
EXPRESS 2007

Matching Systems for Concurrent Calculi

Bjørn Haagensen1

Aalborg University
Denmark

Sergio Maffeis2

Imperial College London

Iain Phillips3

Imperial College London

Abstract

Matching systems were introduced by Carbone and Maffeis, and used to investigate the expressiveness of the
pi-calculus with polyadic synchronisation. We adapt their definition and investigate matching systems for
CCS, the pi-calculus and Mobile Ambients. We show among other results that the asynchronous pi-calculus
with matching cannot be encoded (under certain conditions) in CCS with polyadic synchronisation of all
finite levels.

Keywords: Matching systems, CCS, pi-calculus, Mobile Ambients

1 Introduction

Matching systems were introduced by Carbone and Maffeis [4]. A matching system
is a protocol which ensures that a client matches successfully with a server if and
only if both parties have the same sequence of names as parameters. This can
be achieved trivially if client and server can synchronise on all names in a single
atomic communication. However it may not be possible if, for instance, they can
only synchronise on one name at a time, as in standard π-calculus. Carbone and
Maffeis used matching systems to establish a hierarchy within eπ, the π-calculus
with polyadic synchronisation. They show that there is no encoding (satisfying
certain conditions) of the asynchronous calculus with n-adic communication into
the synchronous calculus with m-adic communication (for any m < n).

1 Email: bh@cs.aau.dk
2 Email: maffeis@doc.ic.ac.uk
3 Email: iccp@doc.ic.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:bh@cs.aau.dk
mailto:maffeis@doc.ic.ac.uk
mailto:iccp@doc.ic.ac.uk

Haagensen, Maffeis and Phillips

In this paper we investigate matching systems further. In particular, we pro-
pose a weakened form of matching system, where if client and server agree on their
parameters then there is a successful computation, but success is no longer guaran-
teed, unlike in the original formulation. These weak matching systems enable us to
obtain different separations between calculi. We regard matching systems (whether
in the weak form or the original strong form) as measuring the capability of partic-
ular calculi to perform transactions, in other words to perform a series of operations
which can be treated as a single operation. Weak matching systems require only
that all the commits are justified, whereas strong matching systems require also
that the transaction is not rolled back an unbounded number of times.

Matching systems may be compared with De Nicola-Hennessy testing [6], where
processes interact with test processes, and one analyses whether they can pass a
test (“may” testing), or are guaranteed to pass a test (“must” testing). A weak
matching system can be seen as a kind of may testing scenario where clients and
servers test each other. Similarly, a strong matching system corresponds, in a sense,
to a must testing scenario.

In [4], it is shown that there is no “sensible” encoding of matching in the π-
calculus with mixed choice. Here we use weak matching systems to give a different
separation result involving a language with matching, based on a different notion of
encoding. We shall show there there is no encoding (subject to certain conditions)
from the asynchronous π-calculus with matching into CCS with n-adic communi-
cation (for any n).

This is related to the question of showing that the asynchronous π-calculus
cannot be encoded into CCS. As far as we are aware, such a negative result has
never been obtained, even though most researchers would presumably expect this
to hold, since the asynchronous π-calculus has the ability to send and receive names
(objects) and then use them as channels (subjects), and this is disallowed in CCS
(even with value passing).

Palamidessi [10] used electoral systems to prove two relevant results. Firstly, she
showed that CCS cannot be encoded in the asynchronous π-calculus (the converse
of what we are discussing). Secondly, she showed that the π-calculus with mixed
choice cannot be encoded in CCS. However her work leaves open the possibility that
the asynchronous π-calculus can be encoded in CCS.

Banach and van Breugel [1] encoded the π-calculus into a version of CCS. This
involves augmenting CCS with infinite operations (and not just infinite summation).

Sangiorgi [13] defined the π-calculus with internal mobility (πI), where only
private names can be transmitted. He gave a hierarchy of typed calculi within πI,
such that the bottom level represents “the core of CCS”. He showed that higher
levels in the hierarchy exhibit a “higher degree” of mobility, in the sense that they
admit longer subject-object dependency chains. However he did not assert any
result about the non-encodability of higher levels in lower levels of the hierarchy.

Boreale [2] gave an encoding of the asynchronous π-calculus into πI. This en-
coding is in two steps, and goes via an intermediate calculus, localised π, or Lπ,
the subset of the asynchronous π-calculus where the recipient of a name may only
use it in output actions. This terminology is due to Merro and Sangiorgi [8]. They
showed that Lπ can be encoded fully abstractly in localised πI using the second

2

Haagensen, Maffeis and Phillips

step in Boreale’s encoding.
After presenting our results on weak matching systems, we recast the separation

result concerning polyadic synchronisation of [4] into our current setting, using
the notion of replicated strong matching systems. Our new formulation is a slight
generalisation of the previous result. Surprisingly, and against previous intuition,
we have found that by simply requiring each instance of a matching system to be
finite (strong matching systems), the full π-calculus is powerful enough to solve
the problem for any degree n. We conjecture that the same is not possible for the
asynchronous π-calculus, suggesting a possible new interpretation of the expressive
power of the mixed choice construct.

The remainder of the paper is organised as follows. In Section 2 we define the
calculi we shall be considering. Then in Sections 3 and 4 we investigate weak and
strong matching systems, respectively. We finish with conclusions and further work.

2 Calculi

In this section we define the calculi that we shall be concerned with in this paper.
We let x, y, . . . range over the set of names N . We shall let −→x denote a tuple of

names x1, . . . , xn.
Polyadic synchronisation, where e.g. an output process x · y〈z〉.P can synchro-

nise with an input process x · y(w).Q, was introduced in [4].

Definition 2.1 The full πn-calculus (fπn) is defined as the polyadic synchronous
π-calculus with mixed choice, matching and mismatching, and polyadic synchroni-
sation of degree n, that is

P ::= P | Q | νxP | !P | Σiαi.P | [x = y]P | [x 6= y]P

where each αi is of the form x1 · . . . · xn(−→y) or x1 · . . . · xn〈−→y 〉. We let S, T range
over summations, and write the empty summation as 0.

Note that fπ1 is the standard full π-calculus. We define the free names fn(P) as
usual, with input and restriction being name-binding.

Definition 2.2 Structural congruence is the least congruence ≡ on fπn processes
satisfying the following laws: P | Q ≡ Q | P , (P | Q) | R ≡ P | (Q | R), 0 | P ≡ P ,
[x = x]P ≡ P , [x 6= y]P ≡ P if x 6= y, !P ≡ P |!P and νx(P | Q) ≡ P | νxQ if x /∈
fn(P), together with reordering of summations.

Definition 2.3 The reduction relation on fπn is defined by the following axiom and
rules

(x1 · . . . · xn〈y1, . . . , ym〉.P + S) | (x1 · . . . · xn(z1, . . . , zm).Q+ T)

→ P | Q{y1, . . . , ym/z1, . . . , zm}

P → Q

P | R→ Q | R
P → Q

νxP → νxQ

P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′

We let ⇒ be the reflexive and transitive closure of →.

3

Haagensen, Maffeis and Phillips

Definition 2.4 Input and output barbs are defined by

P ↓x1·...·xn iff P ≡ ν−→z ((x1 · . . . · xn(−→y).R+ S) | Q) where −→x ∩ −→z = ∅

P ↓x1·...·xn iff P ≡ ν−→z ((x1 · . . . · xn〈−→y 〉.R+ S) | Q) where −→x ∩ −→z = ∅

We let P ⇓x1·...·xn iff P ⇒↓x1·...·xn, and similarly for output barbs.

Definition 2.5 The calculus aπn is defined as the polyadic asynchronous π-calculus
with polyadic synchronisation of degree n, that is

P ::= 0 | P | Q | νxP | !P | x1 · . . . · xn(−→y).P | x1 · . . . · xn〈−→y 〉
The only reduction axiom for aπn is

x1 · . . . · xn(y1, . . . , ym).P | x1 · . . . · xn〈z1, . . . , zm〉 → P{z1, . . . , zm/y1, . . . , ym}

Note that aπ1 is the standard asynchronous π-calculus. The localised π-calculus
Lπ [2,8] is the subset of aπ1 where the recipient of a name may only use it in output
actions. We write aπ=

n to denote aπn with matching [x = y]P .

Definition 2.6 The calculus CCSn is defined as the fragment of fπn which has no
name-passing and no matching or mismatching, that is

P ::= P | Q | νxP | !P | Σiαi.P

where each αi is of the form x1 · . . . · xn or x1 · . . . · xn.

The CCSn synchronisation rule is

(x1 · . . . · xn.P + S) | (x1 · . . . · xn.Q+ T)→ P | Q .

Note that CCS1 is a form of standard CCS. It resembles the CCS of [9] with
replication instead of recursion.

Definition 2.7 The calculus of Mobile Ambients (MA) [5] has the following syntax:

P ::= 0 | P | Q | νxP | !P | x[P] | inx.P | outx.P | openx.P

| 〈x〉 | (x).P

Here x[P] is an ambient named x enclosing P , and in, out, open are the capabilities
for entering, leaving or dissolving ambients. We also have asynchronous, anony-
mous (no channel) output and input. 4 The free names fn(P) of a process P are
defined much as for the π-calculus, with input and restriction being name-binding.
Structural congruence and reduction rules are adapted from the π-calculus, with
the following reduction axioms:

x[in y.P | Q] | y[R]→ y[x[P | Q] | R]

y[x[out y.P | Q] | R]→ x[P | Q] | y[R]

openx.P | x[Q]→ P | Q

〈x〉 | (y).P → P{x/y}

Barbs are defined by

P ↓x iff P ≡ ν−→z (x[P] | Q) where x /∈ −→z .

4 Note that for simplicity we have just defined name-passing communication, whereas communication in [5]
allows sequences of capabilities to be transmitted.

4

Haagensen, Maffeis and Phillips

Pure public boxed MA (ppbMA) is got by omitting communication, restriction and
the open capability. Recall that the open capability is omitted in the calculus of
boxed ambients [3].

Let MA−in denote (full) MA with only the in capability omitted.

3 Weak Matching Systems

We present the weakened definition of matching system. Then we show that aπ2

has matching systems of every finite degree. We show that CCSn does not have
matching systems of degree n+ 1 or greater. We then show that matching systems
are preserved by encodings satisfying certain properties. We deduce that there is no
encoding from aπ2 to CCS satisfying those properties. We also present analogous
results concerning ppbMA and CCS.

In matching systems [4], the idea is that clients C communicate with servers S
and try to match their parameters, reporting success if there is a match. We change
Carbone and Maffeis’s definition of matching system to the following, which applies
to all the calculi defined in Section 2:

Definition 3.1 A weak matching system (WMS) of degree n is a tuple
(C, S, x1, . . . , xn) where C and S are processes and x1, . . . , xn are distinct names,
such that for all finite index sets I and J , and all injective substitutions σi (i ∈ I)
and θj (j ∈ J) where dom(σi) = dom(θj) = {x1, . . . , xn},

(
∏
i∈I

Cσi |
∏
j∈J

Sθj) ⇓ω iff ∃i ∈ I, j ∈ J such that σi = θj .

Here ω is a special name used for reporting a successful match. We require that ω /∈
{x1, . . . , xn} and that substitutions do not change any xi into ω. Also substitutions
should not map any xi into a free name of C or S, other than x1, . . . , xn. When
convenient, we display parameters explicitly, writing Cσ as C〈σ(x1), . . . , σ(xn)〉.

It is easy to see that, in a WMS (C, S, ~x), all of ~x must be free in both C and S.
There are five changes from the pre-existing notion. Firstly, and most impor-

tantly, we do not require that if there is a match then every computation leads to
success. Thus we have a “may” notion of success, rather than a “must” notion.
Secondly, we do not use replication in the definition (for the server). Thirdly, we
omit the identifier for the client, so that client and server are symmetrical. Fourthly,
we allow both client and server to contain free names not drawn from ~x. Fifthly,
we require that parameters are distinct, so that we are dealing with permutations
rather than substitutions in general. This last condition will be useful when we
show that matching systems are preserved by encodings (Theorem 3.9).

Note that in standard process calculi a weak matching system never needs to use
recursion or replication. It must be the case that (C〈~x〉 | S〈~x〉) ⇓ω by a finite com-
putation. We can unfold recursion or replication enough to get this computation,
and then set the recursion or replication part to the nil process 0. The modified
client and server still give an ω barb when there is a match, and, since we have only
reduced behaviour and not added any new behaviour, they still do not yield an ω

barb when there is no match.

5

Haagensen, Maffeis and Phillips

If a calculus has a WMS of degree n then it has WMSs of all smaller degrees:

Lemma 3.2 Let m < n. If (C, S, x1, . . . , xn) is a WMS of degree n then
(C, S, x1, . . . , xm) is a WMS of degree m. 2

We now show that aπ=
1 has weak matching systems of every degree:

Theorem 3.3 For every n ≥ 1, aπ=
1 has a WMS of degree n.

Proof. (Sketch) We define Cn and Sn as follows:

Cn(x1, . . . , xn) df= x1(z′).(
∏n
i=2 z

′〈xi〉)

Sn(x1, . . . , xn) df= νz(x1〈z〉 | S′n−1〈z, x2, . . . , xn〉)

S′n−k(z, xk+1, . . . , xn) df= z(x′k+1).([xk+1 = x′k+1]S′n−k−1〈z, xk+2, . . . , xn〉)

for k = 1, . . . , n− 2

S′1(z, xn) df= z(x′n).([xn = x′n]ω)

The server creates a new private name z, which is passed to the client on the first
communication on x1. The client then uses this private channel to send the other
names back to the server. As each name is received, the server checks that it
matches. Notice that the computation can fail even if conducted entirely between
a matching client and server, due to the nondeterminism in the order in which the
messages from the client are sent. This does not cause a problem, since we are
dealing with weak matching systems—a single successful computation is enough.2

Remark 3.4 We recall from [4] that matching can be encoded in aπ2; the process
[x = y]P may be encoded as νz(z · x | z · y.P) where z is fresh. Hence, Theo-
rem 3.3 also holds for aπ2. Note also that, in fact, the solution is written in Lπ
with matching.

If we try to eliminate the use of matching in the proof of Theorem 3.3 by using
communication in an obvious manner, then the proof fails. Consider the case for
n = 2. The client process is

C2(x1, x2) df= x1(z′).z′〈x2〉

as before. The revised server process with matching replaced by communication is

S2(x1, x2) df= νz(x1〈z〉 | z(x′2).(x′2 | x2.ω))

Now consider

C2(a1, a2) | C2(a′1, a
′
2) | S2(a1, a

′
2) | S2(a′1, a2)

where a1, a2, a
′
1, a
′
2 are all distinct. This network does not contain a match. However

there is a computation which succeeds erroneously. Suppose that S2(a1, a
′
2) receives

a2 from C2(a1, a2). It should then check a2 against a′2, which should fail. Suppose
also that S2(a′1, a2) receives a′2 from C2(a′1, a

′
2). It should then check a′2 against a2,

which should again fail. But we can get a crossover between the two checks, so that
they both succeed erroneously.

We can also define matching systems using ambients:

Theorem 3.5 For every n ≥ 1, ppbMA has a WMS of degree n.

6

Haagensen, Maffeis and Phillips

Proof. Let

Cn
df= m[inx1. · · · .inxn.outxn.outx1.ω[outm]]

Sn
df= x1[x2[. . . xn[] . . .]] .

The idea is that the client enters successively the stacked x1, . . . , xn ambients of the
server, before returning to the top level to report success. The client simply gets
stuck if there is no match. 2

We next investigate matching systems for CCS.

Theorem 3.6 Let m,n ≥ 1. Then CCSn has a WMS of degree m if and only if
n ≥ m.

Proof. (Sketch) First suppose that n ≥ m. We define a WMS of degree m in CCSn
as follows:

Cm
df= x1 · . . . · xm Sm

df= x1 · . . . · xm.ω

Notice that this WMS is guaranteed to succeed, and so it is in fact a strong MS, to
be defined in Section 4.

For the converse direction, by Lemma 3.2 it is enough to show that CCSn
does not have a WMS of degree n + 1. So suppose for a contradiction that
(C, S, x1, . . . , xn+1) is a WMS of degree n + 1 in CCSn. We shall show that there
is a combination of clients and servers which does not contain a match, and yet
erroneously returns success.

There is k ≥ 0 and there are Ci, Si (0 ≤ i ≤ k) such that

C | S = C0 | S0 → · · · → Ck | Sk where (Ck | Sk) ↓ω .

This holds because there is a match between the single client and and the single
server (using the identity substitution in both cases). Note that during the com-
putation we may have to extrude the scope of restrictions in order to obtain the
necessary redex, but we can then immediately return the scopes so that they lie
entirely within Ci+1 or Si+1. This returning of scopes would not in general be pos-
sible in the π-calculus, where restricted names can be transmitted along channels,
resulting in more than one process sharing the same restricted name.

Let x′1, . . . , x
′
n+1 be distinct fresh names different from x1, . . . , xn+1. Let s =

s1 · · · sn+1 range over binary strings in {0, 1}n+1. Let σs be the substitution which
sets

σs(xi)
df=

 xi if si = 0

x′i if si = 1

Let E = {s ∈ {0, 1}n+1 : s has an even number of 1s} and O = {s ∈ {0, 1}n+1 :
s has an odd number of 1s}. For i = 0, . . . , k let

Pi
df=

∏
s∈E

Ciσs |
∏
s∈O

Siσs

Then P0 does not contain a match. We show that Pi →2n
Pi+1 for i = 0, . . . , k− 1.

Since plainly Pk ↓ω, we shall have a contradiction.

7

Haagensen, Maffeis and Phillips

There are various cases

(i) Suppose that Ci → Ci+1 with Si+1 = Si. Then for each s ∈ E we have
Ciσs → Ci+1σs, and for each s ∈ O we have Si+1σs = Siσs.

(ii) The case where Si → Si+1 with Ci+1 = Ci is handled like the preceding case.

(iii) Suppose that Ci | Si → Ci+1 | Si+1 by a communication on channel y1 · . . . · yn.
Let j be such that xj /∈ −→y . Let s ∈ E. Let t be the same as s except that
tj = 1 − sj . Then t ∈ O. Also, Ciσs and Siσt can communicate on channel
σs(y1) · . . . ·σs(yn) to produce Ci+1σs | Si+1σt. In this way we pair off all clients
and servers and we produce Pi+1 after 2n reductions.

2

The next result suggests that the in capability is needed to obtain WMSs for MA.

Theorem 3.7 For n ≥ 2, there is no WMS of degree n in pure MA−in.

Proof. (Sketch) We adapt the method used in the proof of Theorem 3.6. We
suppose that we have a WMS of degree 2, and show for a contradiction that

C〈x1, x2〉 | C〈x′1, x′2〉 | S〈x′1, x2〉 | S〈x1, x
′
2〉

has a successful computation. This is possible because the clients and servers can
only interact at the top level of the ambient tree, due to the absence of the in
capability. 2

Conjecture 3.8 For n ≥ 2 there is no WMS of degree n in pure MA without the
out capability. 2

We now establish conditions under which matching systems are preserved when
encoding one language in another. Our result (Theorem 3.9) will apply to all the
languages defined in Section 2.

We assume that we are dealing with process calculi L with a notion of weak
barb P ⇓x such that for any permutation σ, P ⇓ω iff σ(P) ⇓σ(ω). This holds for any
process calculus in the π-calculus family (including ambient calculi). We shall also
assume that all calculi have the same set of names N , and that N is infinite.

The next theorem shows that weak matching systems are preserved by encodings
satisfying certain conditions. The first two conditions are similar to those used by
Palamidessi [10]. In the third condition, the injection ϕ and its properties are
similar to Gorla’s “strict renaming policy” [7]. The idea is that names of the source
language are mapped across to unique names in the target language by ϕ, with the
names which are not in the range of ϕ being available as “reserved names” for use
in the encoding (so ϕ could be the identity if the encoding required no reserved
names). The encoding of a process P should not depend on the particular names in
P , since names have no structure or meaning. This idea is expressed by requiring
a property of invariance under injective substitution, mediated by ϕ.

Theorem 3.9 Let L and L′ be process calculi. Let [[−]] : L → L′ be an encoding
satisfying:

(i) P ⇓ω iff [[P]] ⇓ω;

(ii) [[P | Q]] = [[P]] | [[Q]];

8

Haagensen, Maffeis and Phillips

(iii) There is an injective ϕ : N → N with ϕ(ω) = ω, such that for all finite
injective substitutions σ, if P is such that rge(σ) ∩ fn(P) = ∅ then we have
[[Pσ]] = [[P]]σ′, where the injective substitution σ′ is defined by

σ′(ϕ(x)) = ϕ(σ(x)) if x ∈ dom(σ)

σ′(x) undefined otherwise

Let (C, S, ~x) be a weak matching system of degree n in L. Then ([[C]], [[S]],
−−→
ϕ(x)) is

a weak matching system of degree n in L′.

Proof. (Sketch) Consider

P
df=

∏
i∈I

[[C]]σi |
∏
j∈J

[[S]]θj

where dom(σi) = dom(θj) = {ϕ(x1), . . . , ϕ(xn)}. We need to show that P ⇓ω iff P

has a match, i.e. there are i ∈ I and j ∈ J such that σi = θj .
Let A =

⋃
i∈I rge(σi) ∪

⋃
j∈J rge(θj). Let B be a set of names in bijection with

A via f : A → B, such that for each x ∈ B, both x and ϕ(x) are fresh. This is
always possible, since we assume that N is infinite.

For each i ∈ I and each k = 1, . . . , n, let

σ′i(xk)
df= f(σi(ϕ(xk))) .

Similarly, for each j ∈ J and each k = 1, . . . , n, let

θ′j(xk)
df= f(θj(ϕ(xk))) .

Then σ′i, θ
′
j are finite injective substitutions. Also σ′i(xk), θ

′
j(xk) /∈ {ω} ∪ fn(P) ∪

fn(Q), since all x ∈ B are fresh.
Now P has a match iff

Q
df=

∏
i∈I

Cσ′i |
∏
j∈J

Sθ′j

has a match. This is because Q has a match iff ∃i, j. ∀k. f(σi(ϕ(xk))) = f(θj(ϕ(xk)))
iff ∃i, j. ∀k. σi(ϕ(xk)) = θj(ϕ(xk)) (since f is a bijection) iff P has a match.

By property (iii) of the encoding, for each i ∈ I there is σ′′i such that [[Cσ′i]] =
[[C]]σ′′i where σ′′i (ϕ(xk)) = ϕ(σ′i(xk)). Similarly, for each j ∈ J there is θ′′j such that
[[Sθ′j]] = [[S]]θ′′j where θ′′j (ϕ(xk)) = ϕ(θ′j(xk)).

Now Q has a match iff Q ⇓ω (since (C, S,−→x) is a WMS). Also, Q ⇓ω iff [[Q]] ⇓ω
(property (i) of the encoding). Using property (ii) of the encoding, we have [[Q]] = R,
where

R
df=

∏
i∈I

[[C]]σ′′i |
∏
j∈J

[[S]]θ′′j

Notice that σ′′i (ϕ(xk)) = ϕ(σ′i(xk)) = ϕ(f(σi(ϕ(xk)))). Similarly, θ′′j (ϕ(xk)) =
ϕ(θ′j(xk)) = ϕ(f(θj(ϕ(xk)))). Also note that rge(σ′′) ∩ ((fn([[C]]) ∪ fn([[S]])) \
{ϕ(x1), . . . , ϕ(xn)}) = ∅, since all y ∈ ϕ(B) are fresh. Similarly for rge(θ′′). Since
f and ϕ are injective, we can extend their composition ϕ(f(·)) to a suitable per-
mutation ρ which leaves ω unchanged, such that R = Pρ. But then R ⇓ω iff P ⇓ω
(property of L′).

Combining, we have: P has a match iff P ⇓ω, as required. 2

9

Haagensen, Maffeis and Phillips

We can use Theorem 3.9 and our various preceding positive and negative results
to state some non-encodability results:

Theorem 3.10 There is no encoding satisfying the conditions of Theorem 3.9 from
aπ=

1 to CCSn (all n ≥ 1).

Proof. By Theorems 3.3, 3.6 and 3.9. 2

In connection with Theorem 3.10, we note that Carbone and Maffeis showed that
there is no sensible encoding from aπ=

1 into the standard π-calculus with mixed
choice (and without matching) [4, Theorem 4.1]. Our result here uses different
conditions and holds for all levels of polyadic synchronisation in CCS.

Theorem 3.11 There is no encoding satisfying the conditions of Theorem 3.9 from
ppbMA to CCSn (all n ≥ 1).

Proof. By Theorems 3.5, 3.6 and 3.9. 2

Concerning Theorem 3.11, Phillips and Vigliotti [12] showed there is no encoding
(under different conditions) from pure public MA (with open) to CCS. Previously
they showed that there is no encoding (under yet other conditions) from pure public
boxed MA to aπ1 [11].

4 Strong Matching Systems

In this section we investigate strong matching systems, where if there is a match
then every computation is guaranteed to succeed. We show that the full π-calculus
fπ1 has strong matching systems of every finite degree (Theorem 4.4).

Definition 4.1 A strong matching system (SMS) of degree n is a tuple
(C, S, x1, . . . , xn) where C and S are processes and x1, . . . , xn are distinct names,
such that for all finite index sets I and J , and all substitutions σi (i ∈ I) and
θj (j ∈ J) where dom(σi) = dom(θj) = {x1, . . . , xn}, defining

MS
df=

∏
i∈I

Cσi |
∏
j∈J

Sθj

(i) if MS ⇓ω then ∃i ∈ I, j ∈ J. σi = θj;

(ii) if ∃i ∈ I, j ∈ J. σi = θj then ∀MS′. MS ⇒MS′ implies MS′ ⇓ω;

(iii) there are no infinite reduction sequences starting from MS.

A replicated SMS (!SMS for short) is defined as an SMS, except that we require
the servers to be replicated, so that

MS
df=

∏
i∈I

Cσi |
∏
j∈J

!Sθj

Observe that if (C, S,−→x) is a !SMS then (C, !S,−→x) is an SMS. Also, if (C, S,−→x) is
an SMS then (C, S,−→x) is a WMS.

The notion of !SMS is quite close to the original formulation of matching system
in [4]. It differs from the original MS in two ways: Firstly, we omit the identifier
for the client, so that client and server are symmetrical. Secondly, we allow both
client and server to contain free names not drawn from −→x .

10

Haagensen, Maffeis and Phillips

The next result is similar to [4, Theorem 4.2]:

Theorem 4.2 For all non-negative integer numbers n and m, there is a !SMS of
degree m in fπn if and only if n ≥ m.

Proof. (⇐) Choosing

Cm
df= x1 · . . . · xm〈〉 Sm

df= x1 · . . . · xm(z).ω〈〉

we have that (Cm, Sm, x1, . . . , xm) is a strong matching system of degree m.
(⇒) The idea is that a client can be endlessly “fooled” into interaction with

servers which only partially match, giving rise to an infinite computation.
Consider the minimal case where m = n+ 1 and suppose (C, S, x1, . . . , xm) is a

!SMS of degree m in πn. Let σ be an injective substitution of fresh names. Then

P
df= Cσ | Sσ

is a matching instance of (C, S, x1, . . . , xm). Note that for any such σ and any R,
if there is a Q such that Rσ ⇒ Q then there is also an R′ such that R ⇒ R′ and
Q = R′σ.

By point (iii) of Definition 4.1, there must be C ′ and S′ such that Cσ ⇒ C ′σ

and C ′σ 6→, and similarly Sσ ⇒ S′σ and S′σ 6→. By point (ii) of Definition 4.1, it
must be the case that P ⇒ (C ′σ | S′σ) ⇓ω. By the contrapositive of point (i) of
Definition 4.1, it must be the case that C ′σ 6↓ω and Sσ 6↓ω. Hence, it must be the
case that C ′σ | S′σ → P ′ ⇓ω for some appropriate P ′.

By definition of reduction, without loss of generality, we can assume that C ′σ ↓−→a1
, . . . , C ′σ ↓−→ak and S′σ ↓−→a1

, . . . , S′σ ↓−→ak
, where −→a1, . . . ,−→ak are all of the possible

channels on which the two processes are ready to communicate. Since m > n, for
each j ∈ [1..k] there exists i such that σ(xi) 6∈ −→aj . Let ρj be defined as ρj(xi) = dj ,
for a fresh dj , and ρj(xh) = σ(xh) otherwise. By construction, since both σ and
each ρj are injective and fresh, we have Sρj ⇒ S′ρj . Since σ and ρj agree on −→aj , it
must be the case that S′ρj ↓−→aj . By the contrapositive of point (i) of Definition 4.1,

it must be the case that

P j0
df= (Cσ | Sρj) 6⇓ω .

However, because of the complementary barbs, there must be P j1 such that P j0 → P j1 .
Still, since

P j2
df= P j0 | Sσ

is a valid instance of a matching system, by point (ii) it must be the case that
P j2 ⇓ω. Moreover, since

P j2 ⇒ P j3
df= (P j1 | Sσ)

it must be the case that P j3 ⇓ω.
We have established above that there must be S′ such that Sσ ⇒ S′σ and S′σ 6→,

and S′σ ↓−→a1
, . . . , S′σ ↓−→ak

. Similarly, there must be P j4 such that P j1 ⇒ P j4 ↓−→ai for

some i in [1..k]. By considering now

P0
df= Cσ |

∏
j∈[1..k]

!Sρj

11

Haagensen, Maffeis and Phillips

we have a contradiction because the system can enter a loop: each Sρj intercepts
the corresponding attempt that Cσ must keep repeating in order to communicate
with a potential matching server Sσ. 2

Theorem 4.3 For n ≥ 2, there is no !SMS of degree n in MA.

Proof. The idea is similar to the proof of Theorem 4.2. 2

By contrast with Theorem 4.2, we show that fπ1 is strong enough to have SMSs
of all degrees:

Theorem 4.4 There is a strong matching system of degree n in fπ1.

Proof. (Sketch) Lists and operations on lists can be encoded in fπ1 without intro-
ducing divergence, using only restricted names (we consider the encoding given by
Turner [14]). For example the list [a, b], accessible through channel x, is represented
by the process νy, z(!x(n, c).c〈a, y〉 |!y(n, c).c〈b, z〉 |!z(n, c).n〈〉). Note that this list
above can be passed around as a single value by passing the name x. Below, we
use the context L[−] df= ν

−→
l (L | −) to denote the machinery to implement lists and

head, tail, concatenation, etc. operations in fπ1. We assume that the names −→l ,
used to implement the list operations, are fresh, and that fn(L[0]) = ∅. Consider
the processes

Cn
df= L[e〈[x1, . . . , xn], []〉]

Sm
df= L[νa

a〈[], [x1, . . . , xn]〉 |!a(x, y).(e〈x, y〉+

e(z, w).F (x@z, y@w, x′, y′).a〈x′, y′〉)

]

where function F takes as input the lists x@z, y@w and returns the lists x′, y′

obtained by removing all the matching pairs from x@z and y@w (@ stands for list
concatenation). For each matching pair, F produces the barb ω. Such a function can
be implemented in fπ1 without introducing divergence, and is defined in OCAML
by the code

let rec rd = function
(l1,[],l3,[]) -> [l1,l3]
|(l1,[],l3,b::l4) -> rd(l1,[],l3@[b],l4)
|(l1,a::l2,l3,[]) -> rd(l1@[a],l2,[],l3)
|(l1,a::l2,l3,b::l4) -> if a=b then barb(omega); rd(l1,l2,[],l3@l4)

else rd(l1,a::l2,l3@[b],l4)

where barb is a user-defined function representing the barb. Note that the last clause
defining F uses the conditional with a boolean guard given by name matching;
this operation can be easily encoded in fπ1 because the language contains name
matching and mismatching. 2

There is an essential use of mixed choice in the proof of Theorem 4.4. We conjecture
that without mixed choice it is impossible to get SMSs of degree higher than the
level of synchronisation in the language:

Conjecture 4.5 For m > n there is no SMS of degree m in aπn.

12

Haagensen, Maffeis and Phillips

5 Conclusions and Further Work

We have adapted the notion of matching system from earlier work by Carbone
and Maffeis. We have seen that there are two main types of matching system, the
weak and the strong, depending on whether successful termination is possible or
guaranteed (in the event of a match between some client and some server). In the
strong case, there are two subtypes of matching system, depending on whether the
server is required to be a replication or not (the former being the stronger of the
two).

These notions can be used to “grade” process calculi according to how good they
are at treating synchronisation on several different names as a single transaction.

We have seen that the full π-calculus is strong enough to have strong matching
systems of all degrees, but not strong enough to have replicated strong matching
systems of degree greater than one.

We also showed that the asynchronous π-calculus with matching has weak match-
ing systems of every finite degree. Our work leaves open the question of whether
the asynchronous π-calculus has a strong matching system of degree two or higher.
We conjecture that the answer is no.

We showed that the calculus of Mobile Ambients has weak matching systems
of all finite degrees. Furthermore, MA does not have replicated strong matching
systems of degree two or higher. Our work leaves open the question of whether MA
has a strong matching system of degree two or higher. Again, we conjecture that
the answer is no.

We showed that CCS does not have weak matching systems of degree greater
than one. By our result on preservation of weak matching systems by suitable en-
codings, we could deduce a non-encodability result for the asynchronous π-calculus
with matching into CCS with all levels of polyadic synchronisation.

Acknowledgements

We thank Uwe Nestmann, Diletta Cacciagrano and the anonymous referees for their
helpful comments and suggestions.

References

[1] Banach, R. and F. van Breugel, Mobility and modularity: expressing pi-calculus in CCS (extended
abstract) (1998), draft.

[2] Boreale, M., On the expressiveness of internal mobility in name-passing calculi, Theoretical Computer
Science 195 (1998), pp. 205–226.

[3] Bugliesi, M., G. Castagna and S. Crafa, Access control for mobile agents: the calculus of Boxed
Ambients, ACM Transactions on Programming Languages and Systems 26 (2004), pp. 57–124.

[4] Carbone, M. and S. Maffeis, On the expressive power of polyadic synchronisation in π-calculus, Nordic
Journal of Computing 10 (2003), pp. 70–98.

[5] Cardelli, L. and A.D. Gordon, Mobile ambients, Theoretical Computer Science 240 (2000), pp. 177–213.

[6] De Nicola, R. and M. Hennessy, Testing equivalences for processes, Theoretical Computer Science 34
(1984), pp. 83–134.

13

Haagensen, Maffeis and Phillips

[7] Gorla, D., Comparing calculi for mobility via their relative expressive power, Technical Report 05/2006,
Dip. di Informatica, Univ. di Roma “La Sapienza”, Italy (2006).

[8] Merro, M. and D. Sangiorgi, On asynchrony in name-passing calculi, Mathematical Structures in
Computer Science 14 (2004), pp. 715–767.

[9] Milner, R., “Communicating and Mobile Systems: the π-calculus,” Cambridge University Press, 1999.

[10] Palamidessi, C., Comparing the expressive power of the synchronous and the asynchronous π-calculi,
Mathematical Structures in Computer Science 13 (2003), pp. 685–719.

[11] Phillips, I.C.C. and M. Vigliotti, Electoral systems in ambient calculi, in: Proceedings of 7th
International Conference on Foundations of Software Science and Computation Structures, FoSSaCS
2004, Lecture Notes in Computer Science 2987 (2004), pp. 408–422.

[12] Phillips, I.C.C. and M. Vigliotti, Leader election in rings of ambient processes, Theoretical Computer
Science 356 (2006), pp. 468–494.

[13] Sangiorgi, D., π-calculus, internal mobility and agent-passing calculi, Theoretical Computer Science
167 (1996), pp. 235–274.

[14] Turner, D.N., “The Polymorphic Pi-calculus: Theory and Implementation,” Ph.D. thesis, University of
Edinburgh (1995).

14

	Introduction
	Calculi
	Weak Matching Systems
	Strong Matching Systems
	Conclusions and Further Work
	References

