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tWe introdu
e an abstra
t interpretation framework for Mobile Ambients, basedon a new semanti
s 
alled normal semanti
s. Then, we derive within this settingtwo analyses 
omputing a safe approximation of the run-time topologi
al stru
ture ofpro
esses. Su
h a stati
 information 
an be su

essfully used to establish interestingse
urity properties.1 Introdu
tionMobile Ambients (MA) [10℄ has re
ently emerged as a 
ore programming language for theWeb, and at the same time as a model for reasoning about properties of mobile pro
esses.MA is based on the notion of ambient. An ambient is a bounded pla
e, where multi-threaded 
omputation takes pla
e; roughly speaking, it generalises both the idea of agentand the idea of lo
ation. Ea
h ambient has a name, a 
olle
tion of lo
al pro
esses anda 
olle
tion of subambients. Ambients are organised in a tree, whi
h 
an be dynami
allymodi�ed, a

ording to three basi
 
apabilities: inn allows an ambient to enter into anambient n (m[inn.P1 j P2℄ j n[Q℄ ! n[m[P1 j P2℄ j Q℄); outn allows an ambient to exitfrom an ambient n (n[m[outn.P1 j P2℄ j Q℄! m[P1 j P2℄ j n[Q℄); openn allows to destroythe boundary of an ambient n (openn.P j n[Q℄! P j Q).Several stati
 te
hniques, formalised as Type Systems [20, 8, 7, 9, 17, 6, 2, 3, 11, 19℄or Control Flow Analyses (CFA) in Flow Logi
 style [24, 25, 26, 16, 5℄, have been devised�The work has been partially done when the authors were at the Department of Computer S
ien
e ofthe University of Pisa. They have been partially supported by the MURST proje
t Abstra
t Interpretation,Type Systems and Control Flow Analysis. 1



to study and establish various se
urity properties of MA, su
h as se
re
y and information
ow. These approa
hes are stri
tly related and 
ompute safe approximations of similarinformation on the run-time topologi
al stru
ture of pro
esses. Although these methodsare proved sound with respe
t to a formal semanti
s, they are typi
ally formulated indi�erent styles. As a 
onsequen
e, it is rather diÆ
ult to formally 
ompare them, and the
orresponding algorithms for 
onstru
ting the least analysis or for type-inferen
e.In this paper we apply to MA the semanti
-based approa
h to program analysis of ab-stra
t interpretation [14, 13℄. Abstra
t interpretation provides a rigorous theory to deriveprogram analyses from the spe
i�
ation of the semanti
s. The typi
al abstra
t interpreta-tion approa
h 
onsists of: repla
ing the 
on
rete domain of 
omputation with an abstra
tdomain modeling the property we are interested in; establishing a relation between the
on
rete and the abstra
t domain whi
h formalises (through Galois 
onne
tions) safenessand pre
ision of approximations; deriving an approximate semanti
s over the abstra
t do-main. The approximate semanti
s 
an be obtained in a systemati
 way whi
h guaranteesits safeness by 
onstru
tion. We refer the reader to Se
tion 2 for more details on the basi

on
epts of the abstra
t interpretation theory.One of the most important and 
riti
al steps for applying abstra
t interpretation 
on-sists of the 
hoi
e of the 
on
rete semanti
s one should start from. The standard redu
tionsemanti
s of MA [10℄ is not adequate to abstra
tion, be
ause it heavily relies on the syntaxby using stru
tural rules and stru
tural 
ongruen
e to bring the parti
ipants of a potentialrea
tion into 
ontiguous positions. We therefore introdu
e a new semanti
s for MA, 
allednormal semanti
s, whi
h is indeed equivalent to the standard redu
tion semanti
s. Thenormal semanti
s is based on the simple observation that an MA pro
ess is essentially atree, where ea
h node is an ambient 
ontaining a set of lo
al pro
esses 
ontrolling its move-ments. Then we derive, by step-wise abstra
tion of the normal semanti
s, two analyseswhi
h are proved to be safe.The �rst analysis is designed to 
ompute an approximation of the following propertyof all the 
omputations of a pro
ess P : for any ambient n, whi
h ambients and 
apabilitiesmay be 
ontained (at top level) inside n, when n is within an ambient h. This is obtainedby an abstra
tion whi
h 
ombines information about the number of o

urren
es of obje
tsand about the 
ontext. The integration of these two aspe
ts permits to a
hieve verya

urate results. To substantiate this 
laim, we 
onsider a typi
al example: an ambient nwhi
h moves inside an immobile ambient k, and then is opened unleashing an immobilepro
ess inside k. This kind of situation is 
riti
al in MA, if we want to prove stati
allythe immobility of k, as it is ne
essary to dete
t that any 
apability of movement insiden has been 
onsumed before opening. Example 5.11 shows that our analysis a
hieves thisresult, in parti
ular be
ause it is able to argue on the temporal ordering of exe
ution of
apabilities. We are not aware of similar results in the setting of MA without adoptingmore 
omplex te
hniques [26, 1℄. It is well-know instead that this problem 
an be solvedwith simpler te
hniques for variants of MA, su
h as Safe Ambients (SA) [20, 21℄. The stati
te
hniques for SA [21, 20, 16, 2, 17, 19℄ are typi
ally more pre
ise due to the presen
e of
oa
tions, whi
h 
ontrol when an intera
tion may happen. For instan
e, the 
oa
tion open2



simpli�es the task of distinguishing what happens inside an ambient before and after itis opened. Similar results has been obtained also for MA extended with primitives forobje
tive mobility [7℄.The se
ond analysis is designed to 
ompute an approximation of the following weakerproperty of all the 
omputations of a pro
ess P : for any ambient n, whi
h ambients and
apabilities may be 
ontained (at top level) inside n. This is obtained from the �rstanalysis by dropping o� both the 
ontextual information and the information about thenumber of o

urren
es of obje
ts. The analysis we obtain is a re�ned version of the CFAof [24℄. The main di�eren
e with respe
t to [24℄ is that our analysis 
onsiders the e�e
tof the 
ontinuation of a 
apability only if the 
apability may be exer
ised. Example 6.11shows in details the di�eren
e with the CFA of [24℄.The properties 
omputed by both the analyses permit to 
ontrol where an ambientmay move and also where it may be opened. This is the basi
 information whi
h is neededto stati
ally establish most of the se
urity properties studied in the literature for MA[5, 6, 9, 16, 17, 24℄. To illustrate the relevan
e of the analysis for se
urity we show theappli
ation to some well-known examples taken from [16, 5℄. We fo
us on the �rst analysiswhi
h is more pre
ise and interesting; the se
ond analysis 
an be used, as the CFA of [24℄,to solve simpler problems, su
h as the �rewall proto
ol of [10℄ and the Trojan Horse of [6℄.The normal semanti
s is presented in Se
tion 4, and the two derived abstra
tions inSe
tions 5 and 6, respe
tively. Se
tion 7 shows some examples of se
urity properties. Theproof of the main theorems are shown in the Appendixes A and B.Remark This paper is an extended and revised version of [22℄.2 Some ba
kground on abstra
t interpretationWe brie
y re
all the basi
 
on
epts of the Galois 
onne
tion based approa
h of abstra
tinterpretation [14, 13℄. Suppose we want to approximate a semanti
s S, whi
h is 
omputedas the least �xed-point of a monotoni
 fun
tion F over some 
on
rete domain hC;�i. Thekey step 
onsists of the 
hoi
e of an abstra
t domain hA;��i modeling the property wewant to stati
ally establish. The notion of Galois 
onne
tion formalises the relation ofabstra
tion between the 
on
rete and the abstra
t domain whi
h is the basis to de�nesafeness and pre
ision of approximations.De�nition 2.1 (Galois 
onne
tion) Let hC;�i and hA;��i be 
omplete latti
es. Apair of monotoni
 fun
tions (�; 
), su
h that � : C ! A is the abstra
tion fun
tion and
 : A ! C is the 
on
retization fun
tion, is a Galois 
onne
tion between hC;�i andhA;��i i�, for ea
h 
 2 C and a 2 A1. 
 � 
(�(
));2. �(
(a)) �� a.When �(
(a)) = a, then (�; 
) is 
alled a Galois insertion.3



The ordering �� is intended to model pre
ision so that a �� a0 means that a0 is asafe approximation of a. Therefore, the abstra
tion of the least �xed-point �(S) gives theexa
t abstra
t property 
orresponding to S, and an approximate semanti
s S� over theabstra
t domain is a safe approximation of S whenever �(S) �� S�. One of the mainresults of abstra
t interpretation is that a safe approximate semanti
s S� 
an be 
omputedas the least �xed-point of an abstra
t fun
tion F� satisfying a 
ondition of lo
al safeness,namely that �(F (
)) �� F�(�(
)).Theorem 2.2 (Safeness) Let (�; 
) be a Galois 
onne
tion between hC;�i and hA;��i.Moreover, let F : C ! C and F� : A ! A be monotoni
 fun
tions. If �(F (
)) ��F�(�(
)), for ea
h 
 2 C, then �(lfp F ) �� lfp F�.3 Mobile AmbientsWe introdu
e the pureMobile Ambients 
al
ulus ([10℄) without 
ommuni
ation primitives.Let N be a set of names (ranged over by n;m; h; k; : : :).De�nition 3.1 (Pro
esses) The pro
esses are de�ned over names N a

ording to thefollowing syntax:M,N::= (
apabilities) P,Q::= (pro
esses)inn enter n 0 ina
tivityoutn exit n (�n) P restri
tionopenn open n P j Q parallel 
omposition!P repli
ationn[P ℄ ambientM .P pre�xStandard synta
ti
al 
onventions are used: trailing zeros are omitted, and parallel 
om-position has the least synta
ti
 pre
eden
e. We refer to the usual notions of names, freenames, and bound names of a pro
ess P , denoted by n(P ), fn(P ), bn(P ), respe
tively.We identify pro
esses whi
h are �-
onvertible, that is, 
an be made synta
ti
ally equal bya 
hange of bound names. We adopt also the standard notation for substitutions: P [m=n℄denotes the pro
ess obtained by repla
ing in P any free o

urren
e of n with m (assum-ing the bound names of P are �-
onverted to avoid the 
on
i
ts with m). Similarly, P�denotes the pro
ess obtained by applying the substitution � : N ! N .The 
ore of the semanti
s of MA 
onsists of the redu
tions in Table 1 
orrespondingto the exe
ution of 
apabilities. The semanti
s has also standard stru
tural rules (Table2) whi
h use stru
tural 
ongruen
e to bring the parti
ipants of a potential intera
tioninto 
ontiguous positions (Table 3). The de�nition of � in
ludes the standard rules for
ommuting the positions of parallel 
omponents, for stret
hing the s
ope of a restri
tionand for repli
ation. 4



In the following we use !� for the transitive and re
exive 
losure of !. Moreover, wewrite P !� Q to say that either P ! Q or P � Q. Similarly for P !�� Q.n[inm.P j Q℄ j m[R℄! m[n[P j Q℄ j R℄ (In)m[n[outm.P j Q℄ j R℄! n[P j Q℄ j m[R℄ (Out)openn.P j n[Q℄! P j Q (Open)Table 1: Basi
 Redu
tions of Mobile AmbientsP ! Q) (�n) P ! (�n)Q (Res)P ! Q) P j R! Q j R (Par)P ! Q) n[P ℄! n[Q℄ (Amb)(P 0 ! Q0; P � P 0; Q0 � Q)) P ! Q (Cong)Table 2: Stru
tural rules for Mobile Ambients4 The Normal Semanti
sThe normal semanti
s aims at making easier the appli
ation of abstra
t interpretation,whi
h is 
ompli
ated by stru
tural 
ongruen
e (in
luding �-
onversion) and by the stru
-tural rules of the redu
tion semanti
s. The normal semanti
s is based on the intuitiverepresentation of a pro
ess as a tree of ambients, ea
h 
ontaining a set of a
tive pro
esses.We use a set, 
alled a topology, to represent the tree of ambients, and a set, 
alled a 
on-�guration, to represent the a
tive pro
esses 
ontained in ea
h ambient. For instan
e, thepro
ess (�n) (n[in k.P j out k j m[outn.Q℄℄) j k[!openm℄ (1)is represented by the following topology and 
on�guration (depi
ted also in Figure 1)(f n�; k�; mng; f nin k.P ; noutk; moutn.Q; k!openmg).5



P � P (Re
)Q � P ) P � Q (Symm)P � Q; Q � R) P � R (Trans)P j Q � Q j P (Comm)(P j Q) j R � P j (Q j R) (Ass)P � Q) (�n)P � (�n)Q (Res)P � Q) P j R � Q j R (Par)P � Q) !P � !Q (Bang)P � Q) n[P ℄ � n[Q℄ (Amb)P � Q)M .P �M .Q (Pref)n 6= m) (�n) (�m) P � (�m) (�n) P (Res-Com)n =2 fn(P )) (�n) (P j Q) � P j (�n)Q (Res-Par)n 6= m) (�n)m[P ℄ � m[(�n) P ℄ (Res-Amb)P j 0 � P (Nil-Par)(�n)0 � 0 (Nil-Res)!P � P j !P (Bang-Bang)Table 3: Stru
tural Congruen
e
6



n m k�
!openmoutn.Qin k.Pout kFigure 1: The representation of pro
ess (1)The topology 
ontains the pairs son-father: mn, be
ause m is 
ontained in n, n�and k�, be
ause n and k are 
ontained in the outermost ambient that we 
all �. The
on�guration 
ontains the pro
esses exe
utable inside any ambient: pro
esses in k.P andoutk inside n, pro
ess outn.Q inside m, and pro
ess !openm inside k.The translation of a pro
ess into an equivalent pair of topology and 
on�guration, asshown for pro
ess (1) above, presents two subtle problems. We need to: (i) distinguishtwo di�erent o

urren
es of the same obje
t in the pro
ess ; (ii) 
hoose properly the namesused for the removal of restri
tions. In (1), for instan
e, we have eliminated the restri
tionoperator by substituting n with a fresh name (in this 
ase it suÆ
es to take n itself).To deal with these problems in a simple way we enhan
e the syntax of pro
esses byproperly atta
hing labels to 
apabilities, restri
tions and ambients.Provided that the labels assigned to 
apabilities, restri
tions and ambients are distin
t,we dire
tly obtain a representation, where two 
opies of the same pro
ess or of an ambientwith the same name are distinguished. For instan
e, 
onsider the following labeled versionof pro
ess n[inm℄ j n[ink℄, where labels �; �; 
; � are distin
t one from ea
h othern�[inm
 ℄ j n�[in k� ℄. (2)We obtain the following representation(f n��; n��g; f n�inm
 ; n�in k�g)where there are two 
opies of ambient n: one 
ontaining the 
apability inm and the otherone 
ontaining the 
apability in k.We also use the labels atta
hed to restri
tions to �nd out the name, whi
h is used torepla
e the bound name. To this aim, we adopt a spe
ial substitution fun
tion, whi
hasso
iates in a one to one fashion names to labels. Provided that all the labels are distin
tand that the names asso
iated to the labels of restri
tions, do not appear in the pro
ess,the names introdu
ed by the removal of restri
tions are fresh. For instan
e, 
onsider thefollowing labeled pro
ess (�n�) (n
 [inm�.P ℄) j (�m�)m� [0℄ (3)7



where the labels �; �; 
; �; � are distin
t one from ea
h other. Assume also that n̂ and m̂are the distin
t names asso
iated to � and � and that they do not appear in the pro
ess.We obtain the following representation(f n̂
�; m̂��g; f n̂
inm�.Pg).The removal of the restri
tions over n and m does not produ
e any 
on
i
t on names,as m̂ 6= n̂, m̂ 6= m and n̂ 6= m. The 
ondition m̂ 6= n̂ is implied by � 6= �; the 
onditionsm̂ 6= m and n̂ 6= m are ensured by the additional requirement 
on
erning the names andthe labels appearing in the pro
ess.The requirements on labels and names explained above are formalised by the notionof well-labeled pro
ess (see De�nition 4.2).Labeled Pro
esses. Let L be a set of labels (ranged over by `, `0; : : :), and let LI =f`i j ` 2 L; i 2 Ig be the 
orresponding set of indexed labels (ranged over by �; �; 
; : : :).Let bN (ranged over by bn; bm;bh;bk; : : :) be a set of names, su
h that N \ bN = ;, and letbNI = fn̂i j n̂ 2 bN ; i 2 Ig be the 
orresponding set of indexed names.We use the names bNI for the elimination of restri
tions a

ording to a substitutionfun
tion HLI whi
h assigns indexed names bNI to indexed labels LI . This is formalisedby an inje
tive fun
tion HL : L ! bN and by the 
orresponding inje
tive fun
tion HLI :LI ! bNI , su
h that HLI (`i) = n̂i if HL(`) = n̂.To have a more 
ompa
t notation we may use when the distin
tion is not relevant:n;m; h; : : : to denote a generi
 element of bNI [N ; n̂; m̂; ĥ; : : : to denote a generi
 elementof bNI .De�nition 4.1 (Labeled Pro
esses) The labeled pro
esses are de�ned over names N[bNI and indexed labels LI a

ording to the following syntax:M,N::= (
apabilities) P,Q::= (pro
esses)inn enter n 0 ina
tivityoutn exit n (�n�) P restri
tionopenn open n P j Q parallel 
omposition!P repli
ationn�[P ℄ ambientM�.P pre�xWe assume that all the notions presented in Se
tion 3 are adapted in the obviousway to labeled pro
esses. The de�nition of �-
onversion only presents a subtle point:we require that the bound names 
an be 
hanged but not their labels. We mean, forinstan
e, that (�n�)P is �-
onvertible to (�k�)P [k=n℄, provided that k 62 fn(P ), and notto (�k�) P [k=n℄. In the following, we use �(P ) to denote the set of labels o

urring in alabeled pro
ess P . 8



We introdu
e now the 
on
ept of well-labeled pro
ess, whi
h formalises the require-ments dis
ussed for the pro
esses (2) and (3) above. Conditions (i) and (ii) say that thelabels are distin
t and the names asso
iated to the labels of restri
tions are fresh names,meaning that they do not o

ur in the pro
ess. Example 4.10 shows, more in details, whythese requirements are needed to translate a pro
ess into an equivalent representation.De�nition 4.2 (Well-labeled Pro
esses) A pro
ess P is well-labeled if: (i) for any� 2 �(P ), HLI (�) 62 n(P ); (ii) the (indexed) labels used in 
apabilities, ambients andrestri
tions are distin
t one from ea
h other.Over labeled pro
esses we de�ne a notion of equivalen
e, whi
h is used in the de�nitionof the 
olle
ting semanti
s (see De�nition 4.8). A renaming of indexed labels is a fun
tion� : LI ! LI . The appli
ation of a renaming is denoted in the standard way by P� andP [�=�℄. We denote by dom(�) and dom(�) the domains of a renaming � and a substitution� respe
tively. We also introdu
e a spe
ial 
lass of renamings and substitutions:� we say that �I : LI ! LI is a re-indexing of labels if, �I is inje
tive, and for any`i 2 dom(�I), we have �I(`i) = `j;� we say that �I : N̂I ! N̂I is a re-indexing of names if, �I is inje
tive and, for anyn̂i 2 dom(�I), we have �I(n̂i) = n̂j.We say that P and Q are equivalent up to re-indexing (P � Q) i� P�I�I = Q, for are-indexing of labels �I and a re-indexing of names �I .In the following, we use A (ranged over by a,b,
; : : :) for the set of labeled names n�,su
h that n 2 N [ bNI and � 2 LI , augmented with the distin
t symbol � representingthe outermost ambient. Furthermore, we say that a pro
ess P is a
tive if P = M�.Q orP = !Q. We use P and AP to denote the set of well-labeled pro
esses (referred to aspro
esses) and the subset of a
tive well-labeled pro
esses, respe
tively.Remark 4.3 It is worth mentioning that the labeling of pro
esses is also exploited bythe analyses of Se
tions 5 and 6. This approa
h is indeed typi
al of stati
 te
hniques, inparti
ular of Flow Logi
 [27℄. The labeling of pro
esses is used to gain pre
ision, and alsoit allows the programmer to identify the exa
t pie
e of input syntax responsible for somedete
ted se
urity violation. The main di�eren
e here 
onsists in the use of indexes bothin labels LI and in names N̂I . The normal semanti
s and the se
ond abstra
tion 
ouldhave been de�ned also without introdu
ing the indexes. Instead, the indexes are neededand fruitfully exploited by the �rst abstra
tion (see Example 5.10 and Example 5.12).States and Transitions. A state is a pair whi
h 
onsists of a topology and a 
on�gura-tion: the topology is a set of pairs, son-father, whi
h form a tree, and the 
on�guration isa set of pairs asso
iating ea
h a
tive pro
ess to its en
losing ambient.9



De�nition 4.4 (States) A state S is a pair (T;C) where1. T 2 }((A n f�g)�A) is a tree over a set of nodes NS � A 1;2. C 2 }(A�AP) su
h that, for ea
h (a; P ) 2 C, a 2 NS.In a state (T;C) we 
all T a topology and C a 
on�guration. The meaning of (a; b) 2 T(for short ab) is that a is a son of b. The meaning of (a; P ) 2 C (for short aP ) is that Pis an a
tive pro
ess of ambient a.We extend to states in the obvious way the notions of labels, renaming, substitutionand equivalen
e up to re-indexing �. Sin
e we are interested in states representing well-labeled pro
esses we 
onsider only well-labeled states. A state S 2 S is well-labeled if: (i)for ea
h � 2 �(S), HLI (�) 62 n(S); (ii) for any label � 2 �(S) there is at most one obje
tlabeled by �. In the following, we use S to denote the set of well-labeled states (referredto as states). Also, we assume � and [ over states are de�ned 
omponent-wise.In Table 4 we introdu
e the normalisation fun
tion Æ : (A � P) ! S whi
h is usedto translate pro
esses into states. Intuitively, Æ(a; P ) (for short Æ aP ) gives the staterepresenting pro
ess P , assuming that P is 
ontained in ambient a. We use Æ both to derivethe initial state from a pro
ess, and to handle the pro
esses whi
h be
ome exe
utable aftera step. The initial state 
orresponding to a pro
ess P is therefore Æ �P .Rule DRes eliminates the restri
tion by repla
ing the bound name n with the nameHLI (�) asso
iated to the indexed label �. The de�nition of well-labeling ensures thatHLI (�) is a fresh name provided that P is a well-labeled pro
ess. Rule DAmb addsambient b to the topology as son of the en
losing ambient a, and translates the pro
ess
ontained in b. RuleDPar gathers the pro
esses and the topologies built in ea
h of its twobran
hes. Rules DBang and DPref simply add the a
tive pro
ess to the 
on�guration.DRes Æ a(�n�) P = Æ a(P [HLI (�)=n℄)DAmb Æ ab[P ℄ = Æ bP [ (f bag; ;)DZero Æ a0 = (;; ;)DPar Æ aP j Q = Æ aP [ Æ aQDBang Æ a!P = (;; fa!Pg)DPref Æ aM�.P = (;; faM�.Pg)Table 4: The normalisation fun
tion ÆThe rules of Table 5 de�ne the transitions between states. They realise the unfoldingof repli
ation, the movements in and out of ambients, and the opening of ambients. Dueto the impli
it representation of parallel 
omposition, restri
tion and ambient in states,1We refer to the standard de�nition of tree and root of a tree.10



the standard stru
tural rules and stru
tural 
ongruen
e of the redu
tion semanti
s are notneeded. For notational 
onvenien
e use the following abbreviation. We write (T;C)f[a=b℄gto denote the state (T [ 
a= 
b℄; C[ aQ= bQ℄) for any ambient 
 and pro
ess Q.We 
omment the rules below. Rule Bang 
reates a fresh 
opy (equivalent up to re-indexing of labels) of the pro
ess under repli
ation. To this aim, we use new(T;C)(P ),whi
h is de�ned as follows. Let S 2 S be a state, we let newS(P ) = P�I where� �I is a re-indexing of labels su
h that dom(�I) = �(P );� P�I is well-labeled;� there is no � 2 �(P�I), su
h that either � 2 �(S) or HLI (�) 2 n(S).The de�nition of newS ensures that Æ anewS(P )[ S is a well-labeled state, provided thatS and P are well-labeled.The last three rules 
orrespond to the usual redu
tion rules of movements and opening(shown in Table 1). They use the normalisation fun
tion to handle the 
ontinuations. RuleIn is appli
able whenever there exists a parallel ambient namedm. The rule modi�es boththe topology and the 
on�guration a

ording to the movement: (i) it updates the father ofa, whi
h is now m, (ii) it removes the exe
uted 
apability, and it adds the 
ontinuation tothe set of pro
esses lo
al to a. Rule Out a
ts in an analogous way. Rule Open modi�esboth the topology and the 
on�guration a

ording to the opening of ambient m: (i) itremoves ambient m; (ii) it modi�es the pointer to the father of any ambient and pro
esswhi
h was within m. These pro
esses and ambients are therefore a
quired by ambient awhen opening m.Bang a!P 2 C(T;C) 7! Æ anew(T;C)(P ) [ (T;C)In t = ainm
 .P 2 C ab; m�b 2 T a 6= m�(T;C) 7! Æ aP [ ((T n f abg) [ f am�g; C n ftg)Out t = aoutm
 .P 2 C am� ; m�b 2 T a 6= m�(T;C) 7! Æ aP [ ((T n f am�g [ f abg; C n ftg)Open t = aopenm
 .P 2 C m�a 2 T a 6=m�(T;C) 7! Æ aP [ ((T n f m�ag); (C n ftg))f[a=m�℄gTable 5: Transitions 7!The following theorem states the agreement between the transitions of Table 5 and thestandard redu
tion semanti
s of Se
tion 3. Let P be a well-labeled pro
ess. We denote11



by E(P ) the pro
ess obtained by stripping o� all the labels. We use 7!� for the transitiveand re
exive 
losure of 7!.We introdu
e also a 
ondition on a 2 A whi
h guarantees that Æ aP is a well-labeledstate, provided that P is well-labeled (as formalised by Proposition A.13 of Appendix A).We �rst extend the notions of names n(a) and labels �(a). Hen
e, we let n(a) = n and�(a) = �, when a = n�, and we let n(a) = �(a) = ;, when a = �.We say that a is fresh for a labeled pro
ess P i� �(a)\�(P ) = ;, there is no � 2 �(a)su
h that HLI (�) 2 (n(P ) [ n(a)), and there is no � 2 �(P ) su
h that HLI (�) 2 n(a).Theorem 4.5 (Equivalen
e) Let P be a well-labeled pro
ess and let a 2 A whi
h isfresh for P .1. If Æ aP 7! S, then there exist a well-labeled pro
ess Q, su
h that E(P )!� E(Q) andÆ aQ = S;2. If E(P ) ! Q, then there exist a state S and a well-labeled pro
ess Q0, su
h thatÆ aP 7!� S, Æ aQ0 = S and Q � E(Q0).The proof of Theorem 4.5 is rather 
omplex and is shown in the Appendix A.Corollary 4.6 Let P be a well-labeled pro
ess.1. If Æ �P 7! S, then there exist a well-labeled pro
ess Q, su
h that E(P )!� E(Q) andÆ �Q = S;2. If E(P ) ! Q, then there exist a state S and a well-labeled pro
ess Q0, su
h thatÆ �P 7!� S, Æ �Q0 = S and Q � E(Q0).Proof: From Theorem 4.5 using the fa
t that � is fresh for any well-labeled pro
ess P .2The result 
an be extended straightforwardly to weak redu
tions.Corollary 4.7 Let P be a well-labeled pro
ess.1. If Æ �P 7!� S, then there exist a well-labeled pro
ess Q, su
h that E(P ) !�� E(Q)and Æ �Q = S;2. If E(P ) !� Q, then there exist a state S and a well-labeled pro
ess Q0, su
h thatÆ �P 7!� S, Æ �Q0 = S and Q � E(Q0).The 
olle
ting semanti
s. We de�ne the 
ore of the abstra
t interpretation framework,the 
olle
ting semanti
s. The domain is the power-set of (well-labeled) states up to re-indexing. We use [S℄ to denote the equivalen
e 
lass of a state S with respe
t to �, andwe use S=� to denote the 
orresponding quotient set. For readability, we use � and [ for�=� and [=�. 12



De�nition 4.8 Let S\ = }(S=�). The 
on
rete domain is hS\;�i.The 
on
rete semanti
s is de�ned in a standard way as the least �xed-point of afun
tion, whi
h 
olle
ts all the states rea
hable from the initial state.De�nition 4.9 (Colle
ting Semanti
s) Let S2 2 S; S\ 2 S\ and let P be a well-labeledpro
ess. We de�ne SColl[[P ℄℄ = lfp F (Æ �P ) for the fun
tion F : S ! (S\ ! S\) su
hthat F (S2) = 	S2 and	S2(S\) = f[S2℄g [ [S2fS3jS1 7!S3; [S1℄2S\gf[S℄g.Examples. We start dis
ussing the normalisation fun
tion Æ, and we explain why this is
orre
t (in the sense of Theorem 4.5) only when applied to well-labeled pro
esses.Example 4.10 The 
ondition (ii) of De�nition 4.2 ensures that two o

urren
es of thesame obje
t are distinguished. Consider the not well-labeled version of pro
ess n[inm℄ jn[ink℄, P = n�[inm
 ℄ j n�[in k� ℄.We obtain the following representationÆ �P = (f n��g; f n�inm
 ; n�ink�g).This representation di�ers signi�
antly from that shown at the beginning of the se
tionfor the well-labeled pro
ess (2). In fa
t there is only one ambient n whi
h 
ontains bothinm and ink. This representation is obviously not 
orre
t as ambient n may intera
tboth with m and with k.The 
ondition (i) of De�nition 4.2 
on
erns the relation between the names in bNI andthe labels LI , and ensures pre
isely that there is no 
lash of names when the restri
tionsare removed. Consider the following not well-labeled pro
essQ = (�n�) (n
 [in m̂�.P ℄) j (�m�)m� [0℄where HLI (�) = n̂ and HLI (�) = m̂. We obtain the following representationÆ �Q = (f n̂
�; m̂��g; f n̂
in m̂�.P g).This representation is not 
orre
t, di�erently from the one obtained for the well-labeledpro
ess (3) shown at the beginning of the se
tion. The bound name m̂ is known to thepro
ess 
ontained inside n̂, and 
onsequently n̂ 
an move inside m̂.We give some examples to illustrate the normal semanti
s. To simplify the presentationin the 
olle
ting semanti
s states stand for their equivalen
e 
lasses up to re-indexing. Thefollowing example shows an ambient n, whi
h moves inside an ambient k, and there isopened unleashing no 
apability of movement inside k.13



k n� �k �kopenn.Q1 in k.m[Q2℄
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mn Q2
open n.Q1 m Q2

(
)
Q1

Figure 2: Some transitions of pro
ess PExample 4.11 Consider the (well-labeled) pro
essP = n�[in k�.m� [Q2℄℄ j k�[openn�.Q1℄Figure 2 shows some states, whi
h are rea
hable from the initial state representingpro
ess P whi
h is state (a)2. State (b) is obtained from state (a) by applying rule In.This shows that ambient n moves inside k 
arrying any 
apability and ambient it 
ontains.State (
) is obtained from state (b) by applying rule Open; ambient n, when opened insidek, unleashes ambient m whi
h has as a lo
al pro
ess Q2.By assuming that Q1 = Q2 = 0, the 
olle
ting semanti
s of P 
ontains only states(a),(b) and (
) of Figure 2. We have SColl[[P ℄℄ = fS0; S1; S2g su
h thatS0 = (f n��; k��g; f n�in k�.m� [0℄; k�openn�g)S1 = (f n�k� ; m�n� ; k��g; f k�openn�g)S2 = (f m�k� ; k��g; ;).The following example stresses an important aspe
t 
on
erning indexes and repli
ation:the unfolding of repli
ation produ
es (by means of new) pro
esses whi
h are equivalent upto re-indexing of labels. The link between the pro
esses produ
ed by repli
ation expressedby the indexes is suitably exploited by the �rst abstra
tion (see Examples 5.10 and 5.12).Also, the example explains better the te
hnique used to remove the restri
tion operatorand its interplay with repli
ation.2We have omitted the labels to simplify the pi
ture.14



�� nnn � n n̂1 n̂2!(�n)Q (
)(b)!Q inn
(a)!Q

inninn in n̂1 in n̂2Figure 3: An example of repli
ationExample 4.12 Consider the well-labeled pro
ess Q = n�[inn
 ℄, where � = `1 and 
 = `01.The initial state modeling pro
ess !Q is (;; �!Q). Every unfolding of repli
ation is modeledby the addition of Æ �(Q�j) (see rule Bang), whereQ�j = n`j [inn`0j ℄for a new index j. Hen
e, a new ambient n`j is added representing a new 
opy of ambientn. For instan
e, after two appli
ations of rule Bang the state (a) depi
ted in Figure 3is rea
hed3. Any ambient n`j may enter inside any other n`h provided that h 6= j. Forinstan
e, by applying rule In state (b) of Figure 3 is obtained.Consider instead the well-labeled pro
ess (�n�) Q, where the name n is restri
tedand � = `001 su
h that HL(`00) = n̂. The initial state modeling pro
ess !(�n�) Q is(;; �!(�n�)Q). Every unfolding of repli
ation is modeled by the addition of Æ �((�n�)Q)�j,where ((�n�)Q)�j = (�n`00j ) n`j [inn`0j ℄for a new index j. Fun
tion HLI assigns to any label `00j the new name n̂j whi
h is usedto substitute n. Hen
e, a new ambient (n̂j)`j is added with a new name n̂j. For instan
e,after two appli
ations of rule Bang the state (
) depi
ted in Figure 3 is rea
hed from theinitial state. Sin
e the names n̂1; n̂2 are distin
t, then the ambients 
annot in this 
aseintera
t with ea
h other.The di�eren
e between !Q and !(�n�)Q is re
e
ted by their 
olle
ting semanti
s shownbelow. We have SColl[[!Q℄℄ = Sj2f0;:::;1gXj where� X0 = f(;; �!Q)g;� Xj is the minimal set of states S = (T;C), su
h that fn(S) = fng, and �(S) =Si2f1;:::;jgf`i; `0ig and �!Q 2 C. Moreover, for ea
h i 2 f1; : : : ; jg either n`i� 2 Tand n`iinn`0i 2 C, or n`in`h 2 T , with h 6= i, and n`iinn`0i 62 C.3As usual we have omitted labels to simplify the pi
ture.15



We have SColl[[!(�n�)Q℄℄ = Sj2f0;1g Sj whereS0 = (;; �!(�n�)Q)Sj = (Si2f1;:::;jg (n̂i)`i�;Si2f1;:::;jg (n̂i)`iin (n̂i)`0i [ f �!(�n�)Qg).5 A First Abstra
tionWe devise a �rst abstra
tion aimed at 
apturing the following property about all thestates rea
hable from the initial state representing a pro
ess P : for ea
h ambient n, whi
hambients and 
apabilities 
an be 
ontained (at top level) inside n, when n is within anambient h. This is formalised by an abstra
tion, whi
h merges a set of states into aunique abstra
t state, and modi�es the topologies and the 
on�gurations a

ording to thefollowing ideas.� We add to ea
h pair of the topology and of the 
on�guration an additional informa-tion whi
h refers to the father of the en
losing ambient.Consider for instan
e the statesS1 = (f a�; b�g; ain k�. inm
) (4)S2 = (f ab; b�g; ainm
). (5)They are represented by the following abstra
t states, respe
tivelyS�1 = (f b�>; a�>g; f a�in k�. inm
g)S�2 = (f ab� ; b�>g; f abinm
g).In S�1 we have a�ink�. inm
 as in k�. inm
 is an a
tive pro
ess inside ambient a,when a is within �. The same happens in the topology. For instan
e a�> says thatambient a is a son of the top level ambient �, when � is within > 4. The abstra
tstate S�2 is obtained similarly.To understand the relevan
e of the information we have introdu
ed, it is ne
essaryto look at the abstra
tion of the set of states fS1; S2g. This is given by the union ofS�1 and S�2 (depi
ted also in Figure 4) 5S� = (f ab� ; b�> ; a�>g; f abinm
 ; a�in k�. inm
g).4The extra symbol > is used to model the ambient en
losing � and is mentioned for uniformity.5Rounded arrows represent the partial topology, pointing from an obje
t to the link representing therelevant pair son/father. As usual we have omitted labels.16



a b�>
in k. inminmFigure 4: The abstra
t state S�The abstra
t version of fS1; S2g shows that the abstra
t topologies, di�erently fromthe 
on
rete topologies, may not form a tree. For instan
e, in S� ambient a has twofathers, namely ambients b and �. The additional information permits to distinguishbetween the multiple fathers of ambient a, and 
onsequently to argue that the pro-
esses and the ambients 
ontained inside a may depend on where a is lo
ated. Forinstan
e, in S� we have that: when a is within � pro
ess in k�. inm
 is exe
utableinside a; when a is within b instead pro
ess inm
 is exe
utable inside a.We 
all this additional information, the partial topology, as it gives us a partial viewof the shape of the tree-like stru
ture (the topology) of the state, whi
h 
ontainsthe pair of ambients, son-father, or the pair asso
iating ea
h a
tive pro
ess to itsen
losing ambient.� We abstra
t indexes by keeping only the following information: whether there is atmost one o

urren
e or many o

urren
es of an obje
t.Consider for instan
e the following statesS1 = ( n`01�; n`01openm`1) (6)S2 = ( n`02�; f n`02openm`1 ; n`02openm`2g). (7)They are represented by the following abstra
t states S�1 and S�2 , respe
tivelyS�1 = ( n`01�>; n`01�openm`1)S�2 = ( n`01�>; n`01�openm`!).The 
apability openm in state S1 is represented by openm`1 , and the two 
opiesof openm in state S2 are represented by openm`! . The label `1 has multipli
ity17



one, and shows that there is one o

urren
e of the 
orresponding obje
t; the label `!has multipli
ity !, and shows that there are many o

urren
es of the 
orrespondingobje
t equivalent up to re-indexing.By abstra
ting the set of states fS1; S2g we obtain the following abstra
t stateS� = ( n`0!�>; n`0!�openm`!).In the abstra
t state S� both labels have multipli
ity ! showing that there are manyo

urren
es of ambient n and of 
apability openm. The abstra
t state S� is obtainedby taking the least upper bound of S�1 and S�1 with respe
t to a parti
ular orderingover abstra
t states whi
h realises the union and modi�es the multipli
ity of obje
tsa

ordingly.The abstra
tion of indexes explained above is needed to a
hieve a 
omputable analy-sis, in that we may have in�nite pro
esses equivalent up to re-indexing (see Example4.12).Abstra
t domain. Let L� = f`1; `! j ` 2 Lg (ranged over by ��; ��; 
�; : : :) be the setof abstra
t labels, and let N [ bN (ranged over by n�;m�; k�; h�; : : :) be the set of abstra
tnames. Let A� (ranged over by a�; b�; 
�; : : :) be the set of abstra
t labeled names n���,augmented with the symbols � and >. The relation between names and labels is modi�eda

ordingly. We de�ne HL� : L� ! bN su
h that HL�(`1) = HL�(`!) = HL(`).The abstra
t labeled pro
esses are built a

ording to the syntax of De�nition 4.1 overnamesN[ bN and labels L�. We assume that all the previously de�ned notions on pro
essesare adapted to abstra
t pro
esses in the expe
ted way. As in the 
on
rete 
ase we 
onsideronly well-labeled pro
esses.De�nition 5.1 (well-labeled) An abstra
t pro
ess P � is well-labeled if : (i) `1 2 �(P �)implies `! 62 �(P �); (ii) for any label � 2 L�, su
h that � = `1, there is at most one obje
tlabeled by �.In the following we use P� and AP� to denote the set of well-labeled abstra
t pro
esses(referred to as abstra
t pro
esses) and a
tive well-labeled abstra
t pro
esses, respe
tively.De�nition 5.2 (Abstra
t States) An abstra
t state S� is a pair (T �; C�) where1. T � 2 }((A� n f�;>g)� (A� n f>g)�A�);2. C� 2 }(((A� n f>g)�A�)�AP�).In an abstra
t state S� = (T �; C�) we 
all T � the topology and C� the 
on�guration.The meaning of (a�; b�; 
�) 2 T � (for short a�b�
� ) is that ambient a� is a son of ambient18



b�, when b� is within 
�. The meaning of ((a�; b�); P �) 2 C� (for short a�b�P �) is that P �is exe
utable inside ambient a�, when a� is within b�.We assume that all the previously de�ned notions on states are adapted to abstra
tstates in the expe
ted way. As in the 
on
rete 
ase we 
onsider only well-labeled states.An abstra
t state S� = (C�; T �) is well-labeled if 
onditions (i) and (ii) of De�nition 5.1hold (with P � repla
ed by S�). We use S� to denote the set of well-labeled abstra
t states(referred to as abstra
t states).We now introdu
e a proper ordering over abstra
t states 6.De�nition 5.3 We de�ne �� as the minimal ordering over S�, su
h that S� � S0� impliesS���S0�, and su
h that S���S�[`!=`1℄. We use [� for the least upper bound with respe
tto ��.The ordering re
e
ts the intuition that `1 is more pre
ise than `!. For instan
e, assumingthat � = `1 and 
 = `!, we have( n�b�; n�b�P �)[�( n
b� ; n
b�P �) = ( n
b�; n
b�P �).De�nition 5.4 The abstra
t domain is hS�;��i.To simplify the presentation in the following we may omit the over-s
ript �� for anysynta
ti
 
ategory, when the meaning is 
lear from the 
ontext.The Galois 
onne
tion. We present now the relation between the 
on
rete and theabstra
t domain establishing a Galois 
onne
tion (see De�nition 2.1). We formalise theideas explained at the beginning of the se
tion. A single state is abstra
ted1. by introdu
ing the partial topology both in the topology and in the 
on�guration;2. by repla
ing the indexed labels LI with the abstra
t labels L�, and by substitutingthe names bNI with the abstra
t names bN .To remove the indexes a

ording to 2., we introdu
e a spe
ial renaming, that depend onthe state whi
h is abstra
ted, and a spe
ial substitution. Let S 2 S be a state. We de�nea renaming ��S : LI ! L� su
h that ��S(`i) = `!, if there exist j with i 6= j su
h that`i; `j 2 �(S), and ��S(`i) = `1 otherwise. Moreover, we de�ne a substitution �� : bNI ! bNsu
h that ��(n̂i) = n̂.A set of states is abstra
ted by taking the least upper bound with respe
t to �� of theabstra
tion of ea
h element.De�nition 5.5 Let S\ 2 S\, (T;C) 2 S and S� 2 S�. We de�ne �� : S\ ! S� and
� : S� ! S\ as follows6As usual we assume that � and [ are de�ned 
omponent-wise.19



1. ��((T;C)) = (T �; C�)��(T;C)��, where 7T � = f ab
 j ab; b
 2 TgC� = f abP j ab 2 T; aP 2 Cg;2. ��(S\) = S�[S℄2S\��([S℄), where ��([S℄) = S�S02[S℄��(S0);3. 
�(S�) = S[S℄2f[S0℄j��(f[S0℄g)��S�gf[S℄g.Note that in the de�nition above (
ase 1.) we have introdu
ed an auxiliary abstra
tionfun
tion �� : S ! S� whi
h maps a state into an abstra
t state. This is used to de�nethe abstra
tion fun
tion �� : S\ ! S� whi
h maps a set of states up to re-indexing intoan abstra
t state (
ase 2.).The pair of fun
tions de�ned above is a Galois 
onne
tion.Theorem 5.6 The pair of fun
tions (��; 
�) is a Galois 
onne
tion between hS\;�i andhS�;��i.The proof of Theorem 5.6 is shown in the Appendix B.1.Abstra
t semanti
s. The abstra
t semanti
s is de�ned by an abstra
t normalisationfun
tion and by abstra
t transitions, whi
h adapt the normalisation fun
tion of Table 4and the transitions of Table 5 to the abstra
t domain.The abstra
t normalisation fun
tion Æ� : (A� � A�) � P� ! S� is de�ned in Table 6(as usual Æ� abP stands for Æ�((a; b); P )). The main di�eren
es with respe
t to Æ are thatÆ� deals with the partial topology and with the multipli
ity. For instan
e, rule DAmb�adds 
ab to the topology instead of 
a. Similarly, rule DPref� adds abM�.P instead ofaM�.P . Also the rules use [� in pla
e of [ to properly handle labels with multipli
ity.The transition rules are shown in Table 7. For notational 
onvenien
e we use thefollowing abbreviations. We write (T;C)f[ad=b
℄g to denote the abstra
t state (T [ead=eb
 ℄;C[ adQ= b
Q℄) for any ambient e and pro
ess Q. Also we useC n�f abM��.Pg = 8<: C if �� = `!(C n abM��.P ) if �� = `1The rules are rather 
omplex, it is worth explaining the most interesting 
ases topoint out espe
ially the role of the partial topology and of the multipli
ity. Noti
e that,in ea
h rule, the abstra
t normalisation fun
tion Æ� is used in pla
e of Æ to handle the
ontinuations.7We are assuming that the symbols � and > are introdu
ed, when needed, to give a father andgrandfather to any ambient. In parti
ular, using > for the father of �, and � for the father of the root,when di�erent from �. 20



DRes� Æ� ab(�n�) P = Æ� ab(P [HL�(�)=n℄)DAmb� Æ� ab
[P ℄ = Æ� 
aP [�(f 
abg; ;)DZero� Æ� ab0 = (;; ;)DPar� Æ� abP j Q = Æ� abP [� Æ� abQDBang� Æ� ab !P = (;; f ab !Pg)DPref� Æ� abM�.P = (;; f abM�.Pg)Table 6: The normalisation fun
tion Æ�Bang� The rule unfolds repli
ation by 
reating a 
opy of the pro
ess, where every labelhas multipli
ity !, instead of 
reating a fresh 
opy (equivalent up to re-indexing). Weuse new!, whi
h is de�ned as new!(P ) = P� for the renaming �, where �(`1) = `!for any `1 2 �(P ).In� The rule is appli
able whenever there exists an ambient named m, whi
h is 
ontainedin the father b of a, when in both 
ases b is within 
. The multipli
ity of ambi-ent m in
uen
es the movement, meaning that m 
an move inside itself only if itsmultipli
ity is ! (see the side-
ondition of the (a = m`01 ) `01 6= �)).The movement is realised by a modi�
ation both of the topology and of the 
on�g-uration: (i) amb is added to the topology; (ii) the 
ontinuation P and the pro
esses,whi
h are a
tive inside a in parallel with inm.P , are added to the set of pro
essesa
tive, when a is within m (similarly for the ambients 
ontained inside a); (iii) thepro
ess inm.P is added to the set of pro
esses exe
utable, when a is within m,depending on the multipli
ity of the 
apability inm. In parti
ular, it is not addedwhen inm has multipli
ity one, as it has been 
onsumed, after a has moved insidem (this is why we 
onsider Cn�ftg).Open� The rule is appli
able whenever there exists an ambient named m 
ontained in a,when a is inside b. The e�e
t of the opening of m inside a is that, all the pro
essesand ambients, whi
h are 
ontained in m, when m is inside a, are a
quired by a. Thepartial topology is used to determine pre
isely those pro
esses and ambients.The abstra
t semanti
s is de�ned as follows.De�nition 5.7 (The abstra
t semanti
s) Let S�1 ; S�2 2 S�, and let P be a well-labeledpro
ess. We de�ne SColl�[[P ℄℄ = lfp F �(��(Æ �P ) ), for the fun
tion F � : S� ! (S� ! S�)su
h that F �(S�2) = 	�S�2 and	�S�2 (S�1) = S�2[� [�S�2fS�3 jS�1 7!�S�3gS�.21



Bang� ab !P 2 C(T;C)7!� Æ� abnew!(P ) [� (T;C)In� t = abinm�.P 2 C ab
 ; m�b
 2 T (a = m`01 ) `01 6= �)(T;C)7!� Æ� am�P [� (T;C) [� (T[�f amb�g; Cn�ftg)f[am�=ab℄gOut� t = am�outm�.P 2 C am
� ; m�
b 2 T (a = m`01 ) `01 6= �)(T;C)7!� Æ� a
P [�(T;C) [�(T[�f a
bg; Cn�ftg)f[a
=am� ℄gOpen� abopenm��.P 2 C m�ab 2 T (a = m`01 ) `01 6= �)(T;C)7!� Æ� abP [� (T;C) [� (T;C)f[ab=m�a℄gf[
a=
m� ℄gTable 7: Abstra
t transitions 7!�The abstra
t semanti
s is a safe approximation of the 
olle
ting semanti
s. Safeness isstated in 
lassi
al abstra
t interpretation style showing that the abstra
t semanti
s is anupper approximation of the property we are interested in.Lemma 5.8 Let S2 2 S and S\ 2 S\. We have��(	S2(S\))��	���(S2)(��(S\)).The proof of Lemma 5.8 is shown in the Appendix B.1. The proof exploits two mainproperties whi
h show the safeness of: the abstra
t normalisation fun
tion Æ� (PropositionB.7) with respe
t to Æ; the abstra
t transitions 7!� with respe
t to the 
on
rete transitions7! (Lemma B.8).Theorem 5.9 (Safeness) Let P be a well-labeled pro
ess. We have��(SColl[[P ℄℄)��SColl� [[P ℄℄.Proof: By De�nitions 5.7 and 4.9 we have to show that��(lfp 	Æ �P )��lfp 	���(Æ �P ).This follows from Lemma 5.8 using Theorem 2.2. 2Examples. We present some examples to summarize the most interesting aspe
ts of theabstra
tion. The following example explains more in details the role of indexes in the22



abstra
tion. Any labeling of a pro
ess P respe
ting the requirements of De�nition 4.2 isenough to have a 
orre
t normal semanti
s of P . However, the 
hoi
e of labels has dramati

onsequen
es on the pre
ision of the abstra
tion. Hen
e, a 
onvenient annotation s
hema
onsists of keeping all labels distin
t also up to re-indexing.Example 5.10 Consider the pro
essesP1 = n`1 [in k�℄ j n`2 [inm
 ℄ j m�[0℄P2 = n�[ink�℄ j n�[inm
 ℄ j m�[0℄where f�; 
; �; �; �g are distin
t also up to re-indexing and are not of the form `i. We haveSColl[[P1℄℄ = (f n`1�; n`2�; m��; n`2m�g; f n`1in k�; n`2inm
g)SColl[[P2℄℄ = (f n��; n��; m��; n�m�g; f n�ink�; n�inm
g).Obviously the pro
esses P1 and P2 are equivalent up to renaming of labels. Noti
e thatonly ambients n`2 and n� may end up inside m�. In the abstra
t semanti
s we have (forreadability we use f�; 
; �; �; �g for the 
orresponding labels with multipli
ity one)SColl�[[P1℄℄ = (f n`!�>; m��>; n`!m�� g; f n`!�ink�; n`!�inm
g)SColl�[[P2℄℄ = (f n��>; n��> ; m��>; n�m�� g; f n��ink�; n��inm
g).Due to a di�erent 
hoi
e of labels the results reported by the analysis are di�erent: forpro
ess P1 the two ambients with name n are both represented by n`! ; while for pro
ess P2ambients n� and n� are keep distin
t. Consequently, the analysis of P1 is less pre
ise; itsays that both n`1 and n`2 may end up inside m.The following example shows the analysis of the pro
ess 
onsidered in Example 4.11,where an ambient nmoves inside an ambient k, and then is opened unleashing no 
apabilityof movement inside k. Due to the 
ombination of the multipli
ity and of the partialtopology, the analysis is suÆ
iently pre
ise to 
apture what is exe
uted inside n beforeand after n is opened. In parti
ular, it argues that the 
apability of movement ink hasbeen 
onsumed when n is opened. Consequently, it says that ambient k a
quires, whenopens the mobile ambient n, only an immobile pro
ess.Example 5.11 Consider the pro
ess shown in Example 4.11 (see the semanti
s in Figure2) P = n�[in k�.m� [Q2℄℄ j k�[openn�.Q1℄.23



We dis
uss the abstra
t semanti
s of the pro
ess P assuming that Q1 = Q2 = 0 andthat the indexed labels f�; �; �; �; �g are distin
t also up to re-indexing. The initial abstra
tstate representing the pro
ess P is S�0 = (T �0 ; C�0 ) whereT �0 = f n��> ; k��>gC�0 = f n��in k�.m� [0℄; k��openn�g.By applying rule In� we have a transition S�0 7!�S�1 where S�1 = (T �1 ; C�0 ) andT �1 = T �0 [ f m�n�k� ; n�k�� g.The 
apability in k is exer
ised inside n, when n and k are within �. Its exe
utionmodi�es the abstra
t topology: (i) n�k�� is added to model the movement of n insidek; (ii) m�n�k� is added be
ause the 
ontinuation of in k ( m� [0℄) be
omes exe
utable af-ter n has moved inside k. Noti
e that the 
apability in k has multipli
ity one, and thusn�k�ink�.m� [0℄ does not belong to the abstra
t 
on�guration. This says that ink has been
onsumed when n is within k.We observe that only rule In� 
an be applied in state S�0 ; the 
apability openn 
annotbe exer
ised sin
e n is not within k( n�k�� 62 T �0 ). Rule Open� be
omes instead exe
utablein state S�1 where k is one of the fathers of n.By applying rule Open� we have a transition S�1 7!�S�2 where S�2 = (T �2 ; C�0 ) andT �2 = T �1 [ f m�k�� g.The exe
ution of openn inside k produ
es the unleashing inside k only of those pro-
esses and ambients whi
h are 
ontained inside n, when n is within k. Those pro
essesand ambients are determined using the partial topology. Sin
e m�n�k� 2 T �1 , then ambientm ends up inside k, that is m�k�� is added to the abstra
t topology. No other ambient orpro
ess is a
quired by k, in parti
ular the pro
ess in k�.m� [0℄, whi
h 
an be exe
uted insiden only when n is inside �.Therefore, the abstra
t semanti
s is (depi
ted also in Figure 5)8 SColl�[[P ℄℄ = S�2 . Theanalysis shows that: k is an immobile ambient (there are no 
apabilities of movementinside k); n is a mobile ambient (the 
apability ink is exer
ised inside n); ambient nunleashes, when opened, an immobile pro
ess (that is m� [0℄). As we have explained aboveboth the labels with multipli
ity and the partial topology are needed to a
hieve this verya

urate predi
tion.The following example shows the analysis of the pro
esses dis
ussed in Example 4.12and 
lari�es how the repli
ated pro
esses are identi�ed by the abstra
tion.8As usual we have omitted labels to simplify the pi
ture.24



n k�>
min k.m[0℄ open n

Figure 5: The abstra
t semanti
s of PExample 5.12 Consider the pro
ess Q = n�[inn
 ℄ of Example 4.12, where � = `1 and
 = `01. We have for �� = `! and 
� = `0!,SColl�[[Q℄℄ = ( n��>; n��inn
)SColl�[[!Q℄℄ = (f n��n��n�� ; n���>; n��n���g; f n���inn
� ; n��n�� inn
� ; �!Qg)SColl�[[!(�n�)Q℄℄ = (f n��n��n�� ; n̂���>; n̂��n̂���g; f n̂���in n̂
� ; n̂��n̂�� in n̂
� ; �!(�n�)Qg)The labels with multipli
ity permit to distinguish pro
ess !Q from pro
ess Q. In theabstra
t semanti
s of Q the label of n is `1, whi
h forbids the movement of n inside itself(see rule In�). Conversely, in the abstra
t semanti
s of !Q the unfolding of re
ursionprodu
es a label `! for n and a label `0! for inn, whi
h for
e this movement (see rule In�.Consequently, we have both n��n��� and n��n��n�� in the abstra
t topology. Re
all thatthe unfolding of repli
ation produ
es multiple 
opies of n, whi
h may intera
t with ea
hother as we have shown in Figure 3. In parti
ular, any 
opy of n may enter within another
opy of n whi
h is top level (inside �.) This shows a subtle di�eren
e between these twostatements: n��n��� is ne
essary to have a safe approximation of the 
on
rete semanti
s;instead n��n��n�� is an approximation due to the multipli
ity ! of 
apability inn.The analysis infers the same information for both pro
esses !Q and !(�n�) Q. In theabstra
t domain the distin
t names n̂1; n̂2 : : :, produ
ed by the unfolding of repli
ation, arerepresented by n̂. Thus, the ambients n̂ intera
t with ea
h other (see rule In�).6 A Se
ond Abstra
tionOn top of the previous abstra
tion, we de�ne a new abstra
tion, aimed at 
omputingmore eÆ
iently an approximation of a weaker property. We want to know the followinginformation about all the states rea
hable from the initial state representing a pro
ess25



a b�
in k. inminmFigure 6: The state SÆP : for ea
h ambient n, whi
h ambients and 
apabilities may be 
ontained (at top level).inside n. The abstra
tion is simply obtained from the analysis of Se
tion 5 by dropping themultipli
ity from labels and the partial topology from the topology and the 
on�guration.Consider for instan
e the states (4) and (5) shown at the beginning of Se
tion 5S1 = (f a�; b�g; ain k�. inm
)S2 = (f ab; b�g; ainm
).The set of states fS1; S2g is represented by the following abstra
t state whi
h is simplytheir union (depi
ted also in Figure 6)9SÆ = (f ab; b�; a�g; f ainm
 ; ain k�. inm
g).The abstra
t 
on�guration says that both inm
 and in k�. inm
 are a
tive pro
essesinside a. With respe
t to the abstra
tion of Se
tion 5, shown in Figure 4, we lose theinformation that the former is exe
utable, when a is inside b; while the latter is exe
utable,when a is inside �. Similarly for the topology.Moreover, 
onsider the states (6) and (7) shown at the beginning of Se
tion 5S1 = ( n`01�; n`01openm`1)S2 = ( n`02�; f n`02openm`1 ; n`02openm`2g).In the new abstra
tion S1 and S2 are represented by the same abstra
t stateSÆ = ( n`0�; n`0openm`).Therefore, we lose the ability to distinguish one o

urren
e from multiple o

urren
esof an obje
t.9As usual we have omitted labels to simplify the pi
ture.26



Abstra
t domain. The abstra
t labels are L and the abstra
t names are N [ bN . Therelation between names and labels is given pre
isely by fun
tion HL : L ! bN . We use AÆ(ranged over by aÆ; bÆ; 
Æ : : :) for the set of abstra
t labeled names n`, su
h that n 2 N [ bNand ` 2 L, augmented with the symbol �. The abstra
t pro
esses are built a

ording tothe syntax of De�nition 4.1 over names N [ bN and labels L. As usual we use PÆ and APÆto denote the set of abstra
t pro
esses and a
tive abstra
t pro
esses.De�nition 6.1 (Abstra
t States) An abstra
t state SÆ is a pair (T Æ; CÆ) where1. T Æ 2 }((AÆ n f�g)�AÆ);2. CÆ 2 }(AÆ �APÆ).In an abstra
t state (T Æ; CÆ) we 
all T Æ the topology and CÆ the 
on�guration. Weassume that all the previously de�ned notions on states and pro
esses are adapted toabstra
t states and pro
esses in the expe
ted way. We use SÆ to denote the set of abstra
tstates.The abstra
t domain is given by the abstra
t states ordered by in
lusion 10.De�nition 6.2 The abstra
t domain is hSÆ;�i.In the following we may omit the over-s
ript �Æ for any synta
ti
 
ategory, when themeaning is 
lear from the 
ontext.The Galois 
onne
tion. The relation between the abstra
t domain of De�nition 5.4 andthe abstra
t domain of De�nition 6.2 is established by a Galois 
onne
tion (see De�nition2.1). An abstra
t state is abstra
ted, as explained at the beginning of the se
tion, bydropping both the multipli
ity from labels and the partial topology. To this purpose, weuse a renaming �Æ : L� ! L, su
h that �Æ(`1) = �Æ(`!) = `.De�nition 6.3 Let (T �; C�) 2 S� and SÆ 2 SÆ. We de�ne �Æ : S� ! SÆ and 
Æ : SÆ !S� as follows1. �Æ((T �; C�)) = (f ab j ab
 2 T �g; f aP j abP 2 C�g)�Æ;2. 
Æ(SÆ) = S�S�2fS�0j�Æ(S�0)�SÆgS�.The pair of fun
tions de�ned above is a Galois 
onne
tion.Theorem 6.4 The pair of fun
tions (�Æ; 
Æ) is a Galois 
onne
tion between hS�;��i andhSÆ;�i.10As usual we assume � and [ de�ned 
omponent-wise.27



The proof of Theorem 6.4 is shown in the Appendix B.2.Abstra
t semanti
s. The abstra
t normalisation fun
tion ÆÆ : AÆ � PÆ ! SÆ is givenby the rules of Table 4 with a minor modi�
ation. It is enough to repla
e the 
on
retelabels LI with the abstra
t labels L, that using the substitution the fun
tion HL in pla
eof HLI .The abstra
t transitions are de�ned by the rules of Table 8. Rule BangÆ is used tounfold repli
ation; it 
reates a 
opy of the repli
ated pro
ess without modifying the labels.The rules InÆ, OutÆ, OpenÆ realise the movements and the opening. They are similar tothe 
orresponding rules of the abstra
t semanti
s in Table 7 in the 
ase of multipli
ity !.The only relevant di�eren
e is that, due to the removal the partial topology, the 
onditionsto be 
he
ked for the exe
ution of 
apabilities are weaker. For instan
e, rule InÆ 
an beapplied, whenever ambient a and an ambient with name m have a 
ommon father b in thetopology. There is no 
he
k on the father of b to guarantee that ambients a and m are
ontained in b at the same time.BangÆ a!P 2 C(T;C)7!ÆÆÆ aP [ (T;C)InÆ ainm`.P 2 C ab; m`0b 2 T(T;C)7!ÆÆÆ aP [ (T [ f am`0g; C)OutÆ aoutm`.P 2 C am`0 ; m`0b 2 T(T;C)7!ÆÆÆ aP [ (T [ f abg; C)OpenÆ aopenm`.P 2 C m`0a 2 T(T;C)7!ÆÆÆ aP [ (T;C) [ (T;C)f[a=m`0 ℄gTable 8: Abstra
t transitions 7!ÆThe abstra
t semanti
s is de�ned as follows.De�nition 6.5 (The abstra
t semanti
s) Let SÆ1 ; SÆ2 2 SÆ, and let P be a well-labeledpro
ess. We de�ne SCollÆ [[P ℄℄ = lfp F Æ(�Æ(��(Æ �P ))) for the fun
tion F Æ : SÆ ! (SÆ !SÆ) su
h that F Æ(SÆ2) = 	ÆSÆ2 and	ÆSÆ2 (SÆ1) = SÆ2 [ [SÆ2fSÆ3 jSÆ1 7!ÆSÆ3gSÆ.The abstra
t semanti
s de�ned above is a safe approximation of the abstra
t semanti
sof De�nition 5.7. 28



Lemma 6.6 Let S�1 ; S�2 2 S�. We have�Æ(	�S�2 (S�1)) � 	Æ�Æ(S�2 )(�Æ(S�1)).The proof of Lemma 6.6 is shown in the Appendix B.2. As before, the proof relieson the safeness of the abstra
t normalisation fun
tion ÆÆ with respe
t to Æ� (PropositionB.13), and the abstra
t transitions 7!Æ with respe
t to the transitions 7!� (Lemma B.14).Theorem 6.7 (Safeness) Let P be a well-labeled pro
ess. We have�Æ(SColl� [[P ℄℄) � SCollÆ [[P ℄℄.Proof: By Lemma 6.6 and Theorem 2.2 similarly as in Theorem 5.9. 2It is a well-known result of abstra
t interpretation that Galois 
onne
tions are 
losedunder 
omposition. Therefore, an immediate 
onsequen
e of Theorem 6.7 is that the newabstra
t semanti
s is a safe approximation of the 
olle
ting 
on
rete semanti
s.Corollary 6.8 Let P be a well-labeled pro
ess. We have�Æ(��(SColl[[P ℄℄)) � SCollÆ [[P ℄℄.Examples. We dis
uss the di�eren
es between the abstra
tion presented in this se
tionand the abstra
tion of Se
tion 5. One relevant di�eren
e is that the se
ond abstra
tion doesnot distinguish between one or many o

urren
es of an obje
t. Consequently, the se
ondabstra
tion infers the same information for the pro
esses Q, !Q and !(�n�) Q dis
ussedin the Examples 5.12 and 4.12. Another loss of information is due to the removal of thepartial topology. The following examples explain that, 
onsequently, the ability to argueon the ordering of exe
ution of 
apabilities is lost.Example 6.9 Consider the pro
ess of Example 4.11 (see the semanti
s in Figure 2)P = n�[in k�.m� [Q2℄℄ j k�[openn�.Q1℄.Assuming that Q1 = Q2 = 0, we derive the abstra
t semanti
s (depi
ted also in Figure7) 11 SCollÆ [[P ℄℄ = (T Æ; SÆ) where (for readability we use f�; 
; �; �; �; �g to denote the
orresponding abstra
t labels without indexes)T Æ = f n��; m�n� ; k��; n�k� ; m�k� ; k�k�gCÆ = f n�ink�.m� [0℄; k�openn�; k�ink�.m� [0℄g.11As usual we have omitted labels to simplify the pi
ture.29



n k�
m open nin k.m[0℄in k.m[0℄Figure 7: The abstra
t semanti
s of pro
ess PThe result of the �rst analysis has been dis
ussed in Example 5.11 (Figure 5). These
ond analysis is substantially less pre
ise; it is not able to 
apture that 
apability in khas been 
onsumed before opening. Consequently, it says that ambient k a
quires also ink,when opens n. Also, sin
e the analysis 
annot reason on how many o

urren
es of ambientk are present, it says that ambient k, by exer
ising ink, enters inside itself (see rule InÆ).Thus, k is reported as mobile ambient.Example 6.10 Consider the pro
ess P = P1 j P2 j P3, where P1 = !n�[inm�. in k� ℄,P2 = !m�[0℄ and P3 = !k
 [0℄. Assume that labels f�; �; �; �; 
g are distin
t also up tore-indexing. In the �rst abstra
tion we have SColl�[[P ℄℄ = (T �; C�) where (for readabilitywe use f�; �; �; �; 
g to denote the 
orresponding abstra
t labels annotated with !)T � = f n��>; k
�>; m��>; n�m�� gC� = f n��inm�. in k� ; n�m� inm�. in k� ; n�m� in k� ; �P1; �P2; �P3g.The analysis shows that 
apability in k is not exer
ised inside n. In fa
t, the partialtopology says that, it is exe
utable only when n has moved inside m. Ambient k does notmove and, 
onsequently, 
annot be within m.In the se
ond abstra
tion we have (for readability we use f�; �; �; �; 
g for the 
orre-sponding abstra
t labels without indexes),SCollÆ [[P ℄℄ = (f n��; k
�; m��; n�m� ; n�k
g; f n�inm�. in k� ; n�in k� ; �P1; �P2; �P3g).The analysis predi
ts that in k 
an be exe
uted, be
ause n and k have � as a 
ommonfather. Due to the removal of the partial topology, does not dete
t that in k be
omesexe
utable inside n only after the movement inside m.It is worth noti
ing that the result of the �rst analysis is not optimal, meaning that��(SColl[[P ℄℄)��SColl� [[P ℄℄.30



For instan
e, in the abstra
t semanti
s we have n�m� inm�. in k� whi
h says that inmis still exe
utable inside n, when n is within m. Instead, in any instan
e of ambient n
apability inm has been obviously 
onsumed at that time. This approximation is due tothe removal of the indexes, whi
h in this 
ase identi�es all ambients n and all 
apabilitiesinm (see rule Bang�).The abstra
tion presented in this se
tion uses an abstra
t domain analogous to that ofthe CFA proposed in [24℄. Our analysis is however more pre
ise as the following exampleshows.Example 6.11 Consider the pro
ess P = n�[inm�. in k� ℄ j k
 [m�[0℄℄. We obtain (forreadability we use f�; �; �; �; 
g to denote the 
orresponding abstra
t labels without indexes)SCollÆ [[P ℄℄ = (f n��; k
�; m�k
g; f n�inm�. in k�g).The analysis shows that the system is deadlo
ked: neither 
apability inm nor 
apabilityink 
an be exe
uted. The former be
ause ambient m is not a sibling of n, the latter be
auseit is guarded by inm.The analysis of [24℄ 
onsiders the e�e
t of the 
ontinuation of a 
apability regardlessof whether the 
apability may be exer
ised. Consequently, for pro
ess P it predi
ts that nmoves inside k and, 
onsequently, also inside m.7 Appli
ations to Se
urityWe show some examples to demonstrate that the analyses we have proposed 
an be usedto establish interesting se
urity properties. In parti
ular, we show the results obtainedusing the abstra
tion of Se
tion 5 for two simple examples found in the literature [16, 5℄.Another typi
al example is the �rewall proto
ol, whi
h 
an be proved 
orre
t also byapplying the weaker analysis of Se
tion 6. This example in fa
t 
an be 
he
ked also bythe CFA of [24℄.Example 7.1 (Se
re
y)Degano et al. [16℄ 
onsider a property of se
re
y based on a standard 
lassi�
ation ofambients into untrusted and trusted. Se
re
y of data is preserved if an untrusted ambient
an never open a trusted ambient, sin
e opening an ambient gives indeed a

ess to its
ontent. They show that the property holds for the following system (a
tually for its SAversion)SYS = (� mail) (a[mail[out a. in b.msg[outmail.D℄℄℄) j b[openmsg℄ j C.The pilot ambient mail goes out of a, and then enters b. On
e there, msg goes out ofmail, and b a
quires the data D by opening msg. When the data D is se
ret, it is essential31



to guarantee that no ambient 
an open msg ex
ept for the designated re
eiver b. Assumethat fb;msgg is the set of trusted ambients, and that all the others (in
luding �) areuntrusted. We wish to prove that no untrusted ambient 
an open msg.Assume that the parallel pro
ess C is openmsg meaning that the untrusted ambient� tries to read the data D. By applying the analysis of Se
tion 5 we derive SColl�[[SYS ℄℄ =(T �; S�) where12T � = f a�>; maila� ; b�>; mail�>; mailb� ; msgmailb ; msgb�gC� = f �>openmsg; b�openmsg; mailaouta. in b.msg[outmail.D℄;mail�in b.msg[outmail.D℄; msgmailoutmail.D; msgbD; b�DgThis result shows that only b 
an open the messenger ambient msg. Consequently these
ret data may end up in b only, as shown by msgbD and b�D. Both the partial topologyand the multipli
ity are needed to a
hieve this result. The main observations 
on
erningthe analysis are:� the 
apability openmsg 
annot be exer
ised in �, be
ause msg 
annot end up within�. This is reported by the abstra
t topology, in parti
ular by msgmailb and msgb� ;� the exe
ution of the 
apability outmail insidemsg, lets msg go only inside ambientb, as msg 
an be 
ontained in mail, only when mail is within b (see rule Out�).The latter 
ondition is modeled by msgmailb ;� the multipli
ity of 
apabilities out a and in a is used to 
on
lude that msg 
an be
ontained in mail only when mail is within b (see rules Out� and In�).The analyses of [24℄ and of Se
tion 6 are too weak to prove the se
re
y of this system.They predi
t that msg, when goes out of mail, may end up in any of the fathers of mail,namely a, b and �. This example shows that the analysis of Se
tion 5 gives results
omparable to those obtained for SA in [16℄. In SA, however, it is easier to get su
h ana

urate predi
tion, be
ause 
oa
tions 
ontrol pre
isely when and where 
apabilities 
anbe exer
ised.Example 7.2 (Se
urity Boundaries)Braghin et al. [5℄ study multilevel se
urity for Mobile Ambients. The original idea is thatof introdu
ing boundary ambients to prote
t high level information; high level data 
anbe 
ontained either in boundary ambients or in low level ambients whi
h do not es
apeboundaries. They re�ne the analysis of [24℄ to establish more pre
isely the property above.In parti
ular, they show the following motivating systemSYS = a[send[out a. in b j hdata[in filter℄℄℄ j b[open send℄ j filter[in send℄ j open filter.12We have omitted the abstra
t labels for readability, they have all multipli
ity 1.32



The boundary ambient send 
arries the high level ambient hdata out of a. Then, itlets a possibly low level �lter ambient enter, and then it enters the boundary ambient b.On
e there, it is dissolved. The system satis�es the se
urity property stated above: hdatais always within a boundary ambient (either send or b) or within the low level ambient�lter. Noti
e that the ambient �lter does not 
arry the ambient hdata out of the boundaryb. By applying the analysis of Se
tion 5 we obtain SColl�[[SY S℄℄ = (T �; S�) where 13T � = f a�>; senda� ; filter�>; hdatasenda ; b�>; send�>; hdatasend� ; filtersend�; filtersendb ;sendb� ; hdatasendb ; hdatafiltersend ; hdatab� ; hdatafilterb ; filterb�gC� = f �>open filter; hdatasendin filter; filter�in send;sendaouta. in b; send�in b; �>in send; b�open send; hdatabin filtergThe analysis shows that the se
urity property holds, as the abstra
t topology shows thathdata 
an be within �lter, only when �lter is 
ontained in a boundary ambient, either b orsend. This is modeled by hdatafiltersend and hdatafilterb .The analysis of [24℄ as well as the analysis of Se
tion 6 identify, instead, a potential(but pra
ti
ally impossible) atta
k. Sin
e they do not use the partial topology, they
annot 
apture that hdata enters inside �lter, only when �lter is within either send or b.Consequently, they predi
t that hdata may end up inside the low level ambient � as a
onsequen
e of the exe
ution of open filter.8 Con
lusions and Related WorksWe have proposed an abstra
t interpretation framework for MA based on the normalsemanti
s. The normal semanti
s uses an expli
it representation of the hierar
hi
al stru
-ture of pro
esses, in terms of topology and 
on�guration. This representation is moreviable for abstra
tion than the standard redu
tion semanti
s. The normal semanti
s 
anbe 
ompared with the Gamma semanti
 framework for 
on
urren
y of [4℄: it shares itsview of symmetry and lo
ality of intera
tion, and is based on an expli
it representation ofmultisets.In the abstra
t interpretation framework we have derived two safe approximations ofthe run-time topologi
al stru
ture of pro
esses. To show that these analyses are e�e
tiveprogram analysers, it is worth dis
ussing their 
omputational 
omplexity. By restri
tingthe attention to a pro
ess P of size n, in the �rst 
ase the topology of the greateststate 
ontains at most O(n3) elements and the 
on�guration at most O(n3) elements.Hen
e, the iterations before rea
hing the �xed-point are at most O(n3). Any iteration has
omplexity O(n5), be
ause it requires to 
he
k at most O(n2) 
onditions for any elementof the 
on�guration. Similarly, in the se
ond 
ase we have at most O(n2) iterations,13We have omitted the abstra
t labels for readability, they have indeed all multipli
ity 1.33



where any iteration has 
omplexity O(n3). Therefore, it is not diÆ
ult to devise a naiveimplementation of the �rst analysis in O(n8) and of the se
ond one in O(n5) by usingstandard algorithms.In the last few years there has been a growing interest in the analysis of MA (andits variants) and several CFA in Flow Logi
 style [24, 25, 26, 16, 5℄ have been proposed.The analysis of Se
tion 6 is a re�nement of the 0-CFA of [24℄. The CFA of [24℄ is lesspre
ise, as shown by Example 6.11, and 
an be obtained in our framework by weakeningthe 
onditions on the exe
ution of the 
ontinuation of a 
apability in the rules of Table 8.We refer the reader to [23℄ for the formal 
omparison of the two approa
hes.The analysis of Se
tion 5 
ombines together the information about the number ofo

urren
es of obje
ts and the 
ontextual information (i.e. the partial topology). The ideaof using the partial topology has been inspired by the 1-CFA of [16℄ for Safe Ambients.The integration of these two aspe
ts gives a

urate predi
tions as shown by the Examples5.11, 7.1 and 7.2. These systems are interesting be
ause the 
onsidered properties requireto have a detailed information about the lo
al pro
ess of an ambient, when this is ready toengage into an intera
tion of opening or movement. We are not aware of similar results insetting of MA apart from those obtained by more 
omplex exponential te
hnique, whi
huse sophisti
ated information about the 
ontext or a sort of 
ausality information [26, 1℄.For SA instead the stati
 te
hniques are more pre
ise due to the presen
e of 
oa
tions.The 1-CFA of [16℄ for SA, for instan
e, is simpler than our analysis and is suÆ
ientlypre
ise to prove the se
re
y property for the SA pro
ess 
orresponding to that of Example7.1.It is worth mentioning that we have introdu
ed the o

urren
e 
ounting informationin the analysis of Se
tion 5 to fruitfully exploit the partial topology. This information is
ru
ial to predi
t when 
apabilities may be 
onsumed. The use of the partial topologywithout that of multipli
ity would give limited bene�ts (see for instan
e Example 6.10).Other approa
hes have been proposed to more pro�tably exploit the information aboutthe number of obje
ts. For instan
e, Hansen et al [25℄ show that the 0-CFA of [24℄ 
anbe derived, by abstra
t interpretation, from a new more pre
ise and exponential CFA.The re�ned CFA uses sets of abstra
t states rather than abstra
t states and a relationalo

urren
e 
ounting analysis, meaning that the number of o

urren
es is not 
ountedglobally (as in the abstra
tion of Se
tion 5), but inside any ambient. The use of abstra
tinterpretation in [25℄ shows several advantages: the CFA's are 
ompared in terms ofpre
ision by 
onstru
tion and the properties (in parti
ular the safeness) of the former oneare dire
tly derived from those of the latter one. This is pre
isely what we obtain withthe abstra
tion of Se
tion 6.Although the interplay between abstra
t interpretation and CFA in Flow Logi
 style isnot fully understood, these te
hniques are undoubtedly very similar from an algorithmi
point of view and also their spe
i�
ations are stri
tly related. For instan
e, the 
on-straints, whi
h spe
ify the CFA of [24℄, 
ould be derived by abstra
t interpretation inour framework; 
onversely it seems that 
onstraints in Flow Logi
 style 
ould be given
orresponding to the analysis of Se
tion 6. Having said that, it is 
lear that the approa
h34



of [25℄ is very 
lose to ours. We believe, however, that this paper proposes another orig-inal and interesting 
ontribution with respe
t to the proposal of [25℄: the de�nition of ageneral abstra
t interpretation framework, based on the normal semanti
s. The normalsemanti
s simpli�es the development of analyses by means of abstra
t interpretation; forinstan
e, the derivation of the analysis of Se
tion 6 is rather straightforward on
e theabstra
t domain, namely the property we want to 
ompute, has been 
hosen. Moreover,the derivation of analyses from the normal semanti
s 
an be done using standard abstra
tinterpretation te
hniques to re�ne and 
ombine domains.By the time the full version of this paper has been 
ompleted, another paper [18℄ hasappeared, whi
h proposes an abstra
t interpretation framework based on a non-standardsemanti
s similar to the normal semanti
s. The shape of states and of labels is howeverslightly di�erent and permits to de�ne an interesting non-uniform analysis where re
ursiveinstan
es of agents are kept distin
t. Another CFA that re�nes the analysis of [24℄ hasbeen re
ently proposed in [5℄. This work is motivated by the system of Example 7.2 forwhi
h the property of multi-level se
urity 
annot be established using the approa
h of[24℄. We have shown that this example 
an be handled also by our analysis. A formal
omparison is diÆ
ult as the CFA of [5℄ is designed to establish spe
i�
ally the propertyof multi-level se
urity.This work is part of a proje
t aimed at studying the relationship among abstra
t inter-pretation, CFA and types. We believe that the formalisation also of types (for instan
e of[8, 7℄) in an abstra
t interpretation setting would be very interesting. First, this way we
ould formally 
ompare the expressive power of CFA's and types, integrate them, under-stand the pros and 
ons of ea
h approa
h, and possibly for whi
h 
lass of properties onemethod is more adequate than another. Moreover, the development of types as abstra
tinterpretations of a denotational semanti
s has given very promising results for fun
tionallanguages [15℄. This approa
h gives in parti
ular more a

urate type inferen
e algorithms,based on abstra
t �xed-point 
omputations and widening operators, and more expressivetype systems. It would be interesting to apply this approa
h also to MA starting forinstan
e from the re
ent \logi
al" denotational semanti
s for higher-order MA of [12℄. Weleave this investigation to future work. Noti
e that the 
omparison with types requiresto extend the analyses to the full language with 
ommuni
ation. A �rst step toward thisextension has been done by Feret [18℄, whi
h 
onsiders 
ommuni
ation of names only. Thisextension deserves undoubtedly further investigations espe
ially for the analysis of Se
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tion 4In this se
tion we show the proof of Theorem 4.5, whi
h formalises the relation between the normalsemanti
s of Se
tion 4 and the standard redu
tion semanti
s of Se
tion 3. For 
onvenien
e we re
allits assertion:Let P be a well-labeled pro
ess and a 2 A whi
h is fresh for P .1. If Æ aP 7! S, then there exist a well-labeled pro
ess Q, su
h that E(P ) !� E(Q) andÆ aQ = S;2. If E(P )! Q, then there exist a state S and a well-labeled pro
ess Q0, su
h that Æ aP 7!� S,Æ aQ0 = S and Q � E(Q0).Part 1. shows soundness and the 
onverse part 2. shows 
ompleteness. To simplify the proof,whi
h is rather 
omplex, we extend the redu
tion semanti
s to well-labeled pro
esses. The redu
-tion semanti
s for well-labeled pro
esses is designed pre
isely to be 
loser to the normal semanti
sthan the standard redu
tion semanti
s. Then, we prove both soundness and 
ompleteness in twosteps: (i) we show the relation between the redu
tions of well-labeled pro
esses and those of stan-dard unlabeled pro
esses (Lemmas A.2 and A.9); (ii) we show the relation between the redu
tionsof well-labeled pro
esses and the transitions between the states representing them (Lemmas A.17and A.20).In the following, to ease the use of indu
tion in the proofs, we assume that also standardunlabeled pro
esses of De�nition 3.1 
an be de�ned over names N [ bNI .A.1 Redu
tion semanti
s of well-labeled pro
essesThe redu
tion semanti
s for well-labeled pro
esses is de�ned by the rules of Table 9 and is theobvious adaptation of the standard redu
tion semanti
s for the unlabeled pro
esses (Tables 1 and2). The only di�eren
e is that in rule (Cong) we adopt a relation �, whi
h di�ers substantiallyfrom stru
tural 
ongruen
e � for unlabeled pro
esses (Table 3). In parti
ular,37



1. we rule out the analogues of rules (Pref) and (Bang);2. we assume that rule (Bang-Bang), whi
h realises the fold/unfold of repli
ation, 
an be appliedonly in one way, that is to produ
e a 
opy of the repli
ated pro
ess and not to remove it.These 
hoi
es are motivated by the aim of having a relation � whi
h better re
e
ts thenormal semanti
s. More in details, we want that two well-labeled pro
esses, su
h that P � Q,are represented by \equivalent" states when translated via Æ (see Lemma A.18). The rules (Pref)and (Bang) give problems as, in the normal semanti
s, some synta
ti
al di�eren
es are removedonly at exe
ution time. Consider, for instan
e, two pro
esses M .P and M .Q, where P � Q.These pro
esses are represented by two di�erent states (assuming a proper labeling) Æ �M .P =(;; �M .P ) and Æ �M .Q = (;; �M .Q). The 
ontinuations P and Q are translated via fun
tionÆ only after the exe
ution of 
apability M .Rule (Bang-Bang) gives a similar problem, as the unfolding of repli
ation is modeled by atransition (Bang) in the normal semanti
s. Consider for instan
e two pro
esses !P and !P j P .These pro
esses are represented by two di�erent states (assuming a proper labeling) Æ �!P = S1 =(;; �!P ) and Æ �(!P j P ) = S2 = (;; �!P )[ Æ �P . We have S1 7! S2 by rule Bang, but obviouslyS2 67! S1.The relation � for well-labeled pro
esses is de�ned in Table 10. As we have explained above� is not symmetri
, as there is only one way of (Bang-Bang) 14. In rule (Bang-Bang) the labelsof the repli
ated pro
ess are re-indexed to guarantee that new(P ) j !P is a well-labeled pro
essprovided that P is well-labeled. To this aim, we use new(P ) whi
h is adapted in the obvious wayfrom the de�nition of new over states (see Se
tion 4). Hen
e, we let new(P ) = P�I where: �I is are-indexing of labels su
h that dom(�I) = �(P ); P�I is well-labeled; there is no � 2 �(P�I) su
hthat either � 2 �(P ) or HLI (�) 2 n(P ).It is worth mentioning that� and! are de�ned only over well-labeled pro
esses. It means thatrules (Res), (Par) and (Amb) of Table 10 and the 
orresponding rules of Table 9, 
an be applied onlywhen the resulting pro
esses are well-labeled. This guarantees that the well-labeling of pro
essesis preserved, that is the labels of new(P ) are fresh. For instan
e, R j !P � R j (new(P ) j !P )
an be derived by applying rule (Par) to the premise !P � new(P ) j !P provided that bothR j (new(P ) j !P ) and R j !P are well-labeled.We now show the relation between the redu
tions of well-labeled pro
esses and those of stan-dard pro
esses. To simplify the proofs we assume that in the inferen
e of a statement P � Q overunlabeled pro
esses the symmetri
 rules are used dire
tly in pla
e of rule (Symm) (as in �).Soundness. We show that any redu
tion between two well-labeled pro
esses is simulated by aredu
tion between the 
orresponding unlabeled pro
esses.Lemma A.1 Let P and Q be well-labeled pro
esses. If P � Q, then E(P ) � E(Q).Proof: It is enough to observe that for any 
ase in Table 10 there exists a 
orresponding 
ase inTable 3. In the 
ase of (Bang-Bang) we have P = !P and Q = !P j new(P ). As E(new(P )) = E(P ),by de�nition of new, we 
on
lude !E(P ) � !E(P ) j E(new(P )). 214We have therefore removed rule (Symm) and introdu
ed the other dire
tion of the rules (Ass), (Res-Par), (Res-Amb), (Nil-Par) and (Nil-Res).. 38



Lemma A.2 Let P be a well-labeled pro
ess. If P ! Q, then E(P )! E(Q).Proof: The proof is straightforward using Lemma A.1 for the 
ase (Cong). 2Completeness. The proof of 
ompleteness is more 
omplex. Due to the di�eren
e between �and �, the 
onverse of Lemmas A.1 and A.2 do not hold. Consider for instan
e the followingunlabeled pro
esses P = !R j R j m[0℄ j n[inm.S℄ (8)Q = !R j n[inm.S0℄ j m[0℄ (9)We have a redu
tion Q! Q0 where Q0 = !R j m[n[S0℄ j 0℄. Assuming that S � S0 we have P � Q,and therefore by rule (Cong) we have also P ! Q0. We observe that there are no well-labeledversions of P and Q su
h that PL � QL (where E(PL) = P and E(QL) = Q). The problem isthat in P � Q we use: rule (Pref) to derive inm.S � inm.S0, and rule (Bang-Bang) to derive!R j R � !R. Both steps 
annot be simulated by � over labeled pro
esses (see Table 10).We therefore show a weaker property (Lemma A.9): if P ! Q0 then there exist well-labeledpro
esses PL and Q0L, su
h that PL ! Q0L, E(PL) = P and E(Q0L) � Q0.The proof of this property is based on the following steps. We show that, when P � Q andQ! Q0 there exists a spe
ial pro
ess Q00, su
h that:1. P � Q00 and Q00 � Q, where� means that only the rules of Table 3 
orresponding to thoseof Table 10 have been used;2. the derivation P � Q00 
an be simulated in the labeled setting (meaning that there existwell-labeled pro
esses PL and Q00L, su
h that PL � Q00L, E(PL) = P and E(Q00L) = Q00);3. due to the spe
ial form of Q00, Q00L 
an simulate the transition Q ! Q0 (meaning thatQ00L ! Q0L, where E(Q0L) � Q0).For instan
e for the pro
esses (8) and (9) illustrated above we 
an takeQ00 = !R j R j n[inm.S℄ j m[0℄. (10)We have P � Q00 by rules (Comm) and (Par) and we have a transition Q00 ! Q000, where Q000 =!R j R j m[n[S℄ j 0℄. Moreover, sin
e Q0 = !R j m[n[S0℄ j 0℄ and S � S0 we have Q000 � Q0 by rules(Bang-Bang), (Pref) and (Par). It is immediate to 
he
k that both P � Q00 and Q00 ! Q000 
anbe simulated in the labeled setting.To �nd out in a systemati
 way the pro
ess whi
h satis�es the properties des
ribed above weintrodu
e the following de�nition.Let P and Q be pro
esses. We say that a pro
ess Q is a normal form of a pro
ess P i�� Q = P = 0;� Q =M .Q0 and P =M .P 0 where P 0 � Q0;� Q = Q1 j Q2 and P = P1 j P2 where Qi is a normal form of Pi, for any i 2 f1; 2g;� Q = n[Q0℄ and P = n[P 0℄ where Q0 is a normal form of P 0;� Q = (�n) Q0 and P = (�n) P 0 where Q0 is a normal form of P 0;39



� Q = !Q0 or Q = !Q0 ji2f1;:::;ng Q0i and P = !P 0, where Q0 � P 0 and Q0 � Q0i � P 0 for anyi 2 f1; : : : ; ng.For instan
e the pro
ess (10) is a normal form of the pro
ess (9).We give below some easy properties about the normal form.Proposition A.3 Let P;Q be pro
esses su
h that Q is a normal form of P . We have P � Q.Proof: The proof pro
eeds by indu
tion on the stru
ture of P using the de�nition of normalform and the rules of Table 3. The most interesting 
ase is when P = !P 0 and either Q = !Q0 orQ = !Q0 ji2f1;:::;ng Q0i, where Q0 � P 0 and Q0i � P 0 for i 2 f1; : : : ; ng. In the former 
ase P � Qfollows immediately by rule (Bang). In the latter 
ase we have !P 0 � !Q0 by rule (Bang). Also,by rules (Bang-Bang), (Par) and (Trans) !Q0 � !Q0 ji2f1;:::;ng Q0i. Thus, by rule (Trans) we haveP � Q. 2Proposition A.4 Let P1, P2 and P3 be pro
esses. If P1 is a normal form of P2 and P2 is anormal form of P3, then P1 is a normal form of P3.Proof: All the 
ases are easy using the de�nition of normal form ex
ept from the 
ase whenP3 = !Q. By de�nition we have either P2 = !P or P2 = !P ji2f1;:::;ng Qi, where Q � P � Qi,for any i 2 f1; : : : ; ng. In the former 
ase, we have P1 = !R or P1 = !R ji2f1;:::;kg Ri, whereP � R � Ri, for any i 2 f1; : : : ; kg. Sin
e Q � P we have also Q � R � Ri, for any i 2 f1; : : : ; kg.Consequently, P1 is a normal form of P3. In the latter 
ase, we have P1 = P1;1 j P2;1 where P1;1is a normal form of !P and P2;1 is a normal form of ji2f1;:::;ng Qi. It means that P1;1 = !R orP1;1 = !R ji2f1;:::;kg Ri, where P � R � Ri, for any i 2 f1; : : : ; kg. Moreover, P2;1 =ji2f1;:::;ng Si,where Si is a normal form of Qi. By Proposition A.3 we have Si � Qi for any i 2 f1; : : : ; kg.Assume that P1 = !R ji2f1;:::;ng Si. Sin
e Q � P � Qi, Si � Qi and P � R, P1 is a normal formof P3. Assume that P1 = !R ji2f1;:::;kg Ri jji2f1;:::;ng Si. Sin
e Q � P � R � Ri and Si � Qi � P ,then P1 is a normal form of P3. 2We show the main property of normal forms we have dis
ussed above: if P � Q then thereexists a normal form Q0 of Q su
h that P � Q0 and Q0 � Q.Lemma A.5 Let P;Q be pro
esses su
h that P � Q. There exists a pro
ess Q0, whi
h is a normalform of Q, su
h that P � Q0 and Q0 � Q.Proof: We noti
e that, by Proposition A.3, when Q0 is a normal form of Q, we have also Q0 � Q.Therefore, it is enough to �nd out a pro
ess Q0, whi
h is a normal form of Q. The proof pro
eedsby indu
tion on the depth of the inferen
e of P � Q.� The 
ases of (Re
), (Comm), (Ass), (Res-Com), (Res-Par), (Res-Amb), (Nil-Par) and (Nil-Res) are easy. They 
an be solved by taking Q0 = Q, as P � Q0 follows from P � Q (byapplying the same rule of Table 10).� The 
ases of (Res), (Par) and (Amb) are similar and follow by applying the indu
tionhypothesis; as an example we show (Amb). It means that P = n[R0℄ and Q = n[R℄, whereR0 � R. Sin
e R0 � R, by indu
tion hypothesis there exists R00, su
h that R00 is a normalform of R and R0 � R00. We take Q0 = n[R00℄. We have P � Q0 by applying rule (Amb) tothe premise R0 � R00. Moreover, sin
e R00 is a normal form of R, then Q0 is a normal formof Q. 40



� In 
ase (Bang) we have P = !R0 and Q = !R, where R0 � R. Taking Q0 = P we immediatelyhave P � Q0 by rule (Re
). Moreover, sin
e R0 � R (and 
onversely R � R0) then Q0 is anormal form of Q.� In 
ase (Pref) we have P = M .R0 and Q = M .R, where R0 � R. Taking Q0 = P we haveP � Q0 by rule (Re
). Sin
e R0 � R, then Q0 is a normal form of Q.� In 
ase (Bang-Bang) there are two possibilities depending on the way the rule is applied.Therefore, either P = !R j R and Q = !R or P = !R and Q = !R j R. In the latter 
ase wetake Q0 = Q and we have P � Q0 by rule (Bang-Bang). In the former 
ase we take Q0 = Pand we have P � Q0 by rule (Re
). Moreover, Q0 is a normal form of Q using R � R.� In 
ase (Trans) we have P � Q1 and Q1 � Q. By indu
tion hypothesis there exist R1; R2su
h that: (i) P � R1 and R1 is a normal form of Q1; (ii) Q1 � R2 and R2 is a normalform of Q.This 
ase is rather 
omplex. The 
rux of the proof 
onsists of showing that, sin
e R1 is anormal form of Q1 (and thus by Proposition A.3 R1 � Q1) and Q1 � R2, then there existsa pro
ess Q0, whi
h is a normal form of R2, su
h that R1 � Q0 (and by Proposition A.3Q0 � R2). To prove this property we pro
eed by indu
tion on the depth of the inferen
e ofQ1 � R2. The 
ase (Re
) is obvious; we show the other 
ases below.{ The 
ases of (Comm) and (Ass) are similar; as an example we show (Comm). Wehave Q1 = S1 j S2 and R2 = S2 j S1. Sin
e R1 is a normal form of Q1 it means thatR1 = S01 j S02, where S0i is a normal form of Si for any i 2 f1; 2g. We take Q0 = S02 j S01and we have R1 � Q0 by rule (Comm). Moreover, Q0 is a normal form of R2, sin
e S0iis a normal form of Si for any i 2 f1; 2g.{ The 
ases of (Res), (Par) and (Amb) are similar; as an example we show (Amb). Wehave Q1 = n[S℄ and R2 = n[S0℄ where S � S0. Sin
e R1 is a normal form of Q1 itmeans that R1 = n[S00℄, where S00 is a normal form of S. As S00 is a normal form ofS and S � S0, by indu
tion hypothesis there exists S000, whi
h is a normal form of S0,su
h that S00 � S000. We take Q0 = n[S000℄. As S000 is a normal form of S0, then Q0is a normal form of R2. Moreover, we have R1 � Q0 by applying rule (Amb) to thepremise S00 � S000.{ The 
ases of (Res-Com), (Res-Par), (Res-Amb), (Nil-Par) and (Nil-Res) are similar;as an example we show (Res-Par). There are two 
ases: either Q1 = (�n) (S1 j S2)and R2 = S1 j (�n) S2 or the 
onverse. We show only the former 
ase, the other isanalogous.Sin
e R1 is a normal form of Q1 it means that R1 = (�n)S01 j S02, where S0i is a normalform of Si for any i 2 f1; 2g. Taking Q0 = S01 j (�n) S02 we have that Q0 is a normalform of R2. Moreover, we have R1 � Q0 by applying rule (Res-Par).{ In 
ase (Bang-Bang) we have Q1 = !S and R2 = !S j S. Sin
e R1 is a normal formof Q1 it means that either R1 = !S0 or R1 = !S0 ji2f1;:::;ng S0i where S � S0 (and
onversely S0 � S) and S � S0i (and 
onversely S0i � S), for any i 2 f1; : : : ; ng. Weshow only the former 
ase; the other is analogous.We observe that R1 is a normal form of Q1, and P � Q1, and P � R1, where R1 = !S0and Q1 = !S. It means that rule (Bang) is applied in P � Q1 to the premise S0 � S (seethe 
ase (Bang) above). Therefore, by applying the indu
tion hypothesis to S0 � S,there exists S00, whi
h is a normal form of S, su
h that S0 � S00.41



We take Q0 = !S0 j S00. By applying rule (Bang-Bang) we have R1 � !S0 j S0.Moreover, by applying rule (Par) to the premise S0 � S00 we obtain !S0 j S0 � !S0 j S00.Hen
e, by rule (Trans) we have R1 � Q0. We 
on
lude by observing that Q0 is anormal form of R2 as S � S0 and S00 is a normal form of S.{ In 
ase (Trans) we have Q1 � S1 and S1 � R2. As R1 is a normal form of Q1, thenby indu
tion hypothesis there exists a pro
ess Q00, whi
h is a normal form of S1, su
hthat R1 � Q00. Sin
e Q00 is a normal form of S1 and S1 � R2, then by indu
tionhypothesis there exists a pro
ess Q0, whi
h is a normal form of R2, su
h that Q00 � Q0.We 
on
lude by observing that by applying rule (Trans) to the premises R1 � Q00 andQ00 � Q0, we obtain R1 � Q0.Using the property above15 we now 
on
lude the 
ase (Trans). Sin
e Q0 is a normal form ofR2 and R2 is a normal form of Q (
ondition (ii)), we have by Proposition A.4 that Q0 is anormal form of Q. Moreover, P � Q0 follows from P � R1 (
ondition (i)) and R1 � Q0. 2We present now two auxiliary properties of the relation � and of the redu
tion relation overwell-labeled pro
esses. They show that the new labels introdu
ed in a pro
ess by � or by aredu
tion 
an be properly re-indexed. This is possible be
ause new labels 
an be introdu
ed onlyby rule (Bang-Bang) of Table 10 by means of new.Proposition A.6 Let P and Q be well-labeled pro
esses su
h that P � Q. We have fn(P ) =fn(Q), and for ea
h re-indexing of labels �I , su
h that dom(�I ) = �(Q) n �(P ), and Q�I iswell-labeled, we have also P � Q�I .Proof: The proof pro
eeds by indu
tion on the depth of the inferen
e of P � Q. We observethat in any rule of Table 10, P � Q implies fn(P ) = fn(Q). Moreover, in any rule of Table 10,P � Q implies �(P ) = �(Q), ex
ept from rules (Bang-Bang), (Nil-Res) and rules (Res), (Par),(Amb), (Trans).� Suppose that rule (Nil-Res) has been applied. We have P = 0 and Q = (�n�)0 or vi
e-versa.The latter 
ase is immediate, in the former 
ase we have �(Q) n �(P ) = f�g. Hen
e, forany re-indexing of labels �I su
h that Q�I is well-labeled, we have Q�I = (�n�I (�)) 0. We
on
lude as follows by P � Q�I by rule (Nil-Res).� Suppose that rule (Bang-Bang) has been applied. We have P = !P1 and Q = !P1 j new(P1).It means that new(P1) = P1�0I for a re-indexing of labels su
h that: dom(�0I) = �(P1);P1�0I is well-labeled; there is no � 2 �(P1�0I) su
h that either � 2 �(P1) or HLI (�) 2 n(P1).These 
onditions ensure that new(P1) j !P1 is well-labeled, and therefore that �(new(P1))\�(!P1) = ;. Let �I be a re-indexing of labels su
h that dom(�I) = �(Q) n �(P ) andQ�I = (new(P1) j !P1)�I is well-labeled. Sin
e �(new(P1))\�(!P1) = ;, we have dom(�I) =�(new(P1)) and (new(P1) j !P1)�I = new(P1)�I j !P1. Sin
e new(P1)�I j !P1 is well-labeled,also P1�0I�I . Thus, we 
an apply rule (Bang-Bang) to 
on
lude !P1 � P1�0I�I j !P1.15There exists a pro
ess Q0, whi
h is a normal form of R2, su
h that R1 � Q0.
42



� The 
ases of rules (Res), (Par), (Amb) and (Trans) are similar and follow by indu
tionhypothesis using the well-labeling of P . We give as an example (Par) and (Res).Assume that P = P1 j P2 and Q = Q1 j P2, where P1 � Q1. Let �I be a re-indexingof labels, su
h that dom(�I) = �(Q) n �(P ), and Q�I is well-labeled. Sin
e P and Qare well-labeled, then �(P1) \ �(P2) = ; and �(Q1) \ �(P2) = ;. Therefore, we have�(Q) n �(P ) = �(Q1) n �(P1) and Q�I = Q1�I j P2. We observe that Q1�I is well-labeled,sin
e Q�I is well-labeled. Thus, by indu
tion hypothesis P1 � Q1�I . We 
on
lude byapplying rule (Par) to derive P1 j P2 � Q1�I j P2.Assume that P = (�n�) P1 and Q = (�n�) Q1, where P1 � Q1. Let �I be a re-indexing oflabels, su
h that dom(�I ) = �(Q) n �(P ), and Q�I is well-labeled. Sin
e Q is well-labeled,then � 62 �(Q1), HLI (�) 62 n(Q1), and there is no � 2 �(Q1) su
h that HLI (�) = n.Therefore, we have � 62 �(Q) n �(P ), and 
onsequently Q�I = (�n�) (Q1�I). We observethat Q1�I is well-labeled, as Q�I is well-labeled. Hen
e, by indu
tion hypothesis P1 � Q1�I .We 
on
lude by applying rule (Res) to derive (�n�) P1 � (�n�) (Q1�I). 2Proposition A.7 Let P and Q be well-labeled pro
esses su
h that P ! Q. We have fn(Q) �fn(P ), and for ea
h re-indexing of labels �I , su
h that dom(�I) = �(Q) n �(P ), and Q�I iswell-labeled, we have also P ! Q�I .Proof: The proof pro
eeds by indu
tion on the depth of the inferen
e of P ! Q. The 
ases of(In), (Out), and (Open) are immediate given that �(Q) � �(P ). The 
ase of rule (Cong) followsby Proposition A.6. The 
ases of (Par), (Amb) and (Res) 
an be proved by indu
tion following areasoning similar to that used in the 
orresponding 
ases of Proposition A.6. 2The following lemma shows that the 
onverse of Lemma A.1 holds for unlabeled pro
essesrelated by �.Lemma A.8 Let P be a well-labeled pro
ess. If E(P )� Q, then there exists a well-labeled pro
essQ0, su
h that P � Q0 and E(Q0) = Q.Proof: We pro
eed by indu
tion on the derivation of E(P )� Q using the fa
t that for any ruleof Table 3, whi
h 
ould have been applied to derive �, there exists a 
orresponding 
ase in Table10. We dis
uss the most interesting 
ases, the others are trivial.� In 
ase (Bang-Bang) we have E(P ) = !E(P1) and Q = !E(P1) j E(P1). Let Q0 = !P1 jnew(P1), whi
h is (by de�nition of new) well-labeled. By rule (Bang-Bang) we have !P1 �!P1 j new(P1) and E(Q0) = !E(P1) j E(new(P1)) = !E(P1) j E(P1) = Q.� In 
ases (Res),(Par), (Amb) we apply the indu
tion hypothesis using Proposition A.6 to �ndout the well-labeled pro
ess Q0. We show as an example the 
ases of (Par) and (Res).Assume that E(P ) � Q has been derived by rule (Par). It means that P = P1 j R andQ = Q1 j E(R), where E(P1) � Q1. By indu
tion hypothesis, there exists a well-labeledpro
ess Q01 su
h that E(Q01) = Q1 and P1 � Q01. Using Proposition A.6 we derive thatfn(Q01) = fn(P1). Moreover, sin
e P1 j R is well-labeled we have: (i) �(P1)\�(R) = ;; (ii)for ea
h � 2 �(P1), HL�I(�) 62 n(R); 
onversely (iii) for ea
h � 2 �(R), HLI (�) 62 n(P1).43



We now use the fa
t that the labels �(Q01) n �(P1) 
an be re-indexed. Therefore, let �I bea re-indexing of labels, su
h that dom(�I) = �(Q01) n�(P1), Q01�I is well-labeled, �(Q01�I)\�(R) = ; and, for ea
h � 2 �(Q01�I), HLI (�) 62 n(R). As Q01�I is well-labeled, then byProposition A.6, we obtain P1 � Q01�I .We now observe that fn(Q01) = fn(P1) and fn(Q01) = fn(Q01�I) and that the bound namesof Q01�I 
an be properly �-
onverted. By 
ondition (iii) above we derive that HLI (�) 62n(Q01�I) for any � 2 �(R). Moreover, �I has been 
hosen to have �(Q01�I) \�(R) = ; and,for ea
h � 2 �(Q01�I), HLI (�) 62 n(R). Therefore, Q01�I j R is a well-labeled pro
ess.Let Q0 = Q01�I j R. Sin
e P1 � Q01�I , then by rule (Par) of Table 10 we have P � Q0.Moreover, sin
e E(Q01�I) = E(Q01) = Q1 we 
on
lude that E(Q01�I j R) = E(Q01) j E(R) =Q1 j E(R) = Q.Assume that E(P ) � Q has been derived by rule (Res). It means that P = (�n�) P1 andQ = (�n) Q1, where E(P1) � Q1. By indu
tion hypothesis, there exists a well-labeledpro
ess Q01 su
h that E(Q01) = Q1 and P1 � Q01. Using Proposition A.6 we derive thatfn(Q01) = fn(P1). Moreover, sin
e (�n�) P1 is well-labeled we have: (i) � 62 �(P1); (ii) forea
h � 2 �(P1), HLI (�) 6= n; 
onversely (iii) HLI (�) 62 n(P1).We now use the fa
t that the labels �(Q01) n�(P1) 
an be re-indexed. Therefore, let �I be are-indexing of labels, su
h that dom(�I) = �(Q01)n�(P1), Q01�I is well-labeled, � 62 �(Q01�I)and, for ea
h � 2 �(Q01�I), HLI (�) 6= n. As Q01�I is well-labeled, then by Proposition A.6,we obtain P1 � Q01�I .We now observe that fn(Q01) = fn(P1) and fn(Q01) = fn(Q01�I) and that the bound namesof Q01�I 
an be properly �-
onverted. Sin
e for ea
h � 2 �(Q01�I), HLI (�) 6= n, and by
onditions (i) and (iii) above, we derive that (�n�)Q01�I is well-labeled.Let Q0 = (�n�) Q01�I . Sin
e P1 � Q01�I , then by rule (Res) of Table 10 we have P � Q0.Moreover, sin
e E(Q01�I) = E(Q01) = Q1 we 
on
lude that E(Q0) = (�n)Q1 = Q. 2Using Lemmas A.5 and A.8 and the shape of normal forms we 
an now prove the main resultof 
ompleteness.Lemma A.9 Let P be a well-labeled pro
ess. If E(P )! Q, then there exists a well-labeled pro
essQ0 su
h that E(Q0) � Q and P ! Q0.Proof: We prove a more general result: if E(P ) � P1 and P1 ! Q, then there exists a well-labeled pro
ess Q0 su
h that E(Q0) � Q and P ! Q0. For this we pro
eed by indu
tion on thedepth of the inferen
e of P1 ! Q.� The 
ases of (In), (Out), and (Open) are similar; as an example we show (In). If P1 ! Q hasbeen obtained by rule (In), it means that P1 = n[inm.R1 j R2℄ j m[S℄ and Q = m[n[R1 jR2℄ j S℄.Sin
e E(P ) � P1, then by Lemma A.5 there exists a pro
ess P 01, whi
h is a normal form ofP1, su
h that E(P )� P 01 and P 01 � P1.We now apply Lemma A.8. As E(P )� P 01, then there exists a well-labeled pro
ess P 001 su
hthat P � P 001 and E(P 001 ) = P 01. Sin
e P 01 is a normal form of P1, then it must be the 
asethat P 001 = n�[inm
 .R01 j R02℄ j m�[S0℄44



n�[inm
 .P j Q℄ j m�[R℄! m�[n�[P j Q℄ j R℄ (In)m�[n�[outm
 .P j Q℄ j R℄! n�[P j Q℄ j m�[R℄ (Out)openn�.P j n�[Q℄! P j Q (Open)P ! Q) (�n�) P ! (�n�)Q (Res)P ! Q) P j R! Q j R (Par)P ! Q) n�[P ℄! n�[Q℄ (Amb)(P 0 ! Q0; P � P 0; Q0 � Q)) P ! Q (Cong)Table 9: Redu
tions for well-labeled pro
esseswhere E(R01) � R1, E(R02) is a normal form R2 and E(S0) is a normal form of S.By applying rule (In) we have a redu
tion P 001 ! Q0, whereQ0 = m�[n�[R01 j R02℄ j S0℄.Moreover, sin
e P � P 001 we have by rule (Cong) P ! Q0.We 
on
lude by observing that E(R02) � R2 and E(S0) � S (using Proposition A.3). Giventhat also E(R01) � R1, E(Q0) � Q follows by applying rules (Par), (Amb) and (Trans).� The 
ases of (Par), (Amb) and (Res) are similar; they follow by applying the indu
tionhypothesis and by using Proposition A.7 to �nd out the well-labeled pro
ess Q0 (similarlyas in the proof of Lemma A.8). We show as an example the 
ase (Par).Assume that P1 ! Q has been obtained by rule (Par). It means that P1 = Q1 j R andQ = Q2 j R, where Q1 ! Q2.Sin
e E(P ) � P1, then by Lemma A.5 there exists a pro
ess P 01, whi
h is a normal form ofP1, su
h that E(P )� P 01 and P 01 � P1.We now apply Lemma A.8. As E(P )� P 01, then there exists a well-labeled pro
ess P 001 su
hthat P � P 001 and E(P 001 ) = P 01. Sin
e P 01 is a normal form of P1, then it must be the 
asethat P 001 = Q01 j R0, where E(Q01) is a normal form of Q1 and E(R0) is a normal form of R. ByProposition A.3 we have that E(Q01) � Q1 and E(R0) � R. Sin
e E(Q01) � Q1 and Q1 ! Q2,by indu
tion hypothesis there exists a redu
tion Q01 ! Q02 su
h that E(Q02) � Q2.We now use Proposition A.7 to �nd out a re-indexing of labels �I su
h that Q01 ! Q02�I andQ0 = Q02�I j R0 is well-labeled (the reasoning follows an argument similar to that applied inthe proof of Lemma A.8).As Q0 is well-labeled, then we derive P 001 ! Q0 by applying rule (Par) to the premise Q01 !Q02�I . Sin
e P � P 001 we have also P ! Q0 by rule (Cong).45



It remains to show that E(Q0) � Q. We re
all that Q = Q2 j R and Q0 = Q02�I j R0, whereE(Q02) � Q2 and E(R0) � R. Given that E(Q02) = E(Q02�I), E(Q0) � Q follows therefore byrules (Par) and (Trans).� If P1 ! Q has been obtained by rule (Cong) it means that P1 � P2, P2 ! P3 and P3 � Q.As E(P ) � P1 and P1 � P2 we have by rule (Trans) E(P ) � P2. Sin
e E(P ) � P2 andP2 ! P3, then by indu
tion hypothesis there exists P ! Q0 su
h that E(Q0) � P3. We
on
lude by observing that E(Q0) � Q follows by applying rule (Trans) to the premisesE(Q0) � P3 and P3 � Q. 2A.2 Relation between the normal semanti
s and the redu
tions of la-beled pro
essesWe start presenting the basi
 properties of the normalisation fun
tion Æ (Table 4). The followingproposition shows that �-
onvertible pro
esses are represented by the same state. We re
all that�-
onversion over labeled pro
esses 
an 
hange a bound name but not its label.Proposition A.10 (�-
onversion) Let P and Q be two well-labeled pro
esses whi
h are �-
onvertible.For any a 2 A, whi
h is fresh for P and Q, we have Æ aP = Æ aQ.Proof: The main observation is the following: when P = (�n�) P1 and Q = (�k�) P1[k=n℄, su
hthat k 62 fn(P1), we have by ruleDRes Æ aP = Æ a(P1[HLI (�)=n℄) = Æ aQ = Æ a(P1[k=n℄[HLI (�)=k℄).2We now dis
uss the relation between the (free and bound) names and the labels of a pro
essand those of the 
orresponding state obtained via Æ. To formalise this relation it is ne
essary toknow pre
isely whi
h restri
tions are removed via Æ. We therefore introdu
e the following 
on
eptswhi
h use a spe
ial kind of 
ontexts. A 
ontext C is a pro
ess expression with a single o

urren
eof a hole [℄, su
h that the hole does not appear underneath the s
ope of a pre�x or of a bang. Asusual we denote by C[P ℄ the pro
ess obtained by �lling the hole of C with the pro
ess P .Let P be a labeled pro
ess. If P = C[(�n�)Q℄ for some 
ontext C, then we say that (�n�) is anunguarded restri
tion of P ; if also n 62 fn(Q) we say that (�n�) is an unguarded and unne
essaryrestri
tion of P .For instan
e, the restri
tion (�n�) is unguarded and the restri
tion (�m
) is not unguardedin the following pro
ess P = a[(�n�) !(�m
)Q℄.The unguarded restri
tions of a pro
ess are important, as they are removed by the normalisationfun
tion Æ. For instan
e, we have for the pro
ess P aboveÆ �P = (f a�g; f a!(�m
)Q[HLI (�)=n℄g).The di�eren
e between the unguarded and the unguarded and unne
essary restri
tions of apro
ess is the following: if (�n�) is an unguarded and unne
essary restri
tion of a pro
ess P , thenHLI (�) does not ne
essarily appear in the state modeling P . For instan
e, assume that the pro
essP above is well-labeled, that is HLI (�) 62 n(Q) [ n(a). The name HLI (�) appears in the stateÆ �P only when n 2 fn(Q).These intuitive ideas are stated by the propositions below. In the following, we use U(P ) =fn� j (�n�) is an unguarded restri
tion of Pg and Uu(P ) = fn� j (�n�) is an unguarded andunne
essary restri
tion of Pg. 46



Proposition A.11 Let P be a well-labeled pro
ess and let a 2 A whi
h is fresh for P . We have1. if (�n�) and (�m�) are two distin
t unguarded restri
tions of P , then � 6= �;2. for any n� 2 U(P ), HLI (�) 62 n(P );3. HLI (�) 6= HLI (�) for any n�;m� 2 U(P ).Proof: The 
onditions follow straightforwardly from the de�nition of well-labeled pro
ess (De�-nition 4.2). 2Proposition A.12 Let P be a well-labeled pro
ess and a 2 A whi
h is fresh for P . We have� �(Æ aP ) n �(a) = �(P ) n f� j n� 2 U(P )g;� n(Æ aP ) n n(a) = fn(P ) [ (bn(P ) n fn j n� 2 U(P )g) [ fHLI (�) j n� 2 (U(P ) n Uu(P ))g.Proof: The requirements on �(Æ aP ) and n(Æ aP ) 
an be proved by indu
tion on the stru
tureof P using using Proposition A.11. The main observation is that, by de�nition of Æ, only theunguarded restri
tions are removed (see rules DBang and DPref). In 
ase DRes, we have forP = (�n�)Q Æ aP = Æ a(Q[HLI (�)=n℄).This shows that the label � is removed and the name n is repla
ed by HLI (�). We re
all that, byProposition A.11: for any n� 2 U(P ), HLI (�) 62 n(P ) and, there is no other obje
t in P with label�. Therefore, HLI (�) 2 n(Æ aP ) only when n 2 fn(Q), that is (�n�) 2 U(P ) n Uu(P ). 2The following proposition is needed in the proof of 
ompleteness (Lemma A.20); it says thatthe state representing a well-labeled pro
ess is well-labeled provided that the root a is fresh for P .We re
all that a state S 2 S is well-labeled if: (i) for ea
h � 2 �(S), HLI (�) 62 n(S); (ii) for anylabel � 2 �(S) there is at most one obje
t labeled by �.Proposition A.13 Let P be a well-labeled pro
ess and let a 2 A, su
h that a is fresh for P . Wehave that Æ aP is a well-labeled state with root a.Proof: Straightforward by indu
tion on the stru
ture of P using Propositions A.11 and A.12.2The 
onverse of Proposition A.13 does not hold. Consider, for instan
e, the following notwell-labeled pro
ess P = (�n�)m�[0℄ (11)We have Æ �P = ( fm��g; ;) whi
h is obviously well-labeled.The anomaly in pro
ess (11) is that (�n�) is an unguarded and unne
essary restri
tion; there-fore the name HLI (�), that is used to repla
e the bound name n, does not appear in the staterepresenting P (see Proposition A.12). By 
ontrast, the 
lash between the two o

urren
es oflabel � is ne
essarily re
e
ted into the 
orresponding state, when the bound name appears in thepro
ess. Consider, for instan
e, the following not well-labeled pro
essQ = (�n�)m�[outn℄ (12)47



We have Æ �Q = ( fm��g; f m�out n̂g) where HLI (�) = n̂. We observe that Æ �Q is not well-labeledsin
e n̂ 2 n(Æ �Q) and � 2 �(Æ �Q).There is a main di�eren
e between the pro
esses (11) and (12) above. In 
ase (11) the pro
ess
an be properly rearranged and a well-labeled pro
ess P 0 
an be obtained, su
h that Æ �P = Æ �P 0and P � P 0. For instan
e, taking P 0 = m�[0℄, it is immediate to 
he
k that Æ �P = Æ �P 0 andP � P 0, sin
e n 62 fn(m�[0℄) (re
e
ting the idea that this restri
tion is unne
essary). For thepro
ess (12) instead there is no way to modify the labels using �.The idea explained for the pro
esses P and P 0 above is useful in the proof of soundness (LemmaA.17). We therefore formalise it by introdu
ing a relation . and by showing that: when P .P 0, wehave Æ aP = Æ aP 0 and P � P 0 (and vi
e-versa P 0 � P ). The intuitive idea behind . is that P 0is obtained from P by eliminating all the unguarded and unne
essary restri
tions. We de�ne therelation . over labelled pro
esses indu
tively as follows:1. 0 . 0, !P . !P , M�.P .M�.P ;2. Q j P . Q0 j P 0 provided that Q .Q0 and P . P 0;3. a[Q℄ . a[Q0℄ provided that Q .Q0;4. (�n�)Q . (�n�)Q0 provided that Q .Q0 and n 2 fn(Q);5. (�n�)Q .Q0 provided that Q .Q0 and n 62 fn(Q).Noti
e that by 
ondition 5. we have Uu(P 0) = ; when P . P 0. Moreover, we have immediatelyfn(P ) = fn(P 0) and �(P 0) � �(P ).Lemma A.14 Let P and P 0 be labeled pro
esses su
h that P . P 0. We have Æ aP = Æ aP 0 andE(P ) � E(P 0). Moreover, if P and P 0 are well-labeled, then P � P 0 (and P 0 � P ).Proof: The proof pro
eeds by indu
tion on the stru
ture of P . We observe that the 
ases ofbang, pre�x and nil are obvious sin
e P . P 0 implies P = P 0. We show below the other 
ases.� Suppose that P = b[Q℄. By de�nition of ., we have P 0 = b[Q0℄ where Q . Q0. Hen
e,by indu
tion hypothesis we have Æ bQ = Æ bQ0 and E(Q) � E(Q0). Also, if Q and Q0 arewell-labeled, then Q� Q0. Using Æ bQ = Æ bQ0 we therefore obtainÆ aP = (f bag; ;) [ Æ bQ = (f bag; ;) [ Æ bQ0 = Æ aP 0.Moreover, E(Q) � E(Q0) implies, by rule (Amb) of Table 3, n[E(Q)℄ � n[E(Q0)℄ assumingb = n�. Suppose that P and P 0 are well-labeled. It means that Q and Q0 also are well-labeled. Using Q� Q0 we derive b[Q℄� b[Q0℄ by rule (Amb) of Table 10;� Suppose that P = Q1 j Q2. The proof pro
eeds by indu
tion similarly as in the pre
eding
ase.� Suppose that P = (�n�) Q. By de�nition of . there are two 
ases: either P 0 = (�n�) Q0where Q .Q0 and n 2 fn(Q), or n 62 fn(Q) and P 0 = Q0, where Q .Q0.1. Suppose that P 0 = (�n�) Q0 where Q .Q0. The proof pro
eeds by indu
tion similarlyas in the pre
eding 
ase. 48



2. Suppose that n 62 fn(Q) and P 0 = Q0, where Q.Q0. By indu
tion hypothesis we haveÆ aQ = Æ aQ0 and E(Q) � E(Q0). Also, if Q and Q0 are well-labeled we have Q� Q0.Using n 62 fn(Q) we have immediatelyÆ aP = Æ a(Q[m=n℄) = Æ aQ = Æ aQ0 = Æ aP 0.We observe also that (�n)E(Q) � E(Q) 
an be derived by applying the rules (Nil-Par),(Nil-Res) and (Res-Par) of Table 3 (using n 62 fn(Q)). Sin
e E(Q) � E(Q0), then wehave also E(P ) � E(Q0). Similarly, for the 
ase when when P and P 0 are well-labeled.We 
on
lude by observing that, when P and P 0 are well-labeled, P � P 0 implies P 0 � P .In any 
ase shown above only the symmetri
 rules of � have been applied (see Table 10).2Soundness. The proof is rather 
omplex; it is diÆ
ult in parti
ular to reason about the well-labeling of the pro
esses obtained in the indu
tive 
ases. We need some auxiliary properties. Thefollowing proposition shows a useful property of the redu
tions of well-labeled pro
esses.Proposition A.15 Let P and Q be well-labeled pro
esses su
h that P ! Q. If there exists � su
hthat � 2 �(Q) and HLI (�) 2 fn(P ), then there exists a well-labeled pro
ess Q0, su
h that P ! Q0,� 62 �(Q0) and Q0 � Q.Proof: We �rst observe that by de�nition of well-labeling: HLI (�) 2 fn(P ) implies � 62 �(P );analogously, � 2 �(Q) implies HLI (�) 62 n(Q). The proofs pro
eeds by indu
tion on the depthof the inferen
e of P ! Q. The 
ases of (In), (Out), and (Open) are immediate given that�(Q) � �(P ). In 
ase (Cong) we have P � P 0 and P 0 ! P 00 and P 00 � Q. If � 62 �(P 00) we have�nished. Otherwise, we observe that HLI (�) 2 fn(P 0), using HLI (�) 2 fn(P ) and PropositionA.6. As P 0 is well-labeled, by indu
tion hypothesis there exists R00 su
h that P 0 ! R00, � 62 �(R00)and R00 � P 00 � Q. Hen
e, by rule (Cong) we derive P ! R00 su
h that � 62 �(R00), R00 � Q.The other 
ases are similar and follow by indu
tion hypothesis; we dis
uss as an example the 
ase(Par). It means that P = P1 j P2 and Q = P 01 j P2, where P1 ! P 01. We have � 2 �(Q) and� 62 �(P ), HLI (�) 2 fn(P ) and HLI (�) 62 fn(Q). Sin
e P and Q are well-labeled, the onlypossibility is therefore that � 2 �(P 01) and HLI (�) 2 fn(P1). Hen
e, by indu
tion hypothesisthere exists P 001 su
h that P1 ! P 001 , � 62 �(P 001 ) and P 001 � P 01. We observe that, by PropositionA.6, P 01 � P 001 implies fn(P 001 ) = fn(P 01). Given fn(P 01) = fn(P 001 ) and P 01 j P2 is well-labeled,there exists a re-indexing of labels �I , su
h that dom(�I) = �(P 001 ) n �(P 01), � 62 �(P 001 �I) andQ0 = P 001 �I j P2 is well-labeled. By Propositions A.6 and A.7 we obtain both P 001 �I � P 01 andP1 ! P 001 �I . Sin
e Q0 is well-labeled, we derive P1 j P2 ! Q0 by applying rule (Par) to the premiseP1 ! P 001 �I . Moreover, we have P 001 �I j P2 � P 01 j P2 by applying rule (Par) to the premiseP 001 �I � P 01. 2To reason about the well-labeling of pro
esses it is 
onvenient to know pre
isely whi
h newlabels are introdu
ed by a transition S1 7! S2 between two states S1 and S2. To this aim we usenew(S1 7! S2) to denote the set of labels whi
h 
ould have been introdu
ed by an appli
ation ofnew, that is by the unfolding of repli
ation. Formally,49



1. new(S1 7! S2) = ; when S1 7! S2 has been obtained by one of the rules In, Out or Open;2. new(S1 7! S2) = �(newS1(P )) when S1 7! S2 has been obtained by rule Bang and S2 =S1 [ Æ anewS1(P ).The following proposition shows that the well-labeling of states is preserved by the transitionsof Table 5 and 
lari�es in whi
h sense the labels introdu
ed by means of new in rule Bang arefresh.Proposition A.16 Let S1 be a well-labeled state. If S1 7! S01, then S01 is well-labeled. Moreover,assume that S1 [S2 is a well-labeled state su
h that S1 [S2 7! S01 [S2. For any � 2 new(S1 7! S01)we have � 62 �(S2) and HLI (�) 62 n(S2).Proof: The proof is by 
ases on the rule applied to obtain S1 7! S01. Let Si = (Ti; Ci), for anyi 2 f1; 2g.� As 
ases of Open, In and Out are similar, we dis
uss 
ase In only. When S1 7! S01 hasbeen obtained by rule In, we have t = ainm
 .P 2 C1, ab; m�b 2 T1 su
h that a 6= m�.Moreover, S01 = S001 [ Æ aP whereS001 = ((T1 n f abg) [ f am�g; C1 n ftg).Sin
e S1 is well-labeled and t 2 C1, then P is well-labeled and a is fresh for P . By PropositionA.13 we have that Æ aP is well-labeled. We also observe that S001 is well-labeled, as S1 iswell-labeled. Hen
e, S01 is not well-labeled only when there exists a label �, su
h that one ofthe following 
ases holds: (a) � 2 �(Æ aP ) n �(a) and either � 2 �(S001 ) or HLI (�) 2 n(S001 );(b) � 2 �(S001 ) and HLI (�) 2 n(Æ aP ) n n(a).To dis
uss (a) and (b) we need to know the relation between the names and the labels of Pand those of Æ aP . By Proposition A.12, we have1. �(Æ aP ) n�(a) = �(P ) n f� j n� 2 U(P )g;2. n(Æ aP )nn(a) = fn(P )[(bn(P )nfn j n� 2 U(P )g) [ fHLI (�) j n� 2 (U(P )nUu(P ))g.We show 
ase (b). Assume that � 2 �(S001 ) and HLI (�) 2 n(Æ aP )nn(a). Given 2. we derivethat either HLI (�) 2 n(P ) or HLI (�) 2 fHLI (�) j n� 2 (U(P ) n Uu(P ))g.In the former 
ase, sin
e HLI (�) 2 n(P ) and t 2 C1 we have HLI (�) 2 n(S1). Moreover,we have �(S001 ) � �(S1). We obtain � 2 �(S1) and HLI (�) 2 n(S1), whi
h 
ontradi
ts thewell-labeling of S1.In the latter 
ase, we have � 2 �(P ) and � 2 �(S001 ). Hen
e, there is an obje
t with label �in S001 . Sin
e t has been removed from the 
on�guration and t 2 C1, there are two obje
tswith label � in S1, whi
h 
ontradi
ts again the well-labeling of S1.Case (a) follows by applying a similar argument using 
ondition 1., n(S001 ) � n(S1) and�(S001 ) � �(S1).Let S1 [ S2 be a well-labeled state su
h that S1 [ S2 7! S01 [ S2. We 
on
lude by observingthat new(S1 7! S2) = new(S1 [ S2 7! S01 [ S2) = ;.� Suppose that S1 7! S01 has been obtained by rule Bang. It means that S01 = (C1; T1) [Æ 
newS1(Q) for some 
!Q 2 C1. By de�nition, we have newS1(Q) = Q�I for a re-indexingof labels �I su
h that dom(�I ) = �(Q) and50



1. Q�I is well-labeled;2. there is no � 2 �(Q�I), su
h that either � 2 �(S1) or HLI (�) 2 n(S1).By 
onditions 1. and 2., Q�I is well-labeled and 
 is fresh for Q�I . Consequently, byProposition A.13, Æ 
newS1(Q) is well-labeled. Sin
e S1 and Æ 
newS1(Q) are well-labeled,S01 is not well-labeled only when there exists � su
h that one of the following 
ases holds:(a) � 2 �(Æ 
newS1(Q)) n �(
) and either � 2 �(S1) or HLI (�) 2 n(S1); (b) � 2 �(S1) andHLI (�) 2 n(Æ 
newS1(Q)) n n(
).By Proposition A.12, we have(i) �(Æ 
newS1(Q)) n �(
) = �(newS1(Q)) n f� j n� 2 U(newS1(Q))g;(ii) n(Æ 
newS1(Q)) n n(
) = fn(newS1(Q)) [ (bn(newS1(Q)) n fn j n� 2 U(newS1(Q))g) [fHLI (�) j n� 2 (U(newS1(Q)) n Uu(newS1(Q)))g.In 
ase (a) we have � 2 �(Æ 
newS1(Q)) n �(
) , and 
onsequently � 2 �(newS1(Q)) using(i). When either � 2 �(S1) or HLI (�) 2 n(S1) we have a 
ontradi
tion with the requirement2. above.In 
ase (b) we have HLI (�) 2 n(Æ 
newS1(Q)) n n(
). Using (ii) we obtain that eitherHLI (�) 2 n(newS1(Q)) or � 2 �(newS1(Q)). In the latter 
ase, we have � 2 �(newS1(Q))and � 2 �(S1), whi
h 
ontradi
ts the requirement 2. above. In the former 
ase we haveHLI (�) 2 n(newS1(Q)) and � 2 �(S1). We observe that n(Q) = n(newS1(Q)) and 
!Q 2 C1.Hen
e, we have HLI (�) 2 n(S1) and � 2 �(S1), whi
h 
ontradi
ts the well-labeling of S1.Let S1[S2 be a well-labeled state su
h that S1[S2 7! S01[S2. We observe that it is ne
essaryto have newS1[S2(Q) = Q�I , that is (besides 
ondition 1. above): there is no � 2 �(Q�I),su
h that either � 2 �(S1 [S2) or HLI (�) 2 n(S1 [S2). Given new(S1 7! S01) = �(Q�I), wehave �nished. 2Now we show the main result of soundness.Lemma A.17 Let P be a well-labeled pro
ess and let Æ aP = S1 where a 2 A is fresh for P . IfS1 7! S2, then there exists a well-labeled pro
ess Q, su
h that a is fresh for Q, Æ aQ = S2, P !� Qand �(Q) n �(P ) � new(S1 7! S2).Proof: The proof is by indu
tion on the stru
ture of P .� Assume P = 0 or P =M�.P1. We have Æ a0 = (;; ;) = S1 and Æ aM�.P1 = (;; faM�.P1g) =S1, respe
tively. In both 
ases the proof is trivial be
ause there is no transition from S1.� Assume P = !P1. We have Æ a!P1 = (;; fa!P1g) = (T1; C1) = S1. Transition S1 7! S2
ould have been obtained only by applying rule Bang. It means that S2 = (;; fa!P1g) [Æ anewS1(P1). Let Q = !P1 j newS1(P1). We observe that by de�nition of new and sin
e!P1 2 C1, then Q is a well-labeled pro
ess. Therefore, by rule (Bang-Bang) of Table 10 wederive !P1 � !P1 j newS1(P1). We also have Æ aQ = (;; fa!P1g)[Æ anewS1(P1). We 
on
ludeby noti
ing that �(Q) n �(P ) = �(newS1(P1)) = new(S1 7! S2).51



� Assume P = (�n�) P1. We have Æ a(�n�) P1 = Æ aP 01 = S1, where m = HLI (�) andP 01 = P1[m=n℄.Sin
e P is well-labeled, � 62 �(P 01), and 
onsequently P 01 is well-labeled. Hen
e, by indu
tionhypothesis there exists a well-labeled pro
ess Q1 su
h that Æ aQ1 = S2, P 01 !� Q1 and�(Q1) n �(P 01) � new(S1 7! S2).There are two 
ases: either P 01 � Q1 or P 01 ! Q1. We show only the latter one, the otherbeing analogous. We show the existen
e of a well-labeled pro
ess Q, su
h that P ! Q,Æ aQ = S2 and �(Q) n �(P ) = new(S1 7! S2).The 
ru
ial observation to �nd out the right pro
ess Q is that Q1 is a well-labeled pro
ess:it 
annot be the 
ase that � 2 �(Q1) and m 2 n(Q1), where m = HLI (�).1. Assume that � 62 �(Q1). Let k be a new name, su
h that k 6= m and k 62 n(Q1)[n(P1)and there is no � 2 (�(Q1) [ �(P1)) with HLI (�) = k. We take Q = (�k�) Q1[k=m℄.Sin
e � 62 �(Q1) we have also � 62 �(Q1[k=m℄). Considering k has been properly
hosen, Q is well-labeled. Moreover, we haveÆ aQ = Æ a(Q1[k=m℄[m=k℄) = Æ aQ1 = S2.We now show that P ! Q. Sin
e P 01 ! Q1 and k is a new name, we have alsoP 01[k=m℄! Q1[k=m℄. Therefore, we derive (�k�)P 01[k=m℄! (�k�)Q1[k=m℄ by applyingrule (Res) to the premise P 01[k=m℄ ! Q1[k=m℄. We also observe that (�n�) P1 is �-
onvertible to (�k�) P1[m=n℄[k=m℄.It remains to show that �(Q) n �(P ) � new(S1 7! S2). Sin
e � 62 �(Q1) we have�(Q) n�(P ) = (�(Q1[k=m℄) [ f�g) n (�(P1) [ f�g) = �(Q1) n�(P 01) � new(S1 7! S2).2. Assume that � 2 �(Q1) and m 62 n(Q1). We take Q = Q1. Sin
e Q1 is well-labeledand Æ aQ1 = S2, it remains to show that P ! Q1. The proof pro
eeds by 
onsideringthe following two 
ases: m 2 fn(P 01) or m 62 fn(P 01).When m 62 fn(P 01) we observe that n 62 fn(P1), that is P 01 = P1. Using n 62 fn(P1) wederive, by rules (Nil-Par), (Nil-Res) and (Res-Par), (�n�)P1 � P1. Sin
e P 01 = P1 andP 01 ! Q1 we obtain by rule (Cong) P ! Q1.If m 2 fn(P 01) the proof is more 
omplex. We use the fa
t that P 01 is well-labeled, thatis � 62 �(P 01). Sin
e P 01 ! Q1 and m 62 fn(Q1) we 
an apply Proposition A.15. Wederive that there exists Q01 su
h that Q01 � Q1, P 01 ! Q01 and � 62 �(Q01).Sin
e � 62 �(Q01), the pro
ess (�k�) Q01[k=m℄ is well-labeled, where k is a new name
hosen as in 
ase 1. above. Moreover, by applying rule (Res) to the premise P 01 ! Q01we obtain (�k�) P 01[k=m℄! (�k�)Q01[k=m℄.We now dedu
e (�k�)P 01[k=m℄! Q1 from (�k�)P 01[k=m℄! (�k�)Q01[k=m℄. Sin
e Q01 �Q1 and m 62 n(Q1), then by Proposition A.6, m 62 fn(Q01), that is k 62 fn(Q01[k=m℄).Hen
e, by applying rules (Nil-Par), (Nil-Res) and (Res-Par) we obtain (�k�)Q01[k=m℄�Q01. Using Q01 � Q1 we have also (�k�) Q01[k=m℄ � Q1. By rule (Cong) we thereforeobtain (�k�) P 01[k=m℄ ! Q1. Moreover, we have that (�n�) P1 is �-
onvertible to(�k�) P1[m=n℄[k=m℄.We 
on
lude by observing that �(Q)n�(P ) == �(Q1)n�(P ) = �(Q1)n (�(P1)[f�g).Sin
e � 62 �(P1) and �(P1) = �(P 01) we have therefore �(Q1)n�(P ) � �(Q1)n�(P 01) �new(S1 7! S2). 52



� Assume P = b[P1℄. We have Æ ab[P1℄ = (f bag; ;) [ Æ bP1 = S1. Transition S1 7! S2 
ouldhave been obtained in two ways: either only P1 
ontributes to the a
tion or also ambientb parti
ipates. Noti
e that ambient a 
annot be involved as a is fresh for P and P is well-labeled. This guarantees that S1 is a well-labeled state with root a (see Proposition A.13).Let S01 = Æ bP1 = (T 01; C 01).1. If only P1 
ontributes to the a
tion it means that S01 7! S02 and S2 = S02 [ (f bag; ;). AsP is well-labeled, P1 also is well-labeled and b is fresh for P1. Therefore, by indu
tionhypothesis there exist a well-labeled pro
ess Q1, su
h that Æ bQ1 = S02, P1 !� Q1 and�(Q1) n �(P1) � new(S01 7! S02).There are two 
ases: either P1 � Q1 or P1 ! Q1. We show only the latter 
ase,the other being analogous. The proof pro
eeds by showing that b[Q1℄ is well-labeledand that a is fresh for b[Q1℄. The well-labeling of Q is a ne
essary 
ondition to derivea redu
tion b[P1℄ ! b[Q1℄ by applying rule (Amb) to the premise P1 ! Q1. LetQ = b[Q1℄.Assume that either Q is not well-labeled or a is not fresh for Q. We re
all that Q1 iswell-labeled and that S1 = S01 [ (f bag; ;) is a well-labeled state. Therefore, the onlypossibility is that there exists a label �, su
h that one of the following 
ases holds: (i)� 2 �(Q1) and either � 2 �(a) [ �(b) or HLI (�) 2 n(a) [ n(b); (ii) � 2 �(a) [ �(b)and HLI (�) 2 n(Q1).We 
onsider before 
ase (ii). Sin
e the bound names of Q1 
an be �-
onverted, whenneeded, the interesting 
ase is when HLI (�) 2 fn(Q1). In this 
ase we use P1 ! Q1and we derive, by Proposition A.7, fn(Q1) � fn(P1). Sin
e HLI (�) 2 fn(Q1) we havetherefore HLI (�) 2 fn(P1), and also HLI (�) 2 fn(P ). Given that � 2 �(a)[�(b) this
ontradi
ts either the well-labeling of P or the freshness of a for P .In 
ase (i) we have � 2 �(Q1). We observe that it is not possible that � 2 �(P ).This be
ause � 2 �(a) [ �(b) and � 2 �(P ) 
ontradi
t either the well-labeling ofP or the freshness of a for P . Similarly for HLI (�) 2 n(a) [ n(b) and � 2 �(P ).Therefore, we have � 62 �(P1) and � 2 �(Q1) n �(P1). We now use the fa
t that�(Q1) n �(P1) � new(S01 7! S02) and we dedu
e � 2 new(S01 7! S02).We observe that S1 7! S2, where S1 = S01[(f bag; ;) ansd S2 = S02[(f bag; ;). Therefore,by Proposition A.16, there is no � 2 new(S01 7! S02) su
h that either � 2 �((f bag; ;)) orHLI (�) 2 n((f bag; ;)). Sin
e �((f bag; ;)) = �(a)[�(b) and n((f bag; ;)) = n(a)[n(b)we have: � 2 new(S01 7! S02) and either � 2 �(a) [ �(b) or HLI (�) 2 n(a) [ n(b). Thisis a 
ontradi
tion.Sin
e Q is well-labeled, then a redu
tion b[P1℄ ! b[Q1℄ 
an be obtained by applyingrule (Amb) to the premise P1 ! Q1. Moreover, we have that a is fresh for Q andÆ aQ = ((f bag; ;)) [ Æ bQ1 = ((f bag; ;)) [ S02 = S2.It remains to show that �(Q) n�(P ) � new(S1 ! S2). This follows immediately using�(Q1) n �(P1) � new(S01 7! S02), new(S01 7! S02) = new(S1 7! S2) and �(Q1) n �(P1) =�(Q) n �(P ) (as �(b) 62 �(Q1) [ �(P1)).2. If both P1 and b parti
ipate to the a
tion, the only possibility is that some ambient 
,whi
h is top level inside b, goes out of b. It means that transition S1 7! S2 has beenobtained by rule Out. Therefore, there exist 
b 2 T 01 and 
outn�.R 2 C 01, su
h that53



b = n
 , and S01 = Æ bT [ (f 
bg; ;) [ (;; 
outn�.R) [ Æ 
Ufor some pro
esses T and U . Moreover, the state S2 rea
hed from S1 (by rule Out) isS2 = (f bag; ;) [ (f 
ag; ;) [ Æ bT [ Æ 
U [ Æ 
R.We now use Æ bP1 = S01 and the shape of S01 to infer the stru
ture of P1. Examin-ing the 
ases in the de�nition of Æ, we observe that: the 
omponents (f 
bg; ;) and(;; 
outn�.R) tell us that rules DAmb and DPref (possibly after rules DRes andDPar) have been used. Therefore, we haveP1 � (�~p~�) (T 0 j 
0[outn�.R0 j U 0℄)where 
 = 
0� and T = T 0�, U = U 0� and R = R0� for the substitution � : N ! bNIsu
h that �(p) = HLI (�).Noti
e that we have grouped together the (eventual) unguarded restri
tions by means of�. This result is based on the underlying assumption that the bound names ~p 
an be �-
onverted and on the following properties due to the well-labeling if P : (i) HLI (�) 6= nfor any � 2 ~�; (ii) n 62 ~p. Condition (i) follows from n 2 n(P ) using PropositionA.11. Condition (ii) follows from the fa
t that the restri
tions are unguarded, sin
e byProposition A.12 any unguarded restri
tion is removed. Consequently, n 2 ~p impliesn 62 n(Æ bP1), whi
h 
ontradi
ts 
outn�.R 2 C 01.We now exploit the 
ondition n 62 ~p to derive, by applying rules (Amb) and (Res-Amb),that P � P 0 where P 0 = (�~p~�) (n
 [T 0 j 
0[outn�.R0 j U 0℄℄).Let Q = (�~p~�) b[T 0℄ j 
0[R0 j U 0℄ whi
h is obviously well-labeled. Moreover, we haveÆaQ = S2 and by rules (Out) and (Res) P 0 ! Q0. We therefore derive P ! Q byapplying rule (Cong).We 
on
lude by observing that �(Q) � �(P ). Thus, we have �(Q)n�(P ) = new(S1 7!S2) = ;.� Assume P = P1 j P2. We have Æ aP1 j P2 = Æ aP1 [ Æ aP2 = S1. Transition S1 7! S2
ould have been obtained in two ways: either only one of P1 and P2 parti
ipates to thea
tion or the two pro
esses intera
t with ea
h other. In the latter 
ase, we observe thatambient a 
annot be involved as a is fresh for P . This guarantees that the topology is atree with root a (see Proposition A.13). Therefore, S1 7! S2 
ould have been obtained bythe appli
ation either of rule In or of rule Open. In both 
ases the intera
tion may involveonly pro
esses and ambients whi
h are top level inside a. Let Æ aP1 = (T1; C1) = S01 andÆ aP2 = (T2; C2) = S02.1. Suppose that only P1 
ontributes to the a
tion. We have S1 = S01[S02 and S2 = S001 [S02,where S01 7! S001 . Sin
e P is well-labeled and a is fresh for P , then also Pi is well-labeledand a is fresh for Pi, for any i 2 f1; 2g. Hen
e, by indu
tion hypothesis, we haveP1 !� P 01 for a well-labeled pro
ess P 01, su
h that a is fresh for P 01, Æ aP 01 = S001 and�(P 01) n �(P1) � new(S01 7! S001 ). 54



There are two 
ases: either P1 � P 01 or P1 7! P 01. We show only the latter 
ase, theother being analogous.Similarly to the 
ase of ambient we 
an apply rule (Par) to derive a transition P1 jP2 7! P 01 j P2 only when P 01 j P2 is well-labeled. This 
ase is however more 
omplexas it may be the 
ase that P 01 j P2 is not well-labeled. We therefore 
onsider a slightlydi�erent pro
ess Q = P 01 j P 02, where P2 . P 02. We observe that, by de�nition of .,fn(P2) = fn(P 02) and �(P 02) � �(P2). Therefore, P 02 is well-labeled and a is fresh forP 02, as P2 is well-labeled and a is fresh for P2. Moreover, by Lemma A.14, we haveP2 � P 02 and Æ aP 02 = Æ aP2 = S02.We now show that Q = P 01 j P 02 is a well-labeled pro
ess. Assume that this is not the
ase. Sin
e P 01 and P 02 are well-labeled the only possibility is that there exists a label� su
h that one of the following 
ases hold: (i) � 2 �(P 01) and either � 2 �(P 02) orHLI (�) 2 n(P 02); (ii) � 2 �(P 02) and HLI (�) 2 n(P 01).We dis
uss before 
ase (ii). Sin
e the bound names of P 01 
an be �-
onverted, whenneeded, the interesting 
ase is when HLI (�) 2 fn(P 01). We use P1 ! P 01 and we obtain,by Proposition A.7, fn(P 01) � fn(P1). Hen
e, we have HLI (�) 2 fn(P1). Given that�(P 002 ) � �(P2) we obtain � 2 �(P2) and HLI (�) 2 fn(P1). This 
ontradi
ts thewell-labeling of P1 j P2.In 
ase (i) we have � 2 �(P 01). We observe that it 
annot be the 
ase that also� 2 �(P1). This be
ause the well-labeling of P1 j P2 
ontradi
ts � 2 �(P1) and� 2 �(P2) (whi
h follows from � 2 �(P 02)). Similarly for � 2 �(P1) andHLI (�) 2 n(P2)(whi
h follows from HLI (�) 2 n(P 02)).Therefore, we have � 62 �(P1) and � 2 �(P 01), that is � 2 �(P 01) n �(P1). We now usethe fa
t that �(P 01) n �(P1) � new(S01 7! S001 ) and we derive � 2 new(S01 7! S001 ).We re
all that S1 7! S2, where S1 = S01[S02 and S2 = S001[S02. Therefore, by PropositionA.16, there is no � 2 new(S01 7! S001 ) su
h that either � 2 �(S02) or HLI (�) 2 n(S02).Hen
e, it must be the 
ase that (a) � 62 �(S02) and (b) HLI (�) 62 n(S02).We now use the fa
t that Æ aP 02 = S02. By Proposition A.12, we have{ �(S02) n �(a) = �(P 02) n f� j n� 2 U(P 02)g;{ n(S02) n n(a) = fn(P 02) [ (bn(P 02) n fn j n� 2 U(P 02)g) [ fHLI (�) j n� 2 (U(P 02) nUu(P 02))g.Using the results above, we now show that both possibilities � 2 �(P 02) and HLI (�) 2n(P 02) 
ontradi
ts either (a) or (b).Assume that HLI (�) 2 n(P 02). As usual the interesting 
ase is when HLI (�) 2 fn(P 02).Given the previous 
onditions we have fn(P 02) � n(S02). Therefore, HLI (�) 2 fn(P 02)implies HLI (�) 2 n(S02) whi
h 
ontradi
ts (b).Assume that � 2 �(P 02). Given the previous 
onditions we have two possibilities: either� 2 �(S02) or n� 2 U(P ). The former 
ase 
ontradi
ts immediately (a). In the latter
ase, we use P2 .P 02, whi
h says that P 02 has no unguarded and unne
essary restri
tions( Uu(P 02) = ;). Consequently, when n� 2 U(P ), then HLI (�) 2 n(S02). This 
ontradi
ts
ondition (b).We now show that there exists a redu
tion P1 j P2 ! Q, whereQ = P 01 j P 02. We observethat �(P 02) � �(P2), and thus P1 j P 02 is well-labeled sin
e P1 j P2 is well-labeled. Sin
ealso P 01 j P 02 is well-labeled, by applying rule (Par) to the premise P1 ! P 01, we obtainP1 j P 02 ! P 01 j P 02. Sin
e P2 � P 02 we have also P1 j P2 � P1 j P 02. We therefore deriveP1 j P2 ! P 01 j P 02 by applying rule (Cong).55



Moreover, it is immediate to 
he
k thatÆ aP 01 j P 02 = S001 [ S02 = S2.It remains to show that �(Q) n �(P ) � new(S1 ! S2). We observe that, sin
e P1 j P2and P 01 j P 02 are well-labeled, �(P1) \ �(P2) = ; and �(P 01) \ �(P 02) = ;. Moreover,�(P 02) � �(P2). Therefore, �(Q)n�(P ) = (�(P 01)[�(P 02))n (�(P1)[�(P2)) = �(P 01)n(�(P1)[�(P2)) � �(P 01)n�(P1). We 
on
lude be
ause �(P 01)n�(P1) � new(S01 7! S001 )and new(S01 7! S001 ) = new(S1 7! S2).2. Suppose that rule In has been applied. We have either ba 2 T1, binm�.R 2 C1 andm�a 2 T2 or the 
onverse. Suppose the former 
ase holds. It means that S01 and S02have the following shape, respe
tivelyS02 = ÆaW [ ( m�a; ;) [ Æm�VS01 = ÆaU [ ( ba; ;) [ (;; binm�.R) [ ÆbTfor some pro
esses W ,V ,U , and T . Moreover, the state S2 rea
hed from S1 (by ruleIn) is S2 = ( bm� ; ;) [ ( m�a; ;) [ ÆaU [ ÆbR [ ÆbT [ ÆaW [ Æm�V .Sin
e Æ aP1 = S01 and Æ aP2 = S02, we argue that (reasoning on the de�nition of Æ,similarly to 
ase Out) P1 � (�~p~�) (U 0 j b0[inm�.R0 j T 0℄)P2 � (�~q~�) (W 0 j m�[V 0℄)where b = b0�1, T = T 0�1, U = U 0�1 and R = R0�1 and W = W 0�2 and V = V 0�2 forthe substitutions �i : N ! bNI where �1(p) = HLI (�) and �2(q) = HLI (�).We now noti
e that it 
annot be the 
ase that m 2 ~p or m 2 ~q. Suppose that m 2 ~p.Sin
e the restri
tions (�~p~�) are unguarded and P1 is well-labeled, then by PropositionA.12, we obtain m 62 n(Æ aP1), whi
h 
ontradi
ts binm�.R 2 C1. Similarly, using thewell-labeling of P2, m 2 ~q 
ontradi
ts m�a 2 T2.Therefore, we may assume without loss of generality that ~p \ ~q = ;, and we haveP1 j P2 � P 0 whereP 0 = (�~p~�; ~q~�) (U 0 j b0[inm�.R0 j T 0℄ j m
 [V 0℄ jW 0).Let Q = (�~p~�; ~q~�) (U 0 j W 0 j m�[V 0 j b[R0 j T 0℄).It is obvious that Q is a well-labeled pro
ess and Æ aQ = S2. Also, we have by rules(In), (Par) and (Res) P 0 ! Q. We therefore derive P ! Q by applying rule (Cong).We 
on
lude by observing that �(Q) � �(P ). Thus, we have �(Q)n�(P ) = new(S1 7!S2) = ;.3. The 
ase when rule Open has been applied is similar to that of rule In above.56



2Completeness. To show 
ompleteness we need some auxiliary properties. The following lemmashows the relation between the states representing two well-labeled pro
esses whi
h are stru
tural
ongruent.Lemma A.18 Let P and Q be well-labeled pro
esses and let a 2 A, su
h that a is fresh for P andQ. If P � Q, then either Æ aP = Æ aQ or Æ aP 7! Æ aQ.Proof: By indu
tion on the depth of P � Q. It is easy to 
he
k that in any 
ase of Table 10the states obtained via Æ are equal apart from the 
ase (Bang-Bang). In 
ase (Bang-Bang) wehave P = !R and Q = !R j new(R). Hen
e, we have Æ aP = S1 = (;; a!R) and Æ aQ = S2 =(;; a!R) [ Æ anew(R). We observe that Æ aP 7! S2 by rule Bang. 2Proposition A.19 Let S1 be a well-labeled state su
h that S1 7! S01. If S2 is a well-labeled statesu
h that S1 [ S2 and S01 [ S2 is well-labeled, then we have also S1 [ S2 7! S01 [ S2.Proof: The proof is by 
ases on the rule applied to derive S1 7! S01. The 
ases of In, Out andOpen are trivial; the side 
onditions impose 
onstraints whi
h hold also for S1 [ S2. In the 
aseBang instead we have S1 = (T1; C1) and S01 = (T1; C1) [ Æ 
newS1(Q) for some 
Q 2 C1. Weobtain S1 [ S2 7! S01 [ S2, as newS1(Q) = newS1[S2(Q) is ensured by the well-labeling of S01 [ S2.2Lemma A.20 Let P be a well-labeled pro
ess su
h that P ! Q. For any 
 2 A whi
h is fresh forP , we have Æ 
P 7!� Æ 
Q.Proof: The proof is by indu
tion on the depth of the derivation of P ! Q. The last rule used
ould have been (In), (Out), (Open), one of the stru
tural rules (Res),(Par),(Amb) or rule (Cong).� Assume that P ! Q has been obtained by applying rule (In). It means that P = a[inm�.P 0 jQ0℄ j b[R0℄, where a = n� and b = m
 , and Q = b[a[P 0 j Q0℄ j R0℄.By de�nition of Æ we haveÆ 
P = Æ 
a[inm�.P 0 j Q0℄ [ Æ 
b[R0℄ =(f a
; b
g; ;) [ (;; ainm�.P 0) [ Æ aQ0 [ Æ bR0.Therefore, by applying rule In we obtain a transition Æ 
P 7! S whereS = (f ab; b
g; ;) [ Æ aQ0 [ Æ bR0 [ Æ aP 0.We 
on
lude by observing that, by de�nition of Æ,Æ 
Q = (f b
g; ;) [ Æ b(a[P 0 j Q0℄ j R0) = (f ab; b
g; ;) [ Æ aP 0 [ Æ aQ0 [ Æ bR0 = S.57



� Assume that P ! Q has been obtained by applying rule (Out). It means that P =b[a[outm�.P 0 j Q0℄ j R0℄, where a = n� and b = m
 , and Q = b[R0℄ j a[P 0 j Q0℄.By de�nition of Æ we haveÆ 
P = (f b
g; ;) [ Æ b(a[outm�.P 0 j Q0℄ j R0) =(f b
; abg; ;) [ (;; aoutm�.P 0) [ Æ aQ0 [ Æ bR0.Moreover, by applying rule Out we obtain a transition Æ 
P 7! S whereS = (f b
; a
g; ;) [ Æ aP 0 [ Æ aQ0 [ Æ bR0.We 
on
lude by observing that, by de�nition of Æ,Æ 
Q = Æ 
b[R0℄ [ Æ 
a[P 0 j Q0℄ = (f b
; a
g) [ Æ bR0 [ Æ aP 0 j Q0 = S.� Assume P ! Q has been obtained by applying rule (Open). It means that P = openn�.P 0 ja[R0℄, where a = n�, and Q = P 0 j R0.By de�nition of Æ we haveÆ 
P = Æ 
openn�.P 0 [ Æ 
a[R0℄ = ( a
; ;) [ (;; 
openn�.P 0) [ ÆaR0.Moreover, by applying rule Open we obtain a transition Æ 
P 7! S whereS = Æ 
P 0 [ (T [ d
= da℄; C[ 
R= aR℄)ÆaR0 = (T;C)We 
on
lude by observing that, by de�nition of ÆÆ 
Q = Æ 
P 0 [ Æ 
R0.Sin
e 
 is fresh, we also have (T [ d
= da℄; C[ 
R= aR℄) = Æ 
R0. We therefore 
on
ludeÆ 
Q = S.� Assume P ! Q has been obtained by applying rule (Amb). It means that P = a[P1℄, wherea = n�, and Q = a[P2℄, where P1 ! P2. By de�nition of Æ we haveÆ 
P = Æ 
a[P1℄ = (a
; ;) [ Æ aP1.Sin
e P is well-labeled, then P1 is well-labeled and a is fresh for P1. Hen
e, by indu
tionhypothesis we have Æ aP1 7!� S0, where Æ aP2 = S0. We now observe that Q = a[P2℄ is well-labeled. Hen
e, by Proposition A.13, we have that Æ 
Q is well-labeled. Also, by de�nitionof Æ we have Æ 
Q = (a
; ;) [ Æ aP2 = (a
; ;) [ S0.We 
on
lude by applying Proposition A.19. Sin
e (a
; ;)[S0 is well-labeled and Æ aP1 7!� S0,then we have also Æ 
P 7!� (a
; ;) [ S0.58



� Assume P ! Q has been obtained by applying rule (Par). It means that P = P1 j P2 andQ = P 01 j P2, where P1 ! P 01. By de�nition of Æ we haveÆ 
P = Æ 
P1 [ Æ 
P2.Sin
e P is well-labeled and 
 is fresh for P , then also P1 is well-labeled and 
 is fresh for P1.Hen
e, by indu
tion hypothesis we have Æ 
P1 7!� S0, where Æ 
P 01 = S0.We now observe that Q = P 01 j P2 is well-labeled. Hen
e, by Proposition A.13, we have thatÆ 
Q is well-labeled. Also, by de�nition of Æ we haveÆ 
Q = Æ 
P 01 [ Æ 
P2 = S0 [ Æ 
P2.We 
on
lude by applying Proposition A.19. Sin
e S0[Æ 
P2 is well-labeled and Æ 
P1 7!� S0,then we have also Æ 
P 7!� S0 [ Æ 
P2.� Assume P ! Q has been obtained by applying rule (Res). It means that P = (�n�) P1 andQ = (�n�) P2 where P1 ! P2. By de�nition of Æ we haveÆ 
P = Æ 
(P1[m=n℄)where m = HLI (�).We observe that sin
e P is well-labeled, thenm 62 n(P1). Sin
e P1 ! P2, then by PropositionA.7, fn(P2) � fn(P1), and 
onsequently also m 62 n(P2). Considering the bound names 
anbe �-
onverted, if needed, we derive P1[m=n℄! P2[m=n℄ from P1 ! P2.Sin
e P is well-labeled, then � 62 �(P1[m=n℄). Consequently, P1[m=n℄ is a well-labeled pro-
ess. Therefore, by indu
tion hypothesis we have Æ 
(P1[m=n℄) 7!� S0, where Æ 
(P2[m=n℄) =S0. We 
on
lude by observing thatÆ 
Q = Æ 
(P2[m=n℄) = S0.� Assume P ! Q has been obtained by applying rule (Cong). It means that P1 ! Q1 forsome pro
esses P1; Q1, su
h that P � P1 and Q1 � Q By indu
tion hypothesis we haveÆ 
P1 7!� S where S = Æ 
Q1. By Lemma A.18, we have Æ 
P 7!� S. Again by Lemma A.18,we have either Æ 
Q1 = Æ 
Q or Æ 
Q1 7! Æ 
Q. In both 
ases Æ 
P 7!� Æ 
Q. 2A.3 Equivalen
eWe show the proof of Theorem 4.5.Soundness: if Æ aP 7! S, then by Lemma A.17 there exists a well-labeled pro
ess Q, su
h thatÆ aQ = S and P !� Q. By Lemmas A.1 and A.2 we have E(P )!� E(Q).Completeness: if E(P ) ! Q, then by Lemma A.9 there exists a well-labeled pro
ess Q0, su
hthat E(Q0) � Q and P ! Q0. By Lemma A.20 we have Æ aP 7!� Æ aQ0.59



B Safeness of the abstra
tionsThe following proposition re
alls some well-known results of domain theory whi
h are useful in theproofs.Proposition B.11. Given any set S, h}(S);�i is a 
omplete latti
e.2. Given two 
omplete latti
es hS1;�1i, hS2;�2i, the produ
t h(S1 � S2);�
wi, where �
w isthe 
omponent-wise indu
ed ordering, is a 
omplete latti
e.B.1 First Abstra
tionWe �rst show that the pair of fun
tions (��; 
�) forms a Galois 
onne
tion between hS\;�i andhS�;��i (Theorem 5.6).Proposition B.2 The 
on
rete domain hS\;�i and the abstra
t domain hS�;��i are 
ompletelatti
es.Proof: The 
on
rete domain S\ = }(S=�) is a 
omplete latti
e by 
ase 1. of Proposition B.1.The abstra
t domain hS�;��i is a 
omplete latti
e by 
ase 2. of Proposition B.1. Noti
e that, byde�nition of �� (De�nition 5.3), given two well-labeled states S�1 and S�2 , S�1 [S�2 is a well-labeledstate as well. 2The following proposition states the basi
 properties of the 
on
retization and abstra
tion fun
-tions.Proposition B.3 Fun
tion �� : hS\;�i ! hS�;��i is monotoni
 and 
ontinuous and fun
tion
� : hS�;��i ! hS\;�i is monotoni
.Proof: Straightforward by De�nition 5.5. 2The properties stated above are enough to prove Theorem 5.6.Proof: [of Theorem 5.6℄ We show that (��; 
�) is a Galois 
onne
tion (see De�nition 2.1). ByProposition B.2 the 
on
rete and abstra
t domains are 
omplete latti
es. Also, by Proposition B.3both �� and 
� are monotoni
. Hen
e, it remains two show that, for S� 2 S� and S\ 2 S\, wehave S\ � 
�(��(S\))��(
�(S�))��S�Both assertions follow rather obviously from De�nition 5.5. We have S\ � 
�(��(S\)) sin
e byde�nition of 
� and ��,
�(��(S\)) =[f[S℄ j ��(f[S℄g)��[�[S℄2S\��([S℄)g.60



Moreover, by de�nition of �� and 
�, and by 
ontinuity of �� (Proposition B.3) we have��(
�(S�)) = ��([f[S℄ j ��(f[S℄g)��S�g) =[���(f[S℄ j ��(f[S℄g)��S�g).By de�nition of least upper bound on a 
omplete latti
e we 
on
lude therefore[���(f[S℄ j ��(f[S℄g)��S�g)��S�. 2We now show some basi
 properties of the 
on
rete and abstra
t semanti
 fun
tions whi
h areneeded to establish the safeness of the abstra
tion (Lemma 5.8).Lemma B.4 Let S�1 ; S�2 2 S� be well-labeled abstra
t states su
h that S�1��S�2 . if S�1 7!�S0�1, thenthere exists a transition S�2 7!�S0�2, su
h that S0�1��S0�2.Proof: There are two 
ases depending on whether S�1 � S�2 or not. In the former 
ase the proofis straightforward. In the latter 
ase, it means that there exists an abstra
t state S00�1, su
h thatS00�1 = S�1� for a renaming � : LI ! L�, where either �(`1) = `1 or �(`1) = `!, and S00�1 � S�2 . Itis easy to 
he
k (by 
ases on the rules of Table 7) that we have S00�1 7!�S000�1 su
h that S0�1��S000�1.Sin
e S00�1 � S�2 and S00�1 7!�S000�1, then we have also S�2 7!�S0�2 su
h that S000�1��S0�2. We 
on
ludebe
ause S0�1��S000�1��S0�2. 2Lemma B.5 Let S 2 S and S� 2 S�. The fun
tions 	S : hS\;�i ! hS\;�i and 	�S� : hS�;��i !hS�;��i are monotoni
.Proof: The proof follows immediately by Lemma B.4 using De�nitions 4.9 and 5.7. 2We state some relevant properties of the auxiliary abstra
tion fun
tion �� : S ! S� whi
hmaps a state into an abstra
t state (see De�nition 5.5, 
ase 1.). The following lemma says that�� is 
ontinuous for union of states with a spe
ial shape (Re
all that the abstra
tion over sets ofstates �� : S\ ! S� is 
ontinuous as shown by Proposition B.3). To state formally this result weneed to introdu
e an auxiliary 
on
ept. Let S1; S2 be two well-labeled states. We say that S2 is asub-tree of S1 with root a 2 A i� a is the root of S2, and only ambient a o

urs both in S1 and S2.We introdu
e a 
onvention whi
h is useful in the following proofs. We re
all that any obje
tmay have several abstra
tions depending on the global number of o

urren
es of its labels in thestate. In the abstra
tion �� (see De�nition 5.5) this is formalised by: the renaming ��S , whi
hdepend on the state S and introdu
e the multipli
ity 
ounting the indexes; the substitution ��whi
h simply removes indexes. When the renaming ��S is 
lear from the 
ontext we may use: a�to denote the abstra
t version of a; P � to denote that abstra
t version of P .Lemma B.6 Let S1; S2 be two well-labeled states, su
h that S1 [ S2 also is well-labeled. If S2 isa sub-tree of S1 with root a, then we have��(S1 [ S2) = ��(S1)[���(S2)f[a�b�=a��℄gwhere b is the father of a in S1 16.16Meaning that ab 2 T1 for S1 = (T1; C1). 61



Proof: Let ��(S1 [ S2) = (T �; C�), Si = (Ti; Ci) and ��(Si) = (Ti�; Ci�) for i 2 f1; 2g. Were
all that, by de�nition of �� (De�nition 5.5), we have (T �; C�) = (T 0�; C 0�)��S1[S2�� whereT 0� = f ab
 j ab; b
 2 T1 [ T2gC 0� = f abP j ab 2 T1 [ T2; aP 2 C1 [ C2g.Analogously, for i 2 f1; 2g, we have (T �i ; C�i ) = (T 0i �; C 0i�)��Si�� whereT 0i � = f ab
 j ab; b
 2 TigC 0i� = f abP j ab 2 Ti; aP 2 Cig.We �rst show that T 0� � T 01�[T 02�f[ab=a�℄g. Let us 
onsider a generi
 element 
de 2 T 0�. It meansthat 
d; de 2 T1 [ T2. There are several possibilities:1. Both 
d 2 T1 and de 2 T1. It is immediate to 
he
k that we have also 
de 2 T 01�.2. Both 
d 2 T2 and de 2 T2. Similarly as in the previous 
ase we have 
de 2 T 02�. We nowobserve that 
 and d 
annot be a, be
ause a is the root of S2. We therefore 
on
lude that
de 2 T 02�f[ab=a�℄g.3. One element belongs to T1 and the other one to T2. Sin
e S2 is a sub-tree of S1 with root athe only possibility is that 
d 2 T2, de 2 T1 and d = a. Moreover, sin
e b is the father of a inS1, it means that e = b. It is immediate to 
he
k that 
a� 2 T 02�, so that 
ab 2 T 02�f[ab=a�℄g.We now show the 
onverse T 0� � T 01� [ T 02�f[ab=a�℄g. Let us 
onsider a generi
 element 
de 2T 01� [ T 02�f[ab=a�℄g. There are two possibilities:1. If 
de 2 T 01�, then both 
d, de 2 T1. It follows that both 
d, de 2 T1 [T2, and thus 
de 2 T 0�.2. If 
de 2 T 02�f[ab=a�℄g, then either 
de 2 T 02� or d = a, e = b and 
a� 2 T 02�. The former 
aseis analogous to 1. above. In the latter 
ase we observe that 
a 2 T2. Sin
e ab 2 T1, we have
a; ab 2 T1 [ T2, and thus 
ab 2 T 0�.A similar argument applies also to the 
on�guration. Hen
e, we have(T 0�; C 0�) = (T 01�; C 01�) [ (T 02�; C 02�)f[ab=a�℄g.Therefore, we have also(T 0�; C 0�)��S1[S2�� = (T 01�; C 01�)��S1[S2�� [ (T 02�; C 02�)f[ab=a�℄g��S1[S2��.Using a� = a��S1[S2�� and b� = b��S1[S2��, we obtain(T 0�; C 0�)��S1[S2�� = (T 01�; C 01�)��S1[s2�� [ (T 02�; C 02�)��S1[S2��f[a�b�=a��℄g.Now we observe that the equality is preserved, when the renamings ��Si are used for i 2 f1; 2g inpla
e of ��S1[S2 and [ is repla
ed by [�. This be
ause [� modi�es the multipli
ity 
ounting thenumber of the o

urren
es of the union. Therefore, we 
on
lude(T 0�; C 0�)��S1[S2�� = (T 01�; C 01�)��S1�� [� (T 02�; C 02�)��S2��f[a�b�=a��℄g. 262



The following proposition shows the safeness of the abstra
t normalisation fun
tion Æ�. Noti
ethat a is the root of Æ aP so that the abstra
tion �� assigns � as father of a�. It is thereforene
essary to repla
e � with b�.Proposition B.7 Let P be a well-labeled pro
ess and a 2 A su
h that a is fresh for P . We have��(Æ aP )f[a�b�=a��℄g��Æ� a�b�P �.Proof: The proof pro
eeds by indu
tion on the stru
ture of P using the de�nition of Æ� (Table6). We show the most interesting 
ases.� Assume that P = 
[P1℄. We haveÆ aP = (f
ag; ;) [ Æ 
P1.By Proposition A.13, Æ aP is well-labeled state. Moreover, we observe that Æ 
P1 is a sub-treeof (f
ag; ;) with root 
. Thus, by Lemma B.6 we have��(Æ aP ) = ��((f
ag; ;))[���(Æ 
P1)f[
�a�=
��℄g.By indu
tion hypothesis we have��(Æ 
P1)f[
�a�=
��℄g��Æ� 
�a�P �1 .Moreover, by de�nition of �� we have ��((f
ag; ;)) = (f
�a��g; ;).Therefore, we have ��(Æ aP )��(f
�a��g; ;)[�Æ� 
�a�P �1 .We now observe that the repla
ement f[a�b�=a��℄g 
annot a�e
t Æ� 
�a�P �1 be
ause theabstra
t topology of a single state is a tree. Therefore, we have��(Æ aP )f[a�b�=a��℄g��(f
�a��g; ;)f[a�b�=a��℄g[�Æ� 
�a�P �1 .We 
on
lude be
ause by de�nition of Æ� we haveÆ� a�b�P � = (f
�a�b� g; ;)[�Æ� 
�a�P �1 .� Assume that P = (�n�P1) . We haveÆ aP = Æ a(P1[n̂i=n℄)where n̂i = HLI (�) and � = `i.Sin
e P is well-labeled, then � 62 �(P1). Therefore, P1[n̂i=n℄ is well-labeled, and by indu
tionhypothesis we have��(Æ a(P1[n̂i=n℄))f[a�b�=a��℄g��Æ� a�b���(P1[n̂i=n℄).Let P � = ��(P ) = (�n��) P �1 . By de�nition of �� we have ��(P1[n̂i=n℄) = P �1 [n̂=n℄. Nowwe use HL�(��) = n̂ and we obtain by de�nition of Æ�Æ� a�b�P � = Æ� a�b�P1�[n̂=n℄.63



2The following lemma is the 
ore of the proof of safeness; it states the agreement between
on
rete and abstra
t transitions.Lemma B.8 Let S; S0 2 S be well-labeled states. For any S 7! S0 there exists an abstra
t stateS0�, su
h that ��(S)7!�S0� and ��(S0)��S0�.Proof: The proof is by 
ases on the rule applied to obtain the transition S 7! S0. One of therules Bang, In, Out and Open of Table 5 
ould have been applied. Assume that S = (T;C), byde�nition of �� (De�nition 5.5), we have ��(S) = (T �; C�) = (T 0�; C 0�)��S�� whereT 0� = f ab
 j ab; b
 2 TgC 0� = f abP j ab 2 T; aP 2 Cg.As usual we use a� to denote the abstra
t version of a, that is a��S��. Similarly, for the otherambients and pro
esses.Bang It means that a!P 2 C and that S0 = S [ Æ anewS(P ).By de�nition of �� we have a�b� !P � 2 C�, where b is the father of a in S, i.e. either ab 2 T ,or a is the root of T and b = �. Hen
e, by applying rule Bang�, we obtain a transition��(S)7!�S0� where S0� = ��(S) [� Æ� a�b�new!(P �).It remains to show that ��(S0)��S0�, that is��(S [ Æ anewS(P ))����(S) [� Æ� a�b�new!(P �).We observe that Æ anewS(P ) is a sub-tree of S with root a. Hen
e, by Lemma B.6, we have��(S [ Æ anewS(P )) = ��(S)[���(Æ anewS(P ))f[a�b�=a��℄g.By Proposition B.7 we have also��(Æ anewS(P ))f[a�b�=a��℄g��Æ� a�b���(newS(P )).We now observe that the fun
tion new! gives multipli
ity ! to any label of P �. It meansthat Æ� a�b���(newS(P ))��Æ� a�b�new!(P �).We therefore 
on
lude��(Æ anewS(P ))f[a�b�=a��℄g��Æ� a�b�new!(P �).64



In It means that ab; m�b 2 T and t = ainm
 .P 2 C, where a 6= m� and a 6= �. Moreover,S0 = Æ aP [ ((T n f abg) [ f am�g; C n ftg).By de�nition of �� we have a�b�inm
� .P � 2 C�, sin
e b is the father of a ( ab 2 T ).Moreover, it is immediate to 
he
k that there exists 
� su
h that a�b�
� ; m��b�
� 2 T �.Noti
e that, sin
e a 6= �, either 
 is the father of b in T , or b = � and 
� = >, or b is theroot of T and 
� = �.We now observe that the side 
ondition of rule In� is satis�ed (if a� = m`1 then �� 6= `1).Sin
e a 6= m�, there are two 
ases: either a = k� or a = m� with � 6= �. In the former 
asethe side 
ondition is immediately satis�ed. In the latter 
ase it depends on whether � and �di�er in the indexes only. In parti
ular, when � = `j and � = `h for indexes j; h, su
h thatj 6= h, the side 
ondition is satis�ed, be
ause �� = �� = `! by de�nition of the abstra
tion.By applying rule In�, we obtain a transition ��(S)7!�S0� whereS0� = Æ� a�m�� P � [� S�2S�2 = ��(S) [� (T �[�f a�m�� b�g; C�n�ft�g)f[a�m��=a�b� ℄g .It remains to show that ��(S0)��S0�, that is��(Æ aP [ ((T n f abg) [ f am�g; C n ftg))��S0�.We observe that Æ aP is a sub-tree of S0 with root a and that the father of a in S0 is m�.Hen
e, by Lemma B.6, we have��(S0) = ��(Æ aP )f[a�m��=a��℄g [� S�1S�1 = ��((T n f abg) [ f am�g; C n ftg).By Proposition B.7 we have also��(Æ aP ) f[a�m��=a��℄g��Æ� a�m��P �.Hen
e, to 
on
lude it is enough to show that S1���S2�, that is��((T n f abg) [ f am�g; C n ftg)����(S) [� (T �[�f a�m�� b�g; C�n�ft�g)f[a�m��=a�b� ℄g.In the following we assume that Si� = (Ti�; Ci�) for i 2 f1; 2g (we re
all also that ��(S) =(T �; C�) = (T 0�; C 0�)��S��).� We show T �1��T �2 . Let d�e�f� 2 T1�, by de�nition of �� we have de; ef 2 (T n f abg)[f am�g. There are several 
ases to 
onsider depending on how the ambient a, whosefather has 
hanged, is involved.Assume that none of d� and e� is equal to a�. It is easy to 
he
k that de; ef 2 T .Hen
e, we have d�e�f� 2 T � and, 
onsequently, also d�e�f� 2 T2�.65



Assume that d� = a�. Sin
e m�b; am� 2 (T n f abg) [ f am�g then e� = m�� andf� = b�. We 
on
lude be
ause a�m��b� 2 T2�.Assume that e� = a�. It means that f� = m�� as am� 2 (T nf abg)[f am�g. Therefore,we have da; ab 2 T and d�a�b� 2 T �. Moreover , we have d�a�m�� 2 T �f[a�m��=a�b� ℄gand, 
onsequently, d�a�m�� 2 T2�.� We show C�1��C2� by 
onsidering a generi
 element d�e�Q 2 C�1 . The proof is similarto the one shown for the topology; the only interesting 
ase is when the pro
ess Q islo
al to a, that is d� = a� and e� = m��. By de�nition of �� it means that aQ 2 Cnftgand am� 2 (T n f abg) [ f am�g, and 
onsequently aQ 2 C and ab 2 T . By de�nitionof �� we obtain a�b�Q� 2 C�. Now, we use the de�nition of n�; there are two 
asesdepending on whether the label 
 is either `01 or `0!.When 
 = `0! we haveC�n�ft�g = C�. Sin
e a�b�Q� 2 C� then we 
on
lude a�m��Q� 2C�n�ft�gf[a�m��=a�b� ℄g.When 
 = `01 we have C�n�ft�g = C� n ft�g. We observe that it 
annot be the 
asethat Q� = t�, as 
 = `1 shows that there is only obje
t with label 
. Therefore, wehave a�b�Q� 2 C�n�ft�g. We then 
on
lude as before.Out Similar to the 
ase of rule In� above.Open It means that m�a 2 T and t = aopenm
 .P 2 C, where a 6= m�. Moreover,S0 = Æ aP [ ((T n f m�ag); (C n ftg))f[a=m�℄gBy de�nition of �� we have a�b�openm�� .P 2 C�, where b is the father of a in T , i.e. eitherab 2 T or a is the root of T and b = �. Moreover, sin
e m�a 2 T we have also m��a�b� 2 T �.We observe that the side 
ondition of rule Open� is satis�ed sin
e a 6= m� (by applying areasoning similar to that for In). Hen
e, by applying rule Open�, we obtain a transition��(S)7!�S0� whereS0� = Æ� a�b�P � [� ��(S) [� ��(S)f[a�b�=m��a� ℄gf[
a�=
m�� ℄gIt remains to show that ��(S0)��S0�, that is��(Æ aP [ ((T n f m�ag); (C n ftg))f[a=m�℄g)��S0�.We observe that Æ aP is a sub-tree of S with root a. Hen
e, by Lemma B.6, we have��(S0) = ��(Æ aP )f[a�b�=a��℄g [� ��(((T n f m�ag); (C n ftg))f[a=m�℄g).By Proposition B.7 we have also��(Æ aP ) f[a�b=a��℄g��Æ� a�b�P �.Therefore, to 
on
lude it is enough to show that��(((T n f m�ag); (C n ftg))f[a=m�℄g)����(S) [� ��(S)f[a�b�=m��a� ℄gf[
a�=
m�� ℄g.66



This 
an be shown following the reasoning used for the similar in
lusion in rule In above. Itis worth giving some details only about the substitutions. The substitution f[a�b�=m��a� ℄gguarantees that the opening ambient a a
quires any ambient and pro
ess lo
al to m�. Sim-ilarly, the substitution f[
a�=
m�� ℄g guarantees that the removal of m� is propagated also tothe pro
esses and ambients lo
al to an ambient, whi
h is a son of m�. 2We 
an now prove the main result, that is Lemma 5.8. We re
all its assertion for 
larity:Let S2 2 S and S\ 2 S\. We have��(	S2(S\))��	���(S2)(��(S\)).Proof: [of Lemma 5.8℄ We �rst noti
e that, by de�nition of �, when S1 � S2 we have ��(S1) =��(S2). Moreover, for any S1 7! S01 we have S2 7! S02 su
h that S01 � S02. This observation permitsus to simplify the proof by using, with an abuse of notation, S 2 S\ in pla
e of [S℄ 2 S\. Byde�nition of 	S2 (De�nition 4.9) we therefore have	S2(S\) = f[S2℄g [ [S2fS3jS1 7!S3; S12S\gf[S℄g.Thus, by 
ontinuity of �� (Proposition B.3) and using ��(f[S2℄g) = ��(S2) and ��(f[S℄g) = ��(S),we obtain ��(	S2(S\)) = ��(S2)[�[�S2fS3jS1 7!S3; S12S\g��(S).By Lemma B.8 we have that, for ea
h S1 2 S\ and for ea
h S1 7! S3, there exists ��(S1)7!�S�3su
h that ��(S3)��S�3 . Sin
e fS1g � S\, then by monotoni
ity of �� (Proposition B.3) wehave ��(fS1g) = ��(S1)����(S\). Hen
e, by Lemma B.4, we have also ��(S\)7!�S�4 su
h that��(S3)��S�3��S�4 .We 
on
lude, be
ause by De�nition of 	���(S2) (De�nition 5.7), we have	���(S2)(��(S\)) = ��(S2)[�[�S�2fS�3 j��(S\)7!�S�3gS�. 2B.2 Se
ond abstra
tionWe �rst show that the pair of fun
tions (�Æ; 
Æ) forms a Galois 
onne
tion between hS�;��i andhSÆ;�i (Theorem 6.4).Proposition B.9 The abstra
t domain hSÆ;�i is a 
omplete latti
e.Proof: Straightforward by Proposition B.1. 2The following proposition states the basi
 properties of the 
on
retization and abstra
tion fun
-tions. 67



Proposition B.10 Fun
tion �Æ : hS�;��i ! hSÆ;�i is monotoni
 and 
ontinuous and fun
tion
Æ : hSÆ;�i ! hS�;��i is monotoni
.Proof: Trivial by De�nition 6.3. 2The properties stated above are enough to prove Theorem 6.4.Proof: [of Theorem 6.4℄ We show that (�Æ; 
Æ) is a Galois 
onne
tion (see De�nition 2.1). ByPropositions B.2 and B.9 both abstra
t domains are 
omplete latti
es. Also, by Proposition B.10both �Æ and 
Æ are monotoni
. Hen
e, it remains two show that, for SÆ 2 SÆ and S� 2 S�, wehave S���
Æ(�Æ(S�))�Æ(
Æ(SÆ)) � SÆBoth assertions follow straightforwardly from De�nition 6.3. We have S���
Æ(�Æ(S�)) sin
e, byde�nition of 
Æ and �Æ, 
Æ(�Æ(S�)) =[�fS0� j �Æ(S0�) � �Æ(S�)g.Moreover, by de�nition of 
Æ and �Æ and by 
ontinuity of �Æ (Proposition B.10) , we have�Æ(
Æ(SÆ)) = �Æ([�fS� j �Æ(S�) � SÆg) =[�Æ(fS� j �Æ(S�) � SÆg).By de�nition of least upper bound on a 
omplete latti
e we 
on
lude therefore[�Æ(fS� j �Æ(S�) � SÆg) � SÆ. 2We now show the safeness of the se
ond abstra
tion (Lemma 6.6). The proof uses someauxiliary lemmata similar to those shown for the �rst abstra
tion.Lemma B.11 Let SÆ1 ; SÆ2 2 SÆ be well-labeled abstra
t states su
h that SÆ1 � SÆ2 . if SÆ1 7!ÆS0Æ1, thenthere exists a transition SÆ2 7!ÆS0Æ2, su
h that S0Æ1�ÆS0Æ2.Proof: The proof is straightforward by 
ases on the rules of Table 8. 2Lemma B.12 Let SÆ 2 SÆ. The fun
tion 	ÆSÆ : hSÆ;�i ! hSÆ;�i is monotoni
.Proof: This follows from Lemma B.11 using De�nition 6.5. 2To simplify the notation we use the following 
onvention: aÆ denotes the abstra
t version ofa, that is a�Æ where �Æ is the renaming whi
h forgets multipli
ities (i.e. �Æ(`1) = �Æ(`!) = `.)Similarly for pro
esses P Æ is the abstra
t version of P .68



Proposition B.13 Let P be a well-labeled abstra
t pro
ess. We have�Æ(Æ� abP ) = ÆÆ aÆP Æ.Proof: The proof is easy pro
eeding by indu
tion on the stru
ture of P and using the de�nitionof �Æ (De�nition 6.3). We re
all that�Æ((T �; C�)) = (f ab j ab
 2 T �g; f aP j abP 2 C�g)�Æ.Sin
e fun
tion �Æ removes the partial topology, the information that b is father of a is lost. 2Lemma B.14 Let S�; S0� 2 S� be well-labeled abstra
t states. For any S� 7!�S0� there exists anabstra
t state S0Æ, su
h that �Æ(S�)7!ÆS0Æ and �Æ(S0�) � S0Æ.Proof: The proof is by 
ases on the rule applied to obtain the transition S� 7!�S0�. One of therules Bang�, In�, Out� and Open� of Table 7 
ould have been applied. Let S� = (T �; C�) and�Æ(S�) = (T Æ; CÆ). We re
all that, by de�nition of �Æ (De�nition 6.3), we have�Æ(S�) = (f ab j ab
 2 T �g; f aP j abP 2 C�g)�ÆBang� It means that ab !P 2 C� and thatS0� = S� [� ÆÆ abnew!(P ).By de�nition of �Æ we derive that aÆ !P Æ 2 CÆ. Hen
e, by applying rule BangÆ of Table 8,we obtain a transition �Æ(S�)7!ÆS0Æ whereS0Æ = �Æ(S�) [ ÆÆ aÆP Æ.It remains to show that �Æ(S0�) � S0Æ. By 
ontinuity of �Æ (Proposition B.10) we have�Æ(S0�) = �Æ(S�) [ �Æ(Æ� abnew!(P )).We noti
e that, sin
e the abstra
tion �Æ forgets any multipli
ity, we have�Æ(Æ� abnew!(P )) = �Æ(Æ� abP ).We 
on
lude, be
ause by Proposition B.13 we have�Æ(Æ� abP ) = ÆÆ aÆP Æ.In� It means that ab
 ; m�b
 2 T � and abinm�.P 2 C�, and thatS0� = S� [� Æ� am�P [� (T � [ f amb�g; C�n�f
g)f[am�=ab℄g.By de�nition of �Æ we have that aÆbÆ ; m�ÆbÆ 2 T Æ and aÆinm�Æ .P Æ 2 CÆ. Hen
e, byapplying rule InÆ of Table 8, we obtain a transition �Æ(S�)7!ÆS0Æ whereS0Æ = �Æ(S�) [ ÆÆ aÆP Æ [ (f aÆm�Æg; ;).69



It remains to show that �Æ(S0�) � S0Æ. By 
ontinuity of �Æ (Proposition B.10) we have�Æ(S0�) = �Æ(S�) [� �Æ(Æ� am�P ) [� �Æ((T � [ f amb�g; C�n�f
g)f[am�=ab℄g).By Proposition B.13 we have that�Æ(Æ� am�P ) � ÆÆ aÆP Æ.We observe that�Æ((T � [ f amb�g; C�n�f
g)f[am�=ab℄g) = �Æ((T � [ f amb�g; C�n�f
g)In fa
t, the operation of repla
ement only a�e
ts the partial topology whi
h is removed bythe abstra
tion �Æ. Furthermore, we have also using the 
ontinuity of �Æ and the de�nitionof n� �Æ((T � [� f amb�g; C�n�f
g) � �Æ((T � [ f amb�g; C�) = �Æ(S�) [ �Æ(( amb� ; ;)).Sin
e �Æ(( amb� ; ;)) = (f aÆm�Æg; ;) we 
on
lude that�Æ((T � [ f amb�g; C�n�f
g)f[am�=ab℄g) � �Æ(S�) [ (f aÆm�Æg; ;).Out� The proof is similar to that of rule In� above.Open� It means that m�ab 2 T � and abopenm�� .P 2 C� and thatS0� = S� [� Æ� abP [� S�f[ab=m�a℄gf[
a=
m� ℄g.By de�nition of �Æ we have m�ÆaÆ 2 T Æ and aÆopenm�Æ .P Æ 2 CÆ. Hen
e, by applying ruleOpenÆ of Table 8, we obtain a transition �(S�)7!ÆS0Æ whereS0Æ = �Æ(S�) [ ÆÆ aÆP Æ [ �Æ(S�)f[aÆ=m`0 ℄g.It remains to show that �Æ(S0�) � S0Æ. By 
ontinuity of �Æ (Proposition B.10) we have�Æ(S0�) = �Æ(S�) [ �Æ(Æ� abP ) [ �Æ(S�f[ab=m�a℄gf[
a=
m� ℄g).By Proposition B.13 we have that�Æ(Æ� abP ) � ÆÆ aÆP Æ.We observe also that, sin
e the abstra
tion �Æ forgets the partial topology, we have�Æ(S�f[ab=m�a℄gf[
a=
m� ℄g) = �Æ(S�f[ab=m�a℄g)�Æ(S�f[ab=m�a℄g) = �Æ(S�)f[aÆ=m`0 ℄g.Hen
e, we 
on
lude that�Æ(S�f[ab=m�a℄gf[
a=
m� ℄g) � �Æ(S�)f[aÆ=m`0 ℄g.70



2We 
an now show the proof of Lemma 6.6. We re
all its assertion:Let S�1 ; S�2 2 S�. We have �Æ(	�S�2 (S�1 )) � 	Æ�Æ(S�2 )(�Æ(S�1 ))Proof: [of Lemma 6.6℄ The proof is analogous to that of Lemma 5.8 using Lemma B.14 andLemma B.11. 2
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P � P (Re
)P � Q; Q� R) P � R (Trans)P j Q� Q j P (Comm)(P j Q) j R� P j (Q j R)P j (Q j R)� (P j Q) j R (Ass)P � Q) (�n�)P � (�n�)Q (Res)P � Q) P j R� Q j R (Par)P � Q) n�[P ℄� n�[Q℄ (Amb)n 6= m) (�n�) (�m�) P � (�m�) (�n�) P (Res-Com)n =2 fn(P )) (�n�) (P j Q)� P j (�n�)QP j (�n�)Q� (�n�) (P j Q) (Res-Par)n 6= m) (�n�)m�[P ℄� m�[(�n�) P ℄m�[(�n�) P ℄� (�n�)m�[P ℄ (Res-Amb)P j 0� P P � P j 0 (Nil-Par)(�n�)0� 0 0� (�n�)0 (Nil-Res)!P � new(P ) j !P (Bang-Bang)Table 10: The relation �
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