apply Long-Short
Term Memory (LSTM) neural networks to capture non-local
dependencies over various transformations of the source code.

In this paper we present DeepTective, a deep-learning based
vulnerability detection approach, which aims to combine both
syntactic and semantic properties of source code.

In order to learn syntactic and structural properties from
source code, DeepTective transforms it into a sequence of
tokens to be analysed by a Gated Recurrent Unit (GRU),
a neural network related to the LSTM and able to embed
sequential information, in this case about the code syntactic
structure. Novel to our approach for PHP, we attempt to learn
semantic properties of the source code by analysing the CFG
with a Graph Convolutional Network (GCN), a recent neural
network architecture designed to handle graph-like data struc-
tures which during training can embed semantic and contextual
information of the source code into the classification model.
For our best model, this hybrid architecture achieves a 99.92%
F1 score on synthetic data (SARD) and a 88.12% F1 score for
real-world data (our own dataset).

We investigate the impact of different dataset distributions
for detecting multiple vulnerabilities, and the challenges in
creating such datasets. The key dimensions to take into account
are the nature of the samples (synthetic versus realistic), the
accuracy of the labels, the balance of the classes and the
overarching difficulty in generating high-quality datasets. We
systematically compare the performance of DeepTective and
a number of existing PHP vulnerability detection tools on
SARD and on our real-world dataset. DeepTective outperforms
the other tools on both datasets, but the gap is significantly
wider on the real-world one, even for pre-trained models.
Finally, we tested DeepTective in the wild, evaluating its
execution performance and its ability to generalise to a number
of real-world PHP applications not present in the training
dataset. We validated the practical usefulness of DeepTective
by discovering 4 novel SQL injection and Cross-site scripting
vulnerabilities in deployed plugins for WordPress.

In summary, our main contributions are:

o The first investigation of the use of GCN and GRU to
detect vulnerabilities in PHP source code, embedding
both syntactic, structural and semantic information in the
machine learning model;

« An analysis of the impact of dataset definition on model
performance for vulnerability discovery, and the collec-
tion of file-level labelled PHP datasets, which we make
available to the public;

o An extended evaluation of DeepTective, our GNN, by
comparing it with selected existing tools for PHP vulner-
ability detection and by using it in the wild, where we
discovered 4 novel vulnerabilities in established Word-
Press plugins.

II. BACKGROUND

In this section, we survey automated vulnerability detection
approaches for PHP source code and discuss recent advances
in using graph neural networks for vulnerability detection.

A. Detecting Vulnerabilities in PHP

Researchers and practitioners, over the years, have devel-
oped many tools to detect vulnerabilities in PHP applications.

1) Traditional Approaches: Traditional approaches focus
on the use of static, semantic and taint analysis to locate vul-
nerabilities. Pixy [3] implements flow-sensitive and context-
sensitive data flow analysis to detect vulnerable components
in a PHP web applications, mainly targeting XSS. RIPS [4],
[5] combines taint and static analysis to locate vulnerable
program points in a PHP application. However, RIPS and
Pixy are unable to analyze flaws that require the analysis of
multiple files. phpSAFE [9] performs a lexical and semantic
analysis of code at the Abstract Syntax Tree (AST) level,
before executing an inter-procedural analysis to follow the flow
of tainted variables starting from the main function. Differently
from previous approaches, SAFERPHP [6] focuses on the
detection of Denial of Service (DoS) and missing authorisation
checks. It also performs inter-procedural and semantic analysis
by analysing the control dependencies via the control flow
graph (CFG).

2) Data Mining Approaches: More recent approaches aim
to detect PHP web application vulnerabilities using data
mining techniques. WAP [7], [8] implements taint analysis
along with a number of machine learning models to predict
vulnerable PHP samples. Logistic Regression obtains the best
performance, and is able to detect 8 classes of vulnera-
bilities, including SQLi, XSS, and OSCI. In a follow up
work, DEKANT [17] adopts Natural Language Processing
(NLP) techniques to detect vulnerabilities. In particular, it
uses a Hidden Markov Model (HMM) [18] to characterise
vulnerabilities based on a set of source code slices. These
code slices are marked as tainted or non-tainted and then
passed on for further analysis. WIRECAML [19] combines
data-flow analysis and machine learning to detect SQLi and
XSS vulnerabilities in PHP source code. The combination of
reaching definition, taint and reaching constant analysis allows
the tool to extract meaningful data flow features from the CFG,

and optimise the learning process of the machine learning
model.

3) Deep Learning Approaches: More recently, deep learn-
ing is being applied to vulnerability detection for PHP source
code. TAP [14] extracts code tokens from PHP codes using
a custom tokenizer, and performs data flow analysis to find
relevant lines of code that contain function calls. TAP uses
Word2Vec to generate numerical vectors from the code tokens,
and implements a sequence-based deep learning technique
called Long Short-term Memory (LSTM) to train the detection
model. Vulhunter [16] proposes a different approach leverag-
ing bytecode features to represent vulnerabilities. Vulhunter
generates CFGs, data-flow graphs (DFGs) and analyses them
to generate potentially suspicious code slices. The code slices
are transformed into bytecode slices. Like TAP, Vulhunter uses
Word2Vec to generate vectors from the bytecode slices and
passed to a Bi-directional LSTM. Also [15] leverages PHP
bytecode to locate vulnerabilities. Code slices are translated
to bytecode using the Vulcan Logic Dumper (VLD), which
intercepts Zend bytecode before it executed. The authors train
a 2-layer LSTM model and achieved 95.35% accuracy, 96.51%
precision and 96.14% recall.

B. Graph Neural Network for Vulnerability Detection

Recently, Graph Neural Networks (GNNs) have been ap-
plied to vulnerabilities detection in source code.

Devign [11] implements a Gated Graph Recurrent Network
with Conv layer to embed the information from the CFGs and
DFGs of C/C++ programs. The composite graph representa-
tion enables the model to learn contextual information from
source code effectively. This contextual information helps the
model understand parts of the program behavior, such as se-
matic dependencies, which are relevant to detecting vulnerabil-
ities. Similarly, FUNDED [20], leverages Gated Graph Neural
Network to capture and reason about a program’s control, data,
and call dependencies. It learns the program representation
from the graph structures of real-world C and Java source
code. Evaluation results showed that FUNDED is better at
detecting vulnerabilities than previous approaches such as
Devign [11], VulDeePecker [13] and uVulDeePecker [21].

PHP is an interpreted language, and its semantics is substan-
tially different from C/C++ or Java [22]. To the best of our
knowledge, we are the first to investigate the role that GNNs
can play in the analysis of PHP code.

III. DEEPTECTIVE

In this Section, we introduce DeepTective, our novel PHP
vulnerability detection model. DeepTective detects SQLi, XSS
and OSCI vulnerabilities within source code at a file-level
granularity. It is divided into two key components: a Gated
Recurrent Unit (GRU) which operates on the linear sequence
of source code tokens, and a Graph Convolutional Network
(GCN) which operates on the Control Flow Graph (CFG) of
the source code. Each component provides a different mecha-
nism for the model to detect multiple types of vulnerabilities
effectively. We combine the GRU and GCN in a novel hybrid
architecture able to leverage the strengths of both techniques.

Bidirectional GRU
U b — o
vt vt
R b —> o

a a
Embedding layer fY S

if |-0.5/0.2]0.3]... ¢ 4 ‘ 4
Tokens Input|—>lochol 0.6]0.1 0.1 ... o — output
utpu

vt vt outputs layers layer

o — o

exec|-0.3/0.7 (0.2 ... iy

<> Graph convolution and pooling layers

Concatenate Hidden

l y N N
—_— e
Graph input Embedding layer ? ;
—_—
- £dge ool Edge ol
if 0.50.2/0.3]... e oy
lecho| 0.6 [0.1(0.1] ... ~§;) ;
exec|-0.3/0.70.2... v / v
G

Fig. 1: DeepTective architecture

A. Preprocessing

Our data samples are PHP files. As a first step, we raise the
level of abstraction of the code to a format that will conceptu-
ally help the learning process. We extract the linear sequence
of parsed tokens in order to capture syntactic dependencies,
and we extract the set of intraprocedural CFGs to capture
semantic dependencies.

1) Sequence of Tokens: We parse a sample using
phply [23], a PHP parsing library built on top of ply [24], an
implementation of the yacc and lex parsing tools for Python.
From parsing, we obtain an ordered sequence of tokens. We
remove tokens for comments, tabs, spaces, and PHP open and
close tags from the sequence, as the presence or absence of a
vulnerability is not affected by these.

In order to focus the learning on a manageable set of
interesting tokens, we conflate the long tail of user-defined
functions, variables, and constant values into abstract tokens,
and retain the concrete token only for the first k instances
found in each sample. We substitute the first 200 variable
tokens in a sample with the artificial tokens VARO - VAR200,
and substitute all the other ones with the abstract token VAR.
We also retain the concrete token for selected PHP functions
such as query, exec, strip_tags which are relevant to the
vulnerabilities we study, and typically represent sinks or
santizers.

Next, we turn each token into a number, using the
LabelEncoder from scikit—-learn [25] which, given a vo-
cabulary of tokens, maps each to a sequential natural number.
The GRU that consumes our token sequences requires vectors
of fixed length as inputs. Based on empirical observations on
the training set, we chose a fixed maximum length of 3000
tokens per sample.

2) CFG: We use joernphp [26] to parse and extract the
CFGs from each sample, as it proved robust even for large
files. We use the same procedure as for sequences of tokens
above, but with a fixed length of 20, to turn each CFG node
into a numerical vector. Next we represent the CFG edges as a
vector of tuples (i, j) representing a directed edge from node
1 to node j.

B. Model Architecture

Figure 1 illustrates the overall architecture of DeepTective.
We now describe each component and summarize the archi-
tectural parameters.

1) Embedding Layer: The role of the embedding layer is to
transform each numerical input produced in the preprocessing
stage into a vector of real numbers, encoding that input as a
combination of factors in a higher-dimensional space. We have
two embedding layers of size 100; one for the token sequence
and one for the CFG representation. More formally, these
layers are simply a mapping from a numerically tokenised
function ¢;, to a vector v; € R100,

2) GRU: We extract features from the sequence of to-
kens representations using a multi-layer bidirectional Gated
Recurrent Unit [27] which can learn long term dependencies
between the tokens. Code patterns, such as those leading to
vulnerabilities, heavily depend on the syntax of a programming
language and the local context in which they appear. We use 3
layers of GRU and internally, each layer of the GRU computes
the following function for each element in the input sequence:

Tt = U(Wirxt + bir + Whrh(tfl) + bhr)

2t = U(Wizxt + b + thh(t—l) + bhz)

ng = tanh(Winxt + bin + 7y % (Whnh(t—l) + bhn))
he = (1 — 2¢) xng + 2¢ % hy—1)

where h; is the hidden state at time ¢, x; is the input at time ¢,
h(t—1y is the hidden state of the layer at time £ —1 or the initial
hidden state at time O, and 7, 2;, n; are the reset, update, and
new gates, respectively. o is the sigmoid function, and x* is the
Hadamard product. The output we take from the GRU is the
concatenation of the hidden states at the beginning and end of
each layer.

3) GCN: The CFG represents the control dependencies of
functions and statements in a code sample. These approximate
the flow of information from untrusted sources to sensitve
sinks typical of injection vulnerabilities. Therefore, we ex-
tract features from the CFG using a Graph Convolutional
Network [28], which is able to embed such dependencies into
our model, and learn their significance via backpropagation.

Internally we use three layers of a GCN followed by Edge
Pooling. Let X be a graph node vector, and A=A +1the
adjacency matrix of the graph, with inserted self-loops. The
equation X’ = D~1/2A D~Y/2X@ defines the convolved
signal matrix X', where Dj; = 3 =0 Aij denotes the diagonal
degree matrix and ® denotes the convolutional filter parame-
ters [29].

4) Classification: We take the output of the graph convo-
lutional layers and flatten it using max pooling. The output
of the graph convolutional layers are node vectors of length
4000. The max pooling scans the ith element of each node
and selects the maximum values as the ith element of the
output vector. We combine the output vector of the GCN with
the output vector of the GRU and feed them to the linear
classification layers. We have 3 linear classification layers,
each with a dropout of 0.3 to combat overfitting, followed
by a ReLU activation function. The final output of the ReLU

is a probability vector of length 4, representing the confidence
of assigning the sample to each class.

The intuition behind why we selected GRU and GCN as
our main model for DeepTective is that we would like an
architecture that can learn both long-term dependencies from
source code tokens and source code contextual semantics
at the same time. We can achieve this by combining these
two architectures into a single neural network model that
simultaneously learns the respective features.

IV. DATASETS

In order to evaluate a supervised vulnerability detection
model, we need to build datasets with vulnerable and non
vulnerable samples.

We label the samples as Safe, XSS, SQLi and OSCI, where
the latter 3 labels together are the Unsafe “virtual” label. We
extract the samples from synthetic data (SARD) and real-world
projects (GitHub), as detailed below. In order to support further
research in the area, and facilitate the comparison between
different approaches, we make our datasets available to the
public!.

A. Synthetic Samples

The Software Assurance Reference Dataset project [30]
is a collection code samples for multiple programming lan-
guages. Below, we consider the subset of SARD for PHP
vulnerabilities [31]. Each sample is a short standalone file
with no external dependencies. Samples are generated by
a tool called the PHP Vulnerability Test Suite Generator
[32]. The dataset contains both safe and unsafe samples for
different vulnerability types. The advantages of SARD are
that vulnerabilities are guaranteed to be self-contained in the
samples, and each sample has very few irrelevant lines of code.
This helps focusing the learning process. We extract the PHP
code from each SARD safe and unsafe sample for XSS, SQLi
and OSCI. We denote by SARD# our derived dataset. The
number of samples in the original SARD dataset and in our
dataset are reported in Table I.

B. Realistic Samples

Besides the focused, synthetic samples from SARD#, we
want to collect a dataset representing vulnerabilities as they
actually appear in realistic PHP projects. GitHub hosts source
code for PHP projects of all sizes, ranging from the ex-
tremely popular WordPress framework to a beginner’s first
PHP snippet. In order to select representative vulnerabilities,
we searched the National Vulnerability Database (NVD) [33]
for CVE entries labelled with the CWE identifier of XSS
(CWE-79), SQLi (CWE-89) and OSCI (CWE-78). We ex-
tracted from the references of each relevant CVE any GitHub
commit URL, and cloned the corresponding PHP repositories.
In combination, we also cloned from GitHub some of the
largest and most commonly used open source PHP projects:
Moodle,
wikia, magento2, simplesamlphp and WordPress.

CodeIgniter, Drupal, ILIAS, phppmyadmin,

IThe dataset URL will be released upon publication of this paper.

TABLE I: Number of Samples in Relevant Datasets.

Dataset Safe XSS SQLi OSCI
SARD 16240 4352 912 624
SARD# 2928 960 288 250
GIT 2726 2117 604 7

1) Sample Extraction: We search the commit history of
each cloned project for keywords related to the vulnerabilities
we are interested in, including “xss”, “sqli” and several vari-
ants. There are a few commit messages that report fixing both
XSS and SQLi vulnerabilities: we exclude these, as multi-
label classification is beyond the scope of this project. When
we come across a relevant commit, we extract the vulnerable
version of the affected files, and add to each file the label for
the corresponding vulnerability. These constitute our positive
samples. From the same version of the repository, we save the
files not affected by the commit as our negatives samples.

2) Label Noise: The approach described above may intro-
duce noise in the labelling of samples. Files may be misla-
belled when a commit message misidentifies a vulnerability.
Vulnerable files with a commit message that does not mention
a vulnerability fix, and files which contain vulnerabilities not
known or fixed by the developers, will be mistakenly labelled
as negatives. A vulnerability-relevant commit may also include
unrelated changes to non-vulnerable files. These files will
be mistakenly labelled as positives. To limit these effects,
we ignore commits modifying more than 20 files, and we
discard changes that only consist in deleting lines of code,
as both cases are mostly associated with code refactoring. We
manually inspected 10% of the files labelled as positives, and
did not detect any mislabelling. We denote our dataset by GIT.
The number of samples of each class in GIT are reported in
Table I.

V. MODEL EVALUATION

We evaluate DeepTective on its ability to classify files as
containing at least one vulnerability, or none. For this task,
we train and test the model on data from SARD, GitHub,
and from both. This allows us to compare the difference
between using synthetic and real-world samples. Furthermore,
we compare the classification performance of DeepTective
with previous work, and identify interesting variations between
the approaches.

A. Methodology

1) Experimental Setup: For this experiment, we use Py-
torch 1.5 and Torch Geometric 1.5.0 with CUDA 10.1 on top
of Python 3.8.1. We train the model on a computer running
Intel Xeon Skylake CPU (40 cores), 128GB RAM and Nvidia
GTX Titan XP.

2) Performance Criteria: For each experiment, we report
true negatives (TN), false negatives (FN), true positives (TP),
false positives (FP), accuracy, precision, recall and F1-score.

Note that in Table II we report only the figures for the
binary classification problem where the positives classes XSS,

TABLE II: Evaluation results on different models across
different datasets.

Model Testing TN FN TP FP Accuracy Precision Recall F1
set (%) (%) (%) (%)
File-S SARD# 1624 0 589 0 100 100.0 100.0 100.0
(SARD#) GIT 1817 2263 465 909 36.89 33.84 17.05 22.67
ALL 3439 2263 1054 911 55.13 53.64 31.78 3991
File-G SARD# 9143 2010 3878 7097 54.62 35.33 65.86 45.99
(GIT) GIT 251 44 229 22 8333 91.24 83.88 87.40
ALL 9396 2054 4107 7117 55.32 36.59 66.66 47.25
File-A SARD# 1624 1 588 0 99.95 100.0 99.83 99.92
(ALL) GIT 240 32 241 33 8278 87.96 88.28 88.12
ALL 1864 34 828 33 96.56 96.17 96.06 96.11

SQLi and OSCI are merged in the Unsafe class. This is to
simplify exposition, and because ultimately we care mostly
about detecting vulnerabilities, irrespective of their specific
label.

3) Model Training: Since this is a multiclass-classification
problem, we use cross-entropy as our loss function. The
training process uses a batch size of 64 along with an Adam
optimiser and a learning rate of 1075. Alongside this, we
implement a learning rate scheduler that reduces the learning
rate if the loss plateaus. Lastly, we split the dataset for
training/validation/test to 80/10/10, and stratify data according
to their classes. With the model and hyper-parameters in place,
we train the model for 150 epochs to maximise the learning
potential of our model.

B. Classification

We perform several experiments to investigate different
learning patterns across synthetic and real-world source codes.
Table II shows the result of training and testing our model on
SARD#, GIT and their combination ALL.

File-S. The File-S model is trained on the SARD# dataset.
The precision, recall and F1 scores are 100%. This means that
all vulnerable and non-vulnerable PHP samples are correctly
classified as positives and negatives. However, File-S fails
spectacularly on the real-world GIT dataset, with precision
and recall down respectively to 33.84% and 17.05%. We
hypothesize that this failure to generalise is due to the highly
skewed and homogeneous nature of SARD? samples on which
the model is trained. In particular, the model fails to detect
most of the vulnerable GIT samples (2263 FN). On inspection,
SARD# vulnerable samples are short and focused around the
vulnerability, whereas GIT vulnerable files may contain a lot
of irrelevant context, and more varied vulnerability patterns.
As can be expected, the performance on ALL is roughly a
weighted average of the preceding two.

File-G. The results for the File-G model are qualitatively
similar, but the performance on the SARD# dataset is dis-
appointing in absolute terms, with 35.33% precision, 65.86%
recall and 45.99% F1. We believe this shows that file-level
model is appropriate for real world code. Next, we investigate
if combining SARD# and GIT could introduce synergies
which improve the classification performance.

File-A. Training on the combined dataset has the effect
of slightly reducing the perfect performance of File-S on
SARD#by 1 FN, but yields larger increase over the recall and
F1 scores of File-G on GIT. In particular File-A finds more
real-world vulnerabilities (increase of TP) but at the price of
a few more false alarms (increase of FP). Finally, note that
the jump in performance on ALL is mostly an artefact of the
lower number of samples available for testing, as 90% of both
SARD# and GIT data is used for training. This leads to a
higher weight given to the SARD# performance in comparison
to the File-S case. Figure 2 compares the percentage of correct
predictions for each fine-grained class on the ALL test set, for
File-S,-G and -A.

100 Model

| | | | i
II l-| II

80 H FileG
Normal SQLi XSS [eNd]

M FileA

o)
=]

N
o

Correct prediction (%)

N
o

0
Types of vulnerability

Fig. 2: Distribution of correctly predicted samples across
different types of vulnerability.

The average predictive capability of File-A is higher than
80% for all classes. We believe this shows that File-A model
is appropriate for real world codes. In fact, by manually
inspecting GIT samples we can observe that although a
vulnerability may in effect be present inside a function, the
vulnerable line by itself is not sufficient to detect the function
as vulnerable. As an extreme example, the identify function
can be considered as a vulnerable instance of a function to
sanitize user input: but inspecting the identity function by itself
gives no clues to the presence of a vulnerability. Hence the
additional contextual information provided at the file-level has
a significant impact also at the multi-class classification level.

C. Tool Comparison

We compared the classification performance of DeepTec-
tive File-A, our best model, with selected publicly available
tools to find PHP vulnerabilities, based on machine learning
(wirecaml and TAP) or static analysis (progpilot, RIPS and
WAP) [4], [7], [14], [19], [34]. We ran all the tools above on the
same test sets from the SARD# and GIT datasets which we
used in Section V-B to evaluate File-A. We measured the tools
detection performance, which is reported in Table III. Note
that wirecaml is made of two binary classifiers for XSS and
SQLi and thus we report the performance of each individual
classifier. Furthermore, vulnerabilities of the class that is not
being classified by a wirecaml classifier were deemed as
safe samples when judging performance. Machine learning
tools often perform better when trained and tuned using their
authors’ datasets. Hence, we used wirecaml and TAP trained

TABLE III: Comparison: DeepTective File-A vs. Selected
Tools.

Tool name TN FN TP FP Accuracy Precision Recall F1
(%) (%) (%) (%)
A: Results for SARD? dataset.
DeepTective 1624 1 588 0 99.95 100.0 99.83 99.92
TAP 1584 96 493 40 93.85 92.50 83.70 87.88
wirecaml-XSS 470 50 385 1308 38.64 22.74 88.51 36.18
wirecaml-SQLi 1496 0 91 626 71.71 12.69 100.00 22.52
progpilot 629 304 285 995 41.30 2227 48.39 30.50
WAP 1342 477 112 282 65.70 28.43 19.02 2279
RIPS 1440 497 92 184 69.23 33.33 15.62 21.27
B: Results for GIT dataset.
DeepTective 240 32 241 33 8278 87.96 88.28 88.12
TAP 233 262 11 40 44.69 21.57 4.03 6.79
wirecaml-XSS 299 171 41 35 6227 53.95 19.34 2847
wirecaml-SQLi 484 60 O 2 88.64 0.00 0.00 0.00
progpilot 265 257 16 8 51.47 66.67 5.86 10.77
WAP 160 154 119 113 51.10 51.29 4359 47.13
RIPS 256 225 48 17 55.68 73.85 17.58 28.40

on their respective datasets, effectively testing their ability to
generalise to new datasets.

The results show that DeepTective significantly outper-
formed the other tools in terms of F1 score. TAP achieved
a high FI on the synthetic SARD# dataset, but showed
poor performance on the realistic samples from GIT.
wireacaml-SQLi achieved a high accuracy on GIT, but at the
price of null precision and recall. Note that the same tool had
perfect recall on the SARD# dataset. On a synthetic dataset
intersecting with with our SARD#, [14] measured F1 scores
of 98.8% and 97.5% for TAP and wireacaml respectively. Our
failure to replicate a similar result for those (pre-trained) tools
on SARD? points to the difficulty for some machine learning
models to generalise even to related datasets. We have noted
above how a perfect 100% F1 for File-S on SARD translated
into a poor 22.67% F1 for the same model on GIT. That result
is in line with the drop observed in the performance of all the
tools above from testing on SARD? to testing on GIT, except
for RIPS and WAP. Surprisingly, RIPS and WAP gained more
performance based on recall and F1 scores on GIT. However,
their performance is still significantly low to be use in the
wild. We believe our results show that evaluating tools only
on synthetic datasets is not a sufficient guarantee of practical
performance, and that DeepTective File-A stands out in its
ability to perform well on realistic samples.

VI. PRACTICAL EXPERIMENTS

In order to evaluate the practical usefulness of our model,
we ran it on a number of PHP projects which we did not in-
clude in our GIT dataset. In particular we want to estimate the
execution performance, to ensure that the tool can scale also
to large projects, and assess it usability for actual vulnerability
detection.

For these experiments we have chosen 13 software projects
divided in two sets: 8 popular projects and 5 smaller
plugins. The popular projects are listed in the top 50 GitHub

repositories (based on stars), that use PHP as their primary
language. These are meant to be a representative benchmark
for the execution performance. We expect the popular projects
to be carefully reviewed, hence we make the assumption
that they currently have no security vulnerabilities, and we
assume no TP and FN for classification purposes. We also
collect 5 WordPress plugins projects, with a limited number
of users (less than 20,000), to increase the likelihood of them
containing an undiscovered security vulnerability. Projects
with a limited user base may have a smaller development team
lacking security expertise, or be subject to less scrutiny than
popular projects. Below we report the execution performance
and accuracy for both sets, then we dig deeper on the smaller
plugins sets to hunt for vulnerabilities, to limit the effort
necessary in manually reviewing positives.

A. Execution Performance

The size of the software projects considered varies from
110KB with 2713 lines of codes (LoC) to 27MB with 242,299
lines of codes. The size and LoC distribution of these software
projects reflect the distribution of real-world projects as some
projects are small and large in scale.

To evaluate the execution performance of DeepTective
across real-word software projects, we use the following
performance metrics: (i) Lines of codes (LoC) - The number
of lines of codes in each file for all the PHP files in a specific
software project; (ii) Processing time - The time taken (in
seconds) to process and transform a PHP file to the data
structure used by our detection model; (iii) Inference time -
The time take to perform the classification of all the PHP files
in a specific software project; (iv) Time/LoC - The average
total time taken (processing and inference) per line of code
for a software project; (v) Time/File - The average total time
taken (processing and inference) per file in a software project.

Table IV-A shows the execution performance for popular
projects. Symphony has the longest processing time of 1699.91
seconds as it has the most number of PHP files and LoC.
Laravel has the shortest processing time of 17.12 seconds,
despite having a higher number of LoC (2713) than PHP-
Mailer (2185). This is due to the simpler strucutre of Laravel
code, which is a lightweight PHP framework containing the
wireframe to develop a PHP web application. In terms of
inference time, the data shows a consistent trend based on
the number of PHP files in a project. The higher the number
of PHP files, the longer the time it takes to perform inference,
as the process is done on the file-level granularity. Time/Loc
metric demonstrates minor differences across all the software
projects in Github. However, the Time/File metric shows some
surprising pattern as Composer has the highest execution
time per file even though the number of total PHP files
and execution time are lower than other larger projects like
Symphony and Codelgniter. Composer [35] is a dependency
management tool for PHP projects, which allows the user to
declare, update and manage external libraries. Based on this, it
shows that the complexity of Composer contributes to the high

TABLE IV: DeepTective Execution Performance on Real-World Software Projects

Software project Size PHP LoC Processing Inference Time Time File-A File-G
(bytes) files time (s) time (s) (s)/LoC (s)/File accuracy(%) accuracy(%)
A: Results for popular projects
Codeigniter 7,416,704 669 138495 728.4836 7.4599 0.00531 1.10006 53.81 56.35
Composer 2,342,547 252 53518 384.9617 3.1456 0.00725 1.54011 55.16 72.22
Grav 5,955,146 347 60922 400.0879 4.0205 0.00663 1.16458 55.62 62.25
Guzzle 352,741 32 4555 28.1737 0.7210 0.00634 0.90296 50.00 59.38
Laravel 110,595 53 2713 17.1215 0.8413 0.00662 0.33892 69.81 75.47
PHPMailer 381,439 55 2185 20.6959 0.9937 0.00993 0.39436 96.36 96.36
PHPUnit 1,373,437 323 35367 225.5044 3.8504 0.00648 0.71008 66.80 83.59
Symphony 27,052,061 2676 242299 1699.9081 26.2258 0.00712 0.64504 75.85 75.67
B: Results for smaller plugins

Appointment Booking Calen- 2,826,657 16 4735 50.1272 0.8017 0.01076 3.18306 31.25 56.25
dar

Payment Form for PayPal Pro 1,005,490 13 4379 44.5420 0.7712 0.01035 3.48563 15.38 53.85
PayPal for Digital Goods 149,137 7 1152 6.1942 0.5617 0.00586 0.96514 57.14 42.86
Sportpress 4,834,097 256 50461 419.3428 3.4818 0.00838 1.65166 50.39 48.05
Simple Jobs Board 9,783,895 198 19775 108.8408 2.3262 0.00562 0.56145 86.87 86.36
Total 63,583,946 4897 620556 4133.9838 55.2009 0.00675 0.85546 61.98 71.37

w0 Software projects We expect LoC and processing time to exhibit some linear
® e Symphony

Sportpress

Simple Jobs Board

PHPUnit

PHPMailer

PayPal for Digital Goods
Payment Form for PayPal Pro
Laravel

40

30 Guzzle
Grav
Composer

Codelgniter

20 Appointment Booking Calendar

Processing time (s)

0 1000 2000 3000

Lines of codes (LoC)

Fig. 3: Processing Time over LoC for all Software Projects

Time/File performance metric as compared to other Github
projects.

Table IV-B shows the execution performance for smaller
plugins obtained from WordPress plugins website. The LoC
for each project is consistent based on both the project size
and the total number of PHP files. In terms of processing time
and inference time, Sportpress takes much longer with 419.34
seconds and 3.48 seconds respectively, even though having
fewer LoC than Simple Jobs Board. However, it is worth
noting that Sportpress has a higher number of PHP files, and
this significantly affects the execution time as the evaluation
is done based on the file-level granularity. Surprisingly, in
terms of Time/LoC and Time/File metrics, smaller projects like
Appointment Booking Calendar and Payment Form for PayPal
Pro recorded higher values as compared to larger projects like
Sportpress and Simple Jobs Board. As for the popular projects,
this variance reflects the different code complexity and style
across different projects.

dependence. To verify this, we visualise the plot of processing
time against LoC for all software projects in Figure 3. The
figure shows a consistent pattern between processing time
and LoC across all the software projects. The scatter of the
points in the plot follows a pattern, where the LoC increase,
the processing time also increases. This relationship is further
demonstrated through the regression lines added in the figure.
We can see that Sportpress has a near-perfect linear trend
throughout all the data points. However, several outliers can
also be seen in the figure, especially the one that belongs to
Symphony. This outlier has a value of 2326 LoC and 50.09
seconds of processing time. This specific data point is far from
the projected trends of all the software projects. We inspected
the file representing that data point, which is FrameworkEx-
tension.php. This file contains a lot of nested if-else conditions
in most functions, which explains the longer processing time.
The creation of CFG for nested if-else conditions takes longer
compared to simpler source code.

Overall, this performance analysis shows that DeepTective is
an efficient model which can scale without problems to larger
code bases. In the worst case scenario it takes less than half
an hour to analyse a 27MB project. Considering that this kind
of vulnerability detection is an offline task that is performed
only periodically on a whole project, this cost is negligible.

B. Classification Performance

We established that DeepTective is usable in terms of
execution performance. We now consider the usability in terms
of vulnerability detection. As discussed above, we make the
assumption that the popular projects currently do not have any
security vulnerabilities. Hence we regard any positive reported
by DeepTective as a false positive. In Table IV we report the
accuracy of File-A and File-G for all projects. As observed in
Section V-B, File-G has fewer FP than File-A, which translates
to a higher accuracy on a vulnerability-free dataset. Hence we
recommend to use File-G especially if the code base is large
and the priority is to reduce false positives.

TABLE V: Novel vulnerabilities detection task

Software project TN FP-SQLi FP-XSS FP-OSCI
Booking calendar 9 7 0 0
Payment form paypalpro 7 1 5 0
Paypal for digital goods 3 4 0 0
Sportpress 123 31 102 0
Simple Jobs Board 171 4 23 0

C. Vulnerability Detection

Finally, after having observed a good level of performance
on our datasets, we attempt to use DeepTective to discover
new vulnerabilities in deployed PHP projects. We selected
5 WordPress plugins with a limited number of users (less
than 20,000), to increase the likelihood of them containing
an undiscovered security vulnerability. Projects with a limited
user base may have a smaller development team lacking
security expertise, or be subject to less scrutiny than popular
projects. We assume that the smaller plugins we considered
may indeed contain vulnerabilities. Our priority is to minimise
the manual effort spent reviewing reported positives. As ma-
chine learning techniques make no promise of completeness,
it is preferable to miss some detections but focus the code
reviewing efforts to hopefully identify some existing flaws.

We use File-G (our practical model with fewer false pos-
itives) to detect potentially vulnerable files from the smaller
plugins projects. That yields 177 potentially vulnerable files
across two vulnerabilities, SQLi and XSS. Table V shows the
results for the novel vulnerabilities detection task.

In absence of ground truth, we need to resort to manual

inspection to verify the results. Several appeared suspicious
(say concatenate a SQL string to a variable) but we did not
have sufficient familiarity with the application to determine
unequivocally if they constituted a vulnerability. However,
we were able to confirm 4 of these vulnerabilities as actual
security vulnerabilities, and we responsibly disclosed our
findings to the respective developers. We publicly disclosed 2
of them after they were patched and we describe them below.
CVE-2020-14092. We found a SQL injection vulnerability in
the plugin “Payment Form for PayPal Pro”. It allowed any user
to perform any SQL query they wanted, including retrieving
user login information. This received a CVSS score of 9.8
(critical). Figure 4 shows the vulnerable code snippet from
the source codes.
CVE-2020-13892. We found an XSS vulnerability in the
“SportsPress” plugin, which allowed authenticated users to
add malicious JavaScript to the WordPress installation. This
received a CVSS score of 5.4 (medium). Figure 5 shows the
vulnerable code snippet from the source code.

We perform a comparison between DeepTective and other
vulnerability detection tools in terms of discovering real-
world vulnerabilities. We tested the tools from Section V-C
on these projects to see if they could detect either of the
above vulnerabilities, but none succeeded. This demonstrates
the effectiveness of DeepTective and its applicability in real-
world usage.

Fig. 4: SQLi vulnerability CVE-2020-14092

1 function cp_ppp_init_ds () {

2 $query_result = cp_ppp_ds($_REQUEST);

3 Serr = mysqgli_error($cpcff_db_connect);

4 if('d ull (mysgli_connect_error()))

5 $.= mysqli_connect_error();

6 if($_REQUEST[’'cffaction’] == test_db_query){

7 print_r(((empty(Serr)) ? Squery_ result:$err));
8 }elsef

9 $result_obj = new stdClass;

10 if(!'empty(Serr) t_obj->error = Serr;
11 telse({

12 Sresult_obj->data = $query_result;

13 }
14 print (json_encode ($result_obj));

Fig. 5: XSS vulnerability CVE-2020-13892

public function sav

e ()4

1

2 parent: :save (

3 if (isset($_POST[’sportpress_events_teams_delimiter’]))
4 update_option(’sportpress_event_teams_delimiter’,

$_POST [’ sportpress_event_teams_delimiter’]);

D. Limitations and Threats to Validity

In the context of our experiment, we selected GRU and
GCN as our main architecture for DeepTective. Our choice of
architecture was biased by our approach to this problem from a
graph semantics perspective and sequence-of-tokens perspec-
tive. However, we acknowledge that other approaches can be
implemented other than the one proposed in DeepTective.

Our experiment involves several web applications that are
written in PHP language. We are aware that some of our
techniques are only applicable to PHP language and cannot
be applied to different programming languages such as C++,
Java, and Python. However, the general methodology of Deep-
Tective, where we combine GRU and GCN to learn long term
dependencies and code semantics, can be applied to other
programming languages with the right tools and tokeniser.

Our experiments are limited only to the top four vulner-
abilities in PHP applications. Therefore, even though our
approach can be easily extended to consider more CWEs for
the multiclass classification task, we do not know if the new
task’s performance will be the same or on par with the one
reported in this work.

In our experiment, we use three datasets: SARD, NVD
and Git. The fundamental issue with the SARD dataset is
that it is rather simplistic and not representative of real-world
code samples. Furthermore, there are many duplicates post-
processing as a majority of the code is duplicated across
samples with only one or two lines changing. We found that
occasionally duplicates across classes were far from ideal.
In our case, we removed all duplicates. The NVD and Git
datasets posed a different issue stemming from collecting
the code samples. When we have a vulnerable commit, we
define a vulnerable function as one where a line has been
changed in the commit. The issue is that some commits
we saw would include refactoring or code unrelated to the
vulnerability fix where the author has included other features.

This issue introduces a label noise problem in our dataset.

VII. CONCLUSIONS

We have presented DeepTective, a novel vulnerability detec-
tion approach which aims to capture contextual information
from real-world vulnerabilities in order to reduce false pos-
itives and false negatives. Our approach combines a Gated
Recurrent Unit to learn long term sequential dependencies
of source code tokens and a Graph Convolutional Network
to incorporate contextual information from the control flow
graph. DeepTective achieves a better performance that the
state-of-the-art on both synthetic and realistic datasets, and
was able to detect 4 novel security vulnerabilities in WordPress
plugins, which other detection tools failed to detect.

[1]

[2]
[3]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

REFERENCES

R. Rabheru, H. Hanif, and S. Maffeis, “Deeptective: Detection
of php vulnerabilities using hybrid graph neural networks,” in
Proceedings of the 36th Annual ACM Symposium on Applied
Computing, ser. SAC ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 1687-1690. [Online]. Available:
https://doi.org/10.1145/3412841.3442132

MITRE, “Browse cve vulnerabilities by date,” 2020. [Online]. Available:
https://www.cvedetails.com/browse-by-date.php

N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: a static analysis tool for
detecting web application vulnerabilities,” in 2006 IEEE Symposium on
Security and Privacy (S P’06), 2006, pp. 6 pp.—263.

J. Dahse and J. Schwenk, “Rips-a static source code analyser for
vulnerabilities in php scripts,” in Seminar Work (Seminer Calismasi).
Horst Gortz Institute Ruhr-University Bochum, 2010.

J. Dahse and T. Holz, “Simulation of built-in PHP features for precise
static code analysis,” in 21st Annual Network and Distributed System
Security Symposium, NDSS 2014, San Diego, California, USA, February
23-26, 2014. The Internet Society, 2014.

S. Son and V. Shmatikov, “Saferphp: Finding semantic vulnerabilities in
php applications,” in Proceedings of the ACM SIGPLAN 6th Workshop
on Programming Languages and Analysis for Security, ser. PLAS "11.
New York, NY, USA: Association for Computing Machinery, 2011.
[Online]. Available: https://doi.org/10.1145/2166956.2166964

I. Medeiros, N. F. Neves, and M. Correia, “Automatic detection
and correction of web application vulnerabilities using data mining
to predict false positives,” in Proceedings of the 23rd International
Conference on World Wide Web, ser. WWW ’14. New York, NY,
USA: Association for Computing Machinery, 2014, p. 63—74. [Online].
Available: https://doi.org/10.1145/2566486.2568024

I. Medeiros, N. Neves, and M. Correia, “Equipping WAP with
WEAPONS to Detect Vulnerabilities: Practical Experience Report,” in
2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). 1EEE, 2016, pp. 630-637.

P. J. C. Nunes, J. Fonseca, and M. Vieira, “phpsafe: A security analysis
tool for oop web application plugins,” in 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2015, pp. 299-306.

J. Huang, Y. Li, J. Zhang, and R. Dai, “UChecker: Automatically Detect-
ing PHP-Based Unrestricted File Upload Vulnerabilities,” in 2019 49th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). 1EEE, 2019, pp. 581-592.

Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulner-
ability identification by learning comprehensive program semantics via
graph neural networks,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.

R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, “Automated vulnerability detection
in source code using deep representation learning,” in 2018 17th
IEEE International Conference on Machine Learning and Applications
(ICMLA), 2018, pp. 757-762.

Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability detec-
tion,” arXiv preprint arXiv:1801.01681, 2018.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

(35]

Y. Fang, S. Han, C. Huang, and R. Wu, “Tap: A static analysis model
for php vulnerabilities based on token and deep learning technology,”
PLOS ONE, vol. 14, no. 11, pp. 1-19, 11 2019. [Online]. Available:
https://doi.org/10.1371/journal.pone.0225196

A. Fidalgo, I. Medeiros, P. Antunes, and N. Neves, “Towards a deep
learning model for vulnerability detection on web application variants,”
in 2020 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), 2020, pp. 465-476.

N. Guo, X. Li, H. Yin, and Y. Gao, “Vulhunter: An automated vul-
nerability detection system based on deep learning and bytecode,” in
Information and Communications Security. ~Cham: Springer Interna-
tional Publishing, 2020, pp. 199-218.

I. Medeiros, N. Neves, and M. Correia, “Dekant: A static analysis tool
that learns to detect web application vulnerabilities,” in Proceedings
of the 25th International Symposium on Software Testing and
Analysis, ser. ISSTA 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 1-11. [Online]. Available:
https://doi.org/10.1145/2931037.2931041

L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257-286, 1989.

J. Kronjee, A. Hommersom, and H. Vranken, “Discovering software
vulnerabilities using data-flow analysis and machine learning,” in
Proceedings of the 13th International Conference on Availability,
Reliability and Security, ser. ARES 2018. New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3230833.3230856

H. Wang, G. Ye, Z. Tang, S. H. Tan, S. Huang, D. Fang, Y. Feng,
L. Bian, and Z. Wang, “Combining graph-based learning with automated
data collection for code vulnerability detection,” IEEE Transactions on
Information Forensics and Security, vol. 16, pp. 1943-1958, 2021.

D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, “uvuldeepecker: A deep
learning-based system for multiclass vulnerability detection,” [EEE
Transactions on Dependable and Secure Computing, pp. 1-1, 2019.

D. Filaretti and S. Maffeis, “An executable formal semantics of PHP,”
in ECOOP 2014 - Object-Oriented Programming - 28th European
Conference, ser. LNCS, vol. 8586. Springer, 2014, pp. 567-592.
Stanistaw Pitucha, “phply,” 2016, [Accessed April 18, 2020]. [Online].
Available: https://github.com/viraptor/phply

David Beazley, “ply,” 2017, [Accessed April 18, 2020]. [Online].
Available: https://www.dabeaz.com/ply/

scikit-learn, “LabelEncoder,” 2011, [Accessed April 18, 2020].
[Online]. Available: https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.LabelEncoder.html

M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi,
“Efficient and flexible discovery of php application vulnerabilities,” in
2017 IEEE European Symposium on Security and Privacy (EuroS P),
2017, pp. 334-349.

K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

M. Fey, “Pytorch geometric documentation,” 2020, [Accessed
September 26, 2020]. [Online]. Available: https://pytorch-
geometric.readthedocs.io/en/latest/modules/nn.html

National Institute of Standards and Technol-
ogy, “SARD,” 2020, [Accessed April 10, 2020].
[Online]. Available: https://samate.nist.gov/index.php/ Soft-
ware_Assurance_Reference_Dataset.html

Bertrand C. Stivalet, “PHP Vulnerability = Test Suite,”
2015, [Accessed April 10, 2020]. [Online]. Available:

https://samate.nist.gov/SARD/view.php?tsID=103

——, “PHP Vulnerability Test Suite Generator,” 2015, [Accessed April
10, 2020]. [Online]. Available: https://github.com/stivalet/PHP-Vuln-
test-suite-generator

National Institute of Standards and Technology, “National Vulnerability
Database,” 2020, [Accessed April 10, 2020]. [Online]. Available:
https://nvd.nist.gov/

DesignSecurity, “progpilot,” 2017, [Accessed June 05, 2020]. [Online].
Available: https://github.com/designsecurity/progpilot

V. Khliupko, Composer. Berkeley, CA: Apress, 2017, pp. 43-50.
[Online]. Available: https://doi.org/10.1007/978-1-4842-2460-1_6

