
On Abstrat Interpretation of Mobile Ambients �Franesa LeviDISI, University of Genova, ItalySergio Ma�eisDepartment of Computing, Imperial College, UKlevifran�disi.unige.itmaffeis�do.i.a.ukApril 14, 2003AbstratWe introdue an abstrat interpretation framework for Mobile Ambients, basedon a new semantis alled normal semantis. Then, we derive within this settingtwo analyses omputing a safe approximation of the run-time topologial struture ofproesses. Suh a stati information an be suessfully used to establish interestingseurity properties.1 IntrodutionMobile Ambients (MA) [10℄ has reently emerged as a ore programming language for theWeb, and at the same time as a model for reasoning about properties of mobile proesses.MA is based on the notion of ambient. An ambient is a bounded plae, where multi-threaded omputation takes plae; roughly speaking, it generalises both the idea of agentand the idea of loation. Eah ambient has a name, a olletion of loal proesses anda olletion of subambients. Ambients are organised in a tree, whih an be dynamiallymodi�ed, aording to three basi apabilities: inn allows an ambient to enter into anambient n (m[inn.P1 j P2℄ j n[Q℄ ! n[m[P1 j P2℄ j Q℄); outn allows an ambient to exitfrom an ambient n (n[m[outn.P1 j P2℄ j Q℄! m[P1 j P2℄ j n[Q℄); openn allows to destroythe boundary of an ambient n (openn.P j n[Q℄! P j Q).Several stati tehniques, formalised as Type Systems [20, 8, 7, 9, 17, 6, 2, 3, 11, 19℄or Control Flow Analyses (CFA) in Flow Logi style [24, 25, 26, 16, 5℄, have been devised�The work has been partially done when the authors were at the Department of Computer Siene ofthe University of Pisa. They have been partially supported by the MURST projet Abstrat Interpretation,Type Systems and Control Flow Analysis. 1



to study and establish various seurity properties of MA, suh as serey and informationow. These approahes are stritly related and ompute safe approximations of similarinformation on the run-time topologial struture of proesses. Although these methodsare proved sound with respet to a formal semantis, they are typially formulated indi�erent styles. As a onsequene, it is rather diÆult to formally ompare them, and theorresponding algorithms for onstruting the least analysis or for type-inferene.In this paper we apply to MA the semanti-based approah to program analysis of ab-strat interpretation [14, 13℄. Abstrat interpretation provides a rigorous theory to deriveprogram analyses from the spei�ation of the semantis. The typial abstrat interpreta-tion approah onsists of: replaing the onrete domain of omputation with an abstratdomain modeling the property we are interested in; establishing a relation between theonrete and the abstrat domain whih formalises (through Galois onnetions) safenessand preision of approximations; deriving an approximate semantis over the abstrat do-main. The approximate semantis an be obtained in a systemati way whih guaranteesits safeness by onstrution. We refer the reader to Setion 2 for more details on the basionepts of the abstrat interpretation theory.One of the most important and ritial steps for applying abstrat interpretation on-sists of the hoie of the onrete semantis one should start from. The standard redutionsemantis of MA [10℄ is not adequate to abstration, beause it heavily relies on the syntaxby using strutural rules and strutural ongruene to bring the partiipants of a potentialreation into ontiguous positions. We therefore introdue a new semantis for MA, allednormal semantis, whih is indeed equivalent to the standard redution semantis. Thenormal semantis is based on the simple observation that an MA proess is essentially atree, where eah node is an ambient ontaining a set of loal proesses ontrolling its move-ments. Then we derive, by step-wise abstration of the normal semantis, two analyseswhih are proved to be safe.The �rst analysis is designed to ompute an approximation of the following propertyof all the omputations of a proess P : for any ambient n, whih ambients and apabilitiesmay be ontained (at top level) inside n, when n is within an ambient h. This is obtainedby an abstration whih ombines information about the number of ourrenes of objetsand about the ontext. The integration of these two aspets permits to ahieve veryaurate results. To substantiate this laim, we onsider a typial example: an ambient nwhih moves inside an immobile ambient k, and then is opened unleashing an immobileproess inside k. This kind of situation is ritial in MA, if we want to prove statiallythe immobility of k, as it is neessary to detet that any apability of movement insiden has been onsumed before opening. Example 5.11 shows that our analysis ahieves thisresult, in partiular beause it is able to argue on the temporal ordering of exeution ofapabilities. We are not aware of similar results in the setting of MA without adoptingmore omplex tehniques [26, 1℄. It is well-know instead that this problem an be solvedwith simpler tehniques for variants of MA, suh as Safe Ambients (SA) [20, 21℄. The statitehniques for SA [21, 20, 16, 2, 17, 19℄ are typially more preise due to the presene ofoations, whih ontrol when an interation may happen. For instane, the oation open2



simpli�es the task of distinguishing what happens inside an ambient before and after itis opened. Similar results has been obtained also for MA extended with primitives forobjetive mobility [7℄.The seond analysis is designed to ompute an approximation of the following weakerproperty of all the omputations of a proess P : for any ambient n, whih ambients andapabilities may be ontained (at top level) inside n. This is obtained from the �rstanalysis by dropping o� both the ontextual information and the information about thenumber of ourrenes of objets. The analysis we obtain is a re�ned version of the CFAof [24℄. The main di�erene with respet to [24℄ is that our analysis onsiders the e�etof the ontinuation of a apability only if the apability may be exerised. Example 6.11shows in details the di�erene with the CFA of [24℄.The properties omputed by both the analyses permit to ontrol where an ambientmay move and also where it may be opened. This is the basi information whih is neededto statially establish most of the seurity properties studied in the literature for MA[5, 6, 9, 16, 17, 24℄. To illustrate the relevane of the analysis for seurity we show theappliation to some well-known examples taken from [16, 5℄. We fous on the �rst analysiswhih is more preise and interesting; the seond analysis an be used, as the CFA of [24℄,to solve simpler problems, suh as the �rewall protool of [10℄ and the Trojan Horse of [6℄.The normal semantis is presented in Setion 4, and the two derived abstrations inSetions 5 and 6, respetively. Setion 7 shows some examples of seurity properties. Theproof of the main theorems are shown in the Appendixes A and B.Remark This paper is an extended and revised version of [22℄.2 Some bakground on abstrat interpretationWe briey reall the basi onepts of the Galois onnetion based approah of abstratinterpretation [14, 13℄. Suppose we want to approximate a semantis S, whih is omputedas the least �xed-point of a monotoni funtion F over some onrete domain hC;�i. Thekey step onsists of the hoie of an abstrat domain hA;��i modeling the property wewant to statially establish. The notion of Galois onnetion formalises the relation ofabstration between the onrete and the abstrat domain whih is the basis to de�nesafeness and preision of approximations.De�nition 2.1 (Galois onnetion) Let hC;�i and hA;��i be omplete latties. Apair of monotoni funtions (�; ), suh that � : C ! A is the abstration funtion and : A ! C is the onretization funtion, is a Galois onnetion between hC;�i andhA;��i i�, for eah  2 C and a 2 A1.  � (�());2. �((a)) �� a.When �((a)) = a, then (�; ) is alled a Galois insertion.3



The ordering �� is intended to model preision so that a �� a0 means that a0 is asafe approximation of a. Therefore, the abstration of the least �xed-point �(S) gives theexat abstrat property orresponding to S, and an approximate semantis S� over theabstrat domain is a safe approximation of S whenever �(S) �� S�. One of the mainresults of abstrat interpretation is that a safe approximate semantis S� an be omputedas the least �xed-point of an abstrat funtion F� satisfying a ondition of loal safeness,namely that �(F ()) �� F�(�()).Theorem 2.2 (Safeness) Let (�; ) be a Galois onnetion between hC;�i and hA;��i.Moreover, let F : C ! C and F� : A ! A be monotoni funtions. If �(F ()) ��F�(�()), for eah  2 C, then �(lfp F ) �� lfp F�.3 Mobile AmbientsWe introdue the pureMobile Ambients alulus ([10℄) without ommuniation primitives.Let N be a set of names (ranged over by n;m; h; k; : : :).De�nition 3.1 (Proesses) The proesses are de�ned over names N aording to thefollowing syntax:M,N::= (apabilities) P,Q::= (proesses)inn enter n 0 inativityoutn exit n (�n) P restritionopenn open n P j Q parallel omposition!P repliationn[P ℄ ambientM .P pre�xStandard syntatial onventions are used: trailing zeros are omitted, and parallel om-position has the least syntati preedene. We refer to the usual notions of names, freenames, and bound names of a proess P , denoted by n(P ), fn(P ), bn(P ), respetively.We identify proesses whih are �-onvertible, that is, an be made syntatially equal bya hange of bound names. We adopt also the standard notation for substitutions: P [m=n℄denotes the proess obtained by replaing in P any free ourrene of n with m (assum-ing the bound names of P are �-onverted to avoid the onits with m). Similarly, P�denotes the proess obtained by applying the substitution � : N ! N .The ore of the semantis of MA onsists of the redutions in Table 1 orrespondingto the exeution of apabilities. The semantis has also standard strutural rules (Table2) whih use strutural ongruene to bring the partiipants of a potential interationinto ontiguous positions (Table 3). The de�nition of � inludes the standard rules forommuting the positions of parallel omponents, for strething the sope of a restritionand for repliation. 4



In the following we use !� for the transitive and reexive losure of !. Moreover, wewrite P !� Q to say that either P ! Q or P � Q. Similarly for P !�� Q.n[inm.P j Q℄ j m[R℄! m[n[P j Q℄ j R℄ (In)m[n[outm.P j Q℄ j R℄! n[P j Q℄ j m[R℄ (Out)openn.P j n[Q℄! P j Q (Open)Table 1: Basi Redutions of Mobile AmbientsP ! Q) (�n) P ! (�n)Q (Res)P ! Q) P j R! Q j R (Par)P ! Q) n[P ℄! n[Q℄ (Amb)(P 0 ! Q0; P � P 0; Q0 � Q)) P ! Q (Cong)Table 2: Strutural rules for Mobile Ambients4 The Normal SemantisThe normal semantis aims at making easier the appliation of abstrat interpretation,whih is ompliated by strutural ongruene (inluding �-onversion) and by the stru-tural rules of the redution semantis. The normal semantis is based on the intuitiverepresentation of a proess as a tree of ambients, eah ontaining a set of ative proesses.We use a set, alled a topology, to represent the tree of ambients, and a set, alled a on-�guration, to represent the ative proesses ontained in eah ambient. For instane, theproess (�n) (n[in k.P j out k j m[outn.Q℄℄) j k[!openm℄ (1)is represented by the following topology and on�guration (depited also in Figure 1)(f n�; k�; mng; f nin k.P ; noutk; moutn.Q; k!openmg).5



P � P (Re)Q � P ) P � Q (Symm)P � Q; Q � R) P � R (Trans)P j Q � Q j P (Comm)(P j Q) j R � P j (Q j R) (Ass)P � Q) (�n)P � (�n)Q (Res)P � Q) P j R � Q j R (Par)P � Q) !P � !Q (Bang)P � Q) n[P ℄ � n[Q℄ (Amb)P � Q)M .P �M .Q (Pref)n 6= m) (�n) (�m) P � (�m) (�n) P (Res-Com)n =2 fn(P )) (�n) (P j Q) � P j (�n)Q (Res-Par)n 6= m) (�n)m[P ℄ � m[(�n) P ℄ (Res-Amb)P j 0 � P (Nil-Par)(�n)0 � 0 (Nil-Res)!P � P j !P (Bang-Bang)Table 3: Strutural Congruene
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n m k�
!openmoutn.Qin k.Pout kFigure 1: The representation of proess (1)The topology ontains the pairs son-father: mn, beause m is ontained in n, n�and k�, beause n and k are ontained in the outermost ambient that we all �. Theon�guration ontains the proesses exeutable inside any ambient: proesses in k.P andoutk inside n, proess outn.Q inside m, and proess !openm inside k.The translation of a proess into an equivalent pair of topology and on�guration, asshown for proess (1) above, presents two subtle problems. We need to: (i) distinguishtwo di�erent ourrenes of the same objet in the proess ; (ii) hoose properly the namesused for the removal of restritions. In (1), for instane, we have eliminated the restritionoperator by substituting n with a fresh name (in this ase it suÆes to take n itself).To deal with these problems in a simple way we enhane the syntax of proesses byproperly attahing labels to apabilities, restritions and ambients.Provided that the labels assigned to apabilities, restritions and ambients are distint,we diretly obtain a representation, where two opies of the same proess or of an ambientwith the same name are distinguished. For instane, onsider the following labeled versionof proess n[inm℄ j n[ink℄, where labels �; �; ; � are distint one from eah othern�[inm ℄ j n�[in k� ℄. (2)We obtain the following representation(f n��; n��g; f n�inm ; n�in k�g)where there are two opies of ambient n: one ontaining the apability inm and the otherone ontaining the apability in k.We also use the labels attahed to restritions to �nd out the name, whih is used toreplae the bound name. To this aim, we adopt a speial substitution funtion, whihassoiates in a one to one fashion names to labels. Provided that all the labels are distintand that the names assoiated to the labels of restritions, do not appear in the proess,the names introdued by the removal of restritions are fresh. For instane, onsider thefollowing labeled proess (�n�) (n [inm�.P ℄) j (�m�)m� [0℄ (3)7



where the labels �; �; ; �; � are distint one from eah other. Assume also that n̂ and m̂are the distint names assoiated to � and � and that they do not appear in the proess.We obtain the following representation(f n̂�; m̂��g; f n̂inm�.Pg).The removal of the restritions over n and m does not produe any onit on names,as m̂ 6= n̂, m̂ 6= m and n̂ 6= m. The ondition m̂ 6= n̂ is implied by � 6= �; the onditionsm̂ 6= m and n̂ 6= m are ensured by the additional requirement onerning the names andthe labels appearing in the proess.The requirements on labels and names explained above are formalised by the notionof well-labeled proess (see De�nition 4.2).Labeled Proesses. Let L be a set of labels (ranged over by `, `0; : : :), and let LI =f`i j ` 2 L; i 2 Ig be the orresponding set of indexed labels (ranged over by �; �; ; : : :).Let bN (ranged over by bn; bm;bh;bk; : : :) be a set of names, suh that N \ bN = ;, and letbNI = fn̂i j n̂ 2 bN ; i 2 Ig be the orresponding set of indexed names.We use the names bNI for the elimination of restritions aording to a substitutionfuntion HLI whih assigns indexed names bNI to indexed labels LI . This is formalisedby an injetive funtion HL : L ! bN and by the orresponding injetive funtion HLI :LI ! bNI , suh that HLI (`i) = n̂i if HL(`) = n̂.To have a more ompat notation we may use when the distintion is not relevant:n;m; h; : : : to denote a generi element of bNI [N ; n̂; m̂; ĥ; : : : to denote a generi elementof bNI .De�nition 4.1 (Labeled Proesses) The labeled proesses are de�ned over names N[bNI and indexed labels LI aording to the following syntax:M,N::= (apabilities) P,Q::= (proesses)inn enter n 0 inativityoutn exit n (�n�) P restritionopenn open n P j Q parallel omposition!P repliationn�[P ℄ ambientM�.P pre�xWe assume that all the notions presented in Setion 3 are adapted in the obviousway to labeled proesses. The de�nition of �-onversion only presents a subtle point:we require that the bound names an be hanged but not their labels. We mean, forinstane, that (�n�)P is �-onvertible to (�k�)P [k=n℄, provided that k 62 fn(P ), and notto (�k�) P [k=n℄. In the following, we use �(P ) to denote the set of labels ourring in alabeled proess P . 8



We introdue now the onept of well-labeled proess, whih formalises the require-ments disussed for the proesses (2) and (3) above. Conditions (i) and (ii) say that thelabels are distint and the names assoiated to the labels of restritions are fresh names,meaning that they do not our in the proess. Example 4.10 shows, more in details, whythese requirements are needed to translate a proess into an equivalent representation.De�nition 4.2 (Well-labeled Proesses) A proess P is well-labeled if: (i) for any� 2 �(P ), HLI (�) 62 n(P ); (ii) the (indexed) labels used in apabilities, ambients andrestritions are distint one from eah other.Over labeled proesses we de�ne a notion of equivalene, whih is used in the de�nitionof the olleting semantis (see De�nition 4.8). A renaming of indexed labels is a funtion� : LI ! LI . The appliation of a renaming is denoted in the standard way by P� andP [�=�℄. We denote by dom(�) and dom(�) the domains of a renaming � and a substitution� respetively. We also introdue a speial lass of renamings and substitutions:� we say that �I : LI ! LI is a re-indexing of labels if, �I is injetive, and for any`i 2 dom(�I), we have �I(`i) = `j;� we say that �I : N̂I ! N̂I is a re-indexing of names if, �I is injetive and, for anyn̂i 2 dom(�I), we have �I(n̂i) = n̂j.We say that P and Q are equivalent up to re-indexing (P � Q) i� P�I�I = Q, for are-indexing of labels �I and a re-indexing of names �I .In the following, we use A (ranged over by a,b,; : : :) for the set of labeled names n�,suh that n 2 N [ bNI and � 2 LI , augmented with the distint symbol � representingthe outermost ambient. Furthermore, we say that a proess P is ative if P = M�.Q orP = !Q. We use P and AP to denote the set of well-labeled proesses (referred to asproesses) and the subset of ative well-labeled proesses, respetively.Remark 4.3 It is worth mentioning that the labeling of proesses is also exploited bythe analyses of Setions 5 and 6. This approah is indeed typial of stati tehniques, inpartiular of Flow Logi [27℄. The labeling of proesses is used to gain preision, and alsoit allows the programmer to identify the exat piee of input syntax responsible for somedeteted seurity violation. The main di�erene here onsists in the use of indexes bothin labels LI and in names N̂I . The normal semantis and the seond abstration ouldhave been de�ned also without introduing the indexes. Instead, the indexes are neededand fruitfully exploited by the �rst abstration (see Example 5.10 and Example 5.12).States and Transitions. A state is a pair whih onsists of a topology and a on�gura-tion: the topology is a set of pairs, son-father, whih form a tree, and the on�guration isa set of pairs assoiating eah ative proess to its enlosing ambient.9



De�nition 4.4 (States) A state S is a pair (T;C) where1. T 2 }((A n f�g)�A) is a tree over a set of nodes NS � A 1;2. C 2 }(A�AP) suh that, for eah (a; P ) 2 C, a 2 NS.In a state (T;C) we all T a topology and C a on�guration. The meaning of (a; b) 2 T(for short ab) is that a is a son of b. The meaning of (a; P ) 2 C (for short aP ) is that Pis an ative proess of ambient a.We extend to states in the obvious way the notions of labels, renaming, substitutionand equivalene up to re-indexing �. Sine we are interested in states representing well-labeled proesses we onsider only well-labeled states. A state S 2 S is well-labeled if: (i)for eah � 2 �(S), HLI (�) 62 n(S); (ii) for any label � 2 �(S) there is at most one objetlabeled by �. In the following, we use S to denote the set of well-labeled states (referredto as states). Also, we assume � and [ over states are de�ned omponent-wise.In Table 4 we introdue the normalisation funtion Æ : (A � P) ! S whih is usedto translate proesses into states. Intuitively, Æ(a; P ) (for short Æ aP ) gives the staterepresenting proess P , assuming that P is ontained in ambient a. We use Æ both to derivethe initial state from a proess, and to handle the proesses whih beome exeutable aftera step. The initial state orresponding to a proess P is therefore Æ �P .Rule DRes eliminates the restrition by replaing the bound name n with the nameHLI (�) assoiated to the indexed label �. The de�nition of well-labeling ensures thatHLI (�) is a fresh name provided that P is a well-labeled proess. Rule DAmb addsambient b to the topology as son of the enlosing ambient a, and translates the proessontained in b. RuleDPar gathers the proesses and the topologies built in eah of its twobranhes. Rules DBang and DPref simply add the ative proess to the on�guration.DRes Æ a(�n�) P = Æ a(P [HLI (�)=n℄)DAmb Æ ab[P ℄ = Æ bP [ (f bag; ;)DZero Æ a0 = (;; ;)DPar Æ aP j Q = Æ aP [ Æ aQDBang Æ a!P = (;; fa!Pg)DPref Æ aM�.P = (;; faM�.Pg)Table 4: The normalisation funtion ÆThe rules of Table 5 de�ne the transitions between states. They realise the unfoldingof repliation, the movements in and out of ambients, and the opening of ambients. Dueto the impliit representation of parallel omposition, restrition and ambient in states,1We refer to the standard de�nition of tree and root of a tree.10



the standard strutural rules and strutural ongruene of the redution semantis are notneeded. For notational onveniene use the following abbreviation. We write (T;C)f[a=b℄gto denote the state (T [ a= b℄; C[ aQ= bQ℄) for any ambient  and proess Q.We omment the rules below. Rule Bang reates a fresh opy (equivalent up to re-indexing of labels) of the proess under repliation. To this aim, we use new(T;C)(P ),whih is de�ned as follows. Let S 2 S be a state, we let newS(P ) = P�I where� �I is a re-indexing of labels suh that dom(�I) = �(P );� P�I is well-labeled;� there is no � 2 �(P�I), suh that either � 2 �(S) or HLI (�) 2 n(S).The de�nition of newS ensures that Æ anewS(P )[ S is a well-labeled state, provided thatS and P are well-labeled.The last three rules orrespond to the usual redution rules of movements and opening(shown in Table 1). They use the normalisation funtion to handle the ontinuations. RuleIn is appliable whenever there exists a parallel ambient namedm. The rule modi�es boththe topology and the on�guration aording to the movement: (i) it updates the father ofa, whih is now m, (ii) it removes the exeuted apability, and it adds the ontinuation tothe set of proesses loal to a. Rule Out ats in an analogous way. Rule Open modi�esboth the topology and the on�guration aording to the opening of ambient m: (i) itremoves ambient m; (ii) it modi�es the pointer to the father of any ambient and proesswhih was within m. These proesses and ambients are therefore aquired by ambient awhen opening m.Bang a!P 2 C(T;C) 7! Æ anew(T;C)(P ) [ (T;C)In t = ainm .P 2 C ab; m�b 2 T a 6= m�(T;C) 7! Æ aP [ ((T n f abg) [ f am�g; C n ftg)Out t = aoutm .P 2 C am� ; m�b 2 T a 6= m�(T;C) 7! Æ aP [ ((T n f am�g [ f abg; C n ftg)Open t = aopenm .P 2 C m�a 2 T a 6=m�(T;C) 7! Æ aP [ ((T n f m�ag); (C n ftg))f[a=m�℄gTable 5: Transitions 7!The following theorem states the agreement between the transitions of Table 5 and thestandard redution semantis of Setion 3. Let P be a well-labeled proess. We denote11



by E(P ) the proess obtained by stripping o� all the labels. We use 7!� for the transitiveand reexive losure of 7!.We introdue also a ondition on a 2 A whih guarantees that Æ aP is a well-labeledstate, provided that P is well-labeled (as formalised by Proposition A.13 of Appendix A).We �rst extend the notions of names n(a) and labels �(a). Hene, we let n(a) = n and�(a) = �, when a = n�, and we let n(a) = �(a) = ;, when a = �.We say that a is fresh for a labeled proess P i� �(a)\�(P ) = ;, there is no � 2 �(a)suh that HLI (�) 2 (n(P ) [ n(a)), and there is no � 2 �(P ) suh that HLI (�) 2 n(a).Theorem 4.5 (Equivalene) Let P be a well-labeled proess and let a 2 A whih isfresh for P .1. If Æ aP 7! S, then there exist a well-labeled proess Q, suh that E(P )!� E(Q) andÆ aQ = S;2. If E(P ) ! Q, then there exist a state S and a well-labeled proess Q0, suh thatÆ aP 7!� S, Æ aQ0 = S and Q � E(Q0).The proof of Theorem 4.5 is rather omplex and is shown in the Appendix A.Corollary 4.6 Let P be a well-labeled proess.1. If Æ �P 7! S, then there exist a well-labeled proess Q, suh that E(P )!� E(Q) andÆ �Q = S;2. If E(P ) ! Q, then there exist a state S and a well-labeled proess Q0, suh thatÆ �P 7!� S, Æ �Q0 = S and Q � E(Q0).Proof: From Theorem 4.5 using the fat that � is fresh for any well-labeled proess P .2The result an be extended straightforwardly to weak redutions.Corollary 4.7 Let P be a well-labeled proess.1. If Æ �P 7!� S, then there exist a well-labeled proess Q, suh that E(P ) !�� E(Q)and Æ �Q = S;2. If E(P ) !� Q, then there exist a state S and a well-labeled proess Q0, suh thatÆ �P 7!� S, Æ �Q0 = S and Q � E(Q0).The olleting semantis. We de�ne the ore of the abstrat interpretation framework,the olleting semantis. The domain is the power-set of (well-labeled) states up to re-indexing. We use [S℄ to denote the equivalene lass of a state S with respet to �, andwe use S=� to denote the orresponding quotient set. For readability, we use � and [ for�=� and [=�. 12



De�nition 4.8 Let S\ = }(S=�). The onrete domain is hS\;�i.The onrete semantis is de�ned in a standard way as the least �xed-point of afuntion, whih ollets all the states reahable from the initial state.De�nition 4.9 (Colleting Semantis) Let S2 2 S; S\ 2 S\ and let P be a well-labeledproess. We de�ne SColl[[P ℄℄ = lfp F (Æ �P ) for the funtion F : S ! (S\ ! S\) suhthat F (S2) = 	S2 and	S2(S\) = f[S2℄g [ [S2fS3jS1 7!S3; [S1℄2S\gf[S℄g.Examples. We start disussing the normalisation funtion Æ, and we explain why this isorret (in the sense of Theorem 4.5) only when applied to well-labeled proesses.Example 4.10 The ondition (ii) of De�nition 4.2 ensures that two ourrenes of thesame objet are distinguished. Consider the not well-labeled version of proess n[inm℄ jn[ink℄, P = n�[inm ℄ j n�[in k� ℄.We obtain the following representationÆ �P = (f n��g; f n�inm ; n�ink�g).This representation di�ers signi�antly from that shown at the beginning of the setionfor the well-labeled proess (2). In fat there is only one ambient n whih ontains bothinm and ink. This representation is obviously not orret as ambient n may interatboth with m and with k.The ondition (i) of De�nition 4.2 onerns the relation between the names in bNI andthe labels LI , and ensures preisely that there is no lash of names when the restritionsare removed. Consider the following not well-labeled proessQ = (�n�) (n [in m̂�.P ℄) j (�m�)m� [0℄where HLI (�) = n̂ and HLI (�) = m̂. We obtain the following representationÆ �Q = (f n̂�; m̂��g; f n̂in m̂�.P g).This representation is not orret, di�erently from the one obtained for the well-labeledproess (3) shown at the beginning of the setion. The bound name m̂ is known to theproess ontained inside n̂, and onsequently n̂ an move inside m̂.We give some examples to illustrate the normal semantis. To simplify the presentationin the olleting semantis states stand for their equivalene lasses up to re-indexing. Thefollowing example shows an ambient n, whih moves inside an ambient k, and there isopened unleashing no apability of movement inside k.13
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Figure 2: Some transitions of proess PExample 4.11 Consider the (well-labeled) proessP = n�[in k�.m� [Q2℄℄ j k�[openn�.Q1℄Figure 2 shows some states, whih are reahable from the initial state representingproess P whih is state (a)2. State (b) is obtained from state (a) by applying rule In.This shows that ambient n moves inside k arrying any apability and ambient it ontains.State () is obtained from state (b) by applying rule Open; ambient n, when opened insidek, unleashes ambient m whih has as a loal proess Q2.By assuming that Q1 = Q2 = 0, the olleting semantis of P ontains only states(a),(b) and () of Figure 2. We have SColl[[P ℄℄ = fS0; S1; S2g suh thatS0 = (f n��; k��g; f n�in k�.m� [0℄; k�openn�g)S1 = (f n�k� ; m�n� ; k��g; f k�openn�g)S2 = (f m�k� ; k��g; ;).The following example stresses an important aspet onerning indexes and repliation:the unfolding of repliation produes (by means of new) proesses whih are equivalent upto re-indexing of labels. The link between the proesses produed by repliation expressedby the indexes is suitably exploited by the �rst abstration (see Examples 5.10 and 5.12).Also, the example explains better the tehnique used to remove the restrition operatorand its interplay with repliation.2We have omitted the labels to simplify the piture.14



�� nnn � n n̂1 n̂2!(�n)Q ()(b)!Q inn
(a)!Q

inninn in n̂1 in n̂2Figure 3: An example of repliationExample 4.12 Consider the well-labeled proess Q = n�[inn ℄, where � = `1 and  = `01.The initial state modeling proess !Q is (;; �!Q). Every unfolding of repliation is modeledby the addition of Æ �(Q�j) (see rule Bang), whereQ�j = n`j [inn`0j ℄for a new index j. Hene, a new ambient n`j is added representing a new opy of ambientn. For instane, after two appliations of rule Bang the state (a) depited in Figure 3is reahed3. Any ambient n`j may enter inside any other n`h provided that h 6= j. Forinstane, by applying rule In state (b) of Figure 3 is obtained.Consider instead the well-labeled proess (�n�) Q, where the name n is restritedand � = `001 suh that HL(`00) = n̂. The initial state modeling proess !(�n�) Q is(;; �!(�n�)Q). Every unfolding of repliation is modeled by the addition of Æ �((�n�)Q)�j,where ((�n�)Q)�j = (�n`00j ) n`j [inn`0j ℄for a new index j. Funtion HLI assigns to any label `00j the new name n̂j whih is usedto substitute n. Hene, a new ambient (n̂j)`j is added with a new name n̂j. For instane,after two appliations of rule Bang the state () depited in Figure 3 is reahed from theinitial state. Sine the names n̂1; n̂2 are distint, then the ambients annot in this aseinterat with eah other.The di�erene between !Q and !(�n�)Q is reeted by their olleting semantis shownbelow. We have SColl[[!Q℄℄ = Sj2f0;:::;1gXj where� X0 = f(;; �!Q)g;� Xj is the minimal set of states S = (T;C), suh that fn(S) = fng, and �(S) =Si2f1;:::;jgf`i; `0ig and �!Q 2 C. Moreover, for eah i 2 f1; : : : ; jg either n`i� 2 Tand n`iinn`0i 2 C, or n`in`h 2 T , with h 6= i, and n`iinn`0i 62 C.3As usual we have omitted labels to simplify the piture.15



We have SColl[[!(�n�)Q℄℄ = Sj2f0;1g Sj whereS0 = (;; �!(�n�)Q)Sj = (Si2f1;:::;jg (n̂i)`i�;Si2f1;:::;jg (n̂i)`iin (n̂i)`0i [ f �!(�n�)Qg).5 A First AbstrationWe devise a �rst abstration aimed at apturing the following property about all thestates reahable from the initial state representing a proess P : for eah ambient n, whihambients and apabilities an be ontained (at top level) inside n, when n is within anambient h. This is formalised by an abstration, whih merges a set of states into aunique abstrat state, and modi�es the topologies and the on�gurations aording to thefollowing ideas.� We add to eah pair of the topology and of the on�guration an additional informa-tion whih refers to the father of the enlosing ambient.Consider for instane the statesS1 = (f a�; b�g; ain k�. inm) (4)S2 = (f ab; b�g; ainm). (5)They are represented by the following abstrat states, respetivelyS�1 = (f b�>; a�>g; f a�in k�. inmg)S�2 = (f ab� ; b�>g; f abinmg).In S�1 we have a�ink�. inm as in k�. inm is an ative proess inside ambient a,when a is within �. The same happens in the topology. For instane a�> says thatambient a is a son of the top level ambient �, when � is within > 4. The abstratstate S�2 is obtained similarly.To understand the relevane of the information we have introdued, it is neessaryto look at the abstration of the set of states fS1; S2g. This is given by the union ofS�1 and S�2 (depited also in Figure 4) 5S� = (f ab� ; b�> ; a�>g; f abinm ; a�in k�. inmg).4The extra symbol > is used to model the ambient enlosing � and is mentioned for uniformity.5Rounded arrows represent the partial topology, pointing from an objet to the link representing therelevant pair son/father. As usual we have omitted labels.16



a b�>
in k. inminmFigure 4: The abstrat state S�The abstrat version of fS1; S2g shows that the abstrat topologies, di�erently fromthe onrete topologies, may not form a tree. For instane, in S� ambient a has twofathers, namely ambients b and �. The additional information permits to distinguishbetween the multiple fathers of ambient a, and onsequently to argue that the pro-esses and the ambients ontained inside a may depend on where a is loated. Forinstane, in S� we have that: when a is within � proess in k�. inm is exeutableinside a; when a is within b instead proess inm is exeutable inside a.We all this additional information, the partial topology, as it gives us a partial viewof the shape of the tree-like struture (the topology) of the state, whih ontainsthe pair of ambients, son-father, or the pair assoiating eah ative proess to itsenlosing ambient.� We abstrat indexes by keeping only the following information: whether there is atmost one ourrene or many ourrenes of an objet.Consider for instane the following statesS1 = ( n`01�; n`01openm`1) (6)S2 = ( n`02�; f n`02openm`1 ; n`02openm`2g). (7)They are represented by the following abstrat states S�1 and S�2 , respetivelyS�1 = ( n`01�>; n`01�openm`1)S�2 = ( n`01�>; n`01�openm`!).The apability openm in state S1 is represented by openm`1 , and the two opiesof openm in state S2 are represented by openm`! . The label `1 has multipliity17



one, and shows that there is one ourrene of the orresponding objet; the label `!has multipliity !, and shows that there are many ourrenes of the orrespondingobjet equivalent up to re-indexing.By abstrating the set of states fS1; S2g we obtain the following abstrat stateS� = ( n`0!�>; n`0!�openm`!).In the abstrat state S� both labels have multipliity ! showing that there are manyourrenes of ambient n and of apability openm. The abstrat state S� is obtainedby taking the least upper bound of S�1 and S�1 with respet to a partiular orderingover abstrat states whih realises the union and modi�es the multipliity of objetsaordingly.The abstration of indexes explained above is needed to ahieve a omputable analy-sis, in that we may have in�nite proesses equivalent up to re-indexing (see Example4.12).Abstrat domain. Let L� = f`1; `! j ` 2 Lg (ranged over by ��; ��; �; : : :) be the setof abstrat labels, and let N [ bN (ranged over by n�;m�; k�; h�; : : :) be the set of abstratnames. Let A� (ranged over by a�; b�; �; : : :) be the set of abstrat labeled names n���,augmented with the symbols � and >. The relation between names and labels is modi�edaordingly. We de�ne HL� : L� ! bN suh that HL�(`1) = HL�(`!) = HL(`).The abstrat labeled proesses are built aording to the syntax of De�nition 4.1 overnamesN[ bN and labels L�. We assume that all the previously de�ned notions on proessesare adapted to abstrat proesses in the expeted way. As in the onrete ase we onsideronly well-labeled proesses.De�nition 5.1 (well-labeled) An abstrat proess P � is well-labeled if : (i) `1 2 �(P �)implies `! 62 �(P �); (ii) for any label � 2 L�, suh that � = `1, there is at most one objetlabeled by �.In the following we use P� and AP� to denote the set of well-labeled abstrat proesses(referred to as abstrat proesses) and ative well-labeled abstrat proesses, respetively.De�nition 5.2 (Abstrat States) An abstrat state S� is a pair (T �; C�) where1. T � 2 }((A� n f�;>g)� (A� n f>g)�A�);2. C� 2 }(((A� n f>g)�A�)�AP�).In an abstrat state S� = (T �; C�) we all T � the topology and C� the on�guration.The meaning of (a�; b�; �) 2 T � (for short a�b�� ) is that ambient a� is a son of ambient18



b�, when b� is within �. The meaning of ((a�; b�); P �) 2 C� (for short a�b�P �) is that P �is exeutable inside ambient a�, when a� is within b�.We assume that all the previously de�ned notions on states are adapted to abstratstates in the expeted way. As in the onrete ase we onsider only well-labeled states.An abstrat state S� = (C�; T �) is well-labeled if onditions (i) and (ii) of De�nition 5.1hold (with P � replaed by S�). We use S� to denote the set of well-labeled abstrat states(referred to as abstrat states).We now introdue a proper ordering over abstrat states 6.De�nition 5.3 We de�ne �� as the minimal ordering over S�, suh that S� � S0� impliesS���S0�, and suh that S���S�[`!=`1℄. We use [� for the least upper bound with respetto ��.The ordering reets the intuition that `1 is more preise than `!. For instane, assumingthat � = `1 and  = `!, we have( n�b�; n�b�P �)[�( nb� ; nb�P �) = ( nb�; nb�P �).De�nition 5.4 The abstrat domain is hS�;��i.To simplify the presentation in the following we may omit the over-sript �� for anysyntati ategory, when the meaning is lear from the ontext.The Galois onnetion. We present now the relation between the onrete and theabstrat domain establishing a Galois onnetion (see De�nition 2.1). We formalise theideas explained at the beginning of the setion. A single state is abstrated1. by introduing the partial topology both in the topology and in the on�guration;2. by replaing the indexed labels LI with the abstrat labels L�, and by substitutingthe names bNI with the abstrat names bN .To remove the indexes aording to 2., we introdue a speial renaming, that depend onthe state whih is abstrated, and a speial substitution. Let S 2 S be a state. We de�nea renaming ��S : LI ! L� suh that ��S(`i) = `!, if there exist j with i 6= j suh that`i; `j 2 �(S), and ��S(`i) = `1 otherwise. Moreover, we de�ne a substitution �� : bNI ! bNsuh that ��(n̂i) = n̂.A set of states is abstrated by taking the least upper bound with respet to �� of theabstration of eah element.De�nition 5.5 Let S\ 2 S\, (T;C) 2 S and S� 2 S�. We de�ne �� : S\ ! S� and� : S� ! S\ as follows6As usual we assume that � and [ are de�ned omponent-wise.19



1. ��((T;C)) = (T �; C�)��(T;C)��, where 7T � = f ab j ab; b 2 TgC� = f abP j ab 2 T; aP 2 Cg;2. ��(S\) = S�[S℄2S\��([S℄), where ��([S℄) = S�S02[S℄��(S0);3. �(S�) = S[S℄2f[S0℄j��(f[S0℄g)��S�gf[S℄g.Note that in the de�nition above (ase 1.) we have introdued an auxiliary abstrationfuntion �� : S ! S� whih maps a state into an abstrat state. This is used to de�nethe abstration funtion �� : S\ ! S� whih maps a set of states up to re-indexing intoan abstrat state (ase 2.).The pair of funtions de�ned above is a Galois onnetion.Theorem 5.6 The pair of funtions (��; �) is a Galois onnetion between hS\;�i andhS�;��i.The proof of Theorem 5.6 is shown in the Appendix B.1.Abstrat semantis. The abstrat semantis is de�ned by an abstrat normalisationfuntion and by abstrat transitions, whih adapt the normalisation funtion of Table 4and the transitions of Table 5 to the abstrat domain.The abstrat normalisation funtion Æ� : (A� � A�) � P� ! S� is de�ned in Table 6(as usual Æ� abP stands for Æ�((a; b); P )). The main di�erenes with respet to Æ are thatÆ� deals with the partial topology and with the multipliity. For instane, rule DAmb�adds ab to the topology instead of a. Similarly, rule DPref� adds abM�.P instead ofaM�.P . Also the rules use [� in plae of [ to properly handle labels with multipliity.The transition rules are shown in Table 7. For notational onveniene we use thefollowing abbreviations. We write (T;C)f[ad=b℄g to denote the abstrat state (T [ead=eb ℄;C[ adQ= bQ℄) for any ambient e and proess Q. Also we useC n�f abM��.Pg = 8<: C if �� = `!(C n abM��.P ) if �� = `1The rules are rather omplex, it is worth explaining the most interesting ases topoint out espeially the role of the partial topology and of the multipliity. Notie that,in eah rule, the abstrat normalisation funtion Æ� is used in plae of Æ to handle theontinuations.7We are assuming that the symbols � and > are introdued, when needed, to give a father andgrandfather to any ambient. In partiular, using > for the father of �, and � for the father of the root,when di�erent from �. 20



DRes� Æ� ab(�n�) P = Æ� ab(P [HL�(�)=n℄)DAmb� Æ� ab[P ℄ = Æ� aP [�(f abg; ;)DZero� Æ� ab0 = (;; ;)DPar� Æ� abP j Q = Æ� abP [� Æ� abQDBang� Æ� ab !P = (;; f ab !Pg)DPref� Æ� abM�.P = (;; f abM�.Pg)Table 6: The normalisation funtion Æ�Bang� The rule unfolds repliation by reating a opy of the proess, where every labelhas multipliity !, instead of reating a fresh opy (equivalent up to re-indexing). Weuse new!, whih is de�ned as new!(P ) = P� for the renaming �, where �(`1) = `!for any `1 2 �(P ).In� The rule is appliable whenever there exists an ambient named m, whih is ontainedin the father b of a, when in both ases b is within . The multipliity of ambi-ent m inuenes the movement, meaning that m an move inside itself only if itsmultipliity is ! (see the side-ondition of the (a = m`01 ) `01 6= �)).The movement is realised by a modi�ation both of the topology and of the on�g-uration: (i) amb is added to the topology; (ii) the ontinuation P and the proesses,whih are ative inside a in parallel with inm.P , are added to the set of proessesative, when a is within m (similarly for the ambients ontained inside a); (iii) theproess inm.P is added to the set of proesses exeutable, when a is within m,depending on the multipliity of the apability inm. In partiular, it is not addedwhen inm has multipliity one, as it has been onsumed, after a has moved insidem (this is why we onsider Cn�ftg).Open� The rule is appliable whenever there exists an ambient named m ontained in a,when a is inside b. The e�et of the opening of m inside a is that, all the proessesand ambients, whih are ontained in m, when m is inside a, are aquired by a. Thepartial topology is used to determine preisely those proesses and ambients.The abstrat semantis is de�ned as follows.De�nition 5.7 (The abstrat semantis) Let S�1 ; S�2 2 S�, and let P be a well-labeledproess. We de�ne SColl�[[P ℄℄ = lfp F �(��(Æ �P ) ), for the funtion F � : S� ! (S� ! S�)suh that F �(S�2) = 	�S�2 and	�S�2 (S�1) = S�2[� [�S�2fS�3 jS�1 7!�S�3gS�.21



Bang� ab !P 2 C(T;C)7!� Æ� abnew!(P ) [� (T;C)In� t = abinm�.P 2 C ab ; m�b 2 T (a = m`01 ) `01 6= �)(T;C)7!� Æ� am�P [� (T;C) [� (T[�f amb�g; Cn�ftg)f[am�=ab℄gOut� t = am�outm�.P 2 C am� ; m�b 2 T (a = m`01 ) `01 6= �)(T;C)7!� Æ� aP [�(T;C) [�(T[�f abg; Cn�ftg)f[a=am� ℄gOpen� abopenm��.P 2 C m�ab 2 T (a = m`01 ) `01 6= �)(T;C)7!� Æ� abP [� (T;C) [� (T;C)f[ab=m�a℄gf[a=m� ℄gTable 7: Abstrat transitions 7!�The abstrat semantis is a safe approximation of the olleting semantis. Safeness isstated in lassial abstrat interpretation style showing that the abstrat semantis is anupper approximation of the property we are interested in.Lemma 5.8 Let S2 2 S and S\ 2 S\. We have��(	S2(S\))��	���(S2)(��(S\)).The proof of Lemma 5.8 is shown in the Appendix B.1. The proof exploits two mainproperties whih show the safeness of: the abstrat normalisation funtion Æ� (PropositionB.7) with respet to Æ; the abstrat transitions 7!� with respet to the onrete transitions7! (Lemma B.8).Theorem 5.9 (Safeness) Let P be a well-labeled proess. We have��(SColl[[P ℄℄)��SColl� [[P ℄℄.Proof: By De�nitions 5.7 and 4.9 we have to show that��(lfp 	Æ �P )��lfp 	���(Æ �P ).This follows from Lemma 5.8 using Theorem 2.2. 2Examples. We present some examples to summarize the most interesting aspets of theabstration. The following example explains more in details the role of indexes in the22



abstration. Any labeling of a proess P respeting the requirements of De�nition 4.2 isenough to have a orret normal semantis of P . However, the hoie of labels has dramationsequenes on the preision of the abstration. Hene, a onvenient annotation shemaonsists of keeping all labels distint also up to re-indexing.Example 5.10 Consider the proessesP1 = n`1 [in k�℄ j n`2 [inm ℄ j m�[0℄P2 = n�[ink�℄ j n�[inm ℄ j m�[0℄where f�; ; �; �; �g are distint also up to re-indexing and are not of the form `i. We haveSColl[[P1℄℄ = (f n`1�; n`2�; m��; n`2m�g; f n`1in k�; n`2inmg)SColl[[P2℄℄ = (f n��; n��; m��; n�m�g; f n�ink�; n�inmg).Obviously the proesses P1 and P2 are equivalent up to renaming of labels. Notie thatonly ambients n`2 and n� may end up inside m�. In the abstrat semantis we have (forreadability we use f�; ; �; �; �g for the orresponding labels with multipliity one)SColl�[[P1℄℄ = (f n`!�>; m��>; n`!m�� g; f n`!�ink�; n`!�inmg)SColl�[[P2℄℄ = (f n��>; n��> ; m��>; n�m�� g; f n��ink�; n��inmg).Due to a di�erent hoie of labels the results reported by the analysis are di�erent: forproess P1 the two ambients with name n are both represented by n`! ; while for proess P2ambients n� and n� are keep distint. Consequently, the analysis of P1 is less preise; itsays that both n`1 and n`2 may end up inside m.The following example shows the analysis of the proess onsidered in Example 4.11,where an ambient nmoves inside an ambient k, and then is opened unleashing no apabilityof movement inside k. Due to the ombination of the multipliity and of the partialtopology, the analysis is suÆiently preise to apture what is exeuted inside n beforeand after n is opened. In partiular, it argues that the apability of movement ink hasbeen onsumed when n is opened. Consequently, it says that ambient k aquires, whenopens the mobile ambient n, only an immobile proess.Example 5.11 Consider the proess shown in Example 4.11 (see the semantis in Figure2) P = n�[in k�.m� [Q2℄℄ j k�[openn�.Q1℄.23



We disuss the abstrat semantis of the proess P assuming that Q1 = Q2 = 0 andthat the indexed labels f�; �; �; �; �g are distint also up to re-indexing. The initial abstratstate representing the proess P is S�0 = (T �0 ; C�0 ) whereT �0 = f n��> ; k��>gC�0 = f n��in k�.m� [0℄; k��openn�g.By applying rule In� we have a transition S�0 7!�S�1 where S�1 = (T �1 ; C�0 ) andT �1 = T �0 [ f m�n�k� ; n�k�� g.The apability in k is exerised inside n, when n and k are within �. Its exeutionmodi�es the abstrat topology: (i) n�k�� is added to model the movement of n insidek; (ii) m�n�k� is added beause the ontinuation of in k ( m� [0℄) beomes exeutable af-ter n has moved inside k. Notie that the apability in k has multipliity one, and thusn�k�ink�.m� [0℄ does not belong to the abstrat on�guration. This says that ink has beenonsumed when n is within k.We observe that only rule In� an be applied in state S�0 ; the apability openn annotbe exerised sine n is not within k( n�k�� 62 T �0 ). Rule Open� beomes instead exeutablein state S�1 where k is one of the fathers of n.By applying rule Open� we have a transition S�1 7!�S�2 where S�2 = (T �2 ; C�0 ) andT �2 = T �1 [ f m�k�� g.The exeution of openn inside k produes the unleashing inside k only of those pro-esses and ambients whih are ontained inside n, when n is within k. Those proessesand ambients are determined using the partial topology. Sine m�n�k� 2 T �1 , then ambientm ends up inside k, that is m�k�� is added to the abstrat topology. No other ambient orproess is aquired by k, in partiular the proess in k�.m� [0℄, whih an be exeuted insiden only when n is inside �.Therefore, the abstrat semantis is (depited also in Figure 5)8 SColl�[[P ℄℄ = S�2 . Theanalysis shows that: k is an immobile ambient (there are no apabilities of movementinside k); n is a mobile ambient (the apability ink is exerised inside n); ambient nunleashes, when opened, an immobile proess (that is m� [0℄). As we have explained aboveboth the labels with multipliity and the partial topology are needed to ahieve this veryaurate predition.The following example shows the analysis of the proesses disussed in Example 4.12and lari�es how the repliated proesses are identi�ed by the abstration.8As usual we have omitted labels to simplify the piture.24



n k�>
min k.m[0℄ open n

Figure 5: The abstrat semantis of PExample 5.12 Consider the proess Q = n�[inn ℄ of Example 4.12, where � = `1 and = `01. We have for �� = `! and � = `0!,SColl�[[Q℄℄ = ( n��>; n��inn)SColl�[[!Q℄℄ = (f n��n��n�� ; n���>; n��n���g; f n���inn� ; n��n�� inn� ; �!Qg)SColl�[[!(�n�)Q℄℄ = (f n��n��n�� ; n̂���>; n̂��n̂���g; f n̂���in n̂� ; n̂��n̂�� in n̂� ; �!(�n�)Qg)The labels with multipliity permit to distinguish proess !Q from proess Q. In theabstrat semantis of Q the label of n is `1, whih forbids the movement of n inside itself(see rule In�). Conversely, in the abstrat semantis of !Q the unfolding of reursionprodues a label `! for n and a label `0! for inn, whih fore this movement (see rule In�.Consequently, we have both n��n��� and n��n��n�� in the abstrat topology. Reall thatthe unfolding of repliation produes multiple opies of n, whih may interat with eahother as we have shown in Figure 3. In partiular, any opy of n may enter within anotheropy of n whih is top level (inside �.) This shows a subtle di�erene between these twostatements: n��n��� is neessary to have a safe approximation of the onrete semantis;instead n��n��n�� is an approximation due to the multipliity ! of apability inn.The analysis infers the same information for both proesses !Q and !(�n�) Q. In theabstrat domain the distint names n̂1; n̂2 : : :, produed by the unfolding of repliation, arerepresented by n̂. Thus, the ambients n̂ interat with eah other (see rule In�).6 A Seond AbstrationOn top of the previous abstration, we de�ne a new abstration, aimed at omputingmore eÆiently an approximation of a weaker property. We want to know the followinginformation about all the states reahable from the initial state representing a proess25



a b�
in k. inminmFigure 6: The state SÆP : for eah ambient n, whih ambients and apabilities may be ontained (at top level).inside n. The abstration is simply obtained from the analysis of Setion 5 by dropping themultipliity from labels and the partial topology from the topology and the on�guration.Consider for instane the states (4) and (5) shown at the beginning of Setion 5S1 = (f a�; b�g; ain k�. inm)S2 = (f ab; b�g; ainm).The set of states fS1; S2g is represented by the following abstrat state whih is simplytheir union (depited also in Figure 6)9SÆ = (f ab; b�; a�g; f ainm ; ain k�. inmg).The abstrat on�guration says that both inm and in k�. inm are ative proessesinside a. With respet to the abstration of Setion 5, shown in Figure 4, we lose theinformation that the former is exeutable, when a is inside b; while the latter is exeutable,when a is inside �. Similarly for the topology.Moreover, onsider the states (6) and (7) shown at the beginning of Setion 5S1 = ( n`01�; n`01openm`1)S2 = ( n`02�; f n`02openm`1 ; n`02openm`2g).In the new abstration S1 and S2 are represented by the same abstrat stateSÆ = ( n`0�; n`0openm`).Therefore, we lose the ability to distinguish one ourrene from multiple ourrenesof an objet.9As usual we have omitted labels to simplify the piture.26



Abstrat domain. The abstrat labels are L and the abstrat names are N [ bN . Therelation between names and labels is given preisely by funtion HL : L ! bN . We use AÆ(ranged over by aÆ; bÆ; Æ : : :) for the set of abstrat labeled names n`, suh that n 2 N [ bNand ` 2 L, augmented with the symbol �. The abstrat proesses are built aording tothe syntax of De�nition 4.1 over names N [ bN and labels L. As usual we use PÆ and APÆto denote the set of abstrat proesses and ative abstrat proesses.De�nition 6.1 (Abstrat States) An abstrat state SÆ is a pair (T Æ; CÆ) where1. T Æ 2 }((AÆ n f�g)�AÆ);2. CÆ 2 }(AÆ �APÆ).In an abstrat state (T Æ; CÆ) we all T Æ the topology and CÆ the on�guration. Weassume that all the previously de�ned notions on states and proesses are adapted toabstrat states and proesses in the expeted way. We use SÆ to denote the set of abstratstates.The abstrat domain is given by the abstrat states ordered by inlusion 10.De�nition 6.2 The abstrat domain is hSÆ;�i.In the following we may omit the over-sript �Æ for any syntati ategory, when themeaning is lear from the ontext.The Galois onnetion. The relation between the abstrat domain of De�nition 5.4 andthe abstrat domain of De�nition 6.2 is established by a Galois onnetion (see De�nition2.1). An abstrat state is abstrated, as explained at the beginning of the setion, bydropping both the multipliity from labels and the partial topology. To this purpose, weuse a renaming �Æ : L� ! L, suh that �Æ(`1) = �Æ(`!) = `.De�nition 6.3 Let (T �; C�) 2 S� and SÆ 2 SÆ. We de�ne �Æ : S� ! SÆ and Æ : SÆ !S� as follows1. �Æ((T �; C�)) = (f ab j ab 2 T �g; f aP j abP 2 C�g)�Æ;2. Æ(SÆ) = S�S�2fS�0j�Æ(S�0)�SÆgS�.The pair of funtions de�ned above is a Galois onnetion.Theorem 6.4 The pair of funtions (�Æ; Æ) is a Galois onnetion between hS�;��i andhSÆ;�i.10As usual we assume � and [ de�ned omponent-wise.27



The proof of Theorem 6.4 is shown in the Appendix B.2.Abstrat semantis. The abstrat normalisation funtion ÆÆ : AÆ � PÆ ! SÆ is givenby the rules of Table 4 with a minor modi�ation. It is enough to replae the onretelabels LI with the abstrat labels L, that using the substitution the funtion HL in plaeof HLI .The abstrat transitions are de�ned by the rules of Table 8. Rule BangÆ is used tounfold repliation; it reates a opy of the repliated proess without modifying the labels.The rules InÆ, OutÆ, OpenÆ realise the movements and the opening. They are similar tothe orresponding rules of the abstrat semantis in Table 7 in the ase of multipliity !.The only relevant di�erene is that, due to the removal the partial topology, the onditionsto be heked for the exeution of apabilities are weaker. For instane, rule InÆ an beapplied, whenever ambient a and an ambient with name m have a ommon father b in thetopology. There is no hek on the father of b to guarantee that ambients a and m areontained in b at the same time.BangÆ a!P 2 C(T;C)7!ÆÆÆ aP [ (T;C)InÆ ainm`.P 2 C ab; m`0b 2 T(T;C)7!ÆÆÆ aP [ (T [ f am`0g; C)OutÆ aoutm`.P 2 C am`0 ; m`0b 2 T(T;C)7!ÆÆÆ aP [ (T [ f abg; C)OpenÆ aopenm`.P 2 C m`0a 2 T(T;C)7!ÆÆÆ aP [ (T;C) [ (T;C)f[a=m`0 ℄gTable 8: Abstrat transitions 7!ÆThe abstrat semantis is de�ned as follows.De�nition 6.5 (The abstrat semantis) Let SÆ1 ; SÆ2 2 SÆ, and let P be a well-labeledproess. We de�ne SCollÆ [[P ℄℄ = lfp F Æ(�Æ(��(Æ �P ))) for the funtion F Æ : SÆ ! (SÆ !SÆ) suh that F Æ(SÆ2) = 	ÆSÆ2 and	ÆSÆ2 (SÆ1) = SÆ2 [ [SÆ2fSÆ3 jSÆ1 7!ÆSÆ3gSÆ.The abstrat semantis de�ned above is a safe approximation of the abstrat semantisof De�nition 5.7. 28



Lemma 6.6 Let S�1 ; S�2 2 S�. We have�Æ(	�S�2 (S�1)) � 	Æ�Æ(S�2 )(�Æ(S�1)).The proof of Lemma 6.6 is shown in the Appendix B.2. As before, the proof relieson the safeness of the abstrat normalisation funtion ÆÆ with respet to Æ� (PropositionB.13), and the abstrat transitions 7!Æ with respet to the transitions 7!� (Lemma B.14).Theorem 6.7 (Safeness) Let P be a well-labeled proess. We have�Æ(SColl� [[P ℄℄) � SCollÆ [[P ℄℄.Proof: By Lemma 6.6 and Theorem 2.2 similarly as in Theorem 5.9. 2It is a well-known result of abstrat interpretation that Galois onnetions are losedunder omposition. Therefore, an immediate onsequene of Theorem 6.7 is that the newabstrat semantis is a safe approximation of the olleting onrete semantis.Corollary 6.8 Let P be a well-labeled proess. We have�Æ(��(SColl[[P ℄℄)) � SCollÆ [[P ℄℄.Examples. We disuss the di�erenes between the abstration presented in this setionand the abstration of Setion 5. One relevant di�erene is that the seond abstration doesnot distinguish between one or many ourrenes of an objet. Consequently, the seondabstration infers the same information for the proesses Q, !Q and !(�n�) Q disussedin the Examples 5.12 and 4.12. Another loss of information is due to the removal of thepartial topology. The following examples explain that, onsequently, the ability to argueon the ordering of exeution of apabilities is lost.Example 6.9 Consider the proess of Example 4.11 (see the semantis in Figure 2)P = n�[in k�.m� [Q2℄℄ j k�[openn�.Q1℄.Assuming that Q1 = Q2 = 0, we derive the abstrat semantis (depited also in Figure7) 11 SCollÆ [[P ℄℄ = (T Æ; SÆ) where (for readability we use f�; ; �; �; �; �g to denote theorresponding abstrat labels without indexes)T Æ = f n��; m�n� ; k��; n�k� ; m�k� ; k�k�gCÆ = f n�ink�.m� [0℄; k�openn�; k�ink�.m� [0℄g.11As usual we have omitted labels to simplify the piture.29



n k�
m open nin k.m[0℄in k.m[0℄Figure 7: The abstrat semantis of proess PThe result of the �rst analysis has been disussed in Example 5.11 (Figure 5). Theseond analysis is substantially less preise; it is not able to apture that apability in khas been onsumed before opening. Consequently, it says that ambient k aquires also ink,when opens n. Also, sine the analysis annot reason on how many ourrenes of ambientk are present, it says that ambient k, by exerising ink, enters inside itself (see rule InÆ).Thus, k is reported as mobile ambient.Example 6.10 Consider the proess P = P1 j P2 j P3, where P1 = !n�[inm�. in k� ℄,P2 = !m�[0℄ and P3 = !k [0℄. Assume that labels f�; �; �; �; g are distint also up tore-indexing. In the �rst abstration we have SColl�[[P ℄℄ = (T �; C�) where (for readabilitywe use f�; �; �; �; g to denote the orresponding abstrat labels annotated with !)T � = f n��>; k�>; m��>; n�m�� gC� = f n��inm�. in k� ; n�m� inm�. in k� ; n�m� in k� ; �P1; �P2; �P3g.The analysis shows that apability in k is not exerised inside n. In fat, the partialtopology says that, it is exeutable only when n has moved inside m. Ambient k does notmove and, onsequently, annot be within m.In the seond abstration we have (for readability we use f�; �; �; �; g for the orre-sponding abstrat labels without indexes),SCollÆ [[P ℄℄ = (f n��; k�; m��; n�m� ; n�kg; f n�inm�. in k� ; n�in k� ; �P1; �P2; �P3g).The analysis predits that in k an be exeuted, beause n and k have � as a ommonfather. Due to the removal of the partial topology, does not detet that in k beomesexeutable inside n only after the movement inside m.It is worth notiing that the result of the �rst analysis is not optimal, meaning that��(SColl[[P ℄℄)��SColl� [[P ℄℄.30



For instane, in the abstrat semantis we have n�m� inm�. in k� whih says that inmis still exeutable inside n, when n is within m. Instead, in any instane of ambient napability inm has been obviously onsumed at that time. This approximation is due tothe removal of the indexes, whih in this ase identi�es all ambients n and all apabilitiesinm (see rule Bang�).The abstration presented in this setion uses an abstrat domain analogous to that ofthe CFA proposed in [24℄. Our analysis is however more preise as the following exampleshows.Example 6.11 Consider the proess P = n�[inm�. in k� ℄ j k [m�[0℄℄. We obtain (forreadability we use f�; �; �; �; g to denote the orresponding abstrat labels without indexes)SCollÆ [[P ℄℄ = (f n��; k�; m�kg; f n�inm�. in k�g).The analysis shows that the system is deadloked: neither apability inm nor apabilityink an be exeuted. The former beause ambient m is not a sibling of n, the latter beauseit is guarded by inm.The analysis of [24℄ onsiders the e�et of the ontinuation of a apability regardlessof whether the apability may be exerised. Consequently, for proess P it predits that nmoves inside k and, onsequently, also inside m.7 Appliations to SeurityWe show some examples to demonstrate that the analyses we have proposed an be usedto establish interesting seurity properties. In partiular, we show the results obtainedusing the abstration of Setion 5 for two simple examples found in the literature [16, 5℄.Another typial example is the �rewall protool, whih an be proved orret also byapplying the weaker analysis of Setion 6. This example in fat an be heked also bythe CFA of [24℄.Example 7.1 (Serey)Degano et al. [16℄ onsider a property of serey based on a standard lassi�ation ofambients into untrusted and trusted. Serey of data is preserved if an untrusted ambientan never open a trusted ambient, sine opening an ambient gives indeed aess to itsontent. They show that the property holds for the following system (atually for its SAversion)SYS = (� mail) (a[mail[out a. in b.msg[outmail.D℄℄℄) j b[openmsg℄ j C.The pilot ambient mail goes out of a, and then enters b. One there, msg goes out ofmail, and b aquires the data D by opening msg. When the data D is seret, it is essential31



to guarantee that no ambient an open msg exept for the designated reeiver b. Assumethat fb;msgg is the set of trusted ambients, and that all the others (inluding �) areuntrusted. We wish to prove that no untrusted ambient an open msg.Assume that the parallel proess C is openmsg meaning that the untrusted ambient� tries to read the data D. By applying the analysis of Setion 5 we derive SColl�[[SYS ℄℄ =(T �; S�) where12T � = f a�>; maila� ; b�>; mail�>; mailb� ; msgmailb ; msgb�gC� = f �>openmsg; b�openmsg; mailaouta. in b.msg[outmail.D℄;mail�in b.msg[outmail.D℄; msgmailoutmail.D; msgbD; b�DgThis result shows that only b an open the messenger ambient msg. Consequently theseret data may end up in b only, as shown by msgbD and b�D. Both the partial topologyand the multipliity are needed to ahieve this result. The main observations onerningthe analysis are:� the apability openmsg annot be exerised in �, beause msg annot end up within�. This is reported by the abstrat topology, in partiular by msgmailb and msgb� ;� the exeution of the apability outmail insidemsg, lets msg go only inside ambientb, as msg an be ontained in mail, only when mail is within b (see rule Out�).The latter ondition is modeled by msgmailb ;� the multipliity of apabilities out a and in a is used to onlude that msg an beontained in mail only when mail is within b (see rules Out� and In�).The analyses of [24℄ and of Setion 6 are too weak to prove the serey of this system.They predit that msg, when goes out of mail, may end up in any of the fathers of mail,namely a, b and �. This example shows that the analysis of Setion 5 gives resultsomparable to those obtained for SA in [16℄. In SA, however, it is easier to get suh anaurate predition, beause oations ontrol preisely when and where apabilities anbe exerised.Example 7.2 (Seurity Boundaries)Braghin et al. [5℄ study multilevel seurity for Mobile Ambients. The original idea is thatof introduing boundary ambients to protet high level information; high level data anbe ontained either in boundary ambients or in low level ambients whih do not esapeboundaries. They re�ne the analysis of [24℄ to establish more preisely the property above.In partiular, they show the following motivating systemSYS = a[send[out a. in b j hdata[in filter℄℄℄ j b[open send℄ j filter[in send℄ j open filter.12We have omitted the abstrat labels for readability, they have all multipliity 1.32



The boundary ambient send arries the high level ambient hdata out of a. Then, itlets a possibly low level �lter ambient enter, and then it enters the boundary ambient b.One there, it is dissolved. The system satis�es the seurity property stated above: hdatais always within a boundary ambient (either send or b) or within the low level ambient�lter. Notie that the ambient �lter does not arry the ambient hdata out of the boundaryb. By applying the analysis of Setion 5 we obtain SColl�[[SY S℄℄ = (T �; S�) where 13T � = f a�>; senda� ; filter�>; hdatasenda ; b�>; send�>; hdatasend� ; filtersend�; filtersendb ;sendb� ; hdatasendb ; hdatafiltersend ; hdatab� ; hdatafilterb ; filterb�gC� = f �>open filter; hdatasendin filter; filter�in send;sendaouta. in b; send�in b; �>in send; b�open send; hdatabin filtergThe analysis shows that the seurity property holds, as the abstrat topology shows thathdata an be within �lter, only when �lter is ontained in a boundary ambient, either b orsend. This is modeled by hdatafiltersend and hdatafilterb .The analysis of [24℄ as well as the analysis of Setion 6 identify, instead, a potential(but pratially impossible) attak. Sine they do not use the partial topology, theyannot apture that hdata enters inside �lter, only when �lter is within either send or b.Consequently, they predit that hdata may end up inside the low level ambient � as aonsequene of the exeution of open filter.8 Conlusions and Related WorksWe have proposed an abstrat interpretation framework for MA based on the normalsemantis. The normal semantis uses an expliit representation of the hierarhial stru-ture of proesses, in terms of topology and on�guration. This representation is moreviable for abstration than the standard redution semantis. The normal semantis anbe ompared with the Gamma semanti framework for onurreny of [4℄: it shares itsview of symmetry and loality of interation, and is based on an expliit representation ofmultisets.In the abstrat interpretation framework we have derived two safe approximations ofthe run-time topologial struture of proesses. To show that these analyses are e�etiveprogram analysers, it is worth disussing their omputational omplexity. By restritingthe attention to a proess P of size n, in the �rst ase the topology of the greateststate ontains at most O(n3) elements and the on�guration at most O(n3) elements.Hene, the iterations before reahing the �xed-point are at most O(n3). Any iteration hasomplexity O(n5), beause it requires to hek at most O(n2) onditions for any elementof the on�guration. Similarly, in the seond ase we have at most O(n2) iterations,13We have omitted the abstrat labels for readability, they have indeed all multipliity 1.33



where any iteration has omplexity O(n3). Therefore, it is not diÆult to devise a naiveimplementation of the �rst analysis in O(n8) and of the seond one in O(n5) by usingstandard algorithms.In the last few years there has been a growing interest in the analysis of MA (andits variants) and several CFA in Flow Logi style [24, 25, 26, 16, 5℄ have been proposed.The analysis of Setion 6 is a re�nement of the 0-CFA of [24℄. The CFA of [24℄ is lesspreise, as shown by Example 6.11, and an be obtained in our framework by weakeningthe onditions on the exeution of the ontinuation of a apability in the rules of Table 8.We refer the reader to [23℄ for the formal omparison of the two approahes.The analysis of Setion 5 ombines together the information about the number ofourrenes of objets and the ontextual information (i.e. the partial topology). The ideaof using the partial topology has been inspired by the 1-CFA of [16℄ for Safe Ambients.The integration of these two aspets gives aurate preditions as shown by the Examples5.11, 7.1 and 7.2. These systems are interesting beause the onsidered properties requireto have a detailed information about the loal proess of an ambient, when this is ready toengage into an interation of opening or movement. We are not aware of similar results insetting of MA apart from those obtained by more omplex exponential tehnique, whihuse sophistiated information about the ontext or a sort of ausality information [26, 1℄.For SA instead the stati tehniques are more preise due to the presene of oations.The 1-CFA of [16℄ for SA, for instane, is simpler than our analysis and is suÆientlypreise to prove the serey property for the SA proess orresponding to that of Example7.1.It is worth mentioning that we have introdued the ourrene ounting informationin the analysis of Setion 5 to fruitfully exploit the partial topology. This information isruial to predit when apabilities may be onsumed. The use of the partial topologywithout that of multipliity would give limited bene�ts (see for instane Example 6.10).Other approahes have been proposed to more pro�tably exploit the information aboutthe number of objets. For instane, Hansen et al [25℄ show that the 0-CFA of [24℄ anbe derived, by abstrat interpretation, from a new more preise and exponential CFA.The re�ned CFA uses sets of abstrat states rather than abstrat states and a relationalourrene ounting analysis, meaning that the number of ourrenes is not ountedglobally (as in the abstration of Setion 5), but inside any ambient. The use of abstratinterpretation in [25℄ shows several advantages: the CFA's are ompared in terms ofpreision by onstrution and the properties (in partiular the safeness) of the former oneare diretly derived from those of the latter one. This is preisely what we obtain withthe abstration of Setion 6.Although the interplay between abstrat interpretation and CFA in Flow Logi style isnot fully understood, these tehniques are undoubtedly very similar from an algorithmipoint of view and also their spei�ations are stritly related. For instane, the on-straints, whih speify the CFA of [24℄, ould be derived by abstrat interpretation inour framework; onversely it seems that onstraints in Flow Logi style ould be givenorresponding to the analysis of Setion 6. Having said that, it is lear that the approah34



of [25℄ is very lose to ours. We believe, however, that this paper proposes another orig-inal and interesting ontribution with respet to the proposal of [25℄: the de�nition of ageneral abstrat interpretation framework, based on the normal semantis. The normalsemantis simpli�es the development of analyses by means of abstrat interpretation; forinstane, the derivation of the analysis of Setion 6 is rather straightforward one theabstrat domain, namely the property we want to ompute, has been hosen. Moreover,the derivation of analyses from the normal semantis an be done using standard abstratinterpretation tehniques to re�ne and ombine domains.By the time the full version of this paper has been ompleted, another paper [18℄ hasappeared, whih proposes an abstrat interpretation framework based on a non-standardsemantis similar to the normal semantis. The shape of states and of labels is howeverslightly di�erent and permits to de�ne an interesting non-uniform analysis where reursiveinstanes of agents are kept distint. Another CFA that re�nes the analysis of [24℄ hasbeen reently proposed in [5℄. This work is motivated by the system of Example 7.2 forwhih the property of multi-level seurity annot be established using the approah of[24℄. We have shown that this example an be handled also by our analysis. A formalomparison is diÆult as the CFA of [5℄ is designed to establish spei�ally the propertyof multi-level seurity.This work is part of a projet aimed at studying the relationship among abstrat inter-pretation, CFA and types. We believe that the formalisation also of types (for instane of[8, 7℄) in an abstrat interpretation setting would be very interesting. First, this way weould formally ompare the expressive power of CFA's and types, integrate them, under-stand the pros and ons of eah approah, and possibly for whih lass of properties onemethod is more adequate than another. Moreover, the development of types as abstratinterpretations of a denotational semantis has given very promising results for funtionallanguages [15℄. This approah gives in partiular more aurate type inferene algorithms,based on abstrat �xed-point omputations and widening operators, and more expressivetype systems. It would be interesting to apply this approah also to MA starting forinstane from the reent \logial" denotational semantis for higher-order MA of [12℄. Weleave this investigation to future work. Notie that the omparison with types requiresto extend the analyses to the full language with ommuniation. A �rst step toward thisextension has been done by Feret [18℄, whih onsiders ommuniation of names only. Thisextension deserves undoubtedly further investigations espeially for the analysis of Setion5.Referenes[1℄ Torben Amtoft. Causal Type System for Ambient Movements. Submitted for publiation,2002.[2℄ Torben Amtoft and Assaf J. Kfoury and Santiago M. Perias-Geertsen. What arePolymorphially-Typed Ambients? Proeedings of ESOP'01, LNCS 2028, pages 206{220.Springer Verlag, 2001. 35
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[22℄ F. Levi and S. Ma�eis An Abstrat Interpretation Framework for Mobile Ambients. Proeed-ings of SAS'01, LNCS 2126, pages 395-411. Springer Verlag, 2001.[23℄ S. Ma�eis, Analisi Statihe per la Mobilit�a. Master thesis, Dipartimento di Informatia,Universit�a di Pisa, July 2000.[24℄ F. Nielson, H.R. Nielson, R.R. Hansen and J.G. Jensen Validating �rewalls in mobile ambients.Proeedings of CONCUR' 99, LNCS 1664, pages 463-477. Springer-Verlag, 1999.[25℄ R. R. Hansen, J. G. Jensen, F. Nielson and H. R.Nielson Abstrat Interpretation of MobileAmbients. Proeedings of SAS'99, LNCS 1694, pages 135-148, Springer Verlag, 1999.[26℄ H. R. Nielson and F. Nielson Shape Analysis for Mobile Ambients. Proeedings of POPL' 00,pages 135-148. ACM Press, 2000.[27℄ F. Nielson, H. R. Nielson and C. Hankin, Priniples of Program Analysis. Springer Verlag,1999.APPENDIXA Proofs of Setion 4In this setion we show the proof of Theorem 4.5, whih formalises the relation between the normalsemantis of Setion 4 and the standard redution semantis of Setion 3. For onveniene we reallits assertion:Let P be a well-labeled proess and a 2 A whih is fresh for P .1. If Æ aP 7! S, then there exist a well-labeled proess Q, suh that E(P ) !� E(Q) andÆ aQ = S;2. If E(P )! Q, then there exist a state S and a well-labeled proess Q0, suh that Æ aP 7!� S,Æ aQ0 = S and Q � E(Q0).Part 1. shows soundness and the onverse part 2. shows ompleteness. To simplify the proof,whih is rather omplex, we extend the redution semantis to well-labeled proesses. The redu-tion semantis for well-labeled proesses is designed preisely to be loser to the normal semantisthan the standard redution semantis. Then, we prove both soundness and ompleteness in twosteps: (i) we show the relation between the redutions of well-labeled proesses and those of stan-dard unlabeled proesses (Lemmas A.2 and A.9); (ii) we show the relation between the redutionsof well-labeled proesses and the transitions between the states representing them (Lemmas A.17and A.20).In the following, to ease the use of indution in the proofs, we assume that also standardunlabeled proesses of De�nition 3.1 an be de�ned over names N [ bNI .A.1 Redution semantis of well-labeled proessesThe redution semantis for well-labeled proesses is de�ned by the rules of Table 9 and is theobvious adaptation of the standard redution semantis for the unlabeled proesses (Tables 1 and2). The only di�erene is that in rule (Cong) we adopt a relation �, whih di�ers substantiallyfrom strutural ongruene � for unlabeled proesses (Table 3). In partiular,37



1. we rule out the analogues of rules (Pref) and (Bang);2. we assume that rule (Bang-Bang), whih realises the fold/unfold of repliation, an be appliedonly in one way, that is to produe a opy of the repliated proess and not to remove it.These hoies are motivated by the aim of having a relation � whih better reets thenormal semantis. More in details, we want that two well-labeled proesses, suh that P � Q,are represented by \equivalent" states when translated via Æ (see Lemma A.18). The rules (Pref)and (Bang) give problems as, in the normal semantis, some syntatial di�erenes are removedonly at exeution time. Consider, for instane, two proesses M .P and M .Q, where P � Q.These proesses are represented by two di�erent states (assuming a proper labeling) Æ �M .P =(;; �M .P ) and Æ �M .Q = (;; �M .Q). The ontinuations P and Q are translated via funtionÆ only after the exeution of apability M .Rule (Bang-Bang) gives a similar problem, as the unfolding of repliation is modeled by atransition (Bang) in the normal semantis. Consider for instane two proesses !P and !P j P .These proesses are represented by two di�erent states (assuming a proper labeling) Æ �!P = S1 =(;; �!P ) and Æ �(!P j P ) = S2 = (;; �!P )[ Æ �P . We have S1 7! S2 by rule Bang, but obviouslyS2 67! S1.The relation � for well-labeled proesses is de�ned in Table 10. As we have explained above� is not symmetri, as there is only one way of (Bang-Bang) 14. In rule (Bang-Bang) the labelsof the repliated proess are re-indexed to guarantee that new(P ) j !P is a well-labeled proessprovided that P is well-labeled. To this aim, we use new(P ) whih is adapted in the obvious wayfrom the de�nition of new over states (see Setion 4). Hene, we let new(P ) = P�I where: �I is are-indexing of labels suh that dom(�I) = �(P ); P�I is well-labeled; there is no � 2 �(P�I) suhthat either � 2 �(P ) or HLI (�) 2 n(P ).It is worth mentioning that� and! are de�ned only over well-labeled proesses. It means thatrules (Res), (Par) and (Amb) of Table 10 and the orresponding rules of Table 9, an be applied onlywhen the resulting proesses are well-labeled. This guarantees that the well-labeling of proessesis preserved, that is the labels of new(P ) are fresh. For instane, R j !P � R j (new(P ) j !P )an be derived by applying rule (Par) to the premise !P � new(P ) j !P provided that bothR j (new(P ) j !P ) and R j !P are well-labeled.We now show the relation between the redutions of well-labeled proesses and those of stan-dard proesses. To simplify the proofs we assume that in the inferene of a statement P � Q overunlabeled proesses the symmetri rules are used diretly in plae of rule (Symm) (as in �).Soundness. We show that any redution between two well-labeled proesses is simulated by aredution between the orresponding unlabeled proesses.Lemma A.1 Let P and Q be well-labeled proesses. If P � Q, then E(P ) � E(Q).Proof: It is enough to observe that for any ase in Table 10 there exists a orresponding ase inTable 3. In the ase of (Bang-Bang) we have P = !P and Q = !P j new(P ). As E(new(P )) = E(P ),by de�nition of new, we onlude !E(P ) � !E(P ) j E(new(P )). 214We have therefore removed rule (Symm) and introdued the other diretion of the rules (Ass), (Res-Par), (Res-Amb), (Nil-Par) and (Nil-Res).. 38



Lemma A.2 Let P be a well-labeled proess. If P ! Q, then E(P )! E(Q).Proof: The proof is straightforward using Lemma A.1 for the ase (Cong). 2Completeness. The proof of ompleteness is more omplex. Due to the di�erene between �and �, the onverse of Lemmas A.1 and A.2 do not hold. Consider for instane the followingunlabeled proesses P = !R j R j m[0℄ j n[inm.S℄ (8)Q = !R j n[inm.S0℄ j m[0℄ (9)We have a redution Q! Q0 where Q0 = !R j m[n[S0℄ j 0℄. Assuming that S � S0 we have P � Q,and therefore by rule (Cong) we have also P ! Q0. We observe that there are no well-labeledversions of P and Q suh that PL � QL (where E(PL) = P and E(QL) = Q). The problem isthat in P � Q we use: rule (Pref) to derive inm.S � inm.S0, and rule (Bang-Bang) to derive!R j R � !R. Both steps annot be simulated by � over labeled proesses (see Table 10).We therefore show a weaker property (Lemma A.9): if P ! Q0 then there exist well-labeledproesses PL and Q0L, suh that PL ! Q0L, E(PL) = P and E(Q0L) � Q0.The proof of this property is based on the following steps. We show that, when P � Q andQ! Q0 there exists a speial proess Q00, suh that:1. P � Q00 and Q00 � Q, where� means that only the rules of Table 3 orresponding to thoseof Table 10 have been used;2. the derivation P � Q00 an be simulated in the labeled setting (meaning that there existwell-labeled proesses PL and Q00L, suh that PL � Q00L, E(PL) = P and E(Q00L) = Q00);3. due to the speial form of Q00, Q00L an simulate the transition Q ! Q0 (meaning thatQ00L ! Q0L, where E(Q0L) � Q0).For instane for the proesses (8) and (9) illustrated above we an takeQ00 = !R j R j n[inm.S℄ j m[0℄. (10)We have P � Q00 by rules (Comm) and (Par) and we have a transition Q00 ! Q000, where Q000 =!R j R j m[n[S℄ j 0℄. Moreover, sine Q0 = !R j m[n[S0℄ j 0℄ and S � S0 we have Q000 � Q0 by rules(Bang-Bang), (Pref) and (Par). It is immediate to hek that both P � Q00 and Q00 ! Q000 anbe simulated in the labeled setting.To �nd out in a systemati way the proess whih satis�es the properties desribed above weintrodue the following de�nition.Let P and Q be proesses. We say that a proess Q is a normal form of a proess P i�� Q = P = 0;� Q =M .Q0 and P =M .P 0 where P 0 � Q0;� Q = Q1 j Q2 and P = P1 j P2 where Qi is a normal form of Pi, for any i 2 f1; 2g;� Q = n[Q0℄ and P = n[P 0℄ where Q0 is a normal form of P 0;� Q = (�n) Q0 and P = (�n) P 0 where Q0 is a normal form of P 0;39



� Q = !Q0 or Q = !Q0 ji2f1;:::;ng Q0i and P = !P 0, where Q0 � P 0 and Q0 � Q0i � P 0 for anyi 2 f1; : : : ; ng.For instane the proess (10) is a normal form of the proess (9).We give below some easy properties about the normal form.Proposition A.3 Let P;Q be proesses suh that Q is a normal form of P . We have P � Q.Proof: The proof proeeds by indution on the struture of P using the de�nition of normalform and the rules of Table 3. The most interesting ase is when P = !P 0 and either Q = !Q0 orQ = !Q0 ji2f1;:::;ng Q0i, where Q0 � P 0 and Q0i � P 0 for i 2 f1; : : : ; ng. In the former ase P � Qfollows immediately by rule (Bang). In the latter ase we have !P 0 � !Q0 by rule (Bang). Also,by rules (Bang-Bang), (Par) and (Trans) !Q0 � !Q0 ji2f1;:::;ng Q0i. Thus, by rule (Trans) we haveP � Q. 2Proposition A.4 Let P1, P2 and P3 be proesses. If P1 is a normal form of P2 and P2 is anormal form of P3, then P1 is a normal form of P3.Proof: All the ases are easy using the de�nition of normal form exept from the ase whenP3 = !Q. By de�nition we have either P2 = !P or P2 = !P ji2f1;:::;ng Qi, where Q � P � Qi,for any i 2 f1; : : : ; ng. In the former ase, we have P1 = !R or P1 = !R ji2f1;:::;kg Ri, whereP � R � Ri, for any i 2 f1; : : : ; kg. Sine Q � P we have also Q � R � Ri, for any i 2 f1; : : : ; kg.Consequently, P1 is a normal form of P3. In the latter ase, we have P1 = P1;1 j P2;1 where P1;1is a normal form of !P and P2;1 is a normal form of ji2f1;:::;ng Qi. It means that P1;1 = !R orP1;1 = !R ji2f1;:::;kg Ri, where P � R � Ri, for any i 2 f1; : : : ; kg. Moreover, P2;1 =ji2f1;:::;ng Si,where Si is a normal form of Qi. By Proposition A.3 we have Si � Qi for any i 2 f1; : : : ; kg.Assume that P1 = !R ji2f1;:::;ng Si. Sine Q � P � Qi, Si � Qi and P � R, P1 is a normal formof P3. Assume that P1 = !R ji2f1;:::;kg Ri jji2f1;:::;ng Si. Sine Q � P � R � Ri and Si � Qi � P ,then P1 is a normal form of P3. 2We show the main property of normal forms we have disussed above: if P � Q then thereexists a normal form Q0 of Q suh that P � Q0 and Q0 � Q.Lemma A.5 Let P;Q be proesses suh that P � Q. There exists a proess Q0, whih is a normalform of Q, suh that P � Q0 and Q0 � Q.Proof: We notie that, by Proposition A.3, when Q0 is a normal form of Q, we have also Q0 � Q.Therefore, it is enough to �nd out a proess Q0, whih is a normal form of Q. The proof proeedsby indution on the depth of the inferene of P � Q.� The ases of (Re), (Comm), (Ass), (Res-Com), (Res-Par), (Res-Amb), (Nil-Par) and (Nil-Res) are easy. They an be solved by taking Q0 = Q, as P � Q0 follows from P � Q (byapplying the same rule of Table 10).� The ases of (Res), (Par) and (Amb) are similar and follow by applying the indutionhypothesis; as an example we show (Amb). It means that P = n[R0℄ and Q = n[R℄, whereR0 � R. Sine R0 � R, by indution hypothesis there exists R00, suh that R00 is a normalform of R and R0 � R00. We take Q0 = n[R00℄. We have P � Q0 by applying rule (Amb) tothe premise R0 � R00. Moreover, sine R00 is a normal form of R, then Q0 is a normal formof Q. 40



� In ase (Bang) we have P = !R0 and Q = !R, where R0 � R. Taking Q0 = P we immediatelyhave P � Q0 by rule (Re). Moreover, sine R0 � R (and onversely R � R0) then Q0 is anormal form of Q.� In ase (Pref) we have P = M .R0 and Q = M .R, where R0 � R. Taking Q0 = P we haveP � Q0 by rule (Re). Sine R0 � R, then Q0 is a normal form of Q.� In ase (Bang-Bang) there are two possibilities depending on the way the rule is applied.Therefore, either P = !R j R and Q = !R or P = !R and Q = !R j R. In the latter ase wetake Q0 = Q and we have P � Q0 by rule (Bang-Bang). In the former ase we take Q0 = Pand we have P � Q0 by rule (Re). Moreover, Q0 is a normal form of Q using R � R.� In ase (Trans) we have P � Q1 and Q1 � Q. By indution hypothesis there exist R1; R2suh that: (i) P � R1 and R1 is a normal form of Q1; (ii) Q1 � R2 and R2 is a normalform of Q.This ase is rather omplex. The rux of the proof onsists of showing that, sine R1 is anormal form of Q1 (and thus by Proposition A.3 R1 � Q1) and Q1 � R2, then there existsa proess Q0, whih is a normal form of R2, suh that R1 � Q0 (and by Proposition A.3Q0 � R2). To prove this property we proeed by indution on the depth of the inferene ofQ1 � R2. The ase (Re) is obvious; we show the other ases below.{ The ases of (Comm) and (Ass) are similar; as an example we show (Comm). Wehave Q1 = S1 j S2 and R2 = S2 j S1. Sine R1 is a normal form of Q1 it means thatR1 = S01 j S02, where S0i is a normal form of Si for any i 2 f1; 2g. We take Q0 = S02 j S01and we have R1 � Q0 by rule (Comm). Moreover, Q0 is a normal form of R2, sine S0iis a normal form of Si for any i 2 f1; 2g.{ The ases of (Res), (Par) and (Amb) are similar; as an example we show (Amb). Wehave Q1 = n[S℄ and R2 = n[S0℄ where S � S0. Sine R1 is a normal form of Q1 itmeans that R1 = n[S00℄, where S00 is a normal form of S. As S00 is a normal form ofS and S � S0, by indution hypothesis there exists S000, whih is a normal form of S0,suh that S00 � S000. We take Q0 = n[S000℄. As S000 is a normal form of S0, then Q0is a normal form of R2. Moreover, we have R1 � Q0 by applying rule (Amb) to thepremise S00 � S000.{ The ases of (Res-Com), (Res-Par), (Res-Amb), (Nil-Par) and (Nil-Res) are similar;as an example we show (Res-Par). There are two ases: either Q1 = (�n) (S1 j S2)and R2 = S1 j (�n) S2 or the onverse. We show only the former ase, the other isanalogous.Sine R1 is a normal form of Q1 it means that R1 = (�n)S01 j S02, where S0i is a normalform of Si for any i 2 f1; 2g. Taking Q0 = S01 j (�n) S02 we have that Q0 is a normalform of R2. Moreover, we have R1 � Q0 by applying rule (Res-Par).{ In ase (Bang-Bang) we have Q1 = !S and R2 = !S j S. Sine R1 is a normal formof Q1 it means that either R1 = !S0 or R1 = !S0 ji2f1;:::;ng S0i where S � S0 (andonversely S0 � S) and S � S0i (and onversely S0i � S), for any i 2 f1; : : : ; ng. Weshow only the former ase; the other is analogous.We observe that R1 is a normal form of Q1, and P � Q1, and P � R1, where R1 = !S0and Q1 = !S. It means that rule (Bang) is applied in P � Q1 to the premise S0 � S (seethe ase (Bang) above). Therefore, by applying the indution hypothesis to S0 � S,there exists S00, whih is a normal form of S, suh that S0 � S00.41



We take Q0 = !S0 j S00. By applying rule (Bang-Bang) we have R1 � !S0 j S0.Moreover, by applying rule (Par) to the premise S0 � S00 we obtain !S0 j S0 � !S0 j S00.Hene, by rule (Trans) we have R1 � Q0. We onlude by observing that Q0 is anormal form of R2 as S � S0 and S00 is a normal form of S.{ In ase (Trans) we have Q1 � S1 and S1 � R2. As R1 is a normal form of Q1, thenby indution hypothesis there exists a proess Q00, whih is a normal form of S1, suhthat R1 � Q00. Sine Q00 is a normal form of S1 and S1 � R2, then by indutionhypothesis there exists a proess Q0, whih is a normal form of R2, suh that Q00 � Q0.We onlude by observing that by applying rule (Trans) to the premises R1 � Q00 andQ00 � Q0, we obtain R1 � Q0.Using the property above15 we now onlude the ase (Trans). Sine Q0 is a normal form ofR2 and R2 is a normal form of Q (ondition (ii)), we have by Proposition A.4 that Q0 is anormal form of Q. Moreover, P � Q0 follows from P � R1 (ondition (i)) and R1 � Q0. 2We present now two auxiliary properties of the relation � and of the redution relation overwell-labeled proesses. They show that the new labels introdued in a proess by � or by aredution an be properly re-indexed. This is possible beause new labels an be introdued onlyby rule (Bang-Bang) of Table 10 by means of new.Proposition A.6 Let P and Q be well-labeled proesses suh that P � Q. We have fn(P ) =fn(Q), and for eah re-indexing of labels �I , suh that dom(�I ) = �(Q) n �(P ), and Q�I iswell-labeled, we have also P � Q�I .Proof: The proof proeeds by indution on the depth of the inferene of P � Q. We observethat in any rule of Table 10, P � Q implies fn(P ) = fn(Q). Moreover, in any rule of Table 10,P � Q implies �(P ) = �(Q), exept from rules (Bang-Bang), (Nil-Res) and rules (Res), (Par),(Amb), (Trans).� Suppose that rule (Nil-Res) has been applied. We have P = 0 and Q = (�n�)0 or vie-versa.The latter ase is immediate, in the former ase we have �(Q) n �(P ) = f�g. Hene, forany re-indexing of labels �I suh that Q�I is well-labeled, we have Q�I = (�n�I (�)) 0. Weonlude as follows by P � Q�I by rule (Nil-Res).� Suppose that rule (Bang-Bang) has been applied. We have P = !P1 and Q = !P1 j new(P1).It means that new(P1) = P1�0I for a re-indexing of labels suh that: dom(�0I) = �(P1);P1�0I is well-labeled; there is no � 2 �(P1�0I) suh that either � 2 �(P1) or HLI (�) 2 n(P1).These onditions ensure that new(P1) j !P1 is well-labeled, and therefore that �(new(P1))\�(!P1) = ;. Let �I be a re-indexing of labels suh that dom(�I) = �(Q) n �(P ) andQ�I = (new(P1) j !P1)�I is well-labeled. Sine �(new(P1))\�(!P1) = ;, we have dom(�I) =�(new(P1)) and (new(P1) j !P1)�I = new(P1)�I j !P1. Sine new(P1)�I j !P1 is well-labeled,also P1�0I�I . Thus, we an apply rule (Bang-Bang) to onlude !P1 � P1�0I�I j !P1.15There exists a proess Q0, whih is a normal form of R2, suh that R1 � Q0.
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� The ases of rules (Res), (Par), (Amb) and (Trans) are similar and follow by indutionhypothesis using the well-labeling of P . We give as an example (Par) and (Res).Assume that P = P1 j P2 and Q = Q1 j P2, where P1 � Q1. Let �I be a re-indexingof labels, suh that dom(�I) = �(Q) n �(P ), and Q�I is well-labeled. Sine P and Qare well-labeled, then �(P1) \ �(P2) = ; and �(Q1) \ �(P2) = ;. Therefore, we have�(Q) n �(P ) = �(Q1) n �(P1) and Q�I = Q1�I j P2. We observe that Q1�I is well-labeled,sine Q�I is well-labeled. Thus, by indution hypothesis P1 � Q1�I . We onlude byapplying rule (Par) to derive P1 j P2 � Q1�I j P2.Assume that P = (�n�) P1 and Q = (�n�) Q1, where P1 � Q1. Let �I be a re-indexing oflabels, suh that dom(�I ) = �(Q) n �(P ), and Q�I is well-labeled. Sine Q is well-labeled,then � 62 �(Q1), HLI (�) 62 n(Q1), and there is no � 2 �(Q1) suh that HLI (�) = n.Therefore, we have � 62 �(Q) n �(P ), and onsequently Q�I = (�n�) (Q1�I). We observethat Q1�I is well-labeled, as Q�I is well-labeled. Hene, by indution hypothesis P1 � Q1�I .We onlude by applying rule (Res) to derive (�n�) P1 � (�n�) (Q1�I). 2Proposition A.7 Let P and Q be well-labeled proesses suh that P ! Q. We have fn(Q) �fn(P ), and for eah re-indexing of labels �I , suh that dom(�I) = �(Q) n �(P ), and Q�I iswell-labeled, we have also P ! Q�I .Proof: The proof proeeds by indution on the depth of the inferene of P ! Q. The ases of(In), (Out), and (Open) are immediate given that �(Q) � �(P ). The ase of rule (Cong) followsby Proposition A.6. The ases of (Par), (Amb) and (Res) an be proved by indution following areasoning similar to that used in the orresponding ases of Proposition A.6. 2The following lemma shows that the onverse of Lemma A.1 holds for unlabeled proessesrelated by �.Lemma A.8 Let P be a well-labeled proess. If E(P )� Q, then there exists a well-labeled proessQ0, suh that P � Q0 and E(Q0) = Q.Proof: We proeed by indution on the derivation of E(P )� Q using the fat that for any ruleof Table 3, whih ould have been applied to derive �, there exists a orresponding ase in Table10. We disuss the most interesting ases, the others are trivial.� In ase (Bang-Bang) we have E(P ) = !E(P1) and Q = !E(P1) j E(P1). Let Q0 = !P1 jnew(P1), whih is (by de�nition of new) well-labeled. By rule (Bang-Bang) we have !P1 �!P1 j new(P1) and E(Q0) = !E(P1) j E(new(P1)) = !E(P1) j E(P1) = Q.� In ases (Res),(Par), (Amb) we apply the indution hypothesis using Proposition A.6 to �ndout the well-labeled proess Q0. We show as an example the ases of (Par) and (Res).Assume that E(P ) � Q has been derived by rule (Par). It means that P = P1 j R andQ = Q1 j E(R), where E(P1) � Q1. By indution hypothesis, there exists a well-labeledproess Q01 suh that E(Q01) = Q1 and P1 � Q01. Using Proposition A.6 we derive thatfn(Q01) = fn(P1). Moreover, sine P1 j R is well-labeled we have: (i) �(P1)\�(R) = ;; (ii)for eah � 2 �(P1), HL�I(�) 62 n(R); onversely (iii) for eah � 2 �(R), HLI (�) 62 n(P1).43



We now use the fat that the labels �(Q01) n �(P1) an be re-indexed. Therefore, let �I bea re-indexing of labels, suh that dom(�I) = �(Q01) n�(P1), Q01�I is well-labeled, �(Q01�I)\�(R) = ; and, for eah � 2 �(Q01�I), HLI (�) 62 n(R). As Q01�I is well-labeled, then byProposition A.6, we obtain P1 � Q01�I .We now observe that fn(Q01) = fn(P1) and fn(Q01) = fn(Q01�I) and that the bound namesof Q01�I an be properly �-onverted. By ondition (iii) above we derive that HLI (�) 62n(Q01�I) for any � 2 �(R). Moreover, �I has been hosen to have �(Q01�I) \�(R) = ; and,for eah � 2 �(Q01�I), HLI (�) 62 n(R). Therefore, Q01�I j R is a well-labeled proess.Let Q0 = Q01�I j R. Sine P1 � Q01�I , then by rule (Par) of Table 10 we have P � Q0.Moreover, sine E(Q01�I) = E(Q01) = Q1 we onlude that E(Q01�I j R) = E(Q01) j E(R) =Q1 j E(R) = Q.Assume that E(P ) � Q has been derived by rule (Res). It means that P = (�n�) P1 andQ = (�n) Q1, where E(P1) � Q1. By indution hypothesis, there exists a well-labeledproess Q01 suh that E(Q01) = Q1 and P1 � Q01. Using Proposition A.6 we derive thatfn(Q01) = fn(P1). Moreover, sine (�n�) P1 is well-labeled we have: (i) � 62 �(P1); (ii) foreah � 2 �(P1), HLI (�) 6= n; onversely (iii) HLI (�) 62 n(P1).We now use the fat that the labels �(Q01) n�(P1) an be re-indexed. Therefore, let �I be are-indexing of labels, suh that dom(�I) = �(Q01)n�(P1), Q01�I is well-labeled, � 62 �(Q01�I)and, for eah � 2 �(Q01�I), HLI (�) 6= n. As Q01�I is well-labeled, then by Proposition A.6,we obtain P1 � Q01�I .We now observe that fn(Q01) = fn(P1) and fn(Q01) = fn(Q01�I) and that the bound namesof Q01�I an be properly �-onverted. Sine for eah � 2 �(Q01�I), HLI (�) 6= n, and byonditions (i) and (iii) above, we derive that (�n�)Q01�I is well-labeled.Let Q0 = (�n�) Q01�I . Sine P1 � Q01�I , then by rule (Res) of Table 10 we have P � Q0.Moreover, sine E(Q01�I) = E(Q01) = Q1 we onlude that E(Q0) = (�n)Q1 = Q. 2Using Lemmas A.5 and A.8 and the shape of normal forms we an now prove the main resultof ompleteness.Lemma A.9 Let P be a well-labeled proess. If E(P )! Q, then there exists a well-labeled proessQ0 suh that E(Q0) � Q and P ! Q0.Proof: We prove a more general result: if E(P ) � P1 and P1 ! Q, then there exists a well-labeled proess Q0 suh that E(Q0) � Q and P ! Q0. For this we proeed by indution on thedepth of the inferene of P1 ! Q.� The ases of (In), (Out), and (Open) are similar; as an example we show (In). If P1 ! Q hasbeen obtained by rule (In), it means that P1 = n[inm.R1 j R2℄ j m[S℄ and Q = m[n[R1 jR2℄ j S℄.Sine E(P ) � P1, then by Lemma A.5 there exists a proess P 01, whih is a normal form ofP1, suh that E(P )� P 01 and P 01 � P1.We now apply Lemma A.8. As E(P )� P 01, then there exists a well-labeled proess P 001 suhthat P � P 001 and E(P 001 ) = P 01. Sine P 01 is a normal form of P1, then it must be the asethat P 001 = n�[inm .R01 j R02℄ j m�[S0℄44



n�[inm .P j Q℄ j m�[R℄! m�[n�[P j Q℄ j R℄ (In)m�[n�[outm .P j Q℄ j R℄! n�[P j Q℄ j m�[R℄ (Out)openn�.P j n�[Q℄! P j Q (Open)P ! Q) (�n�) P ! (�n�)Q (Res)P ! Q) P j R! Q j R (Par)P ! Q) n�[P ℄! n�[Q℄ (Amb)(P 0 ! Q0; P � P 0; Q0 � Q)) P ! Q (Cong)Table 9: Redutions for well-labeled proesseswhere E(R01) � R1, E(R02) is a normal form R2 and E(S0) is a normal form of S.By applying rule (In) we have a redution P 001 ! Q0, whereQ0 = m�[n�[R01 j R02℄ j S0℄.Moreover, sine P � P 001 we have by rule (Cong) P ! Q0.We onlude by observing that E(R02) � R2 and E(S0) � S (using Proposition A.3). Giventhat also E(R01) � R1, E(Q0) � Q follows by applying rules (Par), (Amb) and (Trans).� The ases of (Par), (Amb) and (Res) are similar; they follow by applying the indutionhypothesis and by using Proposition A.7 to �nd out the well-labeled proess Q0 (similarlyas in the proof of Lemma A.8). We show as an example the ase (Par).Assume that P1 ! Q has been obtained by rule (Par). It means that P1 = Q1 j R andQ = Q2 j R, where Q1 ! Q2.Sine E(P ) � P1, then by Lemma A.5 there exists a proess P 01, whih is a normal form ofP1, suh that E(P )� P 01 and P 01 � P1.We now apply Lemma A.8. As E(P )� P 01, then there exists a well-labeled proess P 001 suhthat P � P 001 and E(P 001 ) = P 01. Sine P 01 is a normal form of P1, then it must be the asethat P 001 = Q01 j R0, where E(Q01) is a normal form of Q1 and E(R0) is a normal form of R. ByProposition A.3 we have that E(Q01) � Q1 and E(R0) � R. Sine E(Q01) � Q1 and Q1 ! Q2,by indution hypothesis there exists a redution Q01 ! Q02 suh that E(Q02) � Q2.We now use Proposition A.7 to �nd out a re-indexing of labels �I suh that Q01 ! Q02�I andQ0 = Q02�I j R0 is well-labeled (the reasoning follows an argument similar to that applied inthe proof of Lemma A.8).As Q0 is well-labeled, then we derive P 001 ! Q0 by applying rule (Par) to the premise Q01 !Q02�I . Sine P � P 001 we have also P ! Q0 by rule (Cong).45



It remains to show that E(Q0) � Q. We reall that Q = Q2 j R and Q0 = Q02�I j R0, whereE(Q02) � Q2 and E(R0) � R. Given that E(Q02) = E(Q02�I), E(Q0) � Q follows therefore byrules (Par) and (Trans).� If P1 ! Q has been obtained by rule (Cong) it means that P1 � P2, P2 ! P3 and P3 � Q.As E(P ) � P1 and P1 � P2 we have by rule (Trans) E(P ) � P2. Sine E(P ) � P2 andP2 ! P3, then by indution hypothesis there exists P ! Q0 suh that E(Q0) � P3. Weonlude by observing that E(Q0) � Q follows by applying rule (Trans) to the premisesE(Q0) � P3 and P3 � Q. 2A.2 Relation between the normal semantis and the redutions of la-beled proessesWe start presenting the basi properties of the normalisation funtion Æ (Table 4). The followingproposition shows that �-onvertible proesses are represented by the same state. We reall that�-onversion over labeled proesses an hange a bound name but not its label.Proposition A.10 (�-onversion) Let P and Q be two well-labeled proesses whih are �-onvertible.For any a 2 A, whih is fresh for P and Q, we have Æ aP = Æ aQ.Proof: The main observation is the following: when P = (�n�) P1 and Q = (�k�) P1[k=n℄, suhthat k 62 fn(P1), we have by ruleDRes Æ aP = Æ a(P1[HLI (�)=n℄) = Æ aQ = Æ a(P1[k=n℄[HLI (�)=k℄).2We now disuss the relation between the (free and bound) names and the labels of a proessand those of the orresponding state obtained via Æ. To formalise this relation it is neessary toknow preisely whih restritions are removed via Æ. We therefore introdue the following oneptswhih use a speial kind of ontexts. A ontext C is a proess expression with a single ourreneof a hole [℄, suh that the hole does not appear underneath the sope of a pre�x or of a bang. Asusual we denote by C[P ℄ the proess obtained by �lling the hole of C with the proess P .Let P be a labeled proess. If P = C[(�n�)Q℄ for some ontext C, then we say that (�n�) is anunguarded restrition of P ; if also n 62 fn(Q) we say that (�n�) is an unguarded and unneessaryrestrition of P .For instane, the restrition (�n�) is unguarded and the restrition (�m) is not unguardedin the following proess P = a[(�n�) !(�m)Q℄.The unguarded restritions of a proess are important, as they are removed by the normalisationfuntion Æ. For instane, we have for the proess P aboveÆ �P = (f a�g; f a!(�m)Q[HLI (�)=n℄g).The di�erene between the unguarded and the unguarded and unneessary restritions of aproess is the following: if (�n�) is an unguarded and unneessary restrition of a proess P , thenHLI (�) does not neessarily appear in the state modeling P . For instane, assume that the proessP above is well-labeled, that is HLI (�) 62 n(Q) [ n(a). The name HLI (�) appears in the stateÆ �P only when n 2 fn(Q).These intuitive ideas are stated by the propositions below. In the following, we use U(P ) =fn� j (�n�) is an unguarded restrition of Pg and Uu(P ) = fn� j (�n�) is an unguarded andunneessary restrition of Pg. 46



Proposition A.11 Let P be a well-labeled proess and let a 2 A whih is fresh for P . We have1. if (�n�) and (�m�) are two distint unguarded restritions of P , then � 6= �;2. for any n� 2 U(P ), HLI (�) 62 n(P );3. HLI (�) 6= HLI (�) for any n�;m� 2 U(P ).Proof: The onditions follow straightforwardly from the de�nition of well-labeled proess (De�-nition 4.2). 2Proposition A.12 Let P be a well-labeled proess and a 2 A whih is fresh for P . We have� �(Æ aP ) n �(a) = �(P ) n f� j n� 2 U(P )g;� n(Æ aP ) n n(a) = fn(P ) [ (bn(P ) n fn j n� 2 U(P )g) [ fHLI (�) j n� 2 (U(P ) n Uu(P ))g.Proof: The requirements on �(Æ aP ) and n(Æ aP ) an be proved by indution on the strutureof P using using Proposition A.11. The main observation is that, by de�nition of Æ, only theunguarded restritions are removed (see rules DBang and DPref). In ase DRes, we have forP = (�n�)Q Æ aP = Æ a(Q[HLI (�)=n℄).This shows that the label � is removed and the name n is replaed by HLI (�). We reall that, byProposition A.11: for any n� 2 U(P ), HLI (�) 62 n(P ) and, there is no other objet in P with label�. Therefore, HLI (�) 2 n(Æ aP ) only when n 2 fn(Q), that is (�n�) 2 U(P ) n Uu(P ). 2The following proposition is needed in the proof of ompleteness (Lemma A.20); it says thatthe state representing a well-labeled proess is well-labeled provided that the root a is fresh for P .We reall that a state S 2 S is well-labeled if: (i) for eah � 2 �(S), HLI (�) 62 n(S); (ii) for anylabel � 2 �(S) there is at most one objet labeled by �.Proposition A.13 Let P be a well-labeled proess and let a 2 A, suh that a is fresh for P . Wehave that Æ aP is a well-labeled state with root a.Proof: Straightforward by indution on the struture of P using Propositions A.11 and A.12.2The onverse of Proposition A.13 does not hold. Consider, for instane, the following notwell-labeled proess P = (�n�)m�[0℄ (11)We have Æ �P = ( fm��g; ;) whih is obviously well-labeled.The anomaly in proess (11) is that (�n�) is an unguarded and unneessary restrition; there-fore the name HLI (�), that is used to replae the bound name n, does not appear in the staterepresenting P (see Proposition A.12). By ontrast, the lash between the two ourrenes oflabel � is neessarily reeted into the orresponding state, when the bound name appears in theproess. Consider, for instane, the following not well-labeled proessQ = (�n�)m�[outn℄ (12)47



We have Æ �Q = ( fm��g; f m�out n̂g) where HLI (�) = n̂. We observe that Æ �Q is not well-labeledsine n̂ 2 n(Æ �Q) and � 2 �(Æ �Q).There is a main di�erene between the proesses (11) and (12) above. In ase (11) the proessan be properly rearranged and a well-labeled proess P 0 an be obtained, suh that Æ �P = Æ �P 0and P � P 0. For instane, taking P 0 = m�[0℄, it is immediate to hek that Æ �P = Æ �P 0 andP � P 0, sine n 62 fn(m�[0℄) (reeting the idea that this restrition is unneessary). For theproess (12) instead there is no way to modify the labels using �.The idea explained for the proesses P and P 0 above is useful in the proof of soundness (LemmaA.17). We therefore formalise it by introduing a relation . and by showing that: when P .P 0, wehave Æ aP = Æ aP 0 and P � P 0 (and vie-versa P 0 � P ). The intuitive idea behind . is that P 0is obtained from P by eliminating all the unguarded and unneessary restritions. We de�ne therelation . over labelled proesses indutively as follows:1. 0 . 0, !P . !P , M�.P .M�.P ;2. Q j P . Q0 j P 0 provided that Q .Q0 and P . P 0;3. a[Q℄ . a[Q0℄ provided that Q .Q0;4. (�n�)Q . (�n�)Q0 provided that Q .Q0 and n 2 fn(Q);5. (�n�)Q .Q0 provided that Q .Q0 and n 62 fn(Q).Notie that by ondition 5. we have Uu(P 0) = ; when P . P 0. Moreover, we have immediatelyfn(P ) = fn(P 0) and �(P 0) � �(P ).Lemma A.14 Let P and P 0 be labeled proesses suh that P . P 0. We have Æ aP = Æ aP 0 andE(P ) � E(P 0). Moreover, if P and P 0 are well-labeled, then P � P 0 (and P 0 � P ).Proof: The proof proeeds by indution on the struture of P . We observe that the ases ofbang, pre�x and nil are obvious sine P . P 0 implies P = P 0. We show below the other ases.� Suppose that P = b[Q℄. By de�nition of ., we have P 0 = b[Q0℄ where Q . Q0. Hene,by indution hypothesis we have Æ bQ = Æ bQ0 and E(Q) � E(Q0). Also, if Q and Q0 arewell-labeled, then Q� Q0. Using Æ bQ = Æ bQ0 we therefore obtainÆ aP = (f bag; ;) [ Æ bQ = (f bag; ;) [ Æ bQ0 = Æ aP 0.Moreover, E(Q) � E(Q0) implies, by rule (Amb) of Table 3, n[E(Q)℄ � n[E(Q0)℄ assumingb = n�. Suppose that P and P 0 are well-labeled. It means that Q and Q0 also are well-labeled. Using Q� Q0 we derive b[Q℄� b[Q0℄ by rule (Amb) of Table 10;� Suppose that P = Q1 j Q2. The proof proeeds by indution similarly as in the preedingase.� Suppose that P = (�n�) Q. By de�nition of . there are two ases: either P 0 = (�n�) Q0where Q .Q0 and n 2 fn(Q), or n 62 fn(Q) and P 0 = Q0, where Q .Q0.1. Suppose that P 0 = (�n�) Q0 where Q .Q0. The proof proeeds by indution similarlyas in the preeding ase. 48



2. Suppose that n 62 fn(Q) and P 0 = Q0, where Q.Q0. By indution hypothesis we haveÆ aQ = Æ aQ0 and E(Q) � E(Q0). Also, if Q and Q0 are well-labeled we have Q� Q0.Using n 62 fn(Q) we have immediatelyÆ aP = Æ a(Q[m=n℄) = Æ aQ = Æ aQ0 = Æ aP 0.We observe also that (�n)E(Q) � E(Q) an be derived by applying the rules (Nil-Par),(Nil-Res) and (Res-Par) of Table 3 (using n 62 fn(Q)). Sine E(Q) � E(Q0), then wehave also E(P ) � E(Q0). Similarly, for the ase when when P and P 0 are well-labeled.We onlude by observing that, when P and P 0 are well-labeled, P � P 0 implies P 0 � P .In any ase shown above only the symmetri rules of � have been applied (see Table 10).2Soundness. The proof is rather omplex; it is diÆult in partiular to reason about the well-labeling of the proesses obtained in the indutive ases. We need some auxiliary properties. Thefollowing proposition shows a useful property of the redutions of well-labeled proesses.Proposition A.15 Let P and Q be well-labeled proesses suh that P ! Q. If there exists � suhthat � 2 �(Q) and HLI (�) 2 fn(P ), then there exists a well-labeled proess Q0, suh that P ! Q0,� 62 �(Q0) and Q0 � Q.Proof: We �rst observe that by de�nition of well-labeling: HLI (�) 2 fn(P ) implies � 62 �(P );analogously, � 2 �(Q) implies HLI (�) 62 n(Q). The proofs proeeds by indution on the depthof the inferene of P ! Q. The ases of (In), (Out), and (Open) are immediate given that�(Q) � �(P ). In ase (Cong) we have P � P 0 and P 0 ! P 00 and P 00 � Q. If � 62 �(P 00) we have�nished. Otherwise, we observe that HLI (�) 2 fn(P 0), using HLI (�) 2 fn(P ) and PropositionA.6. As P 0 is well-labeled, by indution hypothesis there exists R00 suh that P 0 ! R00, � 62 �(R00)and R00 � P 00 � Q. Hene, by rule (Cong) we derive P ! R00 suh that � 62 �(R00), R00 � Q.The other ases are similar and follow by indution hypothesis; we disuss as an example the ase(Par). It means that P = P1 j P2 and Q = P 01 j P2, where P1 ! P 01. We have � 2 �(Q) and� 62 �(P ), HLI (�) 2 fn(P ) and HLI (�) 62 fn(Q). Sine P and Q are well-labeled, the onlypossibility is therefore that � 2 �(P 01) and HLI (�) 2 fn(P1). Hene, by indution hypothesisthere exists P 001 suh that P1 ! P 001 , � 62 �(P 001 ) and P 001 � P 01. We observe that, by PropositionA.6, P 01 � P 001 implies fn(P 001 ) = fn(P 01). Given fn(P 01) = fn(P 001 ) and P 01 j P2 is well-labeled,there exists a re-indexing of labels �I , suh that dom(�I) = �(P 001 ) n �(P 01), � 62 �(P 001 �I) andQ0 = P 001 �I j P2 is well-labeled. By Propositions A.6 and A.7 we obtain both P 001 �I � P 01 andP1 ! P 001 �I . Sine Q0 is well-labeled, we derive P1 j P2 ! Q0 by applying rule (Par) to the premiseP1 ! P 001 �I . Moreover, we have P 001 �I j P2 � P 01 j P2 by applying rule (Par) to the premiseP 001 �I � P 01. 2To reason about the well-labeling of proesses it is onvenient to know preisely whih newlabels are introdued by a transition S1 7! S2 between two states S1 and S2. To this aim we usenew(S1 7! S2) to denote the set of labels whih ould have been introdued by an appliation ofnew, that is by the unfolding of repliation. Formally,49



1. new(S1 7! S2) = ; when S1 7! S2 has been obtained by one of the rules In, Out or Open;2. new(S1 7! S2) = �(newS1(P )) when S1 7! S2 has been obtained by rule Bang and S2 =S1 [ Æ anewS1(P ).The following proposition shows that the well-labeling of states is preserved by the transitionsof Table 5 and lari�es in whih sense the labels introdued by means of new in rule Bang arefresh.Proposition A.16 Let S1 be a well-labeled state. If S1 7! S01, then S01 is well-labeled. Moreover,assume that S1 [S2 is a well-labeled state suh that S1 [S2 7! S01 [S2. For any � 2 new(S1 7! S01)we have � 62 �(S2) and HLI (�) 62 n(S2).Proof: The proof is by ases on the rule applied to obtain S1 7! S01. Let Si = (Ti; Ci), for anyi 2 f1; 2g.� As ases of Open, In and Out are similar, we disuss ase In only. When S1 7! S01 hasbeen obtained by rule In, we have t = ainm .P 2 C1, ab; m�b 2 T1 suh that a 6= m�.Moreover, S01 = S001 [ Æ aP whereS001 = ((T1 n f abg) [ f am�g; C1 n ftg).Sine S1 is well-labeled and t 2 C1, then P is well-labeled and a is fresh for P . By PropositionA.13 we have that Æ aP is well-labeled. We also observe that S001 is well-labeled, as S1 iswell-labeled. Hene, S01 is not well-labeled only when there exists a label �, suh that one ofthe following ases holds: (a) � 2 �(Æ aP ) n �(a) and either � 2 �(S001 ) or HLI (�) 2 n(S001 );(b) � 2 �(S001 ) and HLI (�) 2 n(Æ aP ) n n(a).To disuss (a) and (b) we need to know the relation between the names and the labels of Pand those of Æ aP . By Proposition A.12, we have1. �(Æ aP ) n�(a) = �(P ) n f� j n� 2 U(P )g;2. n(Æ aP )nn(a) = fn(P )[(bn(P )nfn j n� 2 U(P )g) [ fHLI (�) j n� 2 (U(P )nUu(P ))g.We show ase (b). Assume that � 2 �(S001 ) and HLI (�) 2 n(Æ aP )nn(a). Given 2. we derivethat either HLI (�) 2 n(P ) or HLI (�) 2 fHLI (�) j n� 2 (U(P ) n Uu(P ))g.In the former ase, sine HLI (�) 2 n(P ) and t 2 C1 we have HLI (�) 2 n(S1). Moreover,we have �(S001 ) � �(S1). We obtain � 2 �(S1) and HLI (�) 2 n(S1), whih ontradits thewell-labeling of S1.In the latter ase, we have � 2 �(P ) and � 2 �(S001 ). Hene, there is an objet with label �in S001 . Sine t has been removed from the on�guration and t 2 C1, there are two objetswith label � in S1, whih ontradits again the well-labeling of S1.Case (a) follows by applying a similar argument using ondition 1., n(S001 ) � n(S1) and�(S001 ) � �(S1).Let S1 [ S2 be a well-labeled state suh that S1 [ S2 7! S01 [ S2. We onlude by observingthat new(S1 7! S2) = new(S1 [ S2 7! S01 [ S2) = ;.� Suppose that S1 7! S01 has been obtained by rule Bang. It means that S01 = (C1; T1) [Æ newS1(Q) for some !Q 2 C1. By de�nition, we have newS1(Q) = Q�I for a re-indexingof labels �I suh that dom(�I ) = �(Q) and50



1. Q�I is well-labeled;2. there is no � 2 �(Q�I), suh that either � 2 �(S1) or HLI (�) 2 n(S1).By onditions 1. and 2., Q�I is well-labeled and  is fresh for Q�I . Consequently, byProposition A.13, Æ newS1(Q) is well-labeled. Sine S1 and Æ newS1(Q) are well-labeled,S01 is not well-labeled only when there exists � suh that one of the following ases holds:(a) � 2 �(Æ newS1(Q)) n �() and either � 2 �(S1) or HLI (�) 2 n(S1); (b) � 2 �(S1) andHLI (�) 2 n(Æ newS1(Q)) n n().By Proposition A.12, we have(i) �(Æ newS1(Q)) n �() = �(newS1(Q)) n f� j n� 2 U(newS1(Q))g;(ii) n(Æ newS1(Q)) n n() = fn(newS1(Q)) [ (bn(newS1(Q)) n fn j n� 2 U(newS1(Q))g) [fHLI (�) j n� 2 (U(newS1(Q)) n Uu(newS1(Q)))g.In ase (a) we have � 2 �(Æ newS1(Q)) n �() , and onsequently � 2 �(newS1(Q)) using(i). When either � 2 �(S1) or HLI (�) 2 n(S1) we have a ontradition with the requirement2. above.In ase (b) we have HLI (�) 2 n(Æ newS1(Q)) n n(). Using (ii) we obtain that eitherHLI (�) 2 n(newS1(Q)) or � 2 �(newS1(Q)). In the latter ase, we have � 2 �(newS1(Q))and � 2 �(S1), whih ontradits the requirement 2. above. In the former ase we haveHLI (�) 2 n(newS1(Q)) and � 2 �(S1). We observe that n(Q) = n(newS1(Q)) and !Q 2 C1.Hene, we have HLI (�) 2 n(S1) and � 2 �(S1), whih ontradits the well-labeling of S1.Let S1[S2 be a well-labeled state suh that S1[S2 7! S01[S2. We observe that it is neessaryto have newS1[S2(Q) = Q�I , that is (besides ondition 1. above): there is no � 2 �(Q�I),suh that either � 2 �(S1 [S2) or HLI (�) 2 n(S1 [S2). Given new(S1 7! S01) = �(Q�I), wehave �nished. 2Now we show the main result of soundness.Lemma A.17 Let P be a well-labeled proess and let Æ aP = S1 where a 2 A is fresh for P . IfS1 7! S2, then there exists a well-labeled proess Q, suh that a is fresh for Q, Æ aQ = S2, P !� Qand �(Q) n �(P ) � new(S1 7! S2).Proof: The proof is by indution on the struture of P .� Assume P = 0 or P =M�.P1. We have Æ a0 = (;; ;) = S1 and Æ aM�.P1 = (;; faM�.P1g) =S1, respetively. In both ases the proof is trivial beause there is no transition from S1.� Assume P = !P1. We have Æ a!P1 = (;; fa!P1g) = (T1; C1) = S1. Transition S1 7! S2ould have been obtained only by applying rule Bang. It means that S2 = (;; fa!P1g) [Æ anewS1(P1). Let Q = !P1 j newS1(P1). We observe that by de�nition of new and sine!P1 2 C1, then Q is a well-labeled proess. Therefore, by rule (Bang-Bang) of Table 10 wederive !P1 � !P1 j newS1(P1). We also have Æ aQ = (;; fa!P1g)[Æ anewS1(P1). We onludeby notiing that �(Q) n �(P ) = �(newS1(P1)) = new(S1 7! S2).51



� Assume P = (�n�) P1. We have Æ a(�n�) P1 = Æ aP 01 = S1, where m = HLI (�) andP 01 = P1[m=n℄.Sine P is well-labeled, � 62 �(P 01), and onsequently P 01 is well-labeled. Hene, by indutionhypothesis there exists a well-labeled proess Q1 suh that Æ aQ1 = S2, P 01 !� Q1 and�(Q1) n �(P 01) � new(S1 7! S2).There are two ases: either P 01 � Q1 or P 01 ! Q1. We show only the latter one, the otherbeing analogous. We show the existene of a well-labeled proess Q, suh that P ! Q,Æ aQ = S2 and �(Q) n �(P ) = new(S1 7! S2).The ruial observation to �nd out the right proess Q is that Q1 is a well-labeled proess:it annot be the ase that � 2 �(Q1) and m 2 n(Q1), where m = HLI (�).1. Assume that � 62 �(Q1). Let k be a new name, suh that k 6= m and k 62 n(Q1)[n(P1)and there is no � 2 (�(Q1) [ �(P1)) with HLI (�) = k. We take Q = (�k�) Q1[k=m℄.Sine � 62 �(Q1) we have also � 62 �(Q1[k=m℄). Considering k has been properlyhosen, Q is well-labeled. Moreover, we haveÆ aQ = Æ a(Q1[k=m℄[m=k℄) = Æ aQ1 = S2.We now show that P ! Q. Sine P 01 ! Q1 and k is a new name, we have alsoP 01[k=m℄! Q1[k=m℄. Therefore, we derive (�k�)P 01[k=m℄! (�k�)Q1[k=m℄ by applyingrule (Res) to the premise P 01[k=m℄ ! Q1[k=m℄. We also observe that (�n�) P1 is �-onvertible to (�k�) P1[m=n℄[k=m℄.It remains to show that �(Q) n �(P ) � new(S1 7! S2). Sine � 62 �(Q1) we have�(Q) n�(P ) = (�(Q1[k=m℄) [ f�g) n (�(P1) [ f�g) = �(Q1) n�(P 01) � new(S1 7! S2).2. Assume that � 2 �(Q1) and m 62 n(Q1). We take Q = Q1. Sine Q1 is well-labeledand Æ aQ1 = S2, it remains to show that P ! Q1. The proof proeeds by onsideringthe following two ases: m 2 fn(P 01) or m 62 fn(P 01).When m 62 fn(P 01) we observe that n 62 fn(P1), that is P 01 = P1. Using n 62 fn(P1) wederive, by rules (Nil-Par), (Nil-Res) and (Res-Par), (�n�)P1 � P1. Sine P 01 = P1 andP 01 ! Q1 we obtain by rule (Cong) P ! Q1.If m 2 fn(P 01) the proof is more omplex. We use the fat that P 01 is well-labeled, thatis � 62 �(P 01). Sine P 01 ! Q1 and m 62 fn(Q1) we an apply Proposition A.15. Wederive that there exists Q01 suh that Q01 � Q1, P 01 ! Q01 and � 62 �(Q01).Sine � 62 �(Q01), the proess (�k�) Q01[k=m℄ is well-labeled, where k is a new namehosen as in ase 1. above. Moreover, by applying rule (Res) to the premise P 01 ! Q01we obtain (�k�) P 01[k=m℄! (�k�)Q01[k=m℄.We now dedue (�k�)P 01[k=m℄! Q1 from (�k�)P 01[k=m℄! (�k�)Q01[k=m℄. Sine Q01 �Q1 and m 62 n(Q1), then by Proposition A.6, m 62 fn(Q01), that is k 62 fn(Q01[k=m℄).Hene, by applying rules (Nil-Par), (Nil-Res) and (Res-Par) we obtain (�k�)Q01[k=m℄�Q01. Using Q01 � Q1 we have also (�k�) Q01[k=m℄ � Q1. By rule (Cong) we thereforeobtain (�k�) P 01[k=m℄ ! Q1. Moreover, we have that (�n�) P1 is �-onvertible to(�k�) P1[m=n℄[k=m℄.We onlude by observing that �(Q)n�(P ) == �(Q1)n�(P ) = �(Q1)n (�(P1)[f�g).Sine � 62 �(P1) and �(P1) = �(P 01) we have therefore �(Q1)n�(P ) � �(Q1)n�(P 01) �new(S1 7! S2). 52



� Assume P = b[P1℄. We have Æ ab[P1℄ = (f bag; ;) [ Æ bP1 = S1. Transition S1 7! S2 ouldhave been obtained in two ways: either only P1 ontributes to the ation or also ambientb partiipates. Notie that ambient a annot be involved as a is fresh for P and P is well-labeled. This guarantees that S1 is a well-labeled state with root a (see Proposition A.13).Let S01 = Æ bP1 = (T 01; C 01).1. If only P1 ontributes to the ation it means that S01 7! S02 and S2 = S02 [ (f bag; ;). AsP is well-labeled, P1 also is well-labeled and b is fresh for P1. Therefore, by indutionhypothesis there exist a well-labeled proess Q1, suh that Æ bQ1 = S02, P1 !� Q1 and�(Q1) n �(P1) � new(S01 7! S02).There are two ases: either P1 � Q1 or P1 ! Q1. We show only the latter ase,the other being analogous. The proof proeeds by showing that b[Q1℄ is well-labeledand that a is fresh for b[Q1℄. The well-labeling of Q is a neessary ondition to derivea redution b[P1℄ ! b[Q1℄ by applying rule (Amb) to the premise P1 ! Q1. LetQ = b[Q1℄.Assume that either Q is not well-labeled or a is not fresh for Q. We reall that Q1 iswell-labeled and that S1 = S01 [ (f bag; ;) is a well-labeled state. Therefore, the onlypossibility is that there exists a label �, suh that one of the following ases holds: (i)� 2 �(Q1) and either � 2 �(a) [ �(b) or HLI (�) 2 n(a) [ n(b); (ii) � 2 �(a) [ �(b)and HLI (�) 2 n(Q1).We onsider before ase (ii). Sine the bound names of Q1 an be �-onverted, whenneeded, the interesting ase is when HLI (�) 2 fn(Q1). In this ase we use P1 ! Q1and we derive, by Proposition A.7, fn(Q1) � fn(P1). Sine HLI (�) 2 fn(Q1) we havetherefore HLI (�) 2 fn(P1), and also HLI (�) 2 fn(P ). Given that � 2 �(a)[�(b) thisontradits either the well-labeling of P or the freshness of a for P .In ase (i) we have � 2 �(Q1). We observe that it is not possible that � 2 �(P ).This beause � 2 �(a) [ �(b) and � 2 �(P ) ontradit either the well-labeling ofP or the freshness of a for P . Similarly for HLI (�) 2 n(a) [ n(b) and � 2 �(P ).Therefore, we have � 62 �(P1) and � 2 �(Q1) n �(P1). We now use the fat that�(Q1) n �(P1) � new(S01 7! S02) and we dedue � 2 new(S01 7! S02).We observe that S1 7! S2, where S1 = S01[(f bag; ;) ansd S2 = S02[(f bag; ;). Therefore,by Proposition A.16, there is no � 2 new(S01 7! S02) suh that either � 2 �((f bag; ;)) orHLI (�) 2 n((f bag; ;)). Sine �((f bag; ;)) = �(a)[�(b) and n((f bag; ;)) = n(a)[n(b)we have: � 2 new(S01 7! S02) and either � 2 �(a) [ �(b) or HLI (�) 2 n(a) [ n(b). Thisis a ontradition.Sine Q is well-labeled, then a redution b[P1℄ ! b[Q1℄ an be obtained by applyingrule (Amb) to the premise P1 ! Q1. Moreover, we have that a is fresh for Q andÆ aQ = ((f bag; ;)) [ Æ bQ1 = ((f bag; ;)) [ S02 = S2.It remains to show that �(Q) n�(P ) � new(S1 ! S2). This follows immediately using�(Q1) n �(P1) � new(S01 7! S02), new(S01 7! S02) = new(S1 7! S2) and �(Q1) n �(P1) =�(Q) n �(P ) (as �(b) 62 �(Q1) [ �(P1)).2. If both P1 and b partiipate to the ation, the only possibility is that some ambient ,whih is top level inside b, goes out of b. It means that transition S1 7! S2 has beenobtained by rule Out. Therefore, there exist b 2 T 01 and outn�.R 2 C 01, suh that53



b = n , and S01 = Æ bT [ (f bg; ;) [ (;; outn�.R) [ Æ Ufor some proesses T and U . Moreover, the state S2 reahed from S1 (by rule Out) isS2 = (f bag; ;) [ (f ag; ;) [ Æ bT [ Æ U [ Æ R.We now use Æ bP1 = S01 and the shape of S01 to infer the struture of P1. Examin-ing the ases in the de�nition of Æ, we observe that: the omponents (f bg; ;) and(;; outn�.R) tell us that rules DAmb and DPref (possibly after rules DRes andDPar) have been used. Therefore, we haveP1 � (�~p~�) (T 0 j 0[outn�.R0 j U 0℄)where  = 0� and T = T 0�, U = U 0� and R = R0� for the substitution � : N ! bNIsuh that �(p) = HLI (�).Notie that we have grouped together the (eventual) unguarded restritions by means of�. This result is based on the underlying assumption that the bound names ~p an be �-onverted and on the following properties due to the well-labeling if P : (i) HLI (�) 6= nfor any � 2 ~�; (ii) n 62 ~p. Condition (i) follows from n 2 n(P ) using PropositionA.11. Condition (ii) follows from the fat that the restritions are unguarded, sine byProposition A.12 any unguarded restrition is removed. Consequently, n 2 ~p impliesn 62 n(Æ bP1), whih ontradits outn�.R 2 C 01.We now exploit the ondition n 62 ~p to derive, by applying rules (Amb) and (Res-Amb),that P � P 0 where P 0 = (�~p~�) (n [T 0 j 0[outn�.R0 j U 0℄℄).Let Q = (�~p~�) b[T 0℄ j 0[R0 j U 0℄ whih is obviously well-labeled. Moreover, we haveÆaQ = S2 and by rules (Out) and (Res) P 0 ! Q0. We therefore derive P ! Q byapplying rule (Cong).We onlude by observing that �(Q) � �(P ). Thus, we have �(Q)n�(P ) = new(S1 7!S2) = ;.� Assume P = P1 j P2. We have Æ aP1 j P2 = Æ aP1 [ Æ aP2 = S1. Transition S1 7! S2ould have been obtained in two ways: either only one of P1 and P2 partiipates to theation or the two proesses interat with eah other. In the latter ase, we observe thatambient a annot be involved as a is fresh for P . This guarantees that the topology is atree with root a (see Proposition A.13). Therefore, S1 7! S2 ould have been obtained bythe appliation either of rule In or of rule Open. In both ases the interation may involveonly proesses and ambients whih are top level inside a. Let Æ aP1 = (T1; C1) = S01 andÆ aP2 = (T2; C2) = S02.1. Suppose that only P1 ontributes to the ation. We have S1 = S01[S02 and S2 = S001 [S02,where S01 7! S001 . Sine P is well-labeled and a is fresh for P , then also Pi is well-labeledand a is fresh for Pi, for any i 2 f1; 2g. Hene, by indution hypothesis, we haveP1 !� P 01 for a well-labeled proess P 01, suh that a is fresh for P 01, Æ aP 01 = S001 and�(P 01) n �(P1) � new(S01 7! S001 ). 54



There are two ases: either P1 � P 01 or P1 7! P 01. We show only the latter ase, theother being analogous.Similarly to the ase of ambient we an apply rule (Par) to derive a transition P1 jP2 7! P 01 j P2 only when P 01 j P2 is well-labeled. This ase is however more omplexas it may be the ase that P 01 j P2 is not well-labeled. We therefore onsider a slightlydi�erent proess Q = P 01 j P 02, where P2 . P 02. We observe that, by de�nition of .,fn(P2) = fn(P 02) and �(P 02) � �(P2). Therefore, P 02 is well-labeled and a is fresh forP 02, as P2 is well-labeled and a is fresh for P2. Moreover, by Lemma A.14, we haveP2 � P 02 and Æ aP 02 = Æ aP2 = S02.We now show that Q = P 01 j P 02 is a well-labeled proess. Assume that this is not thease. Sine P 01 and P 02 are well-labeled the only possibility is that there exists a label� suh that one of the following ases hold: (i) � 2 �(P 01) and either � 2 �(P 02) orHLI (�) 2 n(P 02); (ii) � 2 �(P 02) and HLI (�) 2 n(P 01).We disuss before ase (ii). Sine the bound names of P 01 an be �-onverted, whenneeded, the interesting ase is when HLI (�) 2 fn(P 01). We use P1 ! P 01 and we obtain,by Proposition A.7, fn(P 01) � fn(P1). Hene, we have HLI (�) 2 fn(P1). Given that�(P 002 ) � �(P2) we obtain � 2 �(P2) and HLI (�) 2 fn(P1). This ontradits thewell-labeling of P1 j P2.In ase (i) we have � 2 �(P 01). We observe that it annot be the ase that also� 2 �(P1). This beause the well-labeling of P1 j P2 ontradits � 2 �(P1) and� 2 �(P2) (whih follows from � 2 �(P 02)). Similarly for � 2 �(P1) andHLI (�) 2 n(P2)(whih follows from HLI (�) 2 n(P 02)).Therefore, we have � 62 �(P1) and � 2 �(P 01), that is � 2 �(P 01) n �(P1). We now usethe fat that �(P 01) n �(P1) � new(S01 7! S001 ) and we derive � 2 new(S01 7! S001 ).We reall that S1 7! S2, where S1 = S01[S02 and S2 = S001[S02. Therefore, by PropositionA.16, there is no � 2 new(S01 7! S001 ) suh that either � 2 �(S02) or HLI (�) 2 n(S02).Hene, it must be the ase that (a) � 62 �(S02) and (b) HLI (�) 62 n(S02).We now use the fat that Æ aP 02 = S02. By Proposition A.12, we have{ �(S02) n �(a) = �(P 02) n f� j n� 2 U(P 02)g;{ n(S02) n n(a) = fn(P 02) [ (bn(P 02) n fn j n� 2 U(P 02)g) [ fHLI (�) j n� 2 (U(P 02) nUu(P 02))g.Using the results above, we now show that both possibilities � 2 �(P 02) and HLI (�) 2n(P 02) ontradits either (a) or (b).Assume that HLI (�) 2 n(P 02). As usual the interesting ase is when HLI (�) 2 fn(P 02).Given the previous onditions we have fn(P 02) � n(S02). Therefore, HLI (�) 2 fn(P 02)implies HLI (�) 2 n(S02) whih ontradits (b).Assume that � 2 �(P 02). Given the previous onditions we have two possibilities: either� 2 �(S02) or n� 2 U(P ). The former ase ontradits immediately (a). In the latterase, we use P2 .P 02, whih says that P 02 has no unguarded and unneessary restritions( Uu(P 02) = ;). Consequently, when n� 2 U(P ), then HLI (�) 2 n(S02). This ontraditsondition (b).We now show that there exists a redution P1 j P2 ! Q, whereQ = P 01 j P 02. We observethat �(P 02) � �(P2), and thus P1 j P 02 is well-labeled sine P1 j P2 is well-labeled. Sinealso P 01 j P 02 is well-labeled, by applying rule (Par) to the premise P1 ! P 01, we obtainP1 j P 02 ! P 01 j P 02. Sine P2 � P 02 we have also P1 j P2 � P1 j P 02. We therefore deriveP1 j P2 ! P 01 j P 02 by applying rule (Cong).55



Moreover, it is immediate to hek thatÆ aP 01 j P 02 = S001 [ S02 = S2.It remains to show that �(Q) n �(P ) � new(S1 ! S2). We observe that, sine P1 j P2and P 01 j P 02 are well-labeled, �(P1) \ �(P2) = ; and �(P 01) \ �(P 02) = ;. Moreover,�(P 02) � �(P2). Therefore, �(Q)n�(P ) = (�(P 01)[�(P 02))n (�(P1)[�(P2)) = �(P 01)n(�(P1)[�(P2)) � �(P 01)n�(P1). We onlude beause �(P 01)n�(P1) � new(S01 7! S001 )and new(S01 7! S001 ) = new(S1 7! S2).2. Suppose that rule In has been applied. We have either ba 2 T1, binm�.R 2 C1 andm�a 2 T2 or the onverse. Suppose the former ase holds. It means that S01 and S02have the following shape, respetivelyS02 = ÆaW [ ( m�a; ;) [ Æm�VS01 = ÆaU [ ( ba; ;) [ (;; binm�.R) [ ÆbTfor some proesses W ,V ,U , and T . Moreover, the state S2 reahed from S1 (by ruleIn) is S2 = ( bm� ; ;) [ ( m�a; ;) [ ÆaU [ ÆbR [ ÆbT [ ÆaW [ Æm�V .Sine Æ aP1 = S01 and Æ aP2 = S02, we argue that (reasoning on the de�nition of Æ,similarly to ase Out) P1 � (�~p~�) (U 0 j b0[inm�.R0 j T 0℄)P2 � (�~q~�) (W 0 j m�[V 0℄)where b = b0�1, T = T 0�1, U = U 0�1 and R = R0�1 and W = W 0�2 and V = V 0�2 forthe substitutions �i : N ! bNI where �1(p) = HLI (�) and �2(q) = HLI (�).We now notie that it annot be the ase that m 2 ~p or m 2 ~q. Suppose that m 2 ~p.Sine the restritions (�~p~�) are unguarded and P1 is well-labeled, then by PropositionA.12, we obtain m 62 n(Æ aP1), whih ontradits binm�.R 2 C1. Similarly, using thewell-labeling of P2, m 2 ~q ontradits m�a 2 T2.Therefore, we may assume without loss of generality that ~p \ ~q = ;, and we haveP1 j P2 � P 0 whereP 0 = (�~p~�; ~q~�) (U 0 j b0[inm�.R0 j T 0℄ j m [V 0℄ jW 0).Let Q = (�~p~�; ~q~�) (U 0 j W 0 j m�[V 0 j b[R0 j T 0℄).It is obvious that Q is a well-labeled proess and Æ aQ = S2. Also, we have by rules(In), (Par) and (Res) P 0 ! Q. We therefore derive P ! Q by applying rule (Cong).We onlude by observing that �(Q) � �(P ). Thus, we have �(Q)n�(P ) = new(S1 7!S2) = ;.3. The ase when rule Open has been applied is similar to that of rule In above.56



2Completeness. To show ompleteness we need some auxiliary properties. The following lemmashows the relation between the states representing two well-labeled proesses whih are struturalongruent.Lemma A.18 Let P and Q be well-labeled proesses and let a 2 A, suh that a is fresh for P andQ. If P � Q, then either Æ aP = Æ aQ or Æ aP 7! Æ aQ.Proof: By indution on the depth of P � Q. It is easy to hek that in any ase of Table 10the states obtained via Æ are equal apart from the ase (Bang-Bang). In ase (Bang-Bang) wehave P = !R and Q = !R j new(R). Hene, we have Æ aP = S1 = (;; a!R) and Æ aQ = S2 =(;; a!R) [ Æ anew(R). We observe that Æ aP 7! S2 by rule Bang. 2Proposition A.19 Let S1 be a well-labeled state suh that S1 7! S01. If S2 is a well-labeled statesuh that S1 [ S2 and S01 [ S2 is well-labeled, then we have also S1 [ S2 7! S01 [ S2.Proof: The proof is by ases on the rule applied to derive S1 7! S01. The ases of In, Out andOpen are trivial; the side onditions impose onstraints whih hold also for S1 [ S2. In the aseBang instead we have S1 = (T1; C1) and S01 = (T1; C1) [ Æ newS1(Q) for some Q 2 C1. Weobtain S1 [ S2 7! S01 [ S2, as newS1(Q) = newS1[S2(Q) is ensured by the well-labeling of S01 [ S2.2Lemma A.20 Let P be a well-labeled proess suh that P ! Q. For any  2 A whih is fresh forP , we have Æ P 7!� Æ Q.Proof: The proof is by indution on the depth of the derivation of P ! Q. The last rule usedould have been (In), (Out), (Open), one of the strutural rules (Res),(Par),(Amb) or rule (Cong).� Assume that P ! Q has been obtained by applying rule (In). It means that P = a[inm�.P 0 jQ0℄ j b[R0℄, where a = n� and b = m , and Q = b[a[P 0 j Q0℄ j R0℄.By de�nition of Æ we haveÆ P = Æ a[inm�.P 0 j Q0℄ [ Æ b[R0℄ =(f a; bg; ;) [ (;; ainm�.P 0) [ Æ aQ0 [ Æ bR0.Therefore, by applying rule In we obtain a transition Æ P 7! S whereS = (f ab; bg; ;) [ Æ aQ0 [ Æ bR0 [ Æ aP 0.We onlude by observing that, by de�nition of Æ,Æ Q = (f bg; ;) [ Æ b(a[P 0 j Q0℄ j R0) = (f ab; bg; ;) [ Æ aP 0 [ Æ aQ0 [ Æ bR0 = S.57



� Assume that P ! Q has been obtained by applying rule (Out). It means that P =b[a[outm�.P 0 j Q0℄ j R0℄, where a = n� and b = m , and Q = b[R0℄ j a[P 0 j Q0℄.By de�nition of Æ we haveÆ P = (f bg; ;) [ Æ b(a[outm�.P 0 j Q0℄ j R0) =(f b; abg; ;) [ (;; aoutm�.P 0) [ Æ aQ0 [ Æ bR0.Moreover, by applying rule Out we obtain a transition Æ P 7! S whereS = (f b; ag; ;) [ Æ aP 0 [ Æ aQ0 [ Æ bR0.We onlude by observing that, by de�nition of Æ,Æ Q = Æ b[R0℄ [ Æ a[P 0 j Q0℄ = (f b; ag) [ Æ bR0 [ Æ aP 0 j Q0 = S.� Assume P ! Q has been obtained by applying rule (Open). It means that P = openn�.P 0 ja[R0℄, where a = n�, and Q = P 0 j R0.By de�nition of Æ we haveÆ P = Æ openn�.P 0 [ Æ a[R0℄ = ( a; ;) [ (;; openn�.P 0) [ ÆaR0.Moreover, by applying rule Open we obtain a transition Æ P 7! S whereS = Æ P 0 [ (T [ d= da℄; C[ R= aR℄)ÆaR0 = (T;C)We onlude by observing that, by de�nition of ÆÆ Q = Æ P 0 [ Æ R0.Sine  is fresh, we also have (T [ d= da℄; C[ R= aR℄) = Æ R0. We therefore onludeÆ Q = S.� Assume P ! Q has been obtained by applying rule (Amb). It means that P = a[P1℄, wherea = n�, and Q = a[P2℄, where P1 ! P2. By de�nition of Æ we haveÆ P = Æ a[P1℄ = (a; ;) [ Æ aP1.Sine P is well-labeled, then P1 is well-labeled and a is fresh for P1. Hene, by indutionhypothesis we have Æ aP1 7!� S0, where Æ aP2 = S0. We now observe that Q = a[P2℄ is well-labeled. Hene, by Proposition A.13, we have that Æ Q is well-labeled. Also, by de�nitionof Æ we have Æ Q = (a; ;) [ Æ aP2 = (a; ;) [ S0.We onlude by applying Proposition A.19. Sine (a; ;)[S0 is well-labeled and Æ aP1 7!� S0,then we have also Æ P 7!� (a; ;) [ S0.58



� Assume P ! Q has been obtained by applying rule (Par). It means that P = P1 j P2 andQ = P 01 j P2, where P1 ! P 01. By de�nition of Æ we haveÆ P = Æ P1 [ Æ P2.Sine P is well-labeled and  is fresh for P , then also P1 is well-labeled and  is fresh for P1.Hene, by indution hypothesis we have Æ P1 7!� S0, where Æ P 01 = S0.We now observe that Q = P 01 j P2 is well-labeled. Hene, by Proposition A.13, we have thatÆ Q is well-labeled. Also, by de�nition of Æ we haveÆ Q = Æ P 01 [ Æ P2 = S0 [ Æ P2.We onlude by applying Proposition A.19. Sine S0[Æ P2 is well-labeled and Æ P1 7!� S0,then we have also Æ P 7!� S0 [ Æ P2.� Assume P ! Q has been obtained by applying rule (Res). It means that P = (�n�) P1 andQ = (�n�) P2 where P1 ! P2. By de�nition of Æ we haveÆ P = Æ (P1[m=n℄)where m = HLI (�).We observe that sine P is well-labeled, thenm 62 n(P1). Sine P1 ! P2, then by PropositionA.7, fn(P2) � fn(P1), and onsequently also m 62 n(P2). Considering the bound names anbe �-onverted, if needed, we derive P1[m=n℄! P2[m=n℄ from P1 ! P2.Sine P is well-labeled, then � 62 �(P1[m=n℄). Consequently, P1[m=n℄ is a well-labeled pro-ess. Therefore, by indution hypothesis we have Æ (P1[m=n℄) 7!� S0, where Æ (P2[m=n℄) =S0. We onlude by observing thatÆ Q = Æ (P2[m=n℄) = S0.� Assume P ! Q has been obtained by applying rule (Cong). It means that P1 ! Q1 forsome proesses P1; Q1, suh that P � P1 and Q1 � Q By indution hypothesis we haveÆ P1 7!� S where S = Æ Q1. By Lemma A.18, we have Æ P 7!� S. Again by Lemma A.18,we have either Æ Q1 = Æ Q or Æ Q1 7! Æ Q. In both ases Æ P 7!� Æ Q. 2A.3 EquivaleneWe show the proof of Theorem 4.5.Soundness: if Æ aP 7! S, then by Lemma A.17 there exists a well-labeled proess Q, suh thatÆ aQ = S and P !� Q. By Lemmas A.1 and A.2 we have E(P )!� E(Q).Completeness: if E(P ) ! Q, then by Lemma A.9 there exists a well-labeled proess Q0, suhthat E(Q0) � Q and P ! Q0. By Lemma A.20 we have Æ aP 7!� Æ aQ0.59



B Safeness of the abstrationsThe following proposition realls some well-known results of domain theory whih are useful in theproofs.Proposition B.11. Given any set S, h}(S);�i is a omplete lattie.2. Given two omplete latties hS1;�1i, hS2;�2i, the produt h(S1 � S2);�wi, where �w isthe omponent-wise indued ordering, is a omplete lattie.B.1 First AbstrationWe �rst show that the pair of funtions (��; �) forms a Galois onnetion between hS\;�i andhS�;��i (Theorem 5.6).Proposition B.2 The onrete domain hS\;�i and the abstrat domain hS�;��i are ompletelatties.Proof: The onrete domain S\ = }(S=�) is a omplete lattie by ase 1. of Proposition B.1.The abstrat domain hS�;��i is a omplete lattie by ase 2. of Proposition B.1. Notie that, byde�nition of �� (De�nition 5.3), given two well-labeled states S�1 and S�2 , S�1 [S�2 is a well-labeledstate as well. 2The following proposition states the basi properties of the onretization and abstration fun-tions.Proposition B.3 Funtion �� : hS\;�i ! hS�;��i is monotoni and ontinuous and funtion� : hS�;��i ! hS\;�i is monotoni.Proof: Straightforward by De�nition 5.5. 2The properties stated above are enough to prove Theorem 5.6.Proof: [of Theorem 5.6℄ We show that (��; �) is a Galois onnetion (see De�nition 2.1). ByProposition B.2 the onrete and abstrat domains are omplete latties. Also, by Proposition B.3both �� and � are monotoni. Hene, it remains two show that, for S� 2 S� and S\ 2 S\, wehave S\ � �(��(S\))��(�(S�))��S�Both assertions follow rather obviously from De�nition 5.5. We have S\ � �(��(S\)) sine byde�nition of � and ��,�(��(S\)) =[f[S℄ j ��(f[S℄g)��[�[S℄2S\��([S℄)g.60



Moreover, by de�nition of �� and �, and by ontinuity of �� (Proposition B.3) we have��(�(S�)) = ��([f[S℄ j ��(f[S℄g)��S�g) =[���(f[S℄ j ��(f[S℄g)��S�g).By de�nition of least upper bound on a omplete lattie we onlude therefore[���(f[S℄ j ��(f[S℄g)��S�g)��S�. 2We now show some basi properties of the onrete and abstrat semanti funtions whih areneeded to establish the safeness of the abstration (Lemma 5.8).Lemma B.4 Let S�1 ; S�2 2 S� be well-labeled abstrat states suh that S�1��S�2 . if S�1 7!�S0�1, thenthere exists a transition S�2 7!�S0�2, suh that S0�1��S0�2.Proof: There are two ases depending on whether S�1 � S�2 or not. In the former ase the proofis straightforward. In the latter ase, it means that there exists an abstrat state S00�1, suh thatS00�1 = S�1� for a renaming � : LI ! L�, where either �(`1) = `1 or �(`1) = `!, and S00�1 � S�2 . Itis easy to hek (by ases on the rules of Table 7) that we have S00�1 7!�S000�1 suh that S0�1��S000�1.Sine S00�1 � S�2 and S00�1 7!�S000�1, then we have also S�2 7!�S0�2 suh that S000�1��S0�2. We onludebeause S0�1��S000�1��S0�2. 2Lemma B.5 Let S 2 S and S� 2 S�. The funtions 	S : hS\;�i ! hS\;�i and 	�S� : hS�;��i !hS�;��i are monotoni.Proof: The proof follows immediately by Lemma B.4 using De�nitions 4.9 and 5.7. 2We state some relevant properties of the auxiliary abstration funtion �� : S ! S� whihmaps a state into an abstrat state (see De�nition 5.5, ase 1.). The following lemma says that�� is ontinuous for union of states with a speial shape (Reall that the abstration over sets ofstates �� : S\ ! S� is ontinuous as shown by Proposition B.3). To state formally this result weneed to introdue an auxiliary onept. Let S1; S2 be two well-labeled states. We say that S2 is asub-tree of S1 with root a 2 A i� a is the root of S2, and only ambient a ours both in S1 and S2.We introdue a onvention whih is useful in the following proofs. We reall that any objetmay have several abstrations depending on the global number of ourrenes of its labels in thestate. In the abstration �� (see De�nition 5.5) this is formalised by: the renaming ��S , whihdepend on the state S and introdue the multipliity ounting the indexes; the substitution ��whih simply removes indexes. When the renaming ��S is lear from the ontext we may use: a�to denote the abstrat version of a; P � to denote that abstrat version of P .Lemma B.6 Let S1; S2 be two well-labeled states, suh that S1 [ S2 also is well-labeled. If S2 isa sub-tree of S1 with root a, then we have��(S1 [ S2) = ��(S1)[���(S2)f[a�b�=a��℄gwhere b is the father of a in S1 16.16Meaning that ab 2 T1 for S1 = (T1; C1). 61



Proof: Let ��(S1 [ S2) = (T �; C�), Si = (Ti; Ci) and ��(Si) = (Ti�; Ci�) for i 2 f1; 2g. Wereall that, by de�nition of �� (De�nition 5.5), we have (T �; C�) = (T 0�; C 0�)��S1[S2�� whereT 0� = f ab j ab; b 2 T1 [ T2gC 0� = f abP j ab 2 T1 [ T2; aP 2 C1 [ C2g.Analogously, for i 2 f1; 2g, we have (T �i ; C�i ) = (T 0i �; C 0i�)��Si�� whereT 0i � = f ab j ab; b 2 TigC 0i� = f abP j ab 2 Ti; aP 2 Cig.We �rst show that T 0� � T 01�[T 02�f[ab=a�℄g. Let us onsider a generi element de 2 T 0�. It meansthat d; de 2 T1 [ T2. There are several possibilities:1. Both d 2 T1 and de 2 T1. It is immediate to hek that we have also de 2 T 01�.2. Both d 2 T2 and de 2 T2. Similarly as in the previous ase we have de 2 T 02�. We nowobserve that  and d annot be a, beause a is the root of S2. We therefore onlude thatde 2 T 02�f[ab=a�℄g.3. One element belongs to T1 and the other one to T2. Sine S2 is a sub-tree of S1 with root athe only possibility is that d 2 T2, de 2 T1 and d = a. Moreover, sine b is the father of a inS1, it means that e = b. It is immediate to hek that a� 2 T 02�, so that ab 2 T 02�f[ab=a�℄g.We now show the onverse T 0� � T 01� [ T 02�f[ab=a�℄g. Let us onsider a generi element de 2T 01� [ T 02�f[ab=a�℄g. There are two possibilities:1. If de 2 T 01�, then both d, de 2 T1. It follows that both d, de 2 T1 [T2, and thus de 2 T 0�.2. If de 2 T 02�f[ab=a�℄g, then either de 2 T 02� or d = a, e = b and a� 2 T 02�. The former aseis analogous to 1. above. In the latter ase we observe that a 2 T2. Sine ab 2 T1, we havea; ab 2 T1 [ T2, and thus ab 2 T 0�.A similar argument applies also to the on�guration. Hene, we have(T 0�; C 0�) = (T 01�; C 01�) [ (T 02�; C 02�)f[ab=a�℄g.Therefore, we have also(T 0�; C 0�)��S1[S2�� = (T 01�; C 01�)��S1[S2�� [ (T 02�; C 02�)f[ab=a�℄g��S1[S2��.Using a� = a��S1[S2�� and b� = b��S1[S2��, we obtain(T 0�; C 0�)��S1[S2�� = (T 01�; C 01�)��S1[s2�� [ (T 02�; C 02�)��S1[S2��f[a�b�=a��℄g.Now we observe that the equality is preserved, when the renamings ��Si are used for i 2 f1; 2g inplae of ��S1[S2 and [ is replaed by [�. This beause [� modi�es the multipliity ounting thenumber of the ourrenes of the union. Therefore, we onlude(T 0�; C 0�)��S1[S2�� = (T 01�; C 01�)��S1�� [� (T 02�; C 02�)��S2��f[a�b�=a��℄g. 262



The following proposition shows the safeness of the abstrat normalisation funtion Æ�. Notiethat a is the root of Æ aP so that the abstration �� assigns � as father of a�. It is thereforeneessary to replae � with b�.Proposition B.7 Let P be a well-labeled proess and a 2 A suh that a is fresh for P . We have��(Æ aP )f[a�b�=a��℄g��Æ� a�b�P �.Proof: The proof proeeds by indution on the struture of P using the de�nition of Æ� (Table6). We show the most interesting ases.� Assume that P = [P1℄. We haveÆ aP = (fag; ;) [ Æ P1.By Proposition A.13, Æ aP is well-labeled state. Moreover, we observe that Æ P1 is a sub-treeof (fag; ;) with root . Thus, by Lemma B.6 we have��(Æ aP ) = ��((fag; ;))[���(Æ P1)f[�a�=��℄g.By indution hypothesis we have��(Æ P1)f[�a�=��℄g��Æ� �a�P �1 .Moreover, by de�nition of �� we have ��((fag; ;)) = (f�a��g; ;).Therefore, we have ��(Æ aP )��(f�a��g; ;)[�Æ� �a�P �1 .We now observe that the replaement f[a�b�=a��℄g annot a�et Æ� �a�P �1 beause theabstrat topology of a single state is a tree. Therefore, we have��(Æ aP )f[a�b�=a��℄g��(f�a��g; ;)f[a�b�=a��℄g[�Æ� �a�P �1 .We onlude beause by de�nition of Æ� we haveÆ� a�b�P � = (f�a�b� g; ;)[�Æ� �a�P �1 .� Assume that P = (�n�P1) . We haveÆ aP = Æ a(P1[n̂i=n℄)where n̂i = HLI (�) and � = `i.Sine P is well-labeled, then � 62 �(P1). Therefore, P1[n̂i=n℄ is well-labeled, and by indutionhypothesis we have��(Æ a(P1[n̂i=n℄))f[a�b�=a��℄g��Æ� a�b���(P1[n̂i=n℄).Let P � = ��(P ) = (�n��) P �1 . By de�nition of �� we have ��(P1[n̂i=n℄) = P �1 [n̂=n℄. Nowwe use HL�(��) = n̂ and we obtain by de�nition of Æ�Æ� a�b�P � = Æ� a�b�P1�[n̂=n℄.63



2The following lemma is the ore of the proof of safeness; it states the agreement betweenonrete and abstrat transitions.Lemma B.8 Let S; S0 2 S be well-labeled states. For any S 7! S0 there exists an abstrat stateS0�, suh that ��(S)7!�S0� and ��(S0)��S0�.Proof: The proof is by ases on the rule applied to obtain the transition S 7! S0. One of therules Bang, In, Out and Open of Table 5 ould have been applied. Assume that S = (T;C), byde�nition of �� (De�nition 5.5), we have ��(S) = (T �; C�) = (T 0�; C 0�)��S�� whereT 0� = f ab j ab; b 2 TgC 0� = f abP j ab 2 T; aP 2 Cg.As usual we use a� to denote the abstrat version of a, that is a��S��. Similarly, for the otherambients and proesses.Bang It means that a!P 2 C and that S0 = S [ Æ anewS(P ).By de�nition of �� we have a�b� !P � 2 C�, where b is the father of a in S, i.e. either ab 2 T ,or a is the root of T and b = �. Hene, by applying rule Bang�, we obtain a transition��(S)7!�S0� where S0� = ��(S) [� Æ� a�b�new!(P �).It remains to show that ��(S0)��S0�, that is��(S [ Æ anewS(P ))����(S) [� Æ� a�b�new!(P �).We observe that Æ anewS(P ) is a sub-tree of S with root a. Hene, by Lemma B.6, we have��(S [ Æ anewS(P )) = ��(S)[���(Æ anewS(P ))f[a�b�=a��℄g.By Proposition B.7 we have also��(Æ anewS(P ))f[a�b�=a��℄g��Æ� a�b���(newS(P )).We now observe that the funtion new! gives multipliity ! to any label of P �. It meansthat Æ� a�b���(newS(P ))��Æ� a�b�new!(P �).We therefore onlude��(Æ anewS(P ))f[a�b�=a��℄g��Æ� a�b�new!(P �).64



In It means that ab; m�b 2 T and t = ainm .P 2 C, where a 6= m� and a 6= �. Moreover,S0 = Æ aP [ ((T n f abg) [ f am�g; C n ftg).By de�nition of �� we have a�b�inm� .P � 2 C�, sine b is the father of a ( ab 2 T ).Moreover, it is immediate to hek that there exists � suh that a�b�� ; m��b�� 2 T �.Notie that, sine a 6= �, either  is the father of b in T , or b = � and � = >, or b is theroot of T and � = �.We now observe that the side ondition of rule In� is satis�ed (if a� = m`1 then �� 6= `1).Sine a 6= m�, there are two ases: either a = k� or a = m� with � 6= �. In the former asethe side ondition is immediately satis�ed. In the latter ase it depends on whether � and �di�er in the indexes only. In partiular, when � = `j and � = `h for indexes j; h, suh thatj 6= h, the side ondition is satis�ed, beause �� = �� = `! by de�nition of the abstration.By applying rule In�, we obtain a transition ��(S)7!�S0� whereS0� = Æ� a�m�� P � [� S�2S�2 = ��(S) [� (T �[�f a�m�� b�g; C�n�ft�g)f[a�m��=a�b� ℄g .It remains to show that ��(S0)��S0�, that is��(Æ aP [ ((T n f abg) [ f am�g; C n ftg))��S0�.We observe that Æ aP is a sub-tree of S0 with root a and that the father of a in S0 is m�.Hene, by Lemma B.6, we have��(S0) = ��(Æ aP )f[a�m��=a��℄g [� S�1S�1 = ��((T n f abg) [ f am�g; C n ftg).By Proposition B.7 we have also��(Æ aP ) f[a�m��=a��℄g��Æ� a�m��P �.Hene, to onlude it is enough to show that S1���S2�, that is��((T n f abg) [ f am�g; C n ftg)����(S) [� (T �[�f a�m�� b�g; C�n�ft�g)f[a�m��=a�b� ℄g.In the following we assume that Si� = (Ti�; Ci�) for i 2 f1; 2g (we reall also that ��(S) =(T �; C�) = (T 0�; C 0�)��S��).� We show T �1��T �2 . Let d�e�f� 2 T1�, by de�nition of �� we have de; ef 2 (T n f abg)[f am�g. There are several ases to onsider depending on how the ambient a, whosefather has hanged, is involved.Assume that none of d� and e� is equal to a�. It is easy to hek that de; ef 2 T .Hene, we have d�e�f� 2 T � and, onsequently, also d�e�f� 2 T2�.65



Assume that d� = a�. Sine m�b; am� 2 (T n f abg) [ f am�g then e� = m�� andf� = b�. We onlude beause a�m��b� 2 T2�.Assume that e� = a�. It means that f� = m�� as am� 2 (T nf abg)[f am�g. Therefore,we have da; ab 2 T and d�a�b� 2 T �. Moreover , we have d�a�m�� 2 T �f[a�m��=a�b� ℄gand, onsequently, d�a�m�� 2 T2�.� We show C�1��C2� by onsidering a generi element d�e�Q 2 C�1 . The proof is similarto the one shown for the topology; the only interesting ase is when the proess Q isloal to a, that is d� = a� and e� = m��. By de�nition of �� it means that aQ 2 Cnftgand am� 2 (T n f abg) [ f am�g, and onsequently aQ 2 C and ab 2 T . By de�nitionof �� we obtain a�b�Q� 2 C�. Now, we use the de�nition of n�; there are two asesdepending on whether the label  is either `01 or `0!.When  = `0! we haveC�n�ft�g = C�. Sine a�b�Q� 2 C� then we onlude a�m��Q� 2C�n�ft�gf[a�m��=a�b� ℄g.When  = `01 we have C�n�ft�g = C� n ft�g. We observe that it annot be the asethat Q� = t�, as  = `1 shows that there is only objet with label . Therefore, wehave a�b�Q� 2 C�n�ft�g. We then onlude as before.Out Similar to the ase of rule In� above.Open It means that m�a 2 T and t = aopenm .P 2 C, where a 6= m�. Moreover,S0 = Æ aP [ ((T n f m�ag); (C n ftg))f[a=m�℄gBy de�nition of �� we have a�b�openm�� .P 2 C�, where b is the father of a in T , i.e. eitherab 2 T or a is the root of T and b = �. Moreover, sine m�a 2 T we have also m��a�b� 2 T �.We observe that the side ondition of rule Open� is satis�ed sine a 6= m� (by applying areasoning similar to that for In). Hene, by applying rule Open�, we obtain a transition��(S)7!�S0� whereS0� = Æ� a�b�P � [� ��(S) [� ��(S)f[a�b�=m��a� ℄gf[a�=m�� ℄gIt remains to show that ��(S0)��S0�, that is��(Æ aP [ ((T n f m�ag); (C n ftg))f[a=m�℄g)��S0�.We observe that Æ aP is a sub-tree of S with root a. Hene, by Lemma B.6, we have��(S0) = ��(Æ aP )f[a�b�=a��℄g [� ��(((T n f m�ag); (C n ftg))f[a=m�℄g).By Proposition B.7 we have also��(Æ aP ) f[a�b=a��℄g��Æ� a�b�P �.Therefore, to onlude it is enough to show that��(((T n f m�ag); (C n ftg))f[a=m�℄g)����(S) [� ��(S)f[a�b�=m��a� ℄gf[a�=m�� ℄g.66



This an be shown following the reasoning used for the similar inlusion in rule In above. Itis worth giving some details only about the substitutions. The substitution f[a�b�=m��a� ℄gguarantees that the opening ambient a aquires any ambient and proess loal to m�. Sim-ilarly, the substitution f[a�=m�� ℄g guarantees that the removal of m� is propagated also tothe proesses and ambients loal to an ambient, whih is a son of m�. 2We an now prove the main result, that is Lemma 5.8. We reall its assertion for larity:Let S2 2 S and S\ 2 S\. We have��(	S2(S\))��	���(S2)(��(S\)).Proof: [of Lemma 5.8℄ We �rst notie that, by de�nition of �, when S1 � S2 we have ��(S1) =��(S2). Moreover, for any S1 7! S01 we have S2 7! S02 suh that S01 � S02. This observation permitsus to simplify the proof by using, with an abuse of notation, S 2 S\ in plae of [S℄ 2 S\. Byde�nition of 	S2 (De�nition 4.9) we therefore have	S2(S\) = f[S2℄g [ [S2fS3jS1 7!S3; S12S\gf[S℄g.Thus, by ontinuity of �� (Proposition B.3) and using ��(f[S2℄g) = ��(S2) and ��(f[S℄g) = ��(S),we obtain ��(	S2(S\)) = ��(S2)[�[�S2fS3jS1 7!S3; S12S\g��(S).By Lemma B.8 we have that, for eah S1 2 S\ and for eah S1 7! S3, there exists ��(S1)7!�S�3suh that ��(S3)��S�3 . Sine fS1g � S\, then by monotoniity of �� (Proposition B.3) wehave ��(fS1g) = ��(S1)����(S\). Hene, by Lemma B.4, we have also ��(S\)7!�S�4 suh that��(S3)��S�3��S�4 .We onlude, beause by De�nition of 	���(S2) (De�nition 5.7), we have	���(S2)(��(S\)) = ��(S2)[�[�S�2fS�3 j��(S\)7!�S�3gS�. 2B.2 Seond abstrationWe �rst show that the pair of funtions (�Æ; Æ) forms a Galois onnetion between hS�;��i andhSÆ;�i (Theorem 6.4).Proposition B.9 The abstrat domain hSÆ;�i is a omplete lattie.Proof: Straightforward by Proposition B.1. 2The following proposition states the basi properties of the onretization and abstration fun-tions. 67



Proposition B.10 Funtion �Æ : hS�;��i ! hSÆ;�i is monotoni and ontinuous and funtionÆ : hSÆ;�i ! hS�;��i is monotoni.Proof: Trivial by De�nition 6.3. 2The properties stated above are enough to prove Theorem 6.4.Proof: [of Theorem 6.4℄ We show that (�Æ; Æ) is a Galois onnetion (see De�nition 2.1). ByPropositions B.2 and B.9 both abstrat domains are omplete latties. Also, by Proposition B.10both �Æ and Æ are monotoni. Hene, it remains two show that, for SÆ 2 SÆ and S� 2 S�, wehave S���Æ(�Æ(S�))�Æ(Æ(SÆ)) � SÆBoth assertions follow straightforwardly from De�nition 6.3. We have S���Æ(�Æ(S�)) sine, byde�nition of Æ and �Æ, Æ(�Æ(S�)) =[�fS0� j �Æ(S0�) � �Æ(S�)g.Moreover, by de�nition of Æ and �Æ and by ontinuity of �Æ (Proposition B.10) , we have�Æ(Æ(SÆ)) = �Æ([�fS� j �Æ(S�) � SÆg) =[�Æ(fS� j �Æ(S�) � SÆg).By de�nition of least upper bound on a omplete lattie we onlude therefore[�Æ(fS� j �Æ(S�) � SÆg) � SÆ. 2We now show the safeness of the seond abstration (Lemma 6.6). The proof uses someauxiliary lemmata similar to those shown for the �rst abstration.Lemma B.11 Let SÆ1 ; SÆ2 2 SÆ be well-labeled abstrat states suh that SÆ1 � SÆ2 . if SÆ1 7!ÆS0Æ1, thenthere exists a transition SÆ2 7!ÆS0Æ2, suh that S0Æ1�ÆS0Æ2.Proof: The proof is straightforward by ases on the rules of Table 8. 2Lemma B.12 Let SÆ 2 SÆ. The funtion 	ÆSÆ : hSÆ;�i ! hSÆ;�i is monotoni.Proof: This follows from Lemma B.11 using De�nition 6.5. 2To simplify the notation we use the following onvention: aÆ denotes the abstrat version ofa, that is a�Æ where �Æ is the renaming whih forgets multipliities (i.e. �Æ(`1) = �Æ(`!) = `.)Similarly for proesses P Æ is the abstrat version of P .68



Proposition B.13 Let P be a well-labeled abstrat proess. We have�Æ(Æ� abP ) = ÆÆ aÆP Æ.Proof: The proof is easy proeeding by indution on the struture of P and using the de�nitionof �Æ (De�nition 6.3). We reall that�Æ((T �; C�)) = (f ab j ab 2 T �g; f aP j abP 2 C�g)�Æ.Sine funtion �Æ removes the partial topology, the information that b is father of a is lost. 2Lemma B.14 Let S�; S0� 2 S� be well-labeled abstrat states. For any S� 7!�S0� there exists anabstrat state S0Æ, suh that �Æ(S�)7!ÆS0Æ and �Æ(S0�) � S0Æ.Proof: The proof is by ases on the rule applied to obtain the transition S� 7!�S0�. One of therules Bang�, In�, Out� and Open� of Table 7 ould have been applied. Let S� = (T �; C�) and�Æ(S�) = (T Æ; CÆ). We reall that, by de�nition of �Æ (De�nition 6.3), we have�Æ(S�) = (f ab j ab 2 T �g; f aP j abP 2 C�g)�ÆBang� It means that ab !P 2 C� and thatS0� = S� [� ÆÆ abnew!(P ).By de�nition of �Æ we derive that aÆ !P Æ 2 CÆ. Hene, by applying rule BangÆ of Table 8,we obtain a transition �Æ(S�)7!ÆS0Æ whereS0Æ = �Æ(S�) [ ÆÆ aÆP Æ.It remains to show that �Æ(S0�) � S0Æ. By ontinuity of �Æ (Proposition B.10) we have�Æ(S0�) = �Æ(S�) [ �Æ(Æ� abnew!(P )).We notie that, sine the abstration �Æ forgets any multipliity, we have�Æ(Æ� abnew!(P )) = �Æ(Æ� abP ).We onlude, beause by Proposition B.13 we have�Æ(Æ� abP ) = ÆÆ aÆP Æ.In� It means that ab ; m�b 2 T � and abinm�.P 2 C�, and thatS0� = S� [� Æ� am�P [� (T � [ f amb�g; C�n�fg)f[am�=ab℄g.By de�nition of �Æ we have that aÆbÆ ; m�ÆbÆ 2 T Æ and aÆinm�Æ .P Æ 2 CÆ. Hene, byapplying rule InÆ of Table 8, we obtain a transition �Æ(S�)7!ÆS0Æ whereS0Æ = �Æ(S�) [ ÆÆ aÆP Æ [ (f aÆm�Æg; ;).69



It remains to show that �Æ(S0�) � S0Æ. By ontinuity of �Æ (Proposition B.10) we have�Æ(S0�) = �Æ(S�) [� �Æ(Æ� am�P ) [� �Æ((T � [ f amb�g; C�n�fg)f[am�=ab℄g).By Proposition B.13 we have that�Æ(Æ� am�P ) � ÆÆ aÆP Æ.We observe that�Æ((T � [ f amb�g; C�n�fg)f[am�=ab℄g) = �Æ((T � [ f amb�g; C�n�fg)In fat, the operation of replaement only a�ets the partial topology whih is removed bythe abstration �Æ. Furthermore, we have also using the ontinuity of �Æ and the de�nitionof n� �Æ((T � [� f amb�g; C�n�fg) � �Æ((T � [ f amb�g; C�) = �Æ(S�) [ �Æ(( amb� ; ;)).Sine �Æ(( amb� ; ;)) = (f aÆm�Æg; ;) we onlude that�Æ((T � [ f amb�g; C�n�fg)f[am�=ab℄g) � �Æ(S�) [ (f aÆm�Æg; ;).Out� The proof is similar to that of rule In� above.Open� It means that m�ab 2 T � and abopenm�� .P 2 C� and thatS0� = S� [� Æ� abP [� S�f[ab=m�a℄gf[a=m� ℄g.By de�nition of �Æ we have m�ÆaÆ 2 T Æ and aÆopenm�Æ .P Æ 2 CÆ. Hene, by applying ruleOpenÆ of Table 8, we obtain a transition �(S�)7!ÆS0Æ whereS0Æ = �Æ(S�) [ ÆÆ aÆP Æ [ �Æ(S�)f[aÆ=m`0 ℄g.It remains to show that �Æ(S0�) � S0Æ. By ontinuity of �Æ (Proposition B.10) we have�Æ(S0�) = �Æ(S�) [ �Æ(Æ� abP ) [ �Æ(S�f[ab=m�a℄gf[a=m� ℄g).By Proposition B.13 we have that�Æ(Æ� abP ) � ÆÆ aÆP Æ.We observe also that, sine the abstration �Æ forgets the partial topology, we have�Æ(S�f[ab=m�a℄gf[a=m� ℄g) = �Æ(S�f[ab=m�a℄g)�Æ(S�f[ab=m�a℄g) = �Æ(S�)f[aÆ=m`0 ℄g.Hene, we onlude that�Æ(S�f[ab=m�a℄gf[a=m� ℄g) � �Æ(S�)f[aÆ=m`0 ℄g.70



2We an now show the proof of Lemma 6.6. We reall its assertion:Let S�1 ; S�2 2 S�. We have �Æ(	�S�2 (S�1 )) � 	Æ�Æ(S�2 )(�Æ(S�1 ))Proof: [of Lemma 6.6℄ The proof is analogous to that of Lemma 5.8 using Lemma B.14 andLemma B.11. 2
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P � P (Re)P � Q; Q� R) P � R (Trans)P j Q� Q j P (Comm)(P j Q) j R� P j (Q j R)P j (Q j R)� (P j Q) j R (Ass)P � Q) (�n�)P � (�n�)Q (Res)P � Q) P j R� Q j R (Par)P � Q) n�[P ℄� n�[Q℄ (Amb)n 6= m) (�n�) (�m�) P � (�m�) (�n�) P (Res-Com)n =2 fn(P )) (�n�) (P j Q)� P j (�n�)QP j (�n�)Q� (�n�) (P j Q) (Res-Par)n 6= m) (�n�)m�[P ℄� m�[(�n�) P ℄m�[(�n�) P ℄� (�n�)m�[P ℄ (Res-Amb)P j 0� P P � P j 0 (Nil-Par)(�n�)0� 0 0� (�n�)0 (Nil-Res)!P � new(P ) j !P (Bang-Bang)Table 10: The relation �
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