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Abstract

We introduce an abstract interpretation framework for Mobile Ambients, based
on a new semantics called normal semantics. Then, we derive within this setting
two analyses computing a safe approximation of the run-time topological structure of
processes. Such a static information can be successfully used to establish interesting
security properties.

1 Introduction

Mobile Ambients (MA) [10] has recently emerged as a core programming language for the
Web, and at the same time as a model for reasoning about properties of mobile processes.
MA is based on the notion of ambient. An ambient is a bounded place, where multi-
threaded computation takes place; roughly speaking, it generalises both the idea of agent
and the idea of location. Each ambient has a name, a collection of local processes and
a collection of subambients. Ambients are organised in a tree, which can be dynamically
modified, according to three basic capabilities: inn allows an ambient to enter into an
ambient n (m[inn. P, | Py] | n[Q] — n[m[P; | P2] | Q]); outn allows an ambient to exit
from an ambient n (n[mloutn. P; | P3| | Q] — m[P; | P»] | n][Q)]); openn allows to destroy
the boundary of an ambient n (openn. P | n[Q] — P | Q).

Several static techniques, formalised as Type Systems [20, 8, 7, 9, 17, 6, 2, 3, 11, 19]
or Control Flow Analyses (CFA) in Flow Logic style [24, 25, 26, 16, 5], have been devised
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to study and establish various security properties of MA, such as secrecy and information
flow. These approaches are strictly related and compute safe approximations of similar
information on the run-time topological structure of processes. Although these methods
are proved sound with respect to a formal semantics, they are typically formulated in
different styles. As a consequence, it is rather difficult to formally compare them, and the
corresponding algorithms for constructing the least analysis or for type-inference.

In this paper we apply to MA the semantic-based approach to program analysis of ab-
stract interpretation [14, 13]. Abstract interpretation provides a rigorous theory to derive
program analyses from the specification of the semantics. The typical abstract interpreta-
tion approach consists of: replacing the concrete domain of computation with an abstract
domain modeling the property we are interested in; establishing a relation between the
concrete and the abstract domain which formalises (through Galois connections) safeness
and precision of approximations; deriving an approximate semantics over the abstract do-
main. The approximate semantics can be obtained in a systematic way which guarantees
its safeness by construction. We refer the reader to Section 2 for more details on the basic
concepts of the abstract interpretation theory.

One of the most important and critical steps for applying abstract interpretation con-
sists of the choice of the concrete semantics one should start from. The standard reduction
semantics of MA [10] is not adequate to abstraction, because it heavily relies on the syntax
by using structural rules and structural congruence to bring the participants of a potential
reaction into contiguous positions. We therefore introduce a new semantics for MA, called
normal semantics, which is indeed equivalent to the standard reduction semantics. The
normal semantics is based on the simple observation that an MA process is essentially a
tree, where each node is an ambient containing a set of local processes controlling its move-
ments. Then we derive, by step-wise abstraction of the normal semantics, two analyses
which are proved to be safe.

The first analysis is designed to compute an approximation of the following property
of all the computations of a process P: for any ambient n, which ambients and capabilities
may be contained (at top level) inside n, when n is within an ambient h. This is obtained
by an abstraction which combines information about the number of occurrences of objects
and about the context. The integration of these two aspects permits to achieve very
accurate results. To substantiate this claim, we consider a typical example: an ambient n
which moves inside an immobile ambient &, and then is opened unleashing an immobile
process inside k. This kind of situation is critical in MA, if we want to prove statically
the immobility of k, as it is necessary to detect that any capability of movement inside
n has been consumed before opening. Example 5.11 shows that our analysis achieves this
result, in particular because it is able to argue on the temporal ordering of execution of
capabilities. We are not aware of similar results in the setting of MA without adopting
more complex techniques [26, 1]. Tt is well-know instead that this problem can be solved
with simpler techniques for variants of MA, such as Safe Ambients (SA) [20, 21]. The static
techniques for SA [21, 20, 16, 2, 17, 19] are typically more precise due to the presence of
coactions, which control when an interaction may happen. For instance, the coaction open



simplifies the task of distinguishing what happens inside an ambient before and after it
is opened. Similar results has been obtained also for MA extended with primitives for
objective mobility [7].

The second analysis is designed to compute an approximation of the following weaker
property of all the computations of a process P: for any ambient n, which ambients and
capabilities may be contained (at top level) inside m. This is obtained from the first
analysis by dropping off both the contextual information and the information about the
number of occurrences of objects. The analysis we obtain is a refined version of the CFA
of [24]. The main difference with respect to [24] is that our analysis considers the effect
of the continuation of a capability only if the capability may be exercised. Example 6.11
shows in details the difference with the CFA of [24].

The properties computed by both the analyses permit to control where an ambient
may move and also where it may be opened. This is the basic information which is needed
to statically establish most of the security properties studied in the literature for MA
[5, 6, 9, 16, 17, 24]. To illustrate the relevance of the analysis for security we show the
application to some well-known examples taken from [16, 5]. We focus on the first analysis
which is more precise and interesting; the second analysis can be used, as the CFA of [24],
to solve simpler problems, such as the firewall protocol of [10] and the Trojan Horse of [6].

The normal semantics is presented in Section 4, and the two derived abstractions in
Sections 5 and 6, respectively. Section 7 shows some examples of security properties. The
proof of the main theorems are shown in the Appendixes A and B.

Remark This paper is an extended and revised version of [22].

2 Some background on abstract interpretation

We briefly recall the basic concepts of the Galois connection based approach of abstract
interpretation [14, 13]. Suppose we want to approximate a semantics S, which is computed
as the least fixed-point of a monotonic function F' over some concrete domain (C, <). The
key step consists of the choice of an abstract domain (A, <®) modeling the property we
want to statically establish. The notion of Galois connection formalises the relation of
abstraction between the concrete and the abstract domain which is the basis to define
safeness and precision of approximations.

Definition 2.1 (Galois connection) Let (C,<) and (A, <%) be complete lattices. A
pair of monotonic functions («,7y), such that a : C — A is the abstraction function and

v+ A — C is the concretization function, is a Galois connection between (C,<) and
(A, <) iff, for each c € C and a € A

1. ¢ < y(a(0));
2. a(y(a)) <% a.

When a(y(a)) = a, then (a,7y) is called a Galois insertion.



The ordering <¢ is intended to model precision so that a <% ' means that a’ is a
safe approximation of a. Therefore, the abstraction of the least fixed-point a(S) gives the
exact abstract property corresponding to §, and an approximate semantics S% over the
abstract domain is a safe approximation of S whenever a(S) <% §*. One of the main
results of abstract interpretation is that a safe approximate semantics S can be computed
as the least fixed-point of an abstract function F'® satisfying a condition of local safeness,
namely that a(F(c)) <* F*(a(c)).

Theorem 2.2 (Safeness) Let («,v) be a Galois connection between (C, <) and (A, <?).
Moreover, let F' : C — C and F* : A — A be monotonic functions. If a(F(c)) <¢
F(a(c)), for each c € C, then a(lfp F') < ifp F°.

3 Mobile Ambients

We introduce the pure Mobile Ambients calculus ([10]) without communication primitives.
Let N be a set of names (ranged over by n,m, h,k,...).

Definition 3.1 (Processes) The processes are defined over names N according to the
following syntax:

M,N::= (capabilities) P,Q::= (processes)
inn enter n 0 inactivity
outn  exitn (vn) P restriction
openn open n P|Q  parallel composition
P replication
n[P)] ambient
M.P  prefic

Standard syntactical conventions are used: trailing zeros are omitted, and parallel com-
position has the least syntactic precedence. We refer to the usual notions of names, free
names, and bound names of a process P, denoted by n(P), fn(P), bn(P), respectively.
We identify processes which are a-convertible, that is, can be made syntactically equal by
a change of bound names. We adopt also the standard notation for substitutions: P[m/n]
denotes the process obtained by replacing in P any free occurrence of n with m (assum-
ing the bound names of P are a-converted to avoid the conflicts with m). Similarly, Pn
denotes the process obtained by applying the substitution n : N' — N,

The core of the semantics of MA consists of the reductions in Table 1 corresponding
to the execution of capabilities. The semantics has also standard structural rules (Table
2) which use structural congruence to bring the participants of a potential interaction
into contiguous positions (Table 3). The definition of = includes the standard rules for
commuting the positions of parallel components, for stretching the scope of a restriction
and for replication.



In the following we use —* for the transitive and reflexive closure of —. Moreover, we
write P —= () to say that either P — ) or P = (). Similarly for P =% Q.

nlinm. P [ Q]| m[R] = m[n[P | Q] | R] (In)
m[nfoutm. P | Q] | R] = n[P | Q] | m[R] (Out)

openn.P | n[Q] - P | Q (Open)

Table 1: Basic Reductions of Mobile Ambients

P—-Q= (vn)P— (vn)Q (Res)
P-Q=P|R—-Q|R (Par)
P — Q = n[P] = n[Q] (Amb)

(PP=>Q,P=P,Q =Q)=P—Q (Cong)

Table 2: Structural rules for Mobile Ambients

4 The Normal Semantics

The normal semantics aims at making easier the application of abstract interpretation,
which is complicated by structural congruence (including a-conversion) and by the struc-
tural rules of the reduction semantics. The normal semantics is based on the intuitive
representation of a process as a tree of ambients, each containing a set of active processes.
We use a set, called a topology, to represent the tree of ambients, and a set, called a con-
figuration, to represent the active processes contained in each ambient. For instance, the
process

(vn) (n[ink. P | out k | m[out n. Q]]) | k[!openm] (1)
is represented by the following topology and configuration (depicted also in Figure 1)

{ 2 8 b, { Mink. P, "out k, ™outn.Q, *lopenm}).



P=P
Q=P=P=Q
P=Q, Q=R=P=R
PlQ=Q|P
(PIQIR=P|(QIR)
P=Q= (vn)P = (vn)Q
P=Q=P|R=Q|R
P=Q=1P=1Q

P =Q = n[P] =n[Q]
P=Q=MP=M.Q

n #m = (vn) (vm) P = (vm) (vn) P

n ¢ fn(P)= (vn) (P Q) =P|(vn)Q

n #m = (vn) m[P] = m[(vn) P]

Plo=p
(vn)0 =0
P=P|IP

(Refl)
(Symm)
(Trans)
(Comm)
(Ass)
(Res)
(Par)
(Bang)
(Amb)
(Pref)
(Res-Com)
(Res-Par)
(Res-Amb)
(Nil-Par)
(Nil-Res)

(Bang-Bang)

Table 3: Structural Congruence



ink. P
out k

outn.

Figure 1: The representation of process (1)

The topology contains the pairs son-father: ", because m is contained in n, ,®
and 2, because n and k are contained in the outermost ambient that we call @. The
configuration contains the processes executable inside any ambient: processes in k. P and
out k inside n, process out n. () inside m, and process lopenm inside k.

The translation of a process into an equivalent pair of topology and configuration, as
shown for process (1) above, presents two subtle problems. We need to: (i) distinguish
two different occurrences of the same object in the process ; (ii) choose properly the names
used for the removal of restrictions. In (1), for instance, we have eliminated the restriction
operator by substituting n with a fresh name (in this case it suffices to take n itself).

To deal with these problems in a simple way we enhance the syntax of processes by
properly attaching labels to capabilities, restrictions and ambients.

Provided that the labels assigned to capabilities, restrictions and ambients are distinct,
we directly obtain a representation, where two copies of the same process or of an ambient
with the same name are distinguished. For instance, consider the following labeled version
of process n[inm| | n[in k], where labels A, u, 7, ¢ are distinct one from each other

nalinm,] | ny[inke]. 2)
We obtain the following representation
({ nk@7 nu@}ﬂ{ nAinm'y, n”lnkC})

where there are two copies of ambient n: one containing the capability inm and the other
one containing the capability in k.

We also use the labels attached to restrictions to find out the name, which is used to
replace the bound name. To this aim, we adopt a special substitution function, which
associates in a one to one fashion names to labels. Provided that all the labels are distinct
and that the names associated to the labels of restrictions, do not appear in the process,
the names introduced by the removal of restrictions are fresh. For instance, consider the
following labeled process

(vnx) (ny[inmy,. Pl) | (vmg) mc[0] (3)



where the labels A, (,~y, u, 8 are distinct one from each other. Assume also that 7 and m
are the distinct names associated to A and § and that they do not appear in the process.
We obtain the following representation

({ 2, w2 h A Minm,. P}).

The removal of the restrictions over n and m does not produce any conflict on names,
as m # n, m # m and 7 # m. The condition m # 7 is implied by A # (; the conditions
m # m and f. # m are ensured by the additional requirement concerning the names and
the labels appearing in the process.

The requirements on labels and names explained above are formalised by the notion
of well-labeled process (see Definition 4.2).

Labeled Processes. Let £ be a set of labels (ranged over by ¢, ¢',...), and let L; =
{¢; | ¢ € L,i € I} be the corresponding set of indezed labels (ranged over by A, p,7,...).
Let N (ranged over by ﬁ,ﬁi,ﬁjﬂ\, ...) be a set of names, such that N’ N N = (0, and let
Ny = {n;|ne€ N.ie I} be the corresponding set of indezed names.

We use the names Ny for the elimination of restrictions according to a substitution
function H, which assigns indexed names N, 1 to indexed labels £;. This is formalised
by an injective function Hy : £ — N and by the corresponding injective function Hg, :
L1 — Ny, such that Hp, (¢;) = f, if Hp(€) = #.

To have a more compact notation we may use when the distinction is not relevant:
n,m. h, ... to denote a generic element of ./VI UN; i, 1, ﬁ, ... to denote a generic element

of N7.

Definition 4.1 (Labeled Processes) The labeled processes are defined over names N'U
N7 and indexed labels L1 according to the following syntax:

M,N::= (capabilities) P,Q::= (processes)
inn enter n 0 inactivity
outn  exitn (vny) P restriction
openn open n PlQ parallel composition
P replication
ny[P] ambient

My.P  prefix

We assume that all the notions presented in Section 3 are adapted in the obvious
way to labeled processes. The definition of a-conversion only presents a subtle point:
we require that the bound names can be changed but not their labels. We mean, for
instance, that (vny) P is a-convertible to (vky) P[k/n], provided that k ¢ fn(P), and not
o (vky,) P[k/n]. In the following, we use A(P) to denote the set of labels occurring in a
labeled process P.



We introduce now the concept of well-labeled process, which formalises the require-
ments discussed for the processes (2) and (3) above. Conditions (i) and (ii) say that the
labels are distinct and the names associated to the labels of restrictions are fresh names,
meaning that they do not occur in the process. Example 4.10 shows, more in details, why
these requirements are needed to translate a process into an equivalent representation.

Definition 4.2 (Well-labeled Processes) A process P is well-labeled if: (i) for any
A € A(P), Hg,(N\) & n(P); (ii) the (indexed) labels used in capabilities, ambients and
restrictions are distinct one from each other.

Over labeled processes we define a notion of equivalence, which is used in the definition
of the collecting semantics (see Definition 4.8). A renaming of indexed labels is a function
p: Lr — L;. The application of a renaming is denoted in the standard way by Pp and
P[X\/u]. We denote by dom(p) and dom(n) the domains of a renaming p and a substitution
71 respectively. We also introduce a special class of renamings and substitutions:

e we say that p;r : L1 — L5 is a re-indexing of labels if, p; is injective, and for any
¢; € dom(pr), we have pr(¢;) = ¢;;

e we say that 7 : N — Niis a re-indexing of names if, ny is injective and, for any
n; € dom(nr), we have n(n;) = n;.

We say that P and Q are equivalent up to re-indexing (P ~ Q) iff Ppin; = @, for a
re-indexing of labels p; and a re-indexing of names 7;.

In the following, we use A (ranged over by a,b,c,...) for the set of labeled names n),
such that n € N U JVI and A € Lj, augmented with the distinct symbol @ representing
the outermost ambient. Furthermore, we say that a process P is active if P = M. (Q or
P =1Q. We use P and AP to denote the set of well-labeled processes (referred to as
processes) and the subset of active well-labeled processes, respectively.

Remark 4.3 It is worth mentioning that the labeling of processes is also exploited by
the analyses of Sections 5 and 6. This approach is indeed typical of static techniques, in
particular of Flow Logic [27]. The labeling of processes is used to gain precision, and also
it allows the programmer to identify the exact piece of input syntaz responsible for some
detected security violation. The main difference here consists in the use of indexes both
in labels L7 and in names /\7}. The normal semantics and the second abstraction could
have been defined also without introducing the indexes. Instead, the indezxes are needed
and fruitfully exploited by the first abstraction (see Example 5.10 and Ezample 5.12).

States and Transitions. A state is a pair which consists of a topology and a configura-
tion: the topology is a set of pairs, son-father, which form a tree, and the configuration is
a set of pairs associating each active process to its enclosing ambient.



Definition 4.4 (States) A state S is a pair (T,C) where

1. T € p((A\ {@}) x A) is a tree over a set of nodes Ns C A !;
2. C € p(A x AP) such that, for each (a,P) € C, a € Ns.

In a state (T, C) we call T a topology and C' a configuration. The meaning of (a,b) € T
(for short ) is that a is a son of b. The meaning of (a, P) € C (for short ®P) is that P
is an active process of ambient a.

We extend to states in the obvious way the notions of labels, renaming, substitution
and equivalence up to re-indexing ~. Since we are interested in states representing well-
labeled processes we consider only well-labeled states. A state S € S is well-labeled if: (i)
for each X\ € A(S), Hg, () € n(S); (ii) for any label A € A(S) there is at most one object
labeled by A. In the following, we use S to denote the set of well-labeled states (referred
to as states). Also, we assume C and U over states are defined component-wise.

In Table 4 we introduce the normalisation function ¢ : (A x P) — S which is used
to translate processes into states. Intuitively, d(a, P) (for short d “P ) gives the state
representing process P, assuming that P is contained in ambient a. We use J both to derive
the initial state from a process, and to handle the processes which become executable after
a step. The initial state corresponding to a process P is therefore § @P.

Rule DRes eliminates the restriction by replacing the bound name n with the name
Hg, (M) associated to the indexed label A. The definition of well-labeling ensures that
H;,()) is a fresh name provided that P is a well-labeled process. Rule DAmb adds
ambient b to the topology as son of the enclosing ambient a, and translates the process
contained in b. Rule DPar gathers the processes and the topologies built in each of its two
branches. Rules DBang and DPref simply add the active process to the configuration.

DRes 4 %(vny) P = 6 “(P[Hg,(\)/n))
DAmb § %[P] = 0P U ({£},0)
DZero 40 = (0, 0)

DPar doP|Q = J%P U § Q)

DBang 4 %P
DPref 6°M,.P =

Il
—
==

—~—
IS)
N
—
~—

Table 4: The normalisation function ¢

The rules of Table 5 define the transitions between states. They realise the unfolding
of replication, the movements in and out of ambients, and the opening of ambients. Due
to the implicit representation of parallel composition, restriction and ambient in states,

We refer to the standard definition of tree and root of a tree.

10



the standard structural rules and structural congruence of the reduction semantics are not
needed. For notational convenience use the following abbreviation. We write (T, C){[a/b]}
to denote the state (T[ &/ 2], C[ 2Q/ *Q]) for any ambient ¢ and process Q.

We comment the rules below. Rule Bang creates a fresh copy (equivalent up to re-
indexing of labels) of the process under replication. To this aim, we use new(r,cy(P),
which is defined as follows. Let S € S be a state, we let newg(P) = Pp; where

e ps is a re-indexing of labels such that dom(pr) = A(P);
e Pp; is well-labeled;

e there is no A € A(Ppy), such that either A € A(S) or Hg,(X\) € n(S).

The definition of newg ensures that § “newg(P)U S is a well-labeled state, provided that
S and P are well-labeled.

The last three rules correspond to the usual reduction rules of movements and opening
(shown in Table 1). They use the normalisation function to handle the continuations. Rule
In is applicable whenever there exists a parallel ambient named m. The rule modifies both
the topology and the configuration according to the movement: (i) it updates the father of
a, which is now m, (ii) it removes the executed capability, and it adds the continuation to
the set of processes local to a. Rule Out acts in an analogous way. Rule Open modifies
both the topology and the configuration according to the opening of ambient m: (i) it
removes ambient m; (ii) it modifies the pointer to the father of any ambient and process
which was within m. These processes and ambients are therefore acquired by ambient a
when opening m.

B “PeC
M8 (T,0) 0 *newre)(P) U (T,C)
In t= %inm,. PecC L, m#bET a #my
(T,C) =P U (T\{LHU{ ™} C\{t})
Out t= %utm,.PecC at, m#bET a#my,
u
(T,C) = o P U (T\{m™}U{l}C\{t}
Open t= “openm,.P € C m," €T a#my

(T,C) = 2P U (T\{ m,}), (C\ {t}){la/m,]}

Table 5: Transitions —

The following theorem states the agreement between the transitions of Table 5 and the
standard reduction semantics of Section 3. Let P be a well-labeled process. We denote

11



by £(P) the process obtained by stripping off all the labels. We use —* for the transitive
and reflexive closure of .

We introduce also a condition on a € A which guarantees that § P is a well-labeled
state, provided that P is well-labeled (as formalised by Proposition A.13 of Appendix A).
We first extend the notions of names n(a) and labels A(a). Hence, we let n(a) = n and
A(a) = A\, when a = n), and we let n(a) = A(a) = 0, when a = Q.

We say that a is fresh for a labeled process P iff A(a) NA(P) = (0, there is no u € A(a)
such that Hgz, (1) € (n(P)Un(a)), and there is no u € A(P) such that Hg, (i) € n(a).

Theorem 4.5 (Equivalence) Let P be a well-labeled process and let a € A which is
fresh for P.

1. If 6 *P +— S, then there exist a well-labeled process Q, such that E(P) —= £(Q) and
§9Q =S;

2. If E(P) — Q, then there exist a state S and a well-labeled process @', such that
§ P —*S,0°%Q =8 and Q = E(Q").

The proof of Theorem 4.5 is rather complex and is shown in the Appendix A.
Corollary 4.6 Let P be a well-labeled process.

1. If § ®P — S, then there exist a well-labeled process Q, such that E(P) —= £(Q) and
5 @Q =8;

2. If £E(P) — Q, then there exist a state S and a well-labeled process @', such that
§ P —*8,69Q =8 and Q = £(Q").

Proof: From Theorem 4.5 using the fact that @ is fresh for any well-labeled process P.
(|

The result can be extended straightforwardly to weak reductions.
Corollary 4.7 Let P be a well-labeled process.

1. If § ®P +—* S, then there exist a well-labeled process Q, such that E(P) =X £(Q)
and § °Q = S;

2. If E(P) —* Q, then there exist a state S and a well-labeled process Q', such that
6P —=*8,6°Q =8 and Q = £(Q").

The collecting semantics. We define the core of the abstract interpretation framework,
the collecting semantics. The domain is the power-set of (well-labeled) states up to re-
indexing. We use [S] to denote the equivalence class of a state S with respect to ~, and
we use S/, to denote the corresponding quotient set. For readability, we use C and U for
Q/N and U/

12



Definition 4.8 Let S* = ©(S/~). The concrete domain is (8%, Q).

The concrete semantics is defined in a standard way as the least fixed-point of a
function, which collects all the states reachable from the initial state.

Definition 4.9 (Collecting Semantics) Let S; € S, S € S* and let P be a well-labeled
process. We define Sooy[P] = Ifp F(6 ©P) for the function F : S — (S' — S%) such
that F'(Sy) = ¥, and

Us, (S*) = {[S2]} U U {[ST}-

SE{Sg‘Sp—)Sg, [Sl}esh}

Examples. We start discussing the normalisation function 4, and we explain why this is
correct (in the sense of Theorem 4.5) only when applied to well-labeled processes.

Example 4.10 The condition (ii) of Definition 4.2 ensures that two occurrences of the
same object are distinguished. Consider the not well-labeled version of process n[inm)] |
n[ink],

P =nylinm,] | ny[ink¢].

We obtain the following representation
§ep= { nx@}ﬂ{ "inm,, "ink}).

This representation differs significantly from that shown at the beginning of the section
for the well-labeled process (2). In fact there is only one ambient n which contains both
inm and ink. This representation is obviously not correct as ambient n may interact
both with m and with k.

The condition (i) of Definition 4.2 concerns the relation between the names in /\7[ and
the labels L1, and ensures precisely that there is no clash of names when the restrictions
are removed. Consider the following not well-labeled process

Q = (vny) (ny[inmy,. P]) | (vmg) m¢[0]
where He, (X)) =7 and Hg, (B) = m. We obtain the following representation
0°Q=({ 1" w}{ "inmm,. P}).

This representation is not correct, differently from the one obtained for the well-labeled
process (3) shown at the beginning of the section. The bound name m is known to the
process contained inside N, and consequently 7 can move inside M.

We give some examples to illustrate the normal semantics. To simplify the presentation
in the collecting semantics states stand for their equivalence classes up to re-indexing. The
following example shows an ambient n, which moves inside an ambient k, and there is
opened unleashing no capability of movement inside k.

13



e Q openn. Q1 Q1

openn. Q1 ink. m[Q2]

Q2

Q>

Figure 2: Some transitions of process P

Example 4.11 Consider the (well-labeled) process

P = nylink.. m¢[Q2]] | kylopenng. Q1]

Figure 2 shows some states, which are reachable from the initial state representing
process P which is state (a)?. State (b) is obtained from state (a) by applying rule In.
This shows that ambient n moves inside k carrying any capability and ambient it contains.
State (c) is obtained from state (b) by applying rule Open; ambient n, when opened inside
k, unleashes ambient m which has as a local process Q.

By assuming that Q1 = Q2 = 0, the collecting semantics of P contains only states
(a),(b) and (c) of Figure 2. We have Scoy[P] = {So, S1,S2} such that

So = ({ Tlx@a ku@}a{ nAinke-mg[O], k“opennﬂ})
S = ({ Tlxkua anAa kﬂ@}’{ k“Opennﬂ})
SQ = ({ mgkua ku@}aqj)-

The following example stresses an important aspect concerning indexes and replication:
the unfolding of replication produces (by means of new) processes which are equivalent up
to re-indexing of labels. The link between the processes produced by replication expressed
by the indexes is suitably exploited by the first abstraction (see Examples 5.10 and 5.12).

Also, the example explains better the technique used to remove the restriction operator
and its interplay with replication.

2We have omitted the labels to simplify the picture.
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Figure 3: An example of replication

Example 4.12 Consider the well-labeled process Q = ny[inn,], where A = £; and y = ¢}.
The initial state modeling process 'Q is (B, ®'Q). Every unfolding of replication is modeled
by the addition of § ©(Qp;) (see rule Bang), where

Qpj = ny;[inng]

for a mew index j. Hence, a new ambient ny; is added representing a new copy of ambient
n. For instance, after two applications of rule Bang the state (a) depicted in Figure 3
is reached®. Any ambient ng;, may enter inside any other ng, provided that h # j. For
instance, by applying rule In state (b) of Figure 3 is obtained.

Consider instead the well-labeled process (vn,) Q, where the name n is restricted
and p = 0"y such that He(¢") = n. The initial state modeling process (vn,) Q is
(B, ®N(vn,) Q). Bvery unfolding of replication is modeled by the addition of § ©((vn,) Q)p;,
where

((vnu) Q)pj = (vngr) ny[inng ]

for a new index j. Function Hg, assigns to any label £"; the new name n; which is used
to substitute n. Hence, a new ambient (7j)¢; is added with a new name f;. For instance,
after two applications of rule Bang the state (c) depicted in Figure 3 is reached from the
initial state. Since the names n1,ny are distinct, then the ambients cannot in this case
interact with each other.

The difference between Q) and !(vn,) Q is reflected by their collecting semantics shown
below. We have Scoy['Q] = UjE{O,...,oo} X where

o Xo={(0, “Q)}

o X, is the minimal set of states S = (T.,C), such that fn(S) = {n}, and A(S) =
Uie{l’___’j}{&,fg} and ©'Q € C. Moreover, for each i € {1,...,7} either "Q@ eT
and "tinng, € C, or mzin[h €T, with h# i, and ™iinng, ¢ C.

% As usual we have omitted labels to simplify the picture.
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We have Scoul!(vnu) Q = Ujeqo,00y Si where
So= (0, “Nvny) Q)
Si= WUiegt,gy (), Uieqi,.iy @)tiin (7;), U { “vny) Q).

5 A First Abstraction

We devise a first abstraction aimed at capturing the following property about all the
states reachable from the initial state representing a process P: for each ambient n, which
ambients and capabilities can be contained (at top level) inside n, when n is within an
ambient h. This is formalised by an abstraction, which merges a set of states into a
unique abstract state, and modifies the topologies and the configurations according to the
following ideas.

e We add to each pair of the topology and of the configuration an additional informa-
tion which refers to the father of the enclosing ambient.

Consider for instance the states

S1=( a@, b@}, %ink,.inm.,) (4)
So={ & 2} “inm,). (5)

They are represented by the following abstract states, respectively

P= ({27, 2T { “"ink,. inm,})
ss=({ & TH{ Yinm,}).

In S7 we have “in k,.inm. as ink,.inm, is an active process inside ambient a,
when ¢ is within @. The same happens in the topology. For instance a@T says that
ambient a is a son of the top level ambient @, when @ is within T 4. The abstract

state S5 is obtained similarly.

To understand the relevance of the information we have introduced, it is necessary
to look at the abstraction of the set of states {S1,S2}. This is given by the union of
S¢ and SS (depicted also in Figure 4) °

Q@ T T b, Q .
=7, 2T Tinm,, < ink,. inm,}).

“The extra symbol T is used to model the ambient enclosing @ and is mentioned for uniformity.
SRounded arrows represent the partial topology, pointing from an object to the link representing the
relevant pair son/father. As usual we have omitted labels.
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Figure 4: The abstract state S°

The abstract version of {S7, So} shows that the abstract topologies, differently from
the concrete topologies, may not form a tree. For instance, in S® ambient a has two
fathers, namely ambients b and Q. The additional information permits to distinguish
between the multiple fathers of ambient a, and consequently to argue that the pro-
cesses and the ambients contained inside ¢ may depend on where a is located. For
instance, in S° we have that: when a is within @ process ink,.inm, is executable
inside a; when a is within b instead process inm,, is executable inside a.

We call this additional information, the partial topology, as it gives us a partial view
of the shape of the tree-like structure (the topology) of the state, which contains
the pair of ambients, son-father, or the pair associating each active process to its
enclosing ambient.

We abstract indexes by keeping only the following information: whether there is at
most one occurrence or many occurrences of an object.

Consider for instance the following states
Ny
S1=( ”z’l@a [10penmf1) (6)

S2 = (n,"{ ">openmy,, "sopenmy,}). (7)

They are represented by the following abstract states S and S5, respectively

Q
o @T n gl
Sy = ( g openmy, )

Q@
o @T gl
SS=( ng oo openmy, ).

The capability openm in state S; is represented by openmy,, and the two copies
of openm in state Sy are represented by openmy, . The label ¢; has multiplicity
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one, and shows that there is one occurrence of the corresponding object; the label 4,
has multiplicity w, and shows that there are many occurrences of the corresponding
object equivalent up to re-indexing.

By abstracting the set of states {S1, S2} we obtain the following abstract state

T @
nll
, 't openmy,).

SO — ( n[{d@
In the abstract state S both labels have multiplicity w showing that there are many
occurrences of ambient n and of capability openm. The abstract state S is obtained
by taking the least upper bound of S} and S} with respect to a particular ordering
over abstract states which realises the union and modifies the multiplicity of objects
accordingly.

The abstraction of indexes explained above is needed to achieve a computable analy-

sis, in that we may have infinite processes equivalent up to re-indexing (see Example
4.12).

Abstract domain. Let £° = {{;,4, | ¢ € L} (ranged over by X° u®,~°,...) be the set
of abstract labels, and let N U N (ranged over by n®, m°® k° h°,...) be the set of abstract
names. Let A° (ranged over by a®, b°,¢°, ...) be the set of abstract labeled names n®yo,
augmented with the symbols @ and T. The relation between names and labels is modified
accordingly. We define Hyo : £° — N such that Hpo (¢1) = Hro(ly) = He(4).

The abstract labeled processes are built according to the syntax of Definition 4.1 over
names N'UA and labels £°. We assume that all the previously defined notions on processes
are adapted to abstract processes in the expected way. As in the concrete case we consider
only well-labeled processes.

Definition 5.1 (well-labeled) An abstract process P° is well-labeled if : (i) {4 € A(P?)
implies £, ¢ A(P°); (ii) for any label X € L°, such that X\ = {1, there is at most one object
labeled by .

In the following we use P° and AP° to denote the set of well-labeled abstract processes
(referred to as abstract processes) and active well-labeled abstract processes, respectively.

Definition 5.2 (Abstract States) An abstract state S° is a pair (T°,C°) where
1.T° € p((A°\{@, T}) x (A°\{T}) x A%);
2. C° € p(((A°\{T}) x A°) x AP®).

In an abstract state S° = (T, C°) we call T the topology and C° the configuration.

The meaning of (a®,b°,¢°) € T® (for short 4*°° ) is that ambient a° is a son of ambient
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b°, when b° is within ¢®. The meaning of ((a®,b%), P®) € C° (for short a®?” P°) is that P°
is executable inside ambient a°®, when a° is within b°.

We assume that all the previously defined notions on states are adapted to abstract
states in the expected way. As in the concrete case we consider only well-labeled states.
An abstract state S® = (C°,T°) is well-labeled if conditions (i) and (ii) of Definition 5.1
hold (with P° replaced by S°). We use S° to denote the set of well-labeled abstract states
(referred to as abstract states).

We now introduce a proper ordering over abstract states .

Definition 5.3 We define C° as the minimal ordering over S°, such that S° C S'° implies
S°C°S'°, and such that S°C°S°[l,/l1]. We use U° for the least upper bound with respect
to C°.

The ordering reflects the intuition that ¢; is more precise than £,. For instance, assuming
that A =/¢; and v = 4,,, we have

© b® © g © b
( n)\b 3 " PQ)UQ( n’yb ’ " PO) = ( n'yb ) " PO)
Definition 5.4 The abstract domain is (S°, C°).

To simplify the presentation in the following we may omit the over-script —° for any
syntactic category, when the meaning is clear from the context.

The Galois connection. We present now the relation between the concrete and the
abstract domain establishing a Galois connection (see Definition 2.1). We formalise the
ideas explained at the beginning of the section. A single state is abstracted

1. by introducing the partial topology both in the topology and in the configuration;

2. by replacing the indexed labels £; with the abstract labels L°, and by substituting
the names N7 with the abstract names N.

To remove the indexes according to 2., we introduce a special renaming, that depend on
the state which is abstracted, and a special substitution. Let S € S be a state. We define
a renaming p% : L; — L° such that p%(¢;) = £,, if there exist j with ¢ # j such that
0,0 € A(S), and p%(¢;) = £1 otherwise. Moreover, we define a substitution 7° : Ni >N
such that n°(n;) = n.

A set of states is abstracted by taking the least upper bound with respect to C° of the
abstraction of each element.

Definition 5.5 Let S" € S*, (T,C) € S and S° € S°. We define a® : S* — S° and
7 8° = 87 as follows

6As usual we assume that C and U are defined component-wise.
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1. «®((T,0)) = (TO,CO)p?T’C)nO, where 7
T°={abc| ab’ bCGT}
co={ “P| leT, *PecC}

2. 0°(5) = Ubyjegna®([S]), where a®([S]) = Uers10°(S);
3. 7°(5°) = Uisieqrsiacqrsycosey {USTH

Note that in the definition above (case 1.) we have introduced an auxiliary abstraction
function a® : § — S§° which maps a state into an abstract state. This is used to define
the abstraction function a® : 8 — §° which maps a set of states up to re-indexing into
an abstract state (case 2.).

The pair of functions defined above is a Galois connection.

Theorem 5.6 The pair of functions (a°,4°) is a Galois connection between (S*, C) and
(8%, C°).

The proof of Theorem 5.6 is shown in the Appendix B.1.

Abstract semantics. The abstract semantics is defined by an abstract normalisation
function and by abstract transitions, which adapt the normalisation function of Table 4
and the transitions of Table 5 to the abstract domain.

The abstract normalisation function 6° : (A° x A°) x P°® — §° is defined in Table 6
(as usual §° <" P stands for d°((a,b), P)). The main differences with respect to ¢ are that
d¢ deals with the partial topology and with the multiplicity. For instance, rule DAmb®
adds Cab to the topology instead of 2. Similarly, rule DPref® adds o M. P instead of
M. P. Also the rules use U° in place of U to properly handle labels with multiplicity.

The transition rules are shown in Table 7. For notational convenience we use the
following abbreviations. We write (T, C){[a¢/b°]} to denote the abstract state (T[ead/ebc],
C] adQ/ ’Q)]) for any ambient e and process Q. Also we use

Cif \*=14,
b
C\O{ aM/\o.P}Z ,
(C\ aM/\o.P) if A° =14,

The rules are rather complex, it is worth explaining the most interesting cases to
point out especially the role of the partial topology and of the multiplicity. Notice that,
in each rule, the abstract normalisation function §° is used in place of  to handle the
continuations.

"We are assuming that the symbols @ and T are introduced, when needed, to give a father and
grandfather to any ambient. In particular, using T for the father of @, and @ for the father of the root,
when different from Q.
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b

DRes®  6° < (vny) P = 6° < (P[Hze(N)/n])
DAmb® §° <¢[P] 5 P U({ &Y, 0)
DZero® §° <0 0, 0)

DPar® 6° “P|Q 5o P U 5o
DBang® §° IP @,{ “1P})
DPref® 6° “M,.P = (0,{ “M,.P})

b

Q

Table 6: The normalisation function §°

Bang® The rule unfolds replication by creating a copy of the process, where every label
has multiplicity w, instead of creating a fresh copy (equivalent up to re-indexing). We
use new,,, which is defined as new,(P) = Pp for the renaming p, where p(f1) = £,
for any ¢; € A(P).

In® The rule is applicable whenever there exists an ambient named m, which is contained

in the father b of a, when in both cases b is within ¢. The multiplicity of ambi-
ent m influences the movement, meaning that m can move inside itself only if its
multiplicity is w (see the side-condition of the (a = my = £ # p)).
The movement is realised by a modification both of the topology and of the config-
uration: (i) /™ is added to the topology; (ii) the continuation P and the processes,
which are active inside a in parallel with inm. P, are added to the set of processes
active, when a is within m (similarly for the ambients contained inside a); (iii) the
process inm. P is added to the set of processes executable, when a is within m,
depending on the multiplicity of the capability inm. In particular, it is not added
when inm has multiplicity one, as it has been consumed, after ¢ has moved inside
m (this is why we consider C\°{t}).

Open® The rule is applicable whenever there exists an ambient named m contained in a,
when a is inside b. The effect of the opening of m inside «a is that, all the processes
and ambients, which are contained in m, when m is inside a, are acquired by a. The
partial topology is used to determine precisely those processes and ambients.

The abstract semantics is defined as follows.

Definition 5.7 (The abstract semantics) Let S¥,S5 € S°, and let P be a well-labeled
process. We define Seoyo[P] = Ifp F°(a®(6 ®P) ), for the function F° : 8° — (S° — S§°)
such that F°(S5) = \Ilgg and

% (57) = s50° | S°.

See{Sg]S¢08}
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AP eC

Bang® -
(T, C)—° 6° < new,(P) U (T,C)
e t= dinmy.PeC N, YV eT (a=mg =) # p)
n
(T,C)se §° ™ P U (T, C) U2 (TUS{ "}, C\*{t}){la™ /a®]}
Out® t= a"outmy.PcC M muchT (a=my = £ # p)
u
(T, C)° 6° <P U(T,C) U(TU{ '}, C\*{t}){la/a™x]}
Open® abopenm/\o.P eC muab €T (a = my = 0 # )

(T, C)e d° <P U (T,C) U° (T, C){lab /myJ{lc* /emn ]}

Table 7: Abstract transitions —°

The abstract semantics is a safe approximation of the collecting semantics. Safeness is
stated in classical abstract interpretation style showing that the abstract semantics is an
upper approximation of the property we are interested in.

Lemma 5.8 Let Sy € S and S € S%. We have
0 (U, (S%) W50, (@°(S9)).

The proof of Lemma 5.8 is shown in the Appendix B.1. The proof exploits two main
properties which show the safeness of: the abstract normalisation function 6° (Proposition
B.7) with respect to d; the abstract transitions —° with respect to the concrete transitions
— (Lemma B.8).

Theorem 5.9 (Safeness) Let P be a well-labeled process. We have
a®(Gcou[P])C° G cone [P
Proof: By Definitions 5.7 and 4.9 we have to show that

a®(lfp Y5 ap)Clfp \I/ZO((; ap)-

This follows from Lemma 5.8 using Theorem 2.2.

Examples. We present some examples to summarize the most interesting aspects of the
abstraction. The following example explains more in details the role of indexes in the

22



abstraction. Any labeling of a process P respecting the requirements of Definition 4.2 is
enough to have a correct normal semantics of P. However, the choice of labels has dramatic
consequences on the precision of the abstraction. Hence, a convenient annotation schema
consists of keeping all labels distinct also up to re-indexing.

Example 5.10 Consider the processes
Py =ng,[inky] | ng,[inm,] | my[0]
Py =nglink,] | nJinm.,] | my[0]
where {u,7y, A, B, €} are distinct also up to re-indexing and are not of the form £;. We have
Scar[P1] = ({ nzl@a an@a mx@a anmA}a{ "ink,, "2inmy})

ScoulPo] = ({ ns%s n® m® ™} { "inky, "inm,}).

Obuviously the processes Py and Py are equivalent up to renaming of labels. Notice that
only ambients ng, and ne may end up inside my. In the abstract semantics we have (for
readability we use {u,y, \, B, €} for the corresponding labels with multiplicity one)

T T Q@ Q@ n, ©.
GCollo[[Pl]] = ({ nzw@ ) mA@ ) nzwmA }7{ M 1nku, bw lnm’y})

T T T ) I Q.
GCollo[[PQ]] = ({ nﬁ@ 3 ne@ ) mA@ ) nemA }7{ b 1nkl“ e lnm’y})'

Due to a different choice of labels the results reported by the analysis are different: for
process Py the two ambients with name n are both represented by ny,; while for process Py
ambients ng and ne are keep distinct. Consequently, the analysis of Py is less precise; it
says that both ny, and ny, may end up inside m.

The following example shows the analysis of the process considered in Example 4.11,
where an ambient n moves inside an ambient k, and then is opened unleashing no capability
of movement inside k. Due to the combination of the multiplicity and of the partial
topology, the analysis is sufficiently precise to capture what is executed inside n before
and after n is opened. In particular, it argues that the capability of movement ink has
been consumed when n is opened. Consequently, it says that ambient k& acquires, when
opens the mobile ambient n, only an immobile process.

Example 5.11 Consider the process shown in Example .11 (see the semantics in Figure

2)
P =ny[ink..m¢[Qo]] | kulopenng. Q1].
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We discuss the abstract semantics of the process P assuming that Q1 = Q2 = 0 and
that the indexed labels {\, e, (, u, B} are distinct also up to re-indexing. The initial abstract
state representing the process P is Sg = (T, C§) where
@T}

o _ QT
T[]_{nk y ky

C§=A "k@inke.mg[ﬂ], ’“#@openng}.

By applying rule In® we have a transition S§5—°Sy where S¢ = (T, C§) and

k Q@
o __ o ny“H k
Tl_TOU{mgA 77%”}'

The capability ink is exercised inside n, when n and k are within Q. Its execution

modifies the abstract topology: (i) nkk“@ is added to model the movement of n inside

k; (ii) mC”*k” is added because the continuation of ink ('m¢[0]) becomes executable af-
ter n has moved inside k. Notice that the capability ink has multiplicity one, and thus
™ in ke.m¢[0] does not belong to the abstract configuration. This says that ink has been
consumed when n is within k.

We observe that only rule In® can be applied in state S§; the capability openn cannot

be exercised since n is not within k( nkk? ¢ T5 ). Rule Open® becomes instead executable
in state SY where k is one of the fathers of n.
By applying rule Open® we have a transition S{+—°SS where S§ = (T, C§) and

Ts = T{ U { ¥ ).

The ezxecution of openn inside k produces the unleashing inside k only of those pro-
cesses and ambients which are contained inside n, when n is within k. Those processes
and ambients are determined using the partial topology. Since mC”*k” € Ty, then ambient
m ends up inside k, that is mckﬁj 1 added to the abstract topology. No other ambient or
process is acquired by k, in particular the process inke.m¢[0], which can be executed inside
n only when n is inside Q.

Therefore, the abstract semantics is (depicted also in Figure 5% S¢oye[P] = SS. The
analysis shows that: k is an immobile ambient (there are no capabilities of movement
inside k); m is a mobile ambient (the capability ink is exercised inside n); ambient n
unleashes, when opened, an immobile process (that is m¢[0]). As we have explained above
both the labels with multiplicity and the partial topology are needed to achieve this very
accurate prediction.

The following example shows the analysis of the processes discussed in Example 4.12
and clarifies how the replicated processes are identified by the abstraction.

& As usual we have omitted labels to simplify the picture.
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Figure 5: The abstract semantics of P

Example 5.12 Consider the process Q = ny[inn,] of Ezxample 4.12, where X\ = {1 and
v =1/,. We have for \°* =4, and v° =¥,

T @,
GCOZZO[[Q]] = ( nx@ ;A 1nn’7)

T

Q a, nyo .,
GCOZZO[[!Q]] = ({ nxonkonkoa nAo@ ) nAonkoo}a{ e 1N Nyo, A a 1D Ty, @'Q})

T fyo

6C’oll<> [['(Vn#) Q]] = ({ nxonkonkov flko@ ) ﬁxoﬁ&@o}a{ ﬁAO@inﬁ"yoa ae inﬁ"yoa @!(Vnu) Q})

The labels with multiplicity permit to distinguish process 'QQ from process (). In the
abstract semantics of Q the label of n is 1, which forbids the movement of n inside itself
(see rule In®). Conversely, in the abstract semantics of 'Q the unfolding of recursion
produces a label £, for n and a label £, for inn, which force this movement (see rule In®.
Consequently, we have both nxon”@ and nkonwn” in the abstract topology. Recall that
the unfolding of replication produces multiple copies of m, which may interact with each
other as we have shown in Figure 3. In particular, any copy of n may enter within another
copy of n which is top level (inside @Q.) This shows a subtle difference between these two
statements: nkonko@ 18 necessary to have a safe approzimation of the concrete semantics;
instead nv””’n” is an approximation due to the multiplicity w of capability inmn.

The analysis infers the same information for both processes 'Q and '(vn,) Q. In the
abstract domain the distinct names ny,no ..., produced by the unfolding of replication, are
represented by n. Thus, the ambients f interact with each other (see rule In®).

6 A Second Abstraction

On top of the previous abstraction, we define a new abstraction, aimed at computing
more efficiently an approximation of a weaker property. We want to know the following
information about all the states reachable from the initial state representing a process
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ink.inm

inm
Figure 6: The state S°

P: for each ambient n, which ambients and capabilities may be contained (at top level).

inside n. The abstraction is simply obtained from the analysis of Section 5 by dropping the

multiplicity from labels and the partial topology from the topology and the configuration.
Consider for instance the states (4) and (5) shown at the beginning of Section 5

S1=( 2, b@}, *ink,.inm.)
‘92 = ({ aba b@}a ainm’y)'

The set of states {S1,S2} is represented by the following abstract state which is simply
their union (depicted also in Figure 6)°

S° = ( aba b@, a@},{ “inm,, “ink,. inm,}).

The abstract configuration says that both inm, and ink,. inm, are active processes
inside a. With respect to the abstraction of Section 5, shown in Figure 4, we lose the
information that the former is executable, when a is inside b; while the latter is executable,
when q is inside @. Similarly for the topology.

Moreover, consider the states (6) and (7) shown at the beginning of Section 5

_ @ "¢
S1=( ny 1openmy, )

n n
S = ( WQ@’{ “2openmy,, ‘2openmy,}).
In the new abstraction S; and Sy are represented by the same abstract state
S° — Q@ ngy
= (n, » " openmy).

Therefore, we lose the ability to distinguish one occurrence from multiple occurrences
of an object.

%As usual we have omitted labels to simplify the picture.
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Abstract domain. The abstract labels are £ and the abstract names are N' U A'. The
relation between names and labels is given precisely by function Hy : £ — N. We use A°
(ranged over by a°,b°,¢°...) for the set of abstract labeled names ny, such that n € NUN
and £ € L, augmented with the symbol @Q. The abstract processes are built according to
the syntax of Definition 4.1 over names N UAN and labels £. As usual we use P° and AP°
to denote the set of abstract processes and active abstract processes.

Definition 6.1 (Abstract States) An abstract state S° is a pair (T°,C°) where
1 T € p((A°\ {@}) x A°);
2. C° € p(A° x AP®).

In an abstract state (T°,C°) we call T° the topology and C° the configuration. We
assume that all the previously defined notions on states and processes are adapted to
abstract states and processes in the expected way. We use S° to denote the set of abstract
states.

The abstract domain is given by the abstract states ordered by inclusion '°.

Definition 6.2 The abstract domain is (S°, C).

In the following we may omit the over-script —° for any syntactic category, when the
meaning is clear from the context.

The Galois connection. The relation between the abstract domain of Definition 5.4 and
the abstract domain of Definition 6.2 is established by a Galois connection (see Definition
2.1). An abstract state is abstracted, as explained at the beginning of the section, by
dropping both the multiplicity from labels and the partial topology. To this purpose, we
use a renaming p° : L% — L, such that p°(¢1) = p°(4,) = £.

Definition 6.3 Let (T°,C°) € §° and S° € §°. We define a® : S° — S° and v° : S° —
S° as follows

Lo?(T°.C°) =({&] & €eT}{"P| “PeC});
2. 7°(8°) = Usee(se'av(se)c 501 5°-
The pair of functions defined above is a Galois connection.

Theorem 6.4 The pair of functions (a°,~°) is a Galois connection between (8¢, C°) and
(8°,9).

10 A5 usual we assume C and U defined component-wise.
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The proof of Theorem 6.4 is shown in the Appendix B.2.

Abstract semantics. The abstract normalisation function §° : A° x P° — §° is given
by the rules of Table 4 with a minor modification. It is enough to replace the concrete
labels £; with the abstract labels £, that using the substitution the function H, in place
of H Lr-

The abstract transitions are defined by the rules of Table 8. Rule Bang® is used to
unfold replication; it creates a copy of the replicated process without modifying the labels.
The rules In°, Out®, Open® realise the movements and the opening. They are similar to
the corresponding rules of the abstract semantics in Table 7 in the case of multiplicity w.
The only relevant difference is that, due to the removal the partial topology, the conditions
to be checked for the execution of capabilities are weaker. For instance, rule In° can be
applied, whenever ambient ¢ and an ambient with name m have a common father b in the
topology. There is no check on the father of b to guarantee that ambients a and m are
contained in b at the same time.

Bane® “upedC
n
&  (T,0)=°6° P U (T.C)
In® ®inmy. P € C 2, m[,b eT
" (T,C)—°6° aP U (TU{ s}, 0)
“out my. P € C at, m[,b eT
Out®
(T,C)—°é° eP U (T U { },C)
. %openmy. P € C my" €T
Open

(T, C)—c°° eP U (T,C) U (T,C){a/me]}

Table 8: Abstract transitions —°

The abstract semantics is defined as follows.

Definition 6.5 (The abstract semantics) Let S7, S5 € S°, and let P be a well-labeled
process. We define Seope[P] = Ifp F°(a®(a®(8 @P))) for the function F°:S° — (S° —
§°) such that F°(S5) = V5o and

% (S7) = S5 U U s°.
50e{S3|Sp—053}

The abstract semantics defined above is a safe approximation of the abstract semantics
of Definition 5.7.
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Lemma 6.6 Let S7, S5 € §°. We have
a’ (U5 (S7) € ¥oo(ssy(®(S7)).

The proof of Lemma 6.6 is shown in the Appendix B.2. As before, the proof relies
on the safeness of the abstract normalisation function 6° with respect to 6° (Proposition
B.13), and the abstract transitions —° with respect to the transitions —° (Lemma B.14).

Theorem 6.7 (Safeness) Let P be a well-labeled process. We have
a®(Scone[P]) € Scoue [P]-

Proof: By Lemma 6.6 and Theorem 2.2 similarly as in Theorem 5.9.
O

It is a well-known result of abstract interpretation that Galois connections are closed
under composition. Therefore, an immediate consequence of Theorem 6.7 is that the new
abstract semantics is a safe approximation of the collecting concrete semantics.

Corollary 6.8 Let P be a well-labeled process. We have

a®(a®(&coauP])) € Seone[P]-

Examples. We discuss the differences between the abstraction presented in this section
and the abstraction of Section 5. One relevant difference is that the second abstraction does
not distinguish between one or many occurrences of an object. Consequently, the second
abstraction infers the same information for the processes @, !Q and !(vn,) @ discussed
in the Examples 5.12 and 4.12. Another loss of information is due to the removal of the
partial topology. The following examples explain that, consequently, the ability to argue
on the ordering of execution of capabilities is lost.

Example 6.9 Consider the process of Example 4.11 (see the semantics in Figure 2)

P = nylink.. m¢[Q2]] | kulopenng. Q1].

Assuming that Q1 = Qo = 0, we derive the abstract semantics (depicted also in Figure
7)) " Seoe[P] = (T°,8°) where (for readability we use {\,7,p,€,¢, B} to denote the
corresponding abstract labels without indezes)

— Q Q k k k
To_{’nA 3 m(”k, ky 5 ny b, me H, k#'u}

C° = { nAinke-mC[OL kuopenng, k#inke.mC[O]}-

1 As usual we have omitted labels to simplify the picture.
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Figure 7: The abstract semantics of process P

The result of the first analysis has been discussed in Example 5.11 (Figure 5). The
second analysis is substantially less precise; it is not able to capture that capability ink
has been consumed before opening. Consequently, it says that ambient k acquires also ink,
when opens n. Also, since the analysis cannot reason on how many occurrences of ambient
k are present, it says that ambient k, by exercising ink, enters inside itself (see rule In°®).
Thus, k is reported as mobile ambient.

Example 6.10 Consider the process P = Py | Py | P3, where P = ny[inm,.ink¢],
Py = !mg[0] and P3 = 'k,[0]. Assume that labels {\, pu,(, 5,7} are distinct also up to
re-indexing. In the first abstraction we have &gy [P] = (T, C°) where (for readability
we use {\, 1, ¢, B,v} to denote the corresponding abstract labels annotated with w)

o _ @T aT @T m§
T—{nk 7]€»y ) mg 1TLAB}

a, . mg . mg
C°={ ™ inmy.ink;, ™ Blnmu.lnkg, ) ﬁlnkg, 9P, 9Py, °P3).

The analysis shows that capability ink is not exercised inside n. In fact, the partial
topology says that, it is executable only when n has moved inside m. Ambient k does not
move and, consequently, cannot be within m.

In the second abstraction we have (for readability we use {\, u,(,B,v} for the corre-
sponding abstract labels without indezes),

6C’ollo[[Pﬂ = ({ nx@a k7@7 mg@a nxmﬁa nxk‘y}a{ nAinmu'inkCa nAinkga @Pla @P2a @P3})'

The analysis predicts that ink can be executed, because n and k have Q as a common
father. Due to the removal of the partial topology, does not detect that ink becomes
executable inside n only after the movement inside m.

It is worth noticing that the result of the first analysis is not optimal, meaning that

a®(Gcau P1)C°Gcoue[P]-

30



For instance, in the abstract semantics we have ny P inmy.ink; which says that inm
is still executable inside n, when n is within m. Instead, in any instance of ambient n
capability inm has been obviously consumed at that time. This approzimation is due to
the remowal of the indexes, which in this case identifies all ambients n and all capabilities
inm (see rule Bang®).

The abstraction presented in this section uses an abstract domain analogous to that of
the CFA proposed in [24]. Our analysis is however more precise as the following example
shows.

Example 6.11 Consider the process P = ny[inm,.ink¢| | k,[mg[0]]. We obtain (for
readability we use {\, u, ¢, 5,77} to denote the corresponding abstract labels without indezes)

Scor [Pl = ({ n® 5% ms7H{ ™inmy. inkc}).

The analysis shows that the system is deadlocked: neither capability inm nor capability
ink can be executed. The former because ambient m is not a sibling of n, the latter because
it 1s guarded by inm.

The analysis of [24] considers the effect of the continuation of a capability regardless
of whether the capability may be exercised. Consequently, for process P it predicts that n
moves inside k and, consequently, also inside m.

7 Applications to Security

We show some examples to demonstrate that the analyses we have proposed can be used
to establish interesting security properties. In particular, we show the results obtained
using the abstraction of Section 5 for two simple examples found in the literature [16, 5].
Another typical example is the firewall protocol, which can be proved correct also by
applying the weaker analysis of Section 6. This example in fact can be checked also by
the CFA of [24].

Example 7.1 (Secrecy)

Degano et al. [16] consider a property of secrecy based on a standard classification of
ambients into untrusted and trusted. Secrecy of data is preserved if an untrusted ambient
can never open a trusted ambient, since opening an ambient gives indeed access to its
content. They show that the property holds for the following system (actually for its SA
version)

SYS = (v mail) (a[mail[out a. inb. msg[out mail. D]]]) | blopenmsg]| | C.

The pilot ambient mail goes out of a, and then enters b. Once there, msg goes out of
mail, and b acquires the data D by opening msg. When the data D is secret, it is essential
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to guarantee that no ambient can open msg except for the designated receiver b. Assume
that {b,msg} is the set of trusted ambients, and that all the others (including @) are
untrusted. We wish to prove that no untrusted ambient can open msg.

Assume that the parallel process C is openmsg meaning that the untrusted ambient
@ tries to read the data D. By applying the analysis of Section 5 we derive Gy [SYS] =
(T°, S°) where!?

T — [ @T a®  aT QT e mail® be
—1a s mail s b » mail s mail s msg s Mmsg }

T Q .a . .
o { @ openmsg, v openmsg, ™ol out a.inb. msglout mail. D],
- @, . il . b Q@
mail” in b, msglout mail. D], ™" outmail. D, mss D, b D}

C

This result shows that only b can open the messenger ambient msg. Consequently the
secret data may end up in b only, as shown by mss’ D and " D. Both the partial topology
and the multiplicity are needed to achieve this result. The main observations concerning
the analysis are:

e the capability openmsg cannot be exercised in @, because msg cannot end up within

@. This is reported by the abstract topology, in particular by s mail’ and mSg”@'

e the execution of the capability out mail inside msg, lets msg go only inside ambient
b, as msg can be contained in mail, only when mail is within b (see rule Out®).
The latter condition is modeled by msgma”b'

e the multiplicity of capabilities out a and ina is used to conclude that msg can be
contained in mail only when mail is within b (see rules Out® and In®).

The analyses of [24] and of Section 6 are too weak to prove the secrecy of this system.
They predict that msg, when goes out of mail, may end up in any of the fathers of mail,
namely a, b and @. This example shows that the analysis of Section 5 gives results
comparable to those obtained for SA in [16]. In SA, however, it is easier to get such an
accurate prediction, because coactions control precisely when and where capabilities can
be exercised.

Example 7.2 (Security Boundaries)

Braghin et al. [5] study multilevel security for Mobile Ambients. The original idea is that
of introducing boundary ambients to protect high level information; high level data can
be contained either in boundary ambients or in low level ambients which do not escape
boundaries. They refine the analysis of [24] to establish more precisely the property above.
In particular, they show the following motivating system

SYS = a[send[out a.inb | hdata[in filter]]] | bjopen send] | filter[in send)] | open filter.

12We have omitted the abstract labels for readability, they have all multiplicity 1.
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The boundary ambient send carries the high level ambient hdata out of a. Then, it
lets a possibly low level filter ambient enter, and then it enters the boundary ambient b.
Once there, it is dissolved. The system satisfies the security property stated above: hdata
is always within a boundary ambient (either send or b) or within the low level ambient
filter. Notice that the ambient filter does not carry the ambient hdata out of the boundary
b.

By applying the analysis of Section 5 we obtain Gy [SY S] = (T°, S°) where '
QT a® QT send® QT T send® . end® . send®
T — {a s send s filter 5 hdata s b 5 send s hdata y filter y filter ’
- @ db ilt send b@ ilt b b@
senap ) hdatasen ) hdoztozfZ «r » hdata hdatafl «r s filter }
T . d, . . Q |
o _ 1 @ open filter, hdata™*"“in filter, fitter insend,

C

a . Q | T. Q b, .
send out @.inb, send inb, @ insend, ® opensend, hdatain filter}

The analysis shows that the security property holds, as the abstract topology shows that
hdata can be within filter, only when filter is contained in a boundary ambient, either b or
send. This is modeled by hdamf“tersend and hdamf“terb.

The analysis of [24] as well as the analysis of Section 6 identify, instead, a potential
(but practically impossible) attack. Since they do not use the partial topology, they
cannot capture that hdata enters inside filter, only when filter is within either send or b.
Consequently, they predict that hdata may end up inside the low level ambient @Q as a

consequence of the execution of open filter.

8 Conclusions and Related Works

We have proposed an abstract interpretation framework for MA based on the normal
semantics. The normal semantics uses an explicit representation of the hierarchical struc-
ture of processes, in terms of topology and configuration. This representation is more
viable for abstraction than the standard reduction semantics. The normal semantics can
be compared with the Gamma semantic framework for concurrency of [4]: it shares its
view of symmetry and locality of interaction, and is based on an explicit representation of
multisets.

In the abstract interpretation framework we have derived two safe approximations of
the run-time topological structure of processes. To show that these analyses are effective
program analysers, it is worth discussing their computational complexity. By restricting
the attention to a process P of size n, in the first case the topology of the greatest
state contains at most O(n?®) elements and the configuration at most O(n?) elements.
Hence, the iterations before reaching the fixed-point are at most O(n?). Any iteration has
complexity O(n®), because it requires to check at most O(n?) conditions for any element
of the configuration. Similarly, in the second case we have at most O(n?) iterations,

13We have omitted the abstract labels for readability, they have indeed all multiplicity 1.
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where any iteration has complexity O(n3). Therefore, it is not difficult to devise a naive
implementation of the first analysis in O(n®) and of the second one in O(n®) by using
standard algorithms.

In the last few years there has been a growing interest in the analysis of MA (and
its variants) and several CFA in Flow Logic style [24, 25, 26, 16, 5] have been proposed.
The analysis of Section 6 is a refinement of the 0-CFA of [24]. The CFA of [24] is less
precise, as shown by Example 6.11, and can be obtained in our framework by weakening
the conditions on the execution of the continuation of a capability in the rules of Table 8.
We refer the reader to [23] for the formal comparison of the two approaches.

The analysis of Section 5 combines together the information about the number of
occurrences of objects and the contextual information (i.e. the partial topology). The idea
of using the partial topology has been inspired by the 1-CFA of [16] for Safe Ambients.
The integration of these two aspects gives accurate predictions as shown by the Examples
5.11, 7.1 and 7.2. These systems are interesting because the considered properties require
to have a detailed information about the local process of an ambient, when this is ready to
engage into an interaction of opening or movement. We are not aware of similar results in
setting of MA apart from those obtained by more complex exponential technique, which
use sophisticated information about the context or a sort of causality information [26, 1].
For SA instead the static techniques are more precise due to the presence of coactions.
The 1-CFA of [16] for SA, for instance, is simpler than our analysis and is sufficiently
precise to prove the secrecy property for the SA process corresponding to that of Example
7.1.

It is worth mentioning that we have introduced the occurrence counting information
in the analysis of Section 5 to fruitfully exploit the partial topology. This information is
crucial to predict when capabilities may be consumed. The use of the partial topology
without that of multiplicity would give limited benefits (see for instance Example 6.10).
Other approaches have been proposed to more profitably exploit the information about
the number of objects. For instance, Hansen et al [25] show that the 0-CFA of [24] can
be derived, by abstract interpretation, from a new more precise and exponential CFA.
The refined CFA uses sets of abstract states rather than abstract states and a relational
occurrence counting analysis, meaning that the number of occurrences is not counted
globally (as in the abstraction of Section 5), but inside any ambient. The use of abstract
interpretation in [25] shows several advantages: the CFA’s are compared in terms of
precision by construction and the properties (in particular the safeness) of the former one
are directly derived from those of the latter one. This is precisely what we obtain with
the abstraction of Section 6.

Although the interplay between abstract interpretation and CFA in Flow Logic style is
not fully understood, these techniques are undoubtedly very similar from an algorithmic
point of view and also their specifications are strictly related. For instance, the con-
straints, which specify the CFA of [24], could be derived by abstract interpretation in
our framework; conversely it seems that constraints in Flow Logic style could be given
corresponding to the analysis of Section 6. Having said that, it is clear that the approach
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of [25] is very close to ours. We believe, however, that this paper proposes another orig-
inal and interesting contribution with respect to the proposal of [25]: the definition of a
general abstract interpretation framework, based on the normal semantics. The normal
semantics simplifies the development of analyses by means of abstract interpretation; for
instance, the derivation of the analysis of Section 6 is rather straightforward once the
abstract domain, namely the property we want to compute, has been chosen. Moreover,
the derivation of analyses from the normal semantics can be done using standard abstract
interpretation techniques to refine and combine domains.

By the time the full version of this paper has been completed, another paper [18] has
appeared, which proposes an abstract interpretation framework based on a non-standard
semantics similar to the normal semantics. The shape of states and of labels is however
slightly different and permits to define an interesting non-uniform analysis where recursive
instances of agents are kept distinct. Another CFA that refines the analysis of [24] has
been recently proposed in [5]. This work is motivated by the system of Example 7.2 for
which the property of multi-level security cannot be established using the approach of
[24]. We have shown that this example can be handled also by our analysis. A formal
comparison is difficult as the CFA of [5] is designed to establish specifically the property
of multi-level security.

This work is part of a project aimed at studying the relationship among abstract inter-
pretation, CFA and types. We believe that the formalisation also of types (for instance of
[8, 7]) in an abstract interpretation setting would be very interesting. First, this way we
could formally compare the expressive power of CFA’s and types, integrate them, under-
stand the pros and cons of each approach, and possibly for which class of properties one
method is more adequate than another. Moreover, the development of types as abstract
interpretations of a denotational semantics has given very promising results for functional
languages [15]. This approach gives in particular more accurate type inference algorithms,
based on abstract fixed-point computations and widening operators, and more expressive
type systems. It would be interesting to apply this approach also to MA starting for
instance from the recent “logical” denotational semantics for higher-order MA of [12]. We
leave this investigation to future work. Notice that the comparison with types requires
to extend the analyses to the full language with communication. A first step toward this
extension has been done by Feret [18], which considers communication of names only. This
extension deserves undoubtedly further investigations especially for the analysis of Section
5.
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APPENDIX
A Proofs of Section 4

In this section we show the proof of Theorem 4.5, which formalises the relation between the normal
semantics of Section 4 and the standard reduction semantics of Section 3. For convenience we recall
its assertion:

Let P be a well-labeled process and a € A which is fresh for P.

1. If 6 °P — S, then there exist a well-labeled process @Q, such that E(P) —= £(Q) and
5 aQ — S}.

2. If E(P) — @, then there exist a state S and a well-labeled process Q', such that § P —* S,
0Q"' =S and Q = £(Q").

Part 1. shows soundness and the converse part 2. shows completeness. To simplify the proof,
which is rather complex, we extend the reduction semantics to well-labeled processes. The reduc-
tion semantics for well-labeled processes is designed precisely to be closer to the normal semantics
than the standard reduction semantics. Then, we prove both soundness and completeness in two
steps: (i) we show the relation between the reductions of well-labeled processes and those of stan-
dard unlabeled processes (Lemmas A.2 and A.9); (ii) we show the relation between the reductions
of well-labeled processes and the transitions between the states representing them (Lemmas A.17
and A.20).

In the following, to ease the use of induction in the proofs, we assume that also standard
unlabeled processes of Definition 3.1 can be defined over names N U N7.

A.1 Reduction semantics of well-labeled processes

The reduction semantics for well-labeled processes is defined by the rules of Table 9 and is the
obvious adaptation of the standard reduction semantics for the unlabeled processes (Tables 1 and
2). The only difference is that in rule (Cong) we adopt a relation >, which differs substantially
from structural congruence = for unlabeled processes (Table 3). In particular,
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1. we rule out the analogues of rules (Pref) and (Bang);

2. we assume that rule (Bang-Bang), which realises the fold /unfold of replication, can be applied
only in one way, that is to produce a copy of the replicated process and not to remove it.

These choices are motivated by the aim of having a relation > which better reflects the
normal semantics. More in details, we want that two well-labeled processes, such that P > @,
are represented by “equivalent” states when translated via § (see Lemma A.18). The rules (Pref)
and (Bang) give problems as, in the normal semantics, some syntactical differences are removed
only at execution time. Consider, for instance, two processes M.P and M.(Q, where P = Q.
These processes are represented by two different states (assuming a proper labeling) § M. P =
(@, ®M.P)and 6 °M.Q = (#, ®M.(Q). The continuations P and @ are translated via function
0 only after the execution of capability M.

Rule (Bang-Bang) gives a similar problem, as the unfolding of replication is modeled by a
transition (Bang) in the normal semantics. Consider for instance two processes !P and !P | P.
These processes are represented by two different states (assuming a proper labeling) § ¢!P = §; =
(@, ©'P)and 6 ¢(IP | P) = Sy = (§, ©!P)US ©P. We have S; — S, by rule Bang, but obviously
Sa A S1.

The relation > for well-labeled processes is defined in Table 10. As we have explained above
> is not symmetric, as there is only one way of (Bang-Bang) '*. In rule (Bang-Bang) the labels
of the replicated process are re-indexed to guarantee that new(P) | !P is a well-labeled process
provided that P is well-labeled. To this aim, we use new(P) which is adapted in the obvious way
from the definition of new over states (see Section 4). Hence, we let new(P) = Ppr where: py is a
re-indexing of labels such that dom(p;) = A(P); Ppy is well-labeled; there is no A € A(Ppy) such
that either A € A(P) or Hgz, () € n(P).

It is worth mentioning that > and — are defined only over well-labeled processes. It means that
rules (Res), (Par) and (Amb) of Table 10 and the corresponding rules of Table 9, can be applied only
when the resulting processes are well-labeled. This guarantees that the well-labeling of processes
is preserved, that is the labels of new(P) are fresh. For instance, R | |P > R | (new(P) | |P)
can be derived by applying rule (Par) to the premise !P > new(P) | !P provided that both
R | (new(P) | !P) and R | !P are well-labeled.

We now show the relation between the reductions of well-labeled processes and those of stan-
dard processes. To simplify the proofs we assume that in the inference of a statement P = () over
unlabeled processes the symmetric rules are used directly in place of rule (Symm) (as in >>).

Soundness. We show that any reduction between two well-labeled processes is simulated by a
reduction between the corresponding unlabeled processes.

Lemma A.1 Let P and @ be well-labeled processes. If P> @, then E(P) = £(Q).

Proof: It is enough to observe that for any case in Table 10 there exists a corresponding case in
Table 3. In the case of (Bang-Bang) we have P = |P and Q = !P | new(P). As £(new(P)) = E(P),
by definition of new, we conclude I£(P) = 1E(P) | £(new(P)).

O

1“We have therefore removed rule (Symm) and introduced the other direction of the rules (Ass), (Res-
Par), (Res-Amb), (Nil-Par) and (Nil-Res).
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Lemma A.2 Let P be a well-labeled process. If P — @Q, then E(P) — £(Q).

Proof: The proof is straightforward using Lemma A.1 for the case (Cong). O

Completeness. The proof of completeness is more complex. Due to the difference between =
and >, the converse of Lemmas A.1 and A.2 do not hold. Consider for instance the following
unlabeled processes

P =R | R|m|[0] | n[inm. S| (8)
Q =R | n[inm.S"] | m[0] 9)

We have a reduction @ — Q' where Q' =R | m[n[S'] | 0]. Assuming that S =S’ we have P =@,
and therefore by rule (Cong) we have also P — @Q'. We observe that there are no well-labeled
versions of P and @ such that P; > @ (where £(P;) = P and £(Q,) = Q). The problem is
that in P = () we use: rule (Pref) to derive inm..S = inm. S’ and rule (Bang-Bang) to derive
'R | R = !R. Both steps cannot be simulated by > over labeled processes (see Table 10).

We therefore show a weaker property (Lemma A.9): if P — Q' then there exist well-labeled
processes P; and @Q'r, such that Py — Q'», £(Pz) = P and £(Q)) = Q.

The proof of this property is based on the following steps. We show that, when P = @) and
Q — Q' there exists a special process @, such that:

1. P> Q" and Q" = @, where > means that only the rules of Table 3 corresponding to those
of Table 10 have been used;

2. the derivation P > Q" can be simulated in the labeled setting (meaning that there exist
well-labeled processes Py and @Q';, such that Pr > Q', E(Pz) = P and £(Q}) = Q");

3. due to the special form of @, @ can simulate the transition ¢ — @' (meaning that
" = Q' where £(Q) = Q).

For instance for the processes (8) and (9) illustrated above we can take
Q" ='R| R | n[inm.S] | m[0]. (10)

We have P > Q" by rules (Comm) and (Par) and we have a transition Q" — @', where Q"' =
IR | R | m[n[S] | 0]. Moreover, since Q' =R | m[n[S'] | 0] and S = S’ we have Q" = Q' by rules
(Bang-Bang), (Pref) and (Par). It is immediate to check that both P > Q" and Q" — Q" can
be simulated in the labeled setting.

To find out in a systematic way the process which satisfies the properties described above we
introduce the following definition.

Let P and @ be processes. We say that a process @ is a normal form of a process P iff
e Q=P=0;

e Q=M.Q" and P = M.P' where P' = Q’;

e Q=@ |Q2and P= P, | P, where ); is a normal form of P;, for any i € {1,2};

e Q =n[Q'] and P = n[P'] where @' is a normal form of P’;

e )= (vn) Q' and P = (vn) P’ where @' is a normal form of P';
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e Q=1!1Q orQ="Q |icq1,..n} Qi and P =!P', where Q' = P" and Q' = Q; = P’ for any
ie{l,...,n}.

For instance the process (10) is a normal form of the process (9).
We give below some easy properties about the normal form.

Proposition A.3 Let P,Q be processes such that Q) is a normal form of P. We have P = Q.

Proof: The proof proceeds by induction on the structure of P using the definition of normal
form and the rules of Table 3. The most interesting case is when P = !P’ and either Q = !Q' or
Q ='Q' |icq1,... 0y @}, where Q' = P" and Q; = P’ for i € {1,...,n}. In the former case P = Q
follows immediately by rule (Bang). In the latter case we have !P' = Q' by rule (Bang). Also,
by rules (Bang-Bang), (Par) and (Trans) !Q" =!Q' |;cq1,....ny Q- Thus, by rule (Trans) we have
P =qQ.

O

Proposition A.4 Let P, P, and P3 be processes. If Py is a normal form of P, and Py is a
normal form of P, then Py is a normal form of Ps.

Proof: All the cases are easy using the definition of normal form except from the case when
P; = 1Q). By definition we have either P, = !P or P> = !P |cq1,.. n) Qi, Wwhere Q = P = @y,
for any i € {1,...,n}. In the former case, we have P, = !R or Pi = !R |jcq1,.. 5} Ri, where
P=R=R;, foranyie€ {1,...,k}. Since Q@ = P we have also @ = R = R;, for any i € {1,...,k}.
Consequently, P; is a normal form of Ps;. In the latter case, we have P, = Py ; | P>y where P
is a normal form of !P and P is a normal form of ‘i€{17...7n} @;. It means that P, = IR or
Py =R |ieq1,... 1y Ri, where P = R = R;, for any i € {1,...,k}. Moreover, P»1 =|icq1,...n} Si,
where S; is a normal form of @);. By Proposition A.3 we have S; = Q; for any i € {1,...,k}.
Assume that P = !R |;cq1,... 0} Si- Since Q = P = @y, S; = Q; and P = R, P; is a normal form
of P3. Assume that P =R |icq1,... 1} Ri llicq1,...n} Si- Since @ = P=R=R;and S; =Q; = P,
then P; is a normal form of Pj.

O

We show the main property of normal forms we have discussed above: if P = @ then there
exists a normal form @’ of @ such that P> Q' and Q' = Q.

Lemma A.5 Let P, () be processes such that P = ). There exists a process Q', which is a normal
form of Q, such that P> Q' and Q' = Q.

Proof: We notice that, by Proposition A.3, when Q' is a normal form of @), we have also Q' = Q.
Therefore, it is enough to find out a process @', which is a normal form of @). The proof proceeds
by induction on the depth of the inference of P = Q.

e The cases of (Refl), (Comm), (Ass), (Res-Com), (Res-Par), (Res-Amb), (Nil-Par) and (Nil-

Res) are easy. They can be solved by taking Q' = @, as P > Q' follows from P = @ (by
applying the same rule of Table 10).

e The cases of (Res), (Par) and (Amb) are similar and follow by applying the induction
hypothesis; as an example we show (Amb). It means that P = n[R'] and @ = n[R], where
R' = R. Since R' = R, by induction hypothesis there exists R", such that R" is a normal
form of R and R' > R". We take Q' = n[R"]. We have P > @' by applying rule (Amb) to
the premise R’ > R'". Moreover, since R" is a normal form of R, then Q' is a normal form

of Q.
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In case (Bang) we have P = IR' and ) = 'R, where R' = R. Taking Q' = P we immediately
have P > @' by rule (Refl). Moreover, since R’ = R (and conversely R = R') then @' is a
normal form of Q).

In case (Pref) we have P = M. R’ and @ = M. R, where R’ = R. Taking Q' = P we have
P > @' by rule (Refl). Since R’ = R, then @' is a normal form of Q.

In case (Bang-Bang) there are two possibilities depending on the way the rule is applied.
Therefore, either P =!R | Rand Q@ =!'Ror P =!R and @ = 'R | R. In the latter case we
take @' = @ and we have P > @' by rule (Bang-Bang). In the former case we take Q' = P
and we have P > @' by rule (Refl). Moreover, @' is a normal form of @ using R = R.

In case (Trans) we have P = @1 and 1 = (). By induction hypothesis there exist Ry, R
such that: (i) P > R; and R; is a normal form of @Q1; (ii) @1 > R» and R» is a normal
form of Q.

This case is rather complex. The crux of the proof consists of showing that, since R; is a
normal form of @); (and thus by Proposition A.3 Ry = Q1) and @)1 > Rs, then there exists
a process @', which is a normal form of R,, such that Ry > @' (and by Proposition A.3
Q' = R»). To prove this property we proceed by induction on the depth of the inference of
Q1 > R». The case (Refl) is obvious; we show the other cases below.

— The cases of (Comm) and (Ass) are similar; as an example we show (Comm). We
have @; = Sy | So and Ry = S2 | S;. Since R; is a normal form of @); it means that
Ry = 51| S}, where S! is a normal form of S; for any i € {1,2}. We take Q' = S} | S
and we have Ry > @' by rule (Comm). Moreover, Q' is a normal form of R», since S}
is a normal form of S; for any ¢ € {1,2}.

— The cases of (Res), (Par) and (Amb) are similar; as an example we show (Amb). We
have @1 = n[S] and Ry = n[S’] where S > S’. Since R; is a normal form of Q; it
means that Ry = n[S"], where S” is a normal form of S. As S” is a normal form of
S and S > S', by induction hypothesis there exists S”’, which is a normal form of S’,
such that S” > S". We take Q' = n[S"']. As S" is a normal form of S’, then Q'
is a normal form of Ry. Moreover, we have Ry > Q' by applying rule (Amb) to the
premise S"” > S,

— The cases of (Res-Com), (Res-Par), (Res-Amb), (Nil-Par) and (Nil-Res) are similar;
as an example we show (Res-Par). There are two cases: either @1 = (vn) (S1 | S2)
and Ry = S; | (vn) Sz or the converse. We show only the former case, the other is
analogous.

Since Ry is a normal form of Q¢ it means that Ry = (vn) Sj | S5, where S} is a normal
form of S; for any i € {1,2}. Taking @' = Sj | (vn) S5 we have that Q' is a normal
form of Ry. Moreover, we have Ry > @' by applying rule (Res-Par).

— In case (Bang-Bang) we have Q1 = !S and R, =S | S. Since R; is a normal form

of @1 it means that either Ry = !S" or Ry = 1S |icq1,....n} S; where S = S (and
conversely S’ = S) and S = S] (and conversely S} = S), for any i € {1,...,n}. We
show only the former case; the other is analogous.
We observe that R; is a normal form of @1, and P = ¢, and P >> R, where Ry =5’
and @; =!S. It means that rule (Bang) is applied in P = @)1 to the premise S’ = S (see
the case (Bang) above). Therefore, by applying the induction hypothesis to S’ = S,
there exists S”, which is a normal form of S, such that S’ > S".
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We take Q' = 1S’ | S”. By applying rule (Bang-Bang) we have Ry > 15" | S'.
Moreover, by applying rule (Par) to the premise S’ > S we obtain 1S' | S’ > 15’ | S".
Hence, by rule (Trans) we have Ry > @'. We conclude by observing that @’ is a
normal form of R as S = S’ and S” is a normal form of S.

— In case (Trans) we have Q1 > S; and S; > R»,. As R is a normal form of @);, then
by induction hypothesis there exists a process ", which is a normal form of S;, such
that Ry > @". Since Q" is a normal form of S; and S; > R», then by induction
hypothesis there exists a process @', which is a normal form of R, such that Q" > Q'.
We conclude by observing that by applying rule (Trans) to the premises R; > Q" and
Q" > @', we obtain Ry > Q.

Using the property above!® we now conclude the case (Trans). Since @' is a normal form of
R> and R» is a normal form of @ (condition (ii)), we have by Proposition A.4 that Q' is a
normal form of Q. Moreover, P > @' follows from P > R; (condition (i)) and R; > Q'

O

We present now two auxiliary properties of the relation > and of the reduction relation over
well-labeled processes. They show that the new labels introduced in a process by > or by a
reduction can be properly re-indexed. This is possible because new labels can be introduced only
by rule (Bang-Bang) of Table 10 by means of new.

Proposition A.6 Let P and @) be well-labeled processes such that P > ). We have fn(P) =
fn(Q), and for each re-indexing of labels py, such that dom(p;) = AQ) \ A(P), and Qpy is
well-labeled, we have also P > Qpr.

Proof: The proof proceeds by induction on the depth of the inference of P > . We observe
that in any rule of Table 10, P > @ implies fn(P) = fn(Q). Moreover, in any rule of Table 10,
P > @ implies A(P) = A(Q), except from rules (Bang-Bang), (Nil-Res) and rules (Res), (Par),
(Amb), (Trans).

e Suppose that rule (Nil-Res) has been applied. We have P = 0 and @ = (vn,)0 or vice-versa.
The latter case is immediate, in the former case we have A(Q) \ A(P) = {A}. Hence, for
any re-indexing of labels p; such that Qp; is well-labeled, we have Qpr = (vn,,(»)) 0. We
conclude as follows by P > Qpr by rule (Nil-Res).

e Suppose that rule (Bang-Bang) has been applied. We have P =!P; and @ = P, | new(Py).
It means that new(P,) = Pip'; for a re-indexing of labels such that: dom(p';) = A(Py);
Pyp'; is well-labeled; there is no A € A(Pyp';) such that either A € A(Py) or Hg, () € n(Py).
These conditions ensure that new(P;) | |P; is well-labeled, and therefore that A(new(P;)) N
A(!P1) = 0. Let pr be a re-indexing of labels such that dom(pr) = A(Q) \ A(P) and
Qpr = (new(Py) | \Py)py is well-labeled. Since A(new(Pr))NA(!Py) = 0, we have dom(py) =
A(new(Py)) and (new(Py) | \Py)pr = new(Py)pr | !Py. Since new(Py)py | | Py is well-labeled,
also Pip';pr. Thus, we can apply rule (Bang-Bang) to conclude !Py > Py p';pr | |P;.

7

'5There exists a process @', which is a normal form of Rs, such that R1 > Q'.
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e The cases of rules (Res), (Par), (Amb) and (Trans) are similar and follow by induction
hypothesis using the well-labeling of P. We give as an example (Par) and (Res).

Assume that P = P, | P, and Q = @1 | P>, where P, > ;. Let p; be a re-indexing
of labels, such that dom(pr) = A(Q) \ A(P), and Qpr is well-labeled. Since P and @
are well-labeled, then A(P;) N A(P) = § and A(Q1) N A(P2) = 0. Therefore, we have
AQ)\ A(P) = A(Q1) \ A(P1) and Qpr = Q1p1 | P>. We observe that Q1p;y is well-labeled,
since Qpy is well-labeled. Thus, by induction hypothesis P, > @Qip;. We conclude by
applying rule (Par) to derive Py | Py > Q1p1 | Ps.

Assume that P = (vny) P; and Q = (vny) Q1, where P; > @;. Let p; be a re-indexing of
labels, such that dom(pr) = A(Q) \ A(P), and Qpy is well-labeled. Since @ is well-labeled,
then A & A(Q1), He,(A) & n(Q1), and there is no p € A(Q1) such that Hg,(u) = n.
Therefore, we have A ¢ A(Q) \ A(P), and consequently Qpr = (vny) (Q1pr). We observe
that Q1pr is well-labeled, as QQpy is well-labeled. Hence, by induction hypothesis P, > Q1p;.
We conclude by applying rule (Res) to derive (vny) P1 > (vny) (Q1pr1)-

Proposition A.7 Let P and Q) be well-labeled processes such that P — Q. We have fn(Q) C
fn(P), and for each re-indexing of labels py, such that dom(p;) = A(Q) \ A(P), and Qpy i
well-labeled, we have also P — Qpy.

=
»

Proof: The proof proceeds by induction on the depth of the inference of P — ). The cases of
(In), (Out), and (Open) are immediate given that A(Q) C A(P). The case of rule (Cong) follows
by Proposition A.6. The cases of (Par), (Amb) and (Res) can be proved by induction following a
reasoning similar to that used in the corresponding cases of Proposition A.6.

O

The following lemma shows that the converse of Lemma A.1 holds for unlabeled processes
related by >.

Lemma A.8 Let P be a well-labeled process. If E(P) > @, then there exists a well-labeled process
Q', such that P> Q' and £(Q') = Q.

Proof: We proceed by induction on the derivation of £(P) > @) using the fact that for any rule
of Table 3, which could have been applied to derive >, there exists a corresponding case in Table
10. We discuss the most interesting cases, the others are trivial.

e In case (Bang-Bang) we have £(P) = 1£(P) and Q = £(Py) | E(P1). Let Q' = P, |
new(Py), which is (by definition of new) well-labeled. By rule (Bang-Bang) we have !P; >
1Py | new(Py) and £(Q") =1E(Py) | E(new(Py)) =1E(P) | E(P) = Q.

e In cases (Res),(Par), (Amb) we apply the induction hypothesis using Proposition A.6 to find
out the well-labeled process @'. We show as an example the cases of (Par) and (Res).

Assume that £(P) > @ has been derived by rule (Par). It means that P = P, | R and
Q = Q1 | £(R), where £(P1) > Q1. By induction hypothesis, there exists a well-labeled
process @} such that £(Q)) = @1 and P, > Q). Using Proposition A.6 we derive that
fn(Q)) = fn(P1). Moreover, since P; | R is well-labeled we have: (i) A(Py) N A(R) = 0; (ii)
for each A € A(Py), Hz—1(\) € n(R); conversely (iii) for each A € A(R), Hz,(A\) € n(Py).
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We now use the fact that the labels A(Q}) \ A(P1) can be re-indexed. Therefore, let pr be
a re-indexing of labels, such that dom(pr) = A(Q}) \ A(P1), Q' pr is well-labeled, A(Q}pr) N
A(R) = 0 and, for each A € A(Q'p1), He,(N) € n(R). As Q'pr is well-labeled, then by
Proposition A.6, we obtain Py > Q) pr.

We now observe that fn(Q}) = fn(P1) and fn(Q}) = fn(Q'pr) and that the bound names
of Q) pr can be properly a-converted. By condition (iii) above we derive that H.,(\) ¢
n(Q}pr) for any A € A(R). Moreover, pr has been chosen to have A(Q}pr) NA(R) = () and,
for each A € A(Qpr), He, (A\) € n(R). Therefore, Q}p; | R is a well-labeled process.

Let Q' = Q'pr | R. Since P > Qpr, then by rule (Par) of Table 10 we have P > @Q'.
Moreover, since £(Q'pr) = £(Q}) = Q1 we conclude that £(Qipr | R) = £(Q}) | E(R) =
Q1] E(R) =Q.

Assume that £(P) > @ has been derived by rule (Res). It means that P = (vny) P, and
Q = (vn) Q1, where £(P1) > Q1. By induction hypothesis, there exists a well-labeled
process @} such that £(Q}) = @1 and P, > Q). Using Proposition A.6 we derive that
fn(@)) = fn(Py). Moreover, since (vny) Py is well-labeled we have: (i) A ¢ A(Py); (ii) for
each u € A(Py), Hr, () # n; conversely (iii) He, (\) € n(Py).

We now use the fact that the labels A(Q})\ A(P;) can be re-indexed. Therefore, let p; be a
re-indexing of labels, such that dom(pr) = A(Q}) \ A(Py1), Q] pr is well-labeled, A & A(Q pr)
and, for each p € A(Q}pr), He, (1) # n. As Q}pr is well-labeled, then by Proposition A.6,
we obtain P; > Q1 pr.

We now observe that fn(Q}) = fn(P;) and fn(Q)) = fn(Q}pr) and that the bound names
of Q)pr can be properly a-converted. Since for each u € A(Q'pr), He, (1) # n, and by
conditions (i) and (iii) above, we derive that (vny) Q}pr is well-labeled.

Let Q' = (vny) Q' pr. Since P > Q! pr, then by rule (Res) of Table 10 we have P > Q.
Moreover, since £(Q} pr) = £(Q}) = Q1 we conclude that £(Q') = (vn) Q1 = Q.

O

Using Lemmas A.5 and A.8 and the shape of normal forms we can now prove the main result
of completeness.

Lemma A.9 Let P be a well-labeled process. If E(P) — Q, then there exists a well-labeled process
Q' such that £(Q") =Q and P — Q'.

Proof: We prove a more general result: if £(P) = P; and Py — @, then there exists a well-
labeled process @' such that £(Q') = @ and P — @'. For this we proceed by induction on the
depth of the inference of P, — Q).

e The cases of (In), (Out), and (Open) are similar; as an example we show (In). If P, — @ has
been obtained by rule (In), it means that P, = n[inm. R; | Ry] | m[S] and Q = m[n[R; |
Ryl | S].

Since £(P) = P;, then by Lemma A.5 there exists a process Py, which is a normal form of
Py, such that £(P) > P{ and P/ = P;.
We now apply Lemma A.8. As £(P) > P/, then there exists a well-labeled process P;’ such
that P > P/ and E(P|") = P{. Since P/ is a normal form of P;, then it must be the case
that

P = nlinm,. By | B3] | m,[S'
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nalinmy. P | Q] | my[R] = my[nAlP | Q] | Rl (In)

mulnalout my. P Q)| Bl = m[P | Q) | mu[E]  (Out)

openn,. P | ny[Q] = P | Q (Open)
P = Q= (vn)) P — (vny) Q (Res)
P>5Q=P|R—>Q|R (Par)
P = Q= nx[P] = n)[Q] (Amb)
(P'=Q, P>P,Q>Q)=P—Q (Cong)

Table 9: Reductions for well-labeled processes

where £(R}) = Ry, £(R)) is a normal form Ry and £(S’) is a normal form of S.
By applying rule (In) we have a reduction P/’ — @', where

Q" =myunA[Ry | Ry] [ S'].

Moreover, since P >> P’ we have by rule (Cong) P — Q'.
We conclude by observing that £(RS) = Rs and £(S') = S (using Proposition A.3). Given
that also £(R}) = Ry, £(Q') = Q follows by applying rules (Par), (Amb) and (Trans).

The cases of (Par), (Amb) and (Res) are similar; they follow by applying the induction

hypothesis and by using Proposition A.7 to find out the well-labeled process @' (similarly
as in the proof of Lemma A.8). We show as an example the case (Par).

Assume that P; — @ has been obtained by rule (Par). It means that P, = @1 | R and
Q = Q2 | R, where Q1 — Q.

Since £(P) = Py, then by Lemma A.5 there exists a process P/, which is a normal form of
Py, such that E(P) > P| and P = P,.

We now apply Lemma A.8. As £(P) > P/, then there exists a well-labeled process P;’ such
that P > P/ and E(P|") = P{. Since P/ is a normal form of P;, then it must be the case
that P;' = Q] | R', where £(Q}) is a normal form of @; and £(R’) is a normal form of R. By
Proposition A.3 we have that £(Q}) = Q1 and £(R') = R. Since £(Q}) = Q1 and Q1 — Q2,
by induction hypothesis there exists a reduction Q] — @) such that £(Q%) = Q-.

We now use Proposition A.7 to find out a re-indexing of labels p; such that Q] — Q4p; and
Q' = Q4pr | R' is well-labeled (the reasoning follows an argument similar to that applied in
the proof of Lemma A.8).

As @' is well-labeled, then we derive P;’ — @' by applying rule (Par) to the premise @} —
Q4p1. Since P > P}’ we have also P — @' by rule (Cong).
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It remains to show that £(Q') = Q. We recall that @ = Q2 | R and Q' = Q5pr | R, where
£(QY) = Q2 and E(R') = R. Given that £(Q)) = E(Q4pr1), £(Q') = Q follows therefore by
rules (Par) and (Trans).

e If P, — @ has been obtained by rule (Cong) it means that P, = P», Py, — P; and P; = Q.
As £(P) = Py and Py = P, we have by rule (Trans) £(P) = P,. Since £(P) = P> and
P, — P3, then by induction hypothesis there exists P — @' such that £(Q') = P;. We
conclude by observing that £(Q') = @ follows by applying rule (Trans) to the premises
g(Q’) = P3 and P3 = Q

O

A.2 Relation between the normal semantics and the reductions of la-
beled processes

We start presenting the basic properties of the normalisation function ¢ (Table 4). The following
proposition shows that a-convertible processes are represented by the same state. We recall that
a-conversion over labeled processes can change a bound name but not its label.

Proposition A.10 (a-conversion) Let P and Q be two well-labeled processes which are a-convertible.
For any a € A, which is fresh for P and @), we have § P =4 *Q.

Proof: The main observation is the following: when P = (vny) Py and @ = (vky) Pi[k/n], such
that k € fn(P;), we have by rule DRes § P = § *(Pi[Hz,(A\)/n]) =6 °Q = 6 “(Py[k/n][Hz, (N) /E]).
O

We now discuss the relation between the (free and bound) names and the labels of a process
and those of the corresponding state obtained via 4. To formalise this relation it is necessary to
know precisely which restrictions are removed via 4. We therefore introduce the following concepts
which use a special kind of contexts. A context C is a process expression with a single occurrence
of a hole [], such that the hole does not appear underneath the scope of a prefix or of a bang. As
usual we denote by C[P] the process obtained by filling the hole of C' with the process P.

Let P be a labeled process. If P = C[(vny) Q] for some context C, then we say that (vny) is an
unguarded restriction of P; if also n ¢ fn(Q) we say that (vny) is an unguarded and unnecessary
restriction of P.

For instance, the restriction (vny) is unguarded and the restriction (vm.) is not unguarded
in the following process P = a[(vny) (vm,) Q].

The unguarded restrictions of a process are important, as they are removed by the normalisation
function §. For instance, we have for the process P above

§ P =({*},{"Nvm,y) Q[Hc,(\)/n]}).

The difference between the unguarded and the unguarded and unnecessary restrictions of a
process is the following: if (vn)) is an unguarded and unnecessary restriction of a process P, then
H¢,(X\) does not necessarily appear in the state modeling P. For instance, assume that the process
P above is well-labeled, that is Hz,(\) € n(Q) Un(a). The name H.,()\) appears in the state
§ @P only when n € fn(Q).

These intuitive ideas are stated by the propositions below. In the following, we use U(P) =
{nx | (vny) is an unguarded restriction of P} and U, (P) = {nx | (vny) is an unguarded and
unnecessary restriction of P}.
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Proposition A.11 Let P be a well-labeled process and let a € A which is fresh for P. We have
1. if (vny) and (vm,) are two distinct unguarded restrictions of P, then X # p;
2. for any ny € U(P), He, (X) € n(P);
3. Hp,(X) # Hp,(p) for any nyx,m, € U(P).

Proof: The conditions follow straightforwardly from the definition of well-labeled process (Defi-
nition 4.2). m|

Proposition A.12 Let P be a well-labeled process and a € A which is fresh for P. We have
o A6 “P)\ Ala) = A(P)\{X|nx € U(P)};
o n(6 “P)\n(a) = fn(P)U (n(P)\ {n | nx € UP)}) U {Hz,(N) | ny € U(P)\Ua(P))}.

Proof: The requirements on A(4 “P) and n(§ *P) can be proved by induction on the structure
of P using using Proposition A.11. The main observation is that, by definition of §, only the
unguarded restrictions are removed (see rules DBang and DPref). In case DRes, we have for
P=(vny))Q

60 P =0 *(Q[Hc,(A)/n]).
This shows that the label A is removed and the name n is replaced by Hr,(\). We recall that, by
Proposition A.11: for any ny € U(P), Hz,(A) € n(P) and, there is no other object in P with label

A. Therefore, Hz,(\) € n(§ *P) only when n € fn(Q), that is (vny) € U(P) \ Uy (P).
O

The following proposition is needed in the proof of completeness (Lemma A.20); it says that
the state representing a well-labeled process is well-labeled provided that the root a is fresh for P.
We recall that a state S € S is well-labeled if: (i) for each A € A(S), Hg,(\) & n(S); (ii) for any
label A € A(S) there is at most one object labeled by A.

Proposition A.13 Let P be a well-labeled process and let a € A, such that a is fresh for P. We
have that § *P is a well-labeled state with root a.

Proof: Straightforward by induction on the structure of P using Propositions A.11 and A.12.
O

The converse of Proposition A.13 does not hold. Consider, for instance, the following not
well-labeled process

P = (vny) m,[0] (11)

We have 6 ©P = ( (,,,°},0) which is obviously well-labeled.

The anomaly in process (11) is that (vny) is an unguarded and unnecessary restriction; there-
fore the name H.,()), that is used to replace the bound name n, does not appear in the state
representing P (see Proposition A.12). By contrast, the clash between the two occurrences of
label A is necessarily reflected into the corresponding state, when the bound name appears in the
process. Consider, for instance, the following not well-labeled process

Q = (vny) myJout n] (12)
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We have § Q = ( {,®},{ ™ out i}) where Hz, (A) = f. We observe that 4 ©@Q is not well-labeled
since 1 € n(d Q) and A € A(§ ©Q).

There is a main difference between the processes (11) and (12) above. In case (11) the process
can be properly rearranged and a well-labeled process P’ can be obtained, such that § P = § P’
and P > P'. For instance, taking P' = m,[0], it is immediate to check that § P = § P’ and
P > P, since n € fn(m[0]) (reflecting the idea that this restriction is unnecessary). For the
process (12) instead there is no way to modify the labels using >>.

The idea explained for the processes P and P’ above is useful in the proof of soundness (Lemma
A.17). We therefore formalise it by introducing a relation > and by showing that: when P> P’', we
have § *P = § ®P' and P > P’ (and vice-versa P' >> P). The intuitive idea behind > is that P’
is obtained from P by eliminating all the unguarded and unnecessary restrictions. We define the
relation > over labelled processes inductively as follows:

0v0,!P>!P, My. P> M).P;

Q| P> Q' | P' provided that Q> Q' and P > P';

alQ] > a[Q'] provided that Q> Q';

(vny) Q> (vny) Q' provided that Q> Q' and n € fn(Q);
(vny) Q> Q' provided that Q> Q' and n & fn(Q).

Notice that by condition 5. we have U, (P') = ) when P> P'. Moreover, we have immediately
fn(P) = fn(P'") and A(P') C A(P).

AN .

Lemma A.14 Let P and P' be labeled processes such that P> P'. We have § °P = § “P' and
E(P) = E(P'). Moreover, if P and P' are well-labeled, then P > P' (and P' > P).

Proof: The proof proceeds by induction on the structure of P. We observe that the cases of
bang, prefix and nil are obvious since P> P’ implies P = P’'. We show below the other cases.

e Suppose that P = b[@]. By definition of >, we have P’ = b[Q'] where @ > Q'. Hence,
by induction hypothesis we have § *Q = 6 *Q' and £(Q) = £(Q"). Also, if Q and Q' are
well-labeled, then @ > Q'. Using § *Q = 6 *Q’ we therefore obtain

§°P=({s}0)ud’Q=({¢}0)ud’Q =5"P.

Moreover, £(Q) = £(Q") implies, by rule (Amb) of Table 3, n[€(Q)] = n[€(Q')] assuming
b = my. Suppose that P and P’ are well-labeled. It means that @ and Q' also are well-
labeled. Using @ > Q' we derive b[Q] > b[Q'] by rule (Amb) of Table 10;

e Suppose that P = Q1 | Q2. The proof proceeds by induction similarly as in the preceding
case.

e Suppose that P = (vn)) Q. By definition of > there are two cases: either P' = (vny) Q'
where Q> Q' and n € fn(Q), or n € fn(Q) and P' = Q', where Q > Q'.

1. Suppose that P’ = (vny) Q' where @ > Q'. The proof proceeds by induction similarly
as in the preceding case.

48



2. Suppose that n ¢ fn(Q) and P' = @', where @ > Q'. By induction hypothesis we have
09Q =46 Q" and £(Q) = £(Q"). Also, if @ and Q' are well-labeled we have @ > @Q'.
Using n € fn(Q) we have immediately

§aP =389Qlm/n]) =6 °Q=6°Q =06 P

We observe also that (vn)£(Q) = £(Q) can be derived by applying the rules (Nil-Par),
(Nil-Res) and (Res-Par) of Table 3 (using n ¢ fn(Q)). Since £(Q) = £(Q'), then we
have also £(P) = £(Q’). Similarly, for the case when when P and P’ are well-labeled.

We conclude by observing that, when P and P’ are well-labeled, P > P' implies P’ > P.
In any case shown above only the symmetric rules of > have been applied (see Table 10).

O

Soundness. The proof is rather complex; it is difficult in particular to reason about the well-
labeling of the processes obtained in the inductive cases. We need some auxiliary properties. The
following proposition shows a useful property of the reductions of well-labeled processes.

Proposition A.15 Let P and ) be well-labeled processes such that P — Q). If there exists A such
that A € A(Q) and Hz,(\) € fn(P), then there exists a well-labeled process Q)', such that P — @',

AEAQ) and Q' > Q.

Proof: We first observe that by definition of well-labeling: Hz,(\) € fn(P) implies A ¢ A(P);
analogously, A € A(Q) implies Hz,(\) € n(Q). The proofs proceeds by induction on the depth
of the inference of P — Q. The cases of (In), (Out), and (Open) are immediate given that
A(Q) C A(P). In case (Cong) we have P> P’ and P' — P" and P" > Q. If A ¢ A(P") we have
finished. Otherwise, we observe that Hp,(\) € fn(P'), using Hg,(\) € fn(P) and Proposition
A.6. As P’ is well-labeled, by induction hypothesis there exists R"” such that P’ — R", A ¢ A(R")
and R" > P" > @Q. Hence, by rule (Cong) we derive P — R" such that A ¢ A(R"), R" > Q.
The other cases are similar and follow by induction hypothesis; we discuss as an example the case
(Par). It means that P = P, | P, and Q = P| | Py, where P, — P;. We have A € A(Q) and
A & A(P), He,(A\) € fn(P) and Hg, (A) € fn(Q). Since P and @ are well-labeled, the only
possibility is therefore that A € A(P{) and H.,(\) € fn(P1). Hence, by induction hypothesis
there exists P{’ such that P, — P{’, A ¢ A(P") and P{' > P{. We observe that, by Proposition
A6, P{ > P! implies fn(P]") = fn(P]). Given fn(P]) = fn(P/') and P/ | P; is well-labeled,
there exists a re-indexing of labels py, such that dom(p;) = A(P]") \ A(P]), A & A(P/'psr) and
Q' = P/'pr | P> is well-labeled. By Propositions A.6 and A.7 we obtain both P/'pr > P/ and
P, — P}'pr. Since @' is well-labeled, we derive P, | P, — Q' by applying rule (Par) to the premise
P, — P{'p;. Moreover, we have P{'pr | P, > P| | P» by applying rule (Par) to the premise
P{'pr > Pj.

O

To reason about the well-labeling of processes it is convenient to know precisely which new
labels are introduced by a transition S; — Sy between two states S; and S;. To this aim we use
new(S; — S3) to denote the set of labels which could have been introduced by an application of
new, that is by the unfolding of replication. Formally,
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1. new(S; = S3) = () when S; — S5 has been obtained by one of the rules In, OQut or Open;

2. new(S; — S2) = A(newg, (P)) when S; — Sy has been obtained by rule Bang and S, =
S1 U d “news, (P).

The following proposition shows that the well-labeling of states is preserved by the transitions
of Table 5 and clarifies in which sense the labels introduced by means of new in rule Bang are
fresh.

Proposition A.16 Let Sy be a well-labeled state. If Sy — Si, then S; is well-labeled. Moreover,
assume that S1 U Sy is a well-labeled state such that S3USs — S} USy. For any A € new(S; — S7)
we have X & A(Ss) and Hz,(\) € n(Ss).

Proof: The proof is by cases on the rule applied to obtain S; +— S]. Let S; = (T3, C;), for any
i€ {l,2}.

e As cases of Open, In and Out are similar, we discuss case In only. When S; — S| has
been obtained by rule In, we have t = %inm..P € C;, [, mub € T such that a # my.
Moreover, S} = Sy U “P where

ST =T\ {HU{ ™}, C\ 1))

Since S is well-labeled and ¢ € C, then P is well-labeled and a is fresh for P. By Proposition
A.13 we have that § “P is well-labeled. We also observe that Si' is well-labeled, as Sy is
well-labeled. Hence, Si is not well-labeled only when there exists a label A, such that one of
the following cases holds: (a) A € A(0 “P) \ A(a) and either X € A(S}) or Hz, (X)) € n(SY);
(b) A € A(SY) and Hz,(\) € n(6 “P) \ n(a).

To discuss (a) and (b) we need to know the relation between the names and the labels of P
and those of § *P. By Proposition A.12, we have

1. A(6 *P)\ A(a) = A(P)\ {\ | nx € U(P)};

2. n(6 “P)\n(a) = fn(P)U(bn(P)\{n | nx € U(P)}) U {Hc,(A) [ nx € (U(P)\Uu(P))}.
We show case (b). Assume that A € A(SY) and Hg, (A) € n(d “P)\n(a). Given 2. we derive
that either He, (A) € n(P) or He, (A) € {Hg, (N) | ny € U(P) \Uu(P))}.

In the former case, since He,(\) € n(P) and t € Cy we have Hz,(\) € n(S1). Moreover,

we have A(S{) C A(S1). We obtain A € A(Sy) and Hg,()\) € n(Sy), which contradicts the
well-labeling of S;.

In the latter case, we have A € A(P) and A € A(S}). Hence, there is an object with label A
in S{'. Since t has been removed from the configuration and ¢ € Cy, there are two objects
with label X in Sy, which contradicts again the well-labeling of S;.

Case (a) follows by applying a similar argument using condition 1., n(S}") C n(S;) and
A(SY) C A(S1).

Let S; U Sy be a well-labeled state such that S; U Sy — S; U S>. We conclude by observing
that new(S; + S2) = new(S; U Sy — Sj USy) = 0.

e Suppose that S; — S| has been obtained by rule Bang. It means that S| = (Cy,T1) U
0 ‘news, (Q) for some °!Q € Cy. By definition, we have news, (@) = Qpr for a re-indexing
of labels pr such that dom(p;) = A(Q) and
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1. Qpy is well-labeled;
2. there is no A € A(Qpy), such that either A € A(Sy1) or He,(A\) € n(S).

By conditions 1. and 2., Qp; is well-labeled and c¢ is fresh for Qp;. Consequently, by
Proposition A.13, § “newgs, (Q) is well-labeled. Since S; and § “news, (Q)) are well-labeled,
S} is not well-labeled only when there exists A such that one of the following cases holds:
(a) A € A(d “news, (Q)) \ A(c) and either A € A(Sy) or Hg, () € n(S1); (b) A € A(Sy) and
He, (\) € n(8 “news, (@) \ n(c).

By Proposition A.12, we have

(1) A(6 "news, (@) \ Ale) = A(news, (Q)) \ {A | nx € U(news, (Q))};

(ii) n(d “news, (Q)) \ n(c) = fn(news, (Q)) U (bn(news, (Q)) \ {n [ nx € U(news, (Q))}) U
{He, (A) [ na € U(news, (Q)) \ Un(news, (Q)))}-

In case (a) we have A € A(d “news, (@)) \ A(c) , and consequently A € A(news, (Q)) using
(i). When either A € A(Sy) or Hg, (X) € n(S1) we have a contradiction with the requirement
2. above.

In case (b) we have Hg,(X) € n(d “news, (@)) \ n(c). Using (ii) we obtain that either
Hr, (X)) € n(news, (Q)) or A € A(news, (Q)). In the latter case, we have A € A(news, (Q))
and A € A(S1), which contradicts the requirement 2. above. In the former case we have
He, (A € n(news, (Q)) and XA € A(Sy). We observe that n(Q) = n(news, (Q)) and °!Q € C;.
Hence, we have Hz,(\) € n(S;) and A € A(Sy), which contradicts the well-labeling of S;.
Let S1US5 be a well-labeled state such that S;USs — S]US>. We observe that it is necessary
to have news,us,(Q) = Qpr, that is (besides condition 1. above): there is no A € A(Qpr),
such that either A € A(S1US2) or He, (A) € n(S1US2). Given new(S; — S7) = A(Qpr), we
have finished.

Now we show the main result of soundness.

Lemma A.17 Let P be a well-labeled process and let § *P = Sy where a € A is fresh for P. If
S1 +— So, then there exists a well-labeled process @), such that a is fresh for Q, 0 “Q = Sa, P —s Q
and A(Q) \ A(P) C new(S; — S2).

Proof: The proof is by induction on the structure of P.

e Assume P=0o0r P = M. P;. Wehaved 0 = (0,0) = S;and§d °M,. P, = (0, {*M,. P, }) =
S1, respectively. In both cases the proof is trivial because there is no transition from Sj.

Assume P = |P;. We have ¢ ¢\P, = (0,{*P}) = (T},C1) = S;. Transition S; — Sy
could have been obtained only by applying rule Bang. It means that Sy = (), {*!P}) U
0 "news, (Pr). Let @ =P, | news, (P1). We observe that by definition of new and since
IP; € Cy, then @ is a well-labeled process. Therefore, by rule (Bang-Bang) of Table 10 we
derive |P; > Py | news, (P1). We also have 6 *Q = (0, {*!P1})Ud *news, (P1). We conclude
by noticing that A(Q) \ A(P) = A(news, (P1)) = neu(S; — Ss).
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e Assume P = (vny) P,. We have § “(vny) P, = § °P] = S1, where m = Hg, () and
P{ = P[m/n].
Since P is well-labeled, A & A(P{), and consequently P is well-labeled. Hence, by induction
hypothesis there exists a well-labeled process J; such that § *Q; = S», P —»s @ and
A(Q1) \ A(P]) C neu(S; — S9).
There are two cases: either P > @ or P{ — ;. We show only the latter one, the other
being analogous. We show the existence of a well-labeled process @, such that P — @,
0%Q =S5 and A(Q) \ A(P) = new(S; — S2).
The crucial observation to find out the right process @ is that @); is a well-labeled process:
it cannot be the case that A € A(Q1) and m € n(Q1), where m = Hg, (A).

1. Assume that A € A(Q1). Let k be a new name, such that k # m and k € n(Q1)Un(P)
and there is no p € (A(Q1) UA(Py)) with He, (u) = k. We take Q = (vky) Q1[k/m].
Since A € A(Q1) we have also A ¢ A(Q1[k/m]). Considering k£ has been properly
chosen, @ is well-labeled. Moreover, we have

§°Q =6 “(Q1[k/m][m/K]) = 6 “Qy = S.

We now show that P — . Since P — @ and k is a new name, we have also
P/[k/m] = Q1[k/m]. Therefore, we derive (vky)P|[k/m] — (vk))Q1[k/m] by applying
rule (Res) to the premise P/[k/m] — Qi[k/m]. We also observe that (vny) P; is a-
convertible to (vky) Py [m/n][k/m)].
It remains to show that A(Q) \ A(P) C new(S; — S2). Since A ¢ A(Q;) we have
A@Q)\A(P) = (A(Q1[k/m]) U{A}) \ (A(P1) U{A}) = A(Q1) \ A(P]) C new(S1 — Sa).
2. Assume that A € A(Q1) and m & n(Q1). We take Q = Q1. Since @ is well-labeled
and § “Q = S, it remains to show that P — (1. The proof proceeds by considering
the following two cases: m € fn(P}) or m & fn(P}).
When m ¢ fn(P]) we observe that n € fn(Py), that is P/ = P;. Using n & fn(P;) we
derive, by rules (Nil-Par), (Nil-Res) and (Res-Par), (vny) P, > P;. Since P{ = P; and
P — @1 we obtain by rule (Cong) P — Q.
If m € fn(Py]) the proof is more complex. We use the fact that Pj is well-labeled, that
is A\ € A(P]). Since P/ —» @1 and m ¢ fn(Q1) we can apply Proposition A.15. We
derive that there exists Q] such that Q) > @1, P{ = @} and A ¢ A(Q)).
Since A € A(QY)), the process (vky) Q}[k/m] is well-labeled, where k is a new name
chosen as in case 1. above. Moreover, by applying rule (Res) to the premise P{ — @}
we obtain (vky) P/[k/m] — (vky) Q}[k/m)].
We now deduce (vky) P{[k/m] — Q1 from (vky)P/[k/m] — (vk))Q}[k/m]. Since Q] >
Q1 and m & n(Q1), then by Proposition A.6, m ¢ fn(Q}), that is & € fn(Q}[k/m]).
Hence, by applying rules (Nil-Par), (Nil-Res) and (Res-Par) we obtain (vky) Q' [k/m] >
Q). Using Q) > Q1 we have also (vky) Qi[k/m] > Q1. By rule (Cong) we therefore
obtain (vky) P{[k/m] — Q1. Moreover, we have that (vny) P; is a-convertible to
(vkx) Pr[m/n]k/m].
We conclude by observing that A(Q) \ A(P) == A(Q1) \A(P) = A(Q1) \ (A(P1)U{A}).
Since A € A(Py) and A(Py) = A(P]) we have therefore A(Q1)\A(P) C A(Q1)\A(P]) C
new(S; — Ss).
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e Assume P = b[P;]. We have § 2b[P;] = ({ *},0) Ud °P; = S;. Transition S; — S could
have been obtained in two ways: either only P; contributes to the action or also ambient
b participates. Notice that ambient a cannot be involved as a is fresh for P and P is well-
labeled. This guarantees that S; is a well-labeled state with root a (see Proposition A.13).
Let S| =6 %P, = (T],C}).

1. If only P; contributes to the action it means that S| — S} and Sy = S5U({ *},0). As
P is well-labeled, P; also is well-labeled and b is fresh for P,. Therefore, by induction
hypothesis there exist a well-labeled process @1, such that § *Q; = S, P; = Q1 and
A(Q1) \ A(Py) C new(S] — S3).

There are two cases: either P, > (1 or P, — (1. We show only the latter case,
the other being analogous. The proof proceeds by showing that b[@;] is well-labeled
and that a is fresh for b[@Q)1]. The well-labeling of @) is a necessary condition to derive
a reduction b[P;] — b[@1] by applying rule (Amb) to the premise P, — Q. Let
Q = blCu].

Assume that either @) is not well-labeled or a is not fresh for Q. We recall that @, is
well-labeled and that Sy = S; U ({ *},0) is a well-labeled state. Therefore, the only
possibility is that there exists a label A, such that one of the following cases holds: (i)
A € A(Q1) and either A € A(a) U A(b) or H, () € n(a) Un(b); (ii) A € A(a) U A(b)
and Hr, (M) € n(Q1).

We consider before case (ii). Since the bound names of @1 can be a-converted, when
needed, the interesting case is when Hgz, (A) € fn(Q1). In this case we use P, — @1
and we derive, by Proposition A.7, fn(Q1) C fn(P1). Since He, (A) € fn(Q1) we have
therefore Hg,( ) € fn(Py), and also Hz, (M) € fn(P). Given that A € A(a) UA(b) this
contradicts either the well-labeling of P or the freshness of a for P.

In case (i) we have A € A(Q1). We observe that it is not possible that A € A(P).
This because X € A(a) U A(b) and A € A(P) contradict either the well-labeling of
P or the freshness of a for P. Similarly for Hg,(\) € n(a) Un(b) and A € A(P).
Therefore, we have A ¢ A(P;) and A € A(Q1) \ A(P1). We now use the fact that
A(Q1) \ A(P1) C new(S] — S%) and we deduce A € new(S] — Sé)

We observe that Sy +— Sy, where S = S{U({ "}, 0) ansd S; = S5U({ "}, 0). Therefore,
by Proposition A.16, there is no u € new(S’ > S4) such that elther w € A(({},0)) or
) = n(a)Un(b)

He, (1) € n(({ },0)). Since A(({ }.0)) = A(a) UA(B) and n(({ 1°},0)) =
we have: \ € new(S] — S}) and either A € A(a) U A(b) or Hg, () € n(a) Un(b). This
is a contradiction.

Since @ is well-labeled, then a reduction b[P;] — b[Q1] can be obtained by applying
rule (Amb) to the premise P, — (1. Moreover, we have that a is fresh for ) and

Q=(({.0)Ud"Qi=({"},0)US; =S
It remains to show that A(Q)\ A(P) C new(S; — Sz). This follows immediately using
A(Q1) \ A(Py) C neu(S] — S)), new(S] — S4) = new(S; — Sz) and A(Q1) \ A(Py) =
A@)\ A(P) (as A(b) & A(Q1) UA(P)).
2. If both P; and b participate to the action, the only possibility is that some ambient c,

which is top level inside b, goes out of b. It means that transition S; — S has been
obtained by rule Out. Therefore, there exist 7 € 7| and outny.R € C}, such that

93



b=n,, and
S =8"TUu{ 2Y,0)u(®, ‘outny.R)US U

for some processes T and U. Moreover, the state Sy reached from S; (by rule Out) is
So={¢ LU 2}L,B)UsPTUs UUS °R.

We now use § P, = S} and the shape of S} to infer the structure of P;. Examin-
ing the cases in the definition of §, we observe that: the components ({ 2},0) and
(B, “outny.R) tell us that rules DAmb and DPref (possibly after rules DRes and
DPar) have been used. Therefore, we have

Py > (vpp) (T' | ¢'[outny. R" | U'])

where ¢ = ¢/y and T = T'n, U = U'n and R = R'n for the substitution 5 : N' — N}
such that n(p) = Hz,(u)-

Notice that we have grouped together the (eventual) unguarded restrictions by means of
>>. This result is based on the underlying assumption that the bound names p can be a-
converted and on the following properties due to the well-labeling if P: (i) Hz, (u) #n
for any pu € fi; (ii) » ¢ p. Condition (i) follows from n € n(P) using Proposition
A.11. Condition (ii) follows from the fact that the restrictions are unguarded, since by
Proposition A.12 any unguarded restriction is removed. Consequently, n € p implies
n & n(6 *Py), which contradicts “outmny.R € C.

We now exploit the condition n ¢ p to derive, by applying rules (Amb) and (Res-Amb),
that P > P’ where

P' = (vpg) (ny[T" | '[out ny. R | U'])).

Let @ = (vpp) b[T'] | ¢[R' | U'] which is obviously well-labeled. Moreover, we have
0@ = S and by rules (Out) and (Res) P! — Q'. We therefore derive P — @ by
applying rule (Cong).

We conclude by observing that A(Q) C A(P). Thus, we have A(Q)\ A(P) = new(S; —
Sy) = 0.

e Assume P = P, | P,. Wehave § P, | P, =6 °P;, U § “P, = S;. Transition S; — Ss
could have been obtained in two ways: either only one of P; and P, participates to the
action or the two processes interact with each other. In the latter case, we observe that
ambient a cannot be involved as a is fresh for P. This guarantees that the topology is a
tree with root a (see Proposition A.13). Therefore, S; + Sy could have been obtained by
the application either of rule In or of rule Open. In both cases the interaction may involve

only processes and ambients which are top level inside a. Let 6 *P, = (T1,C;) = S7 and
(S aP2 - (TQ,C2) - Sé

1. Suppose that only P; contributes to the action. We have S; = S{US} and S, = S7'USS,
where S +— Sy'. Since P is well-labeled and a is fresh for P, then also P; is well-labeled
and a is fresh for P;, for any i € {1,2}. Hence, by induction hypothesis, we have
Py = P/ for a well-labeled process P/, such that a is fresh for P{, § *P = S and
A(P))\ A(Py) C neu(S; = S7).

54



There are two cases: either P, > P/ or P, — P|. We show only the latter case, the
other being analogous.
Similarly to the case of ambient we can apply rule (Par) to derive a transition P; |
P, — P| | P, only when Pj | P, is well-labeled. This case is however more complex
as it may be the case that P | P, is not well-labeled. We therefore consider a slightly
different process Q = P | Pj, where P, > P;. We observe that, by definition of >,
fn(Py) = fn(P;) and A(Pj) C A(P>). Therefore, Py is well-labeled and a is fresh for
Pj, as P, is well-labeled and a is fresh for P,. Moreover, by Lemma A.14, we have
Py,> Pjand § Py =0 “P, = S).
We now show that @ = P/ | Pj is a well-labeled process. Assume that this is not the
case. Since P{ and Pj are well-labeled the only possibility is that there exists a label
A such that one of the following cases hold: (i) A € A(P]) and either A € A(Pj) or
He, (X)) e n(Py); (i) A € A(Py) and Hg, () € n(Fy).
We discuss before case (ii). Since the bound names of P{ can be a-converted, when
needed, the interesting case is when Hg, (\) € fn(P]). We use P, — P| and we obtain,
by Proposition A.7, fn(P]) C fn(Py). Hence, we have H.,(\) € fn(Py). Given that
A(Py) C A(P,) we obtain A € A(P,) and Hg,(A) € fn(Py). This contradicts the
well-labeling of Py | Ps.
In case (i) we have A € A(P/). We observe that it cannot be the case that also
A € A(Py). This because the well-labeling of P, | P, contradicts A € A(P;) and
A € A(P2) (which follows from A € A(Pj)). Similarly for A € A(Py) and Hg, (X) € n(P)
(which follows from Hg, () € n(P3)).
Therefore, we have A ¢ A(P;) and A € A(P)), that is A € A(P{) \ A(P). We now use
the fact that A(P]) \ A(P1) C new(S] — S7) and we derive A € new(S] — S7).
We recall that Sy — S», where S; = S]US) and Sy = S}'US). Therefore, by Proposition
A.16, there is no pu € new(S] — S}') such that either u € A(S}) or Hg,(u) € n(S}).
Hence, it must be the case that (a) A & A(S}) and (b) He, (M) & n(S3).
We now use the fact that § Py = S,. By Proposition A.12, we have

= A(S5) \ Ala) = A(B) \{A [ nx € U(P3)};

= n(Sy) \ n(a) = fn(Py) U (bn(Py) \ {n [ nx € U(P3)}) U{Hc,(A) [ nx € U(F;) \

U (P3))}-

Using the results above, we now show that both possibilities A € A(Py) and H.,()\) €
n(Py) contradicts either (a) or (b).
Assume that Hz, (\) € n(Pj). As usual the interesting case is when Hgz, (A) € fn(Py).
Given the previous conditions we have fn(Py) C n(Sh). Therefore, Hz,(\) € fn(Ps)
implies Hz, () € n(S}) which contradicts (b).
Assume that A € A(P3). Given the previous conditions we have two possibilities: either
A € A(S)) or ny € U(P). The former case contradicts immediately (a). In the latter
case, we use P> > Py, which says that Pj has no unguarded and unnecessary restrictions
(Uy(Py) = 0). Consequently, when ny € U(P), then Hz,()\) € n(S}). This contradicts
condition (b).
We now show that there exists a reduction Py | P» — @, where Q = P| | P;. We observe
that A(Py) C A(P,), and thus P, | P; is well-labeled since P; | P» is well-labeled. Since
also P/ | Py is well-labeled, by applying rule (Par) to the premise P, — P{, we obtain
P, | Py — P] | P;. Since P> > Pj we have also Py | P» > P, | Pj. We therefore derive
P, | P, — P] | Py by applying rule (Cong).
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Moreover, it is immediate to check that
§ Pl | Py=S/US)=29.

It remains to show that A(Q) \ A(P) C new(S; — S3). We observe that, since P, | Py
and P] | Py are well-labeled, A(P) N A(P2) = @ and A(P]) N A(P;) = #. Moreover,
A(P}) C A(P2). Therefore, A(Q)\A(P) = (A(P))UA(P))\ (A(P)UA(Py)) = A(P])\
(A(P1)UA(P2)) C A(P))\A(P1). We conclude because A(P])\ A(P;) C neu(S] — SY)
and new(S] — Si') = new(S; — Ss).

2. Suppose that rule In has been applied. We have either ;* € Ty, Yinmy.R € C; and
m," € Ty or the converse. Suppose the former case holds. It means that Sj and S
have the following shape, respectively

Sy =0"WU(m,50)Uds™V
St =8UU(2,0)U (@, binmy. R) U ST

for some processes W.,V.,U, and T. Moreover, the state Sy reached from S; (by rule
In) is

So= (", 0)U(m, W) US"UUSRUSTUSW U™ V.

Since § *P; = S} and § *P, = S}, we argue that (reasoning on the definition of 4,
similarly to case Out)

Py > (vpp) (U' | V'[inmy. R'| T'))
Py > (v@s) (W' [ mu[V'])

where b = b'ny, T = T'nq, U= Un and R=R'ny and W = W'y and V = V'ny for
the substitutions n; : N' = N where ny(p) = Hg, (1) and n2(q) = He, (v).

We now notice that it cannot be the case that m € p or m € §. Suppose that m € p.
Since the restrictions (vp;) are unguarded and P; is well-labeled, then by Proposition
A.12, we obtain m & n(d °Py), which contradicts *inmy. R € C;. Similarly, using the
well-labeling of P, m € § contradicts m,* € To.

Therefore, we may assume without loss of generality that p N ¢ = @, and we have
Py | P, > P’ where

P' = (vp, o) (U' | V'[inma. R'[ T'] | mq [V'] | ).
Let
Q = (Wi, z) (U" | W' [ mu[V' | B[R"| T']).
It is obvious that @ is a well-labeled process and § Q) = Sy. Also, we have by rules
(In), (Par) and (Res) P’ — (. We therefore derive P — @ by applying rule (Cong).
We conclude by observing that A(Q) C A(P). Thus, we have A(Q)\ A(P) = new(S; —
S3) = 0.

3. The case when rule Open has been applied is similar to that of rule In above.
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Completeness. To show completeness we need some auxiliary properties. The following lemma
shows the relation between the states representing two well-labeled processes which are structural
congruent.

Lemma A.18 Let P and QQ be well-labeled processes and let a € A, such that a is fresh for P and
Q. If P> Q, then either § P =0 °Q or d °P +— § *Q).

Proof: By induction on the depth of P > ). It is easy to check that in any case of Table 10
the states obtained via § are equal apart from the case (Bang-Bang). In case (Bang-Bang) we
have P = IR and @ = IR | new(R). Hence, we have § *P = S, = (§, “!R) and § “°Q = Sy =
(@, “!R)U 6 “new(R). We observe that § *P + Sy by rule Bang.

O

Proposition A.19 Let Sy be a well-labeled state such that Sy — S|. If So is a well-labeled state
such that S; U Sy and S| U Sy is well-labeled, then we have also Sy U Ss — S{ U Ss.

Proof: The proof is by cases on the rule applied to derive Sy — S;. The cases of In, Out and
Open are trivial; the side conditions impose constraints which hold also for S; U Ss. In the case
Bang instead we have S; = (Ty,C1) and S| = (T1,C1) Ud “news, (Q) for some °Q € C;. We
obtain S; U Sy — S} U Sa, as news, (Q) = news,us, (@) is ensured by the well-labeling of S] U S,.

O

Lemma A.20 Let P be a well-labeled process such that P — Q. For any ¢ € A which is fresh for
P, we have § °P —* § °Q.

Proof: The proof is by induction on the depth of the derivation of P — (). The last rule used
could have been (In), (Out), (Open), one of the structural rules (Res),(Par),(Amb) or rule (Cong).

3 Y

e Assume that P — () has been obtained by applying rule (In). It means that P = a[inm). P’ |
Q'] | b[R'], where a = n, and b = m,, and @ = b[a[P' | Q'] | R'].
By definition of § we have

0 °P =96 ca[inmy. P' | Q'1U6 B[R] =
({ o 630U (D, “inmy. P)US “Q" UG "R
Therefore, by applying rule In we obtain a transition § °P — S where
S=({2 ¢£L,0MUsQ U R U P
We conclude by observing that, by definition of 4,

5CQ:({ bc},@)U(Sb(G[P/‘QI]|R/)=({ ab; bc},w)U(SaPlU(SGQ/U(SbRIZS.
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e Assume that P — () has been obtained by applying rule (Out). It means that P =
bla[out my. P' | Q'] | R'], where a = n, and b = m,, and Q = b[R'] | a[P' | Q'].
By definition of § we have

0P =({s}0)Ué "(aoutmy. P'| Q| R') =
({5 21, 0) U (D, *outmy. PYUS *Q"US "R
Moreover, by applying rule Out we obtain a transition § P +— S where
S={¢ £},0Us*P Us*Q UGS R.
We conclude by observing that, by definition of 4,
§°Q=20C°bRNUGSalP' | Q1=+, LHUSR' UGS P | Q" =8.
e Assume P — () has been obtained by applying rule (Open). It means that P = openny. P’ |

a[R'], where a = n,, and Q = P’ | R'.
By definition of § we have

d °P =4 “openny.P'Ud “a[R'] = (4 ,0) U (0, “openny.P')UJ"R'.

Moreover, by applying rule Open we obtain a transition § °P — S where

§=6°P'U(T[ £/ £].C[“R/ “R])

0*R' = (T,C)
We conclude by observing that, by definition of §

d°Q=5°P'Ud R

Since ¢ is fresh, we also have (T'[ 4/ 4],C] “R/ °R]) = § ‘R'. We therefore conclude
Q=S

e Assume P — (@ has been obtained by applying rule (Amb). It means that P = a[P;], where
a = ny, and = a[Ps], where P; — P». By definition of § we have

§°P =6 a[P] = (a,0) US “Py.

Since P is well-labeled, then P; is well-labeled and a is fresh for P;. Hence, by induction
hypothesis we have § P, —* S’ where § P, = S’. We now observe that Q) = a[P»] is well-
labeled. Hence, by Proposition A.13, we have that § °Q is well-labeled. Also, by definition
of § we have

§°Q=(a’,0)Ud Py = (a,0)US".

We conclude by applying Proposition A.19. Since (a®, )US’ is well-labeled and § 2P —* S,
then we have also
§°P—*(a®,0)US".
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e Assume P — @ has been obtained by applying rule (Par). It means that P = P, | P, and
Q@ = P| | Py, where P, — P|. By definition of § we have

(scpzécPlU(SCPQ.

Since P is well-labeled and ¢ is fresh for P, then also P; is well-labeled and ¢ is fresh for P;.
Hence, by induction hypothesis we have § Py —* S’, where 6 ‘P = S'.

We now observe that ) = P{ | P, is well-labeled. Hence, by Proposition A.13, we have that
6 °@ is well-labeled. Also, by definition of § we have

§°Q=8°PlUJ Py=S5Ud P,.

We conclude by applying Proposition A.19. Since S'U§ ¢P; is well-labeled and § P, —* S’,
then we have also
§P—*S'UGP.

e Assume P — @ has been obtained by applying rule (Res). It means that P = (vny) P; and
Q@ = (vny) P, where P, — P5. By definition of § we have

0 ‘P =20 °(Pi[m/n])

where m = H, (\).

We observe that since P is well-labeled, then m ¢ n(P;). Since Py — P, then by Proposition
A7, fn(Py) C fn(Py), and consequently also m ¢ n(P,). Considering the bound names can
be a-converted, if needed, we derive Pi[m/n] — P2[m/n] from P, — P.

Since P is well-labeled, then A ¢ A(P;[m/n]). Consequently, Pi[m/n] is a well-labeled pro-
cess. Therefore, by induction hypothesis we have 6 ¢(P;[m/n]) —* S’, where 6 ¢(P2[m/n]) =
S'. We conclude by observing that

§°Q=206°(Pm/n])=S"

e Assume P — (@ has been obtained by applying rule (Cong). It means that P, — @1 for
some processes P, @1, such that P > P; and (Q; > ) By induction hypothesis we have
4 °Py —»* S where S = 4 °Q;. By Lemma A.18, we have § °P —* S. Again by Lemma A.18,
we have either § Q1 =9 °Q or § Q1 — 0 °Q. In both cases § °P —* § °Q.

A.3 Equivalence
We show the proof of Theorem 4.5.

Soundness: if § *P +— S, then by Lemma A.17 there exists a well-labeled process @, such that
0°Q =S and P —s @. By Lemmas A.1 and A.2 we have £(P) —= £(Q).

Completeness: if £(P) — @, then by Lemma A.9 there exists a well-labeled process @', such
that £(Q') = Q and P — @Q'. By Lemma A.20 we have § *P —* § *Q".
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B Safeness of the abstractions

The following proposition recalls some well-known results of domain theory which are useful in the
proofs.

Proposition B.1

1. Given any set S, (p(S), C) is a complete lattice.
2. Given two complete lattices (S1,C1), (Sa, Ca), the product {(S; X S2), Cew), where Ceyp 18

the component-wise induced ordering, is a complete lattice.

B.1 First Abstraction

We first show that the pair of functions (a®,~7°) forms a Galois connection between (S?, C) and
(8%, C°) (Theorem 5.6).

Proposition B.2 The concrete domain (S%,C) and the abstract domain (S°,C°) are complete
lattices.

Proof: The concrete domain St = ©(S/~) is a complete lattice by case 1. of Proposition B.1.
The abstract domain (S§°, C°) is a complete lattice by case 2. of Proposition B.1. Notice that, by
definition of C° (Definition 5.3), given two well-labeled states S and S35, Sy U S5 is a well-labeled
state as well.

O

The following proposition states the basic properties of the concretization and abstraction func-
tions.

Proposition B.3 Function o° : (S?,C) — (S°,C°) is monotonic and continuous and function
70 1 (8°,C°) — (S%, C) is monotonic.

Proof: Straightforward by Definition 5.5. a
The properties stated above are enough to prove Theorem 5.6.

Proof: [of Theorem 5.6] We show that («°,7°) is a Galois connection (see Definition 2.1). By
Proposition B.2 the concrete and abstract domains are complete lattices. Also, by Proposition B.3
both a® and 4° are monotonic. Hence, it remains two show that, for S° € S° and S* € S, we
have

S Cv°(a®(S9))
aO(,}/O(SO))QOSO

Both assertions follow rather obviously from Definition 5.5. We have S% C 4°(a®(S%)) since by
definition of 4°¢ and a°,

7(0%(59) = 1] | a*dishe U g0 (8D}
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Moreover, by definition of a® and 4°, and by continuity of «® (Proposition B.3) we have

a*(7°(5°) = a*((LHIST | a*WIsIE®sh = J e (IS] | a® (SIS ).

By definition of least upper bound on a complete lattice we conclude therefore

U a({IS] | a*({[S]) s pcese.

O

We now show some basic properties of the concrete and abstract semantic functions which are
needed to establish the safeness of the abstraction (Lemma 5.8).

Lemma B.4 Let S¢,S5 € S° be well-labeled abstract states such that SYC°SS. if S{+°S'], then
there exists a transition S5+°S'S, such that S'7C°S's.

Proof: There are two cases depending on whether S7 C S5 or not. In the former case the proof
is straightforward. In the latter case, it means that there exists an abstract state S"7, such that
S"7 = S¢p for a renaming p : L5 — L°, where either p(¢1) = {1 or p(f1) = £, and S"] C S5. Tt
is easy to check (by cases on the rules of Table 7) that we have S"{~°S""{ such that S’{C°S"'.
Since S"7 C S5 and S"{—°S""7, then we have also S$++°S’5 such that S"'7C°S’;. We conclude
because S'{C°S"7C°S’5.

O

Lemma B.5 Let S € S and S° € S°. The functions Us : (5%, C) — (S, C) and ¥, : (S°,C°) —
(8°,C°) are monotonic.

Proof: The proof follows immediately by Lemma B.4 using Definitions 4.9 and 5.7.
O

We state some relevant properties of the auxiliary abstraction function a® : § — S§° which
maps a state into an abstract state (see Definition 5.5, case 1.). The following lemma says that
a?® is continuous for union of states with a special shape (Recall that the abstraction over sets of
states a® : S* — S° is continuous as shown by Proposition B.3). To state formally this result we
need to introduce an auxiliary concept. Let Si,S2 be two well-labeled states. We say that Ss is a
sub-tree of Sy with root a € A iff a is the root of Sy, and only ambient a occurs both in S; and Ss.

We introduce a convention which is useful in the following proofs. We recall that any object
may have several abstractions depending on the global number of occurrences of its labels in the
state. In the abstraction a® (see Definition 5.5) this is formalised by: the renaming p¢%, which
depend on the state S and introduce the multiplicity counting the indexes; the substitution n°
which simply removes indexes. When the renaming pg is clear from the context we may use: a°
to denote the abstract version of a; P° to denote that abstract version of P.

Lemma B.6 Let S1, 5> be two well-labeled states, such that Sy U Sy also is well-labeled. If So is
a sub-tree of S1 with root a, then we have

a®(S1 U Sy) = a®(81)U°a® (o) {la*" /a° )

where b is the father of a in S; '°.

16Meaning that a® € T for Sy = (T1,Ch).
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Proof: Let a®(S; USy) = (T°,C°), S; = (T3,C;) and a®(S;) = (T;°,C;°) for i € {1,2}. We
recall that, by definition of a° (Definition 5.5), we have (T°,C°) = (T"°,C"")p%, g, n° Where

T ={)| & fehuD}

C°={ “P| leTiUT, "PeCiUCs).
Analogously, for i € {1, 2}, we have (T?,C?) = (Ti,o’ Cl{o)p%ino where

Ti/o — { ab“ ‘ ab7 bc c Ti}

Cl°={ “P| LeT;, *PeC}.

We first show that 7'° C T7°UT4°{[a®/a®]}. Let us consider a generic element ¢?* € T'°. Tt means
that &, £ € Ty UTs. There are several possibilities:

1. Both 4e T, and £ € Ty. It is immediate to check that we have also ¢ € Tl’o.

2. Both & € Ty and f € Ty. Similarly as in the previous case we have ¢! € T4°. We now
observe that ¢ and d cannot be a, because a is the root of S;. We therefore conclude that
o € Ty {la’ /a®].

3. One element belongs to T} and the other one to T5. Since S; is a sub-tree of S; with root a
the only possibility is that & € Ty, £ € Ty and d = a. Moreover, since b is the father of a in
Sy, it means that e = b. It is immediate to check that ¢?" € T,°, so that ' € T5°{la®/a®]}.

We now show the converse 7'° D T{° U T4°{[a’/a®]}. Let us consider a generic element c?* €
T!° UTs°{a®/a®]. There are two possibilities:

1. If ¢* € T/°, then both ¢?, d® € Ty. It follows that both ¢¢, d° € T; UT5, and thus ¢¢* € T'°.

2. If ¢ € T3°{[a®/a®]}, then either ¢** € T4® or d = a, e = b and " e Ts°. The former case
is analogous to 1. above. In the latter case we observe that ¢* € Ty. Since a® € Ty, we have
c®,a® € Ty U Ty, and thus e T".

A similar argument applies also to the configuration. Hence, we have
(T"°,C"°) = (11", C1°) U (1", O3 ) {la’ /a®].
Therefore, we have also
(T, C")p%,us.m” = (117, C1 V0%, usatt® U (137, C3°){la” [a® T, Us,1°
Using a® = apg, 5,n° and b° = bp%, ,5,m°, We obtain
(T, C")p%,u5,m° = (11, C1)p%,06m° U (157, C37)p%,us,m [0 /0]

Now we observe that the equality is preserved, when the renamings p%, are used for i € {1,2} in
place of p$, g, and U is replaced by U®. This because U® modifies the multiplicity counting the
number of the occurrences of the union. Therefore, we conclude

(T"°,C")p2, 0, = (T1°, CL ) p% m® U8 (T5°, Cy%)pn® @ Ja* ).
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The following proposition shows the safeness of the abstract normalisation function §°. Notice
that a is the root of § P so that the abstraction a® assigns @ as father of a®. It is therefore
necessary to replace @ with b°.

Proposition B.7 Let P be a well-labeled process and a € A such that a is fresh for P. We have
a®(é aP){[aob"/ao@]}go(SO 2o’ pe.

Proof: The proof proceeds by induction on the structure of P using the definition of 6° (Table
6). We show the most interesting cases.

e Assume that P = ¢[P;]. We have
§ P = ({c*},0) U “P.

By Proposition A.13, § P is well-labeled state. Moreover, we observe that ¢ ¢ P, is a sub-tree
of ({¢*},0) with root ¢. Thus, by Lemma B.6 we have

0*(8 “P) = a®(({c"}, 0)U*a® (8 “P){c*" /e
By induction hypothesis we have
a® (6 CPI){[COM/CO@]}Q(;O c°a°P1<>_
Moreover, by definition of a® we have a®(({c?},0)) = ({c>*"" },0).

Therefore, we have
oQ@ 0a®
a®(d *P)C°({c*" },0)ucs® Py

We now observe that the replacement {a°® /a°®]} cannot affect 6° ¢°* P because the
abstract topology of a single state is a tree. Therefore, we have

a®(@ Pl > FC (e 1 0) {0 fao s <y,
We conclude because by definition of §° we have

o0 P = (e g0 =y
e Assume that P = (vnyP;). We have
d*P =46 °P1[h;/n])

where n; = Hg, (A) and A = 4;.
Since P is well-labeled, then A € A(Py). Therefore, Py [n;/n] is well-labeled, and by induction
hypothesis we have

(8 (P i /m){[a*” Ja® P8 = a®(Py [ /n]).

Let P° = a°(P) = (vnyo) PY. By definition of a® we have a®(P;[n;/n]) = P{[n/n]. Now
we use Hzo(A°) = 7 and we obtain by definition of §°

5o " p°=46° =" P°[/n].
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O

The following lemma is the core of the proof of safeness; it states the agreement between
concrete and abstract transitions.

Lemma B.8 Let S,S' € S be well-labeled states. For any S — S’ there exists an abstract state
S'®, such that a®(S)—°S'® and a°(S')C°S'°.

Proof: The proof is by cases on the rule applied to obtain the transition S — S’. One of the
rules Bang, In, Out and Open of Table 5 could have been applied. Assume that S = (T,C), by
definition of a® (Definition 5.5), we have a®(S) = (T°,C°) = (T'°,C"®)p&n°® where

T ={ b

ab: bc E T}

C/o:{ abP| abET, GPEC}.

As usual we use a® to denote the abstract version of a, that is apgn®. Similarly, for the other
ambients and processes.

Bang It means that *!P € C and that

S'=S U6 *news(P).

By definition of a® we have a®"1pe ¢ C°, where b is the father of a in S, i.e. either € T,

or a is the root of T and b = @. Hence, by applying rule Bang®, we obtain a transition
a®(S)—°S"® where

§'° = a°(S) u° 6° “Oboneww(P").
It remains to show that a®(S")C°S’®, that is
a®(SUd newg(P))C°a’(S) U® §° a®?” new, (P°).
We observe that 6 “newg(P) is a sub-tree of S with root a. Hence, by Lemma B.6, we have
a®(SU S “news(P)) = a®(S)U°a®(8 “news(P)){a°" /a*®].
By Proposition B.7 we have also
a® (8 “news(P)){a®” jaCIces® " o (news(P)).

We now observe that the function new, gives multiplicity w to any label of P°. It means
that

5o o a®(news(P))C®6° at’ new,, (P°).

We therefore conclude

a® (8 “news(P)){a®” /a° e8¢ " new, (P°).
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In It means that . mub €T and t = “inm,. P € C, where a # m, and a # Q. Moreover,
S'=6"P U (T\{J/HU{}LC\{t}.

By definition of a® we have inma,.. P® € C°, since b is the father of a ( J € T).

Moreover, it is immediate to check that there exists ¢® such that 4o , muoboc € T°.
Notice that, since a # @, either ¢ is the father of b in T, or b = @ and ¢® = T, or b is the
root of T" and ¢® = Q.

We now observe that the side condition of rule In® is satisfied (if a® = my, then u® # (;).
Since a # my,, there are two cases: either a = k) or a = my with A # p. In the former case
the side condition is immediately satisfied. In the latter case it depends on whether A and p
differ in the indexes only. In particular, when A = ¢; and pu = ¢}, for indexes j, h, such that
j # h, the side condition is satisfied, because A° = u® = £, by definition of the abstraction.

By applying rule In®, we obtain a transition a®(S)~°S'® where
S'° =60 "M po U 8§
85 = a®(8) U® (ToUe{ o™}, Co\* {1 {0 fa*""}
It remains to show that a®(S’)C°S'’, that is
a®(@ P U (T\{HU{™}C\{t})cs"”.

We observe that § P is a sub-tree of S’ with root a and that the father of a in S’ is m,.
Hence, by Lemma B.6, we have

a®(8") = a®(8 *P){la®™" Ja T U® S§
Sy =a*(T\{ dHU{ ™} C\{t)).

By Proposition B.7 we have also

<
omy,

ao(é* ap) {[aomuo/ao@]}go(so a PO.

Hence, to conclude it is enough to show that S;°C°S5°, that is
< m o O < O 1O m obo <o < om0 < M
A (T\{ L UL ™1\ {E)C0(8) U (TOU o™ 3, OO\t ) {a™™* [a*" ]

In the following we assume that S;° = (T;°, C;°) for i € {1,2} (we recall also that a®(S) =
(T°,C°) = (T"°,C")pgn°).

e We show T7 C°Ty. Let 4”7 € T\°, by definition of a® we have f, J € (T\{L}Hu
" }. There are several cases to consider depending on how the ambient a, whose
father has changed, is involved.

Assume that none of d° and e® is equal to a®. It is easy to check that 4, J € T.
Hence, we have doeof € T° and, consequently, also doeof € T°.
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Assume that d° = a®. Since ., /™ € (T'\{/})U{ ™} then e* = myo and
f¢ = b°. We conclude because aomzb € Ty°.

Assume that e® = a®. It means that f° = m,. as /™ € (T\{d})U{ " }. Therefore,
Cere{a*™ Ja)

ob® om
we have &, 2 €T and 4* € T°. Moreover , we have g% *
om o
and, consequently, g% * € Ty°.

e We show C?C°C5° by considering a generic element 4o’ Q@ € C7. The proof is similar
to the one shown for the topology; the only interesting case is when the process @ is
local to a, that is d° = a® and e® = m,,°. By definition of a® it means that @ € C\{t}
and a™ € (T\{ L})U{ ™}, and consequently ?Q € C and a® € T. By definition

of a® we obtain Q° € C°. Now, we use the definition of \°; there are two cases
depending on whether the label « is either ¢} or £,.

When v = ¢/, we have C°\°{t°} = C°. Since a” Q° € C° then we conclude aoms’ Q° €
O\ {te}{ao™ " fa*""}.

When v = ¢} we have C°\°{t°} = C°\ {t°}. We observe that it cannot be the case
that Q° = t°, as v = ¢, shows that there is only object with label . Therefore, we

have " Q° € C°\°{t°}. We then conclude as before.

Out Similar to the case of rule In® above.

Open It means that ,,," € T and t = “openm,. P € C, where a # m,,. Moreover,
S§'=6P U (T\{m D, (C\ {th{a/mu}}

aob

By definition of a® we have openmy.. P € C°, where b is the father of @ in T', i.e. either

2 €T or ais the root of T and b = @. Moreover, since m," € T we have also muo“M erTe.

We observe that the side condition of rule Open® is satisfied since a # m,, (by applying a
reasoning similar to that for In). Hence, by applying rule Open®, we obtain a transition
a®(S)~°S"® where
§° =6 =" PP U a%(8) U7 a*($)fla”" fm e fem )
It remains to show that a®(S’)C°S'’, that is
a®(@ P U (T\{m, D). (C\ {th){la/m,])C°S".
We observe that § *P is a sub-tree of S with root a. Hence, by Lemma B.6, we have
° @
a®(8') = a®(6 *P){a*" /a* % U a® (T \ { m,"}) (C\ {t)){la/m,]).
By Proposition B.7 we have also
ors a ob/ 0@ o0 a®* po

a®(6 °P) {la fa*"}cs° =" P,

Therefore, to conclude it is enough to show that

(TN m," D) (C\{ED{a/m B0 (S) U° a*(S){a®” fmy, > e ™.
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This can be shown following the reasoning used for the similar inclusion in rule In above. It
is worth giving some details only about the substitutions. The substitution {[a°bo /muwo]}
guarantees that the opening ambient a acquires any ambient and process local to m,. Sim-
ilarly, the substitution {{c** /¢™+°]} guarantees that the removal of m,, is propagated also to
the processes and ambients local to an ambient, which is a son of m,,.

We can now prove the main result, that is Lemma 5.8. We recall its assertion for clarity:
Let Sy € S and S* € St. We have

a®(Ps, (59))C° oo (s, (@°(S59)).

Proof: [of Lemma 5.8] We first notice that, by definition of ~, when S; ~ Sy we have a®(S;) =
a®(S2). Moreover, for any S; — S| we have Sy — S} such that S} ~ S). This observation permits
us to simplify the proof by using, with an abuse of notation, S € S% in place of [S] € S°. By
definition of ¥, (Definition 4.9) we therefore have

Us, (S%) = {[S2]} U U {1s1}.
S€{S3|S1+S3, S1€51}
Thus, by continuity of a® (Proposition B.3) and using a®({[S2]}) = a®(S2) and a°({[S]}) = a°(S),

we obtain

o i _ 0o o ©
(W (5%) = a*(S)U U rg 6. 5159

°(5)-

By Lemma B.8 we have that, for each S; € S and for each S; ~ S3, there exists a®(S;)—°SS
such that a®(S3)C°SS. Since {S;} C S%, then by monotonicity of a® (Proposition B.3) we
have a°({S1}) = a°(S;)C°a°(S%). Hence, by Lemma B.4, we have also a®(S%)~°S$ such that
a®(S3)C°S5C°Ss.

We conclude, because by Definition of ¥y, g ) (Definition 5.7), we have

o oy — 4° ol I° ¢
\Ila°(52)(a (S )) -a (SQ)U US°€{S§\&°(Sh)>—>°S§}S .

B.2 Second abstraction

We first show that the pair of functions (a°,~°) forms a Galois connection between (S°, C°) and
(S8°,C) (Theorem 6.4).

Proposition B.9 The abstract domain (S°,C) is a complete lattice.
Proof: Straightforward by Proposition B.1. O

The following proposition states the basic properties of the concretization and abstraction func-
tions.
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Proposition B.10 Function a°® : (§°,C°) — (S°,C) is monotonic and continuous and function
7° : (S8°,C) — (§°,C°) is monotonic.

Proof: Trivial by Definition 6.3. |
The properties stated above are enough to prove Theorem 6.4.

Proof: [of Theorem 6.4] We show that (a°,7°) is a Galois connection (see Definition 2.1). By
Propositions B.2 and B.9 both abstract domains are complete lattices. Also, by Proposition B.10
both a°® and ~«° are monotonic. Hence, it remains two show that, for S° € §° and S° € S§°, we
have

5°C°y°(a®(S°))

a®(y°(8°%)) € 5°

Both assertions follow straightforwardly from Definition 6.3. We have S°C°®~°(a°®(S°)) since, by
definition of 4° and a°,

7°(@°(5) = [J {8 1a°(5") € (%)}
Moreover, by definition of 4° and a°® and by continuity of a® (Proposition B.10) , we have
0°(7°(5°)) = a®((J {5 | a°(5°) € 5°)) = Ja*({S° | a°(5°) C 5°)).
By definition of least upper bound on a complete lattice we conclude therefore
Ue({s° | a°(s°) C5°p) C 5°
0

We now show the safeness of the second abstraction (Lemma 6.6). The proof uses some
auxiliary lemmata similar to those shown for the first abstraction.

Lemma B.11 Let S{, S5 € 8° be well-labeled abstract states such that S¢ C SS. if S¢—°S'S, then
there exists a transition S$+—°S'5, such that S'C°S'5.

Proof: The proof is straightforward by cases on the rules of Table 8.

Lemma B.12 Let S° € §°. The function ¥%, : (S°,C) — (S°, C) is monotonic.

Proof: This follows from Lemma B.11 using Definition 6.5.
O

To simplify the notation we use the following convention: a® denotes the abstract version of

a, that is ap® where p° is the renaming which forgets multiplicities (i.e. p°(f1) = p°(Ly,) = £.)
Similarly for processes P° is the abstract version of P.
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Proposition B.13 Let P be a well-labeled abstract process. We have
a’(8° < P)=6° *"p°.

Proof: The proof is easy proceeding by induction on the structure of P and using the definition
of a° (Definition 6.3). We recall that

(18,0 =({ | X eT ) {*P| <PeC))

Since function a° removes the partial topology, the information that b is father of a is lost.
O

Lemma B.14 Let S°,S'° € S° be well-labeled abstract states. For any S°—°S' there exists an
abstract state S'°, such that a°(S°)—°S'° and a°(S'°) C S'°.

Proof: The proof is by cases on the rule applied to obtain the transition S°+—°S’°. One of the
rules Bang®, In°, Out® and Open® of Table 7 could have been applied. Let S° = (T°,C°) and
a®(S°) = (T°,C°). We recall that, by definition of a°® (Definition 6.3), we have

a(5°) = ({ | S €T} {"P| “PeC )
Bang® It means that = !P € C° and that
§'° = 8°U° §° “bneww(P).

By definition of a® we derive that 2"!P° € C°. Hence, by applying rule Bang® of Table 8,
we obtain a transition a°®(S°)—°S’'® where

§'° =a°(S°)Ué® v Pe.
It remains to show that a®(S’®) C S'°. By continuity of a® (Proposition B.10) we have
a®(S'°) = a®(S°) U a®(6° “ new,(P)).
We notice that, since the abstraction a° forgets any multiplicity, we have
a®(6° “bneww(P)) =a°(6° “bP).
We conclude, because by Proposition B.13 we have
a®(6° * P) =4° * P°,
In® It means that ', ,, " € T° and @ inmy. P € C°, and that
§"°=8°U°d° P U (T U { amz},CQ\o{c}){[am“/ab]}.

By definition of a° we have that o0, muobo € T° and “"inmy..P° € C°. Hence, by
applying rule In°® of Table 8, we obtain a transition a°(S°®)~°S’® where

Slo:ao(so) U &° a°Po U ({ aomuc}=w).
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It remains to show that a®(S’®) C S'°. By continuity of a° (Proposition B.10) we have

a°(8'°) = a%(S°) U° a°(8° " P) U° a*((T° U { "}, C\*{e}){la™ [a']).
By Proposition B.13 we have that

a®(§° " P) C §° @ pe.
We observe that
a®((T° U { ™}, 0\ {e){a™ /a}) = a°((T° U { /"},C°\*{c})

In fact, the operation of replacement only affects the partial topology which is removed by
the abstraction a®. Furthermore, we have also using the continuity of a°® and the definition
of \°

a®((T° U {7},C°\*{e}) C a®((T° U { ™},C%) = a®($°) U a*((".0)).
Since a°(( amz,(/])) = ({ ao™»° },0) we conclude that

a®((T° U { "}, C\{eh{la™ /a'}) € a®(S%) U ({ o™ },0).

Out® The proof is similar to that of rule In® above.

Open® It means that mu“b € T° and abopenm,\o.P € C° and that
§'°=8°U° 6 <P U° S°{[ab/mua]}{[c“/cm“]}.

By definition of a® we have mucaf’ € T° and “ openmy.. P° € C°. Hence, by applying rule
Open® of Table 8, we obtain a transition a(S°)—°S’® where

§'° =a°(8°) U 8° “P° U a°(5°){a®/me]}.
It remains to show that a®(S’®) C S'°. By continuity of a® (Proposition B.10) we have
a®(5) = a°(5°) U a®(6° ' P) U a®(S°{la fm, e /e ]).
By Proposition B.13 we have that
a®(6° * P) C° ° P°,
We observe also that, since the abstraction a® forgets the partial topology, we have
a®(S{la® /my e fe™ ) = @ (S°{a’ /m,, )

a®(S*{la’ /mu ) = a°(S°){a®/me ]}

Hence, we conclude that

a®(8°{a" fmy e /e T}) C a”(S°){la® /me ]}
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We can now show the proof of Lemma 6.6. We recall its assertion:
Let S7,S55 € §°. We have

a® (W (S7)) € Wao(sg)(a®(ST))

Proof: [of Lemma 6.6] The proof is analogous to that of Lemma 5.8 using Lemma B.14 and
Lemma B.11. i
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P>P
P>Q Q>R=P>R
PlQ>Q|P

(P1Q)|R>P|(Q]|R)
PIQIR)>(P|Q) R

P> Q= (vny)P > (vn))Q
P>Q=P|R>Q|R

P> Q= ny\[P] > ny\[Q]

n#m= (vny) (vmy) P> (vmy) (vny) P

P1Q)> P (vny)Q

A
nEIP) = b ny) Q> (vny) (P Q)

P

(vn
|

(vny) my[P] > my[(vny) P]
my[(vny) P] > (vny) m,[P]

n#*m=
P|Oo>P P>P|0
(vnx)0>0 0> (vny)0

'P > new(P) | |P

(Refl)
(Trans)

(Comm)

(Ass)

(Res)
(Par)
(Amb)

(Res-Com)

(Res-Par)

(Res-Amb)

(Nil-Par)
(Nil-Res)

(Bang-Bang)

Table 10: The relation >
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