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Abstract—Large Language Models (LLMs) have established 

strong baselines for software vulnerability detection, leading to 

a common assumption that their performance can be enhanced 

by augmenting them with supplementary information such as 

Abstract Syntax Trees (ASTs), software metrics, or expanded 

pre-training data. However, the actual efficacy of these 

computationally expensive techniques over a robust LLM 

baseline remains unevaluated, potentially misdirecting research 

efforts. This paper aims to empirically test this "more is better" 

assumption by conducting a large-scale study that evaluates 

four supplementary techniques: multi-task learning, software 

metrics injection, data expansion, and hybrid graph 

representations against a high-performing LLM baseline, 

VulBERTa, on the CodeXGLUE benchmark for C/C++ code. 

Our findings demonstrate that none of these complex techniques 

provides a statistically significant performance improvement, as 

the baseline model's tokenization and attention mechanisms 

already capture the necessary information, rendering the 

additions redundant. However, we identify software metrics 

injection as an effective method for tuning the precision-recall 

trade-off, a critical capability for practitioners needing to 

minimize false negatives. This paper concludes that for LLM-

based vulnerability detection, adding external complexity offers 

diminishing returns, and future efforts should focus on core 

model improvements, supporting a "less is more" approach. 

Keywords — vulnerability detection, software security, 

representation learning, large language models, deep learning 

I. INTRODUCTION 

The introduction of Large Language Models (LLMs) has 
led to significant developments in code intelligence, showing 
strong performance in a range of software engineering tasks, 
from automated program synthesis to bug detection [1]. In the 
critical area of software security, specialized LLMs have 
shown success in identifying vulnerabilities from source code. 
Models such as VulBERTa [2], pre-trained on large datasets 
of C/C++ functions, have established strong baselines and 
achieved success by learning complex patterns from 
sequences of code tokens, outperforming DL approaches on 
benchmarks like CodeXGLUE [3] and D2A [4]. 

This success leads to a common hypothesis in the research 
community: if these models perform well on token sequences, 
their capabilities have the potential to be further enhanced by 
adding more explicit structural and semantic information to 
their input. This "more is better" assumption [20] is motivated 
by known limitations in LLMs, such as challenges in deep 
contextual understanding and a tendency to produce incorrect 
information, which indicates that providing more structured 
knowledge results in more reliable models [1]. As a result, 
several research directions have been explored to improve 
these baseline models. 

• Multi-Task Learning (MTL): Trains a model on the 
main vulnerability detection task and a related 
secondary task (e.g., predicting code complexity) 
simultaneously. This encourages the model to learn 
more generalized and robust features [5]. 

• Domain-Specific Feature Injection: Directly feeds 
expert-crafted software metrics (e.g., lines of code or 
complexity scores) into the model to guide its 
decisions using established indicators of potential 
defects [6]. 

• Data and Model Scaling: Increases the amount of pre-
training data and the model's size, based on the 
principle that a larger, more broadly trained model 
yields better performance on downstream tasks [2]. 

• Hybrid Code Representations: Combines code tokens 
with structural information, such as Abstract Syntax 
Trees (ASTs), to provide a deeper semantic context 
than sequential data alone can offer [7]. 

While these techniques are well-reasoned on their own and 
represent active areas of research, a crucial question remains 
unanswered: Do they deliver a genuine, significant 
performance improvement when applied to a pre-trained LLM 
baseline for vulnerability detection? The assumption of their 
utility is widespread, yet it remains to be systematically 
compared and validated. It is unclear whether these methods 
offer a true enhancement or merely introduce computational 
complexity for little or few benefits. 

This paper presents a large-scale empirical study designed 
to evaluate the "more is better" assumption. We systematically 
assess the efficacy of the four supplementary techniques 
against a strong baseline LLM, VulBERTa, on the task of 
function-level vulnerability detection in C/C++ code. The 
techniques are multi-task learning, software metrics injection, 
pre-training data expansion and hybrid code representations. 
Contrary to common assumptions, evaluation results show 
that these complex supplementary techniques provide few 
significant performance improvements. Our results indicate 
that a well-designed baseline LLM, with an advanced 
tokenization pipeline and a powerful attention mechanism, 
already captures the necessary signals from raw code 
sequences, rendering these elaborate additions mostly 
redundant or, in some cases, even harmful to performance. 

In summary, our main contributions are: 

• A large-scale comparative study to systematically 
evaluate four distinct and popular classes of 
supplementary techniques (multi-task learning, 
software metrics injection, pre-training data 
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expansion, and hybrid graph representations) against 
a unified, high-performing LLM baseline. 

• Our primary findings indicate that there is strong 
empirical evidence that these complex techniques 
failed to outperform a simpler baseline in a 
meaningful way. The findings encourage future 
research efforts to focus more on improving core 
LLM components, such as pre-training objectives and 
tokenization strategies, rather than adding external 
complexity for minor improvements. 

• Supplementary techniques, while less effective in 
improving overall accuracy, are still useful for 
adjusting a model's predictions. For instance, the 
evaluation showed that software metrics injection is a 
useful technique for increasing recall at the cost of 
precision, a practical finding for practitioners who 
need to minimize false negatives. 

II. RELATED WORKS 

A. The Rise of LLMs for Code Intelligence 

The application of deep learning to source code analysis 
has undergone significant evolution. Early approaches 
leveraged architectures like LSTMs and CNNs on token 
sequences, while others explored graph neural networks on 
program structures like ASTs [2]. The introduction of the 
Transformer architecture, however, marked a new phase [8]. 
Transformer-based LLMs such as CodeBERT [9], CoTexT 
[10], and CodeT5 [11] have established themselves as the state 
of the art, achieving strong performance on comprehensive 
benchmarks like CodeXGLUE [3] for a wide range of tasks, 
including code completion, translation, and defect detection. 

B. Recent Advances and Challenges in LLM-based 

Vulnerability Detection 

In recent years, we have seen a surge in research applying 
LLMs to C/C++ vulnerability detection, moving beyond 
initial proofs-of-concept to more rigorous real-world 
evaluations [11]. However, this body of work has also 
highlighted significant challenges, particularly the 
discrepancy between model performance on curated 
benchmarks versus more realistic scenarios. A key theme is 
the critical impact of dataset quality. For instance, Primevul 
dataset [12] was introduced to address data quality issues in 
earlier benchmarks. On this more challenging dataset, a state-
of-the-art 7B parameter model achieved an F1-score of only 
3.09%, a stark contrast to the 68.26% F1-score it achieved on 
the widely used BigVul dataset [13]. 

Other recent evaluations corroborate this trend. The 
SecVulEval [14] benchmark, introduced in 2025 for fine-
grained, statement-level detection, found that the best-
performing model, Claude-3.7-Sonnet, only reached a 23.83% 
F1-score. A comprehensive study of 14 SOTA LLMs on the 
SVEN C/C++ dataset reported a balanced accuracy of just 
54.5%, with researchers concluding that current LLMs 
perform poorly at this task [15]. While many recent LLM-
based approaches show modest results, other deep learning 
techniques continue to be explored. In response to these 
challenges, recent research has focused on providing LLMs 
with richer context. A significant trend is the shift towards 
interprocedural and repository-level analysis, with new 
benchmarks such as ReposVul [19] and VulEval [16] being 
developed in 2024 to incorporate caller-callee relationships. 

Another promising direction is the integration of LLMs with 
traditional static analysis tools.  

C. State-of-the-art in Supplementary Techniques 

The four techniques evaluated in this paper are specifically 
chosen as they represent primary, active research directions 
for enhancing code intelligence models. 

• Multi-Task Learning (MTL): Improves model 
generalization by learning shared representations 
across tasks. In code, it predicts properties of code 
snippets jointly through different classification tasks. 
For example, some studies used MTL to predict token 
for code completion, showing better performance 
than single-task models [5].   

• Software Metrics in ML-based Security: Traditional 
metrics like cyclomatic complexity, lines of code, and 
coupling measures were used before deep learning as 
features for vulnerability prediction models. These 
metrics quantify code complexity, often correlating 
with defects, and have been successfully used with 
various machine learning algorithms to identify 
vulnerable code units.   

• Scaling Laws and Data Expansion: The principle of 
"scaling laws" suggests model performance improves 
predictably with increased size, dataset, and compute 
[1]. Empirical evidence from successive models 
supports this. Chinchilla [17] demonstrated that for 
optimal training, model size and training tokens 
should be scaled equally, revealing that many large 
models were undertrained.   

• Hybrid Code Representations: Hybrid models 
combine token sequences, which show linear code 
flow, with graph representations like ASTs and CFGs 
that explicitly show hierarchical and control-flow 
structures. Recent research highlights the advantages 
of hybrid graphs in tasks like code clone detection [7].  

While the literature contains numerous proposals for 
models that utilize one of these supplementary techniques, a 
significant gap remains in the research. There is a lack of 
rigorous, comparative analysis that evaluates the additional 
benefit of these techniques when added to a single, unified, 
and already high-performing LLM baseline. Prior work has 
focused on demonstrating the viability of a new complex 
model, asking, "Can we build a model with technique X?" 
This paper addresses a more critical and practical question for 
the field: "Given a state-of-the-art LLM, should we add the 
complexity of technique X?" By providing a direct, empirical 
answer, this work aims to help direct future research. 

III. METHODOLOGY 

In this section, we introduce the framework for our large-
scale empirical evaluation of the supplementary techniques. 
The framework consists of four main supplementary 
techniques: a) Multi-task learning,  b) Software metrics 
injection, c) Pre-training data expansion, and d) Hybrid code 
representation, which we implement as modifications to the 
baseline model, allowing for a direct comparison of their 
impact on the baseline model. We describe the baseline model 
and these supplementary techniques in detail in subsequent 
subsections. 



A. The Baseline LLM: VulBERTa-CNN 

The baseline LLM selected for this paper is VulBERTa-

CNN, due to its effectiveness despite its small size. It 

efficiently freezes the pre-trained embedding layer and uses 

it to initialize a Text-CNN architecture. This reduces the 

number of trainable parameters to approximately 2 million, 

significantly accelerating training while keeping the 

knowledge from pre-training in the embeddings. 

A critical component of its success is its advanced 

tokenization pipeline. This pipeline is a language-specific 

pre-processing stage designed to retain as much information 

as possible from the raw source code. This tokenization 

strategy ensures that key syntactic and semantic elements are 

never broken down into subwords, providing the 

Transformer's attention mechanism with a stable and 

informative sequence. The strong performance of these 

baseline models on the CodeXGLUE benchmark sets a high 

standard for any supplementary technique to be considered 

beneficial. 

B. Technique 1: Multi-Task Learning (MTL) 

 This technique aims to improve model generalization by 
training it on multiple related tasks simultaneously. We 
modify the VulBERTa-CNN architecture to incorporate a 
second classification head, allowing it to learn two tasks 
simultaneously. The primary task remains vulnerability 
detection. For the secondary task, we implement five task 
variations to provide different types of contextual information:  

• Frequency of standard API calls: The syntactic 
occurrence of standard C/C++ API or library calls in 
a function. 

• Frequency of security-related API calls: The 
syntactic occurrence of security-related C/C++ API or 
library calls in a function.  

• Frequency of memory-related API calls: The 
syntactic occurrence of memory-related C/C++ API 
or library calls in a function.  

• Frequency of all API calls: The syntactic occurrence 
of all C/C++ API or library calls in a function.  

• Cyclomatic complexity level: The level of 
complexity of a function by measuring the number of 
linearly independent paths in a function.  

 The idea is that by learning a related secondary task, the 
model develops a richer, more generalized internal 
representation. During training, the losses from both tasks 
were averaged and backpropagated through the shared 
network layers, forcing the model to find a balance in learning 
features useful for both objectives. Fig. 2 illustrates the MTL 
architecture by altering the VulBERTa-CNN model. 

 

 

 

 

  

 

 

 

 

C. Technique 2: Software Metrics Injection 

This technique involves supplementing the model with 
external, expert-defined features that have traditionally been 
used to indicate code quality and complexity. We modify the 
baseline VulBERTa-CNN architecture to include a separate 
input path for these numerical metrics. Three distinct sets of 
metrics were extracted for each function:  

• Standard software metrics: Statistical measures 
extracted from the raw C/C++ code using the static 
analysis tool, Scitools Understand (e.g., CountStmt, 

AvgCyclomatic, CountLine). 

• AST-based metrics: Statistical measures extracted 
based on the elements of Abstract Syntax Trees of a 
function using Clang (e.g., NumASTNode, DepthAST, 

NumTokens ). 

• Flawfinder metrics: Statistical measures extracted 
from a full report produced by a Flawfinder run for 
each function (e.g., NumFlagged, L5count, buffer) 

Fig. 1 illustrates the software metrics injection architecture 
in conjunction with the baseline model. The supplementary 
mechanism operates by injecting these numerical features into 
the network immediately before the final classification layers, 
where they are concatenated with the learned representation 
from the CNN. This approach evaluates whether providing 
explicit, quantitative measures of code complexity is able to 
aid the LLM's decision-making process effectively.  

D. Technique 3: Pre-training Data Expansion 

This technique evaluates the "scaling laws" hypothesis, 

which hypothesizes that model performance scales with the 

amount of data. To achieve this, we developed 

VulDeBERTa, a new 125-million-parameter model, by 

implementing two significant modifications to the baseline. 

First, we replace the underlying RoBERTa architecture with 

the more advanced DeBERTa v2 [21], which enhances 

performance through novel techniques such as a disentangled 

attention mechanism and an improved mask encoder. Second, 

we expand the pre-training dataset by over 4.5 times, moving 

from 2.2 million functions to a 10-million-function subset of 

the GitHub-L dataset.  

We also increase the vocabulary with over 800 new 

memory and security-related API call tokens to capture more 

domain-specific knowledge. Finally, we fine-tune 

VulDeBERTa using the same lightweight CNN head as the 

baseline, which allows for a direct comparison to measure the 

impact of the modern architecture and increased data. Table 

I summarizes the main component differences between 

VulBERTa and the newly developed VulDeBERTa model. 

 

 

 

 

 

 

 

 
 

 

 
 

Fig. 2. Multi-task learning architecture with VulBERTa-CNN model 
Fig. 1. Software metrics injection architecture with VulBERTa-CNN model. 

 
 

 

 



TABLE I.  

Main component difference between VulBERTa and VulDeBERTa model 

 

E. Technique 4: Hybrid Code Representation 

 This technique provides the model with a richer 
understanding of code by combining multiple representations. 
We design a new architecture, VulCAS, to process three 
parallel input streams for each function. Fig. 3 visualizes the 
VulCAS architecture. 

The first stream feeds the standard sequence of code 
tokens into the baseline VulBERTa-CNN to capture 
sequential patterns. The other two streams process the 
function's Abstract Syntax Tree (AST) and Control Flow 
Graph (CFG) using separate Graph Attention Networks 
(GATv2), a state-of-the-art architecture for learning from 
graph data. The AST provides hierarchical syntactic structure, 
while the CFG outlines the execution flow.  

Towards the end, the architecture concatenates the outputs 
from all three streams: the token-based CNN and the two 
graph-based GATs, and passes the combined result to a set of 
fully-connected layers for classification. This hybrid approach 
evaluates whether explicitly providing structural and control-
flow information improves upon what the model learns 
implicitly from tokens alone.  

F. Datasets 

This subsection describes the datasets used in this paper. 

They consist of function-level C/C++ source code from 

various codebases, mainly from open-source repositories. All 

datasets mentioned below are in the public domain and 

available for download without restriction. They consist of 

function-level C/C++ source code from various codebases, 

mainly from open-source repositories. All datasets mentioned 

below are in the public domain and available for download 

without restriction. 

1) Devign (CodeXGLUE benchmark): The Devign 

dataset is a real-world software vulnerability detection dataset 

with function-level C/C++ source code from QEMU and 

FFmpeg. It is a binary detection dataset labeled as non-

vulnerable or vulnerable, manually verified by security 

researchers in two rounds. Chosen for its widespread use and 

as a benchmark in the Microsft CodeXGLUE leaderboard. 

2) GitHub-L (BigQuery): The GitHub-L dataset is an 

extensive collection of function-level C/C++ source code 

from various open-source software projects on GitHub. It 

consists of 18 million real-world functions extracted using 

Google BigQuery. Since this dataset aims to collect a large 

number of functions, we avoid using the GitHub API due to 

the rate-limit restrictions. From there, we sample 10 million 

function-level C/C++ source code for the pre-training of the 

VulCAS model. 

 

 

 

 

 

 

 

 

 

 

 

 

IV. EXPERIMENTAL EVALUATION 

In this section, we describe how we evaluate the proposed 
supplementary techniques against the baseline LLM. 

A. Experimental Setup 

1) Hardware and software: We use PyTorch 1.10 with 

CUDA 11.3 on top of Python 3.9 for all experiments. For pre-

training VulDeBERTa, we use the High-Performance 

Computing (HPC) cluster from the university with 32 cores 

Intel Xeon CPU, 192GB RAM, and 8 NVIDIA RTX 6000 

GPUs, each with 24GB of video memory. On top of that, we 

also use Weights & Biases as our training management 

platform to track training sessions throughout the work.  

2) Performance criteria: The primary evaluation metric 

is Accuracy, as it is the standard for the CodeXGLUE 

benchmark. However, to provide a more complete picture of 

performance, we also report Precision, Recall, and F1-score. 

The F1-score is particularly important as it provides a 

balanced measure of a model's performance on imbalanced 

classification tasks like this one. 

3) Dataset: All comparative fine-tuning experiments 

were conducted solely on the Devign dataset. As a key part of 

the Microsoft CodeXGLUE benchmark, Devign is a well-

known and challenging dataset for real-world vulnerability 

detection, ensuring that our results are both reproducible and 

directly comparable to other published work. 

B. Results  

Table II summarises the experimental results on the 
Devign dataset for the vulnerability detection task. We 
highlight the highest score for each evaluation metric. 
Additionally, we also analyze the results using various 
supplementary techniques and discuss them accordingly. 

1) Multi-task learning: None of the multi-task learning 

approaches improved the baseline model's accuracy. The best 

was using cyclomatic complexity as a secondary task, with 

64.16% accuracy, the highest true positives (488), and lowest 

false negatives (767). It also had a recall of 61.11%, about 

10% above the baseline, and the highest F1 score of 61.04%. 

Including complexity as a second task improved positive 

sample detection. The memory API calls task had the most 

false positives and true negatives, with the highest precision 

of 66.95%, but overall accuracy was only 62.62%. 

2) Software metrics injection: The results showed that by 

injecting standard software metrics, we achieved 64.24% 

accuracy and 65.11% precision, the highest among different 

approaches for software metrics injection. Conversely, the 

injection of AST metrics achieved higher recall at 50.52%, 

compared to standard software metrics. Flawfinder metrics 

Components VulBERTa VulDeBERTa (this paper) 

Architecture RoBERTa-base DeBERTa v2-base 

Pre-training data 2.2 million C/C++ 

functions 

10 million C/C++ functions 

Special tokens Standard API calls Standard, memory-related, 

security-related API calls 

Number of special 

tokens 

444 1250 

Pre-training time 5 days 25 days 

 
 

Fig. 3. The VulCAS architecture 



 

TABLE II  

Evaluation results for all supplementary techniques on the CodeXGLUE benchmark. 

also drag VulBERTa-CNN down and reduce its detection 

performance by 1.9%. The results indicated that all software 

metrics injection approaches are still unable to improve the 

detection performance beyond the baseline. 

3) Pre-training data expansion: VulDeBERTa achieved 

64.57% accuracy, slightly better than VulBERTa-CNN by 

0.15%. It achieves better precision due to higher true 

negatives, but at the expense of lower recall and F1 scores 

compared to baselines, indicating a more effective 

classification of non-vulnerable samples than vulnerable 

ones. 

4) Hybrid code representation: The results showed that 

VulCAS achieved the same accuracy as VulDeBERTa, 

which is also higher than the VulBERTa-CNN baseline. 

However, it has a lower precision of 63.35% than the 

baselines. We achieved higher true positives using the hybrid 

representation architecture, resulting in higher recall and F1 

scores compared to both baseline models. This shows that it 

predicts vulnerable samples more accurately than baseline 

models.  

C. Discussion 

We divide our discussion into four research questions 
based on the supplementary techniques proposed in this paper. 

1) RQ1: Do multiple tasks share different information 

learned between them, and do they compete with each other? 

 

Multi-task learning (MTL) aims for tasks to share 

information to improve performance, but it only works if 

tasks don't compete during training. Our Devign dataset 

evaluation shows that MTL was harmful, reducing primary 

vulnerability detection. The secondary task maintained high 

accuracy over 90%, but at the expense of the primary task, 

indicating one-sided learning. Adding a third task worsened 

performance, suggesting the model was reaching capacity. 

Simple tasks dominate and harm others. Even with weighting 

to prioritize vulnerability detection, no improvement was 

seen. Overall, different learning tasks shared information 

among each other but ended up competing, causing negative 

results 

 

2) RQ2: Does injection of software metrics provides 

relevant information to the detection model? 

 

We hypothesize that adding external software metrics would 

improve VulBERTa-CNN's detection accuracy. However, 

the results show that it is less likely and sometimes worsens 

performance compared to the baseline. This indicates that the 

model doesn't benefit from such data, which is common for 

neural networks with tabular inputs, unlike traditional models 

like SVM or Random Forest. These metrics also performed 

poorly alone, with less than 55% accuracy. However, by 

combining standard and Flawfinder metrics, we were able to 

increase true positives and achieve better recall and F1 scores 

than the baseline. While metrics injection does not improve 

overall accuracy, it serves as a valuable control knob. 

Practitioners can use it to deliberately shift a model's behavior 

towards higher recall, a critical function in security settings 

where the cost of a missed vulnerability (a false negative) far 

outweighs that of a false alarm. 

 

3) RQ3: Does increasing pre-training data help in a 

vulnerability detection task? 

 

Based on prior work showing larger datasets benefit Large 

Language Models (LLMs), we increased pre-training data by 
over 450% (from 2.2 to 10 million C/C++ functions) and 

added new API call tokens. We hypothesize this would help 

the model learn a more general code representation and 

improve vulnerability detection. Despite the effort, the results 

were underwhelming. This data increase only improved 

accuracy by 0.15% over the VulBERTa-CNN baseline. The 

abundance of general C/C++ functions is unable to introduce 

better generalization, likely because vulnerability detection 

needs project-specific code, as vulnerabilities have complex, 

hidden patterns best captured within a single project's style. 

Different vulnerability types also hinder detection, making a 

general approach less effective. We conclude that increasing 

general pre-training data does little to improve the baseline 

models for this task. 

 

4) RQ4: Does hybrid code representation introduce 

additional semantic and contextual knowledge to the model? 

 

We combine code tokens, ASTs, and CFGs into a hybrid 

architecture to learn richer syntactic and semantic 

information from C/C++ source code. The ASTs and CFGs 

should provide additional contextual knowledge to improve 

vulnerability detection. However, the hybrid model, 

Supplementary technique Approach FN FP TN TP Accuracy (%) Precision (%) Recall (%) F1 

(%) 

Baseline VulBERTa-CNN 615 357 1120 640 64.42 64.19 51.00 56.84 

Multi-task learning Frequency of standard API calls 580 409 1068 675 63.80 62.26 53.78 57.72 

 Frequency of security API calls 533 503 974 722 62.07 58.93 57.52 58.22 

 Frequency of memory API calls 793 228 1249 462 62.62 66.95 36.81 47.50 

 Frequency of all API calls 581 452 1025 674 62.19 59.86 53.70 56.61 

 Level of cyclomatic complexity 488 491 986 767 64.16 60.97 61.11 61.04 

Software metrics injection Standard software metrics 656 321 1156 599 64.24 65.11 47.73 55.08 

 AST metrics 621 381 1096 634 63.32 62.46 50.52 55.88 

 Flawfinder metrics 519 505 972 736 62.52 59.31 58.65 58.97 

Pre-training data expansion VulDeBERTa 649 319 1158 606 64.57 65.51 48.29 55.60 

Hybrid code representation VulCAS 570 398 1079 685 64.57 63.25 54.58 58.60 



VulCAS, performed similarly to VulDeBERTa, with 64.57% 

accuracy. This is slightly higher than VulBERTa-CNN, 

suggesting that ASTs and CFGs provide only a marginal 

enhancement to code representation. This likely stems from a 

foundational representational mismatch. The VulBERTa 

embeddings are highly optimized to capture semantic 

patterns from sequential code tokens. In contrast, the GATs 

learn structural patterns from graph nodes, and in our setup, 

they were trained from scratch only on the downstream task 

data. Without a joint pre-training phase to harmonize these 

disparate modalities, the model struggles to effectively fuse 

them. The powerful, pre-trained signals from the token-based 

CNN likely overshadow the weaker signals from the graph 

networks, rendering their structural information redundant. 

D. Limitations 

Our work faced two main limitations: resource constraints 

restricted us to models with fewer than 500 million 

parameters on a 24GB GPU, which impacted downstream 

performance improvements demonstrated by research such as 

AlphaCode [18].  

Additionally, our techniques were applied to pre-trained 

VulBERTa embeddings, which were optimized solely for 

source code and created without considering software metrics 

or other objectives. Proper evaluation of these methods would 

require pre-training the model from scratch with integrated 

information. 

In low-signal environments, the supplementary 

techniques we evaluated could provide a more significant 

benefit by injecting necessary structural or expert-defined 

context that the model fails to learn from tokens alone. 

Therefore, while our work questions the utility of added 

complexity on established benchmarks, the value of these 

techniques in more difficult, realistic scenarios remains an 

open question. 

V. CONCLUSION AND FUTURE WORK 

This paper demonstrates that computationally expensive 
supplementary techniques offer diminishing returns for LLM-
based software vulnerability detection. Our large-scale study 
found that four popular techniques which are multi-task 
learning, software metrics injection, data expansion, and 
hybrid representations. These techniques failed to 
significantly outperform a simpler, well-tuned baseline. While 
metrics injection is a useful tool for tuning the precision-recall 
trade-off, we conclude that the path to better performance lies 
in improving core model architectures and pre-training 
objectives, not in adding external complexity. In this domain, 
our evidence suggests that less, is in fact,  more. 

Future work will proceed in two primary directions. First, 
we will focus on scaling and validation by testing the "less is 
more" hypothesis on larger models and across challenging, 
repository-level benchmarks such as VulEval and ReposVul. 
Second, to properly evaluate hybrid methods, we will pursue 
joint pre-training, where a model is trained from scratch with 
integrated graph and token representations to overcome the 
limitations identified in this study.  
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