
ITRS 2004 Preliminary Version

Sequence Types for the π-calculus

Sergio Maffeis 1

Department of Computing,
Imperial College London,

London SW7 2AZ, United Kingdom.

Abstract

We introduce channel sequence types to study finitary polymorphism in the context
of mobile processes modelled in the π-calculus. We associate to each channel a
set of exchange types, and we require that output processes send values of one
of those types, and input processes accept values of any type in the set. Our
type assignment system enjoys subject reduction and guarantees the absence of
communication errors. We give several examples of polymorphism, and we encode
the λ-calculus with the strict intersection type discipline.

Key words: Polymorphism, Mobile Processes, Intersection types,
Union Types, Encodings.

1 Introduction

Intersection types were introduced in the late 1970s by Coppo and Dezani-
Ciancaglini [5], with the aim of defining a typing system for the λ-calculus
where types are preserved by β-conversion, and where every term possessing a
normal form has a meaningful type. Since then, intersection types have been
studied extensively and have found many applications, starting from the work
by Reynolds on polymorphism for the Forsythe programming language [17].

From a programming language perspective, intersection types express a
finite, yet unbounded, amount of information about a program, called finitary
polymorphism. For example, an arithmetic function could be given the type
Int → Int ∩Real → Real, meaning that it is either generic on its arguments
(universal polymorphism) or that it provides two different implementations
in case of the arguments (and result) being either integers or real numbers
(ad-hoc polymorphism). We argue that a similar approach (specifying the set
of types of messages that a channel can exchange) can be adopted to type

1 Email: maffeis@doc.ic.ac.uk. Supported by Microsoft Research Cambridge and an
EPSRC e-Science Grant.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Maffeis

communication in process calculi, and yields more flexibility than the usual
existential/universal approach to polymorphism.

We study finitary polymorphism for the π-calculus [13], a fundamental
formalism to reason about concurrent and mobile processes. A recent study by
Berger, Honda and Yoshida [3] on genericity, highlights how the two endpoints
of a communication channel in π-calculus play a dual role with respect to
universal and existential type quantification. Accordingly, we have found that
intersection and union types for channels cannot be disentangled, and must
be considered at once as what we call sequence types, resorting to the original
name used by Coppo and Dezani-Ciancaglini. We associate to each channel
a set of exchange types, and we require that output processes send values of
one of those types, and input processes accept values of all the types in the
set. We consider also the case when the set is empty, which corresponds to the
constant ω of the intersection type discipline: a channel to which is associated
the empty set cannot be used for communication.

Related Work. Some important intersection type assignment systems are
proposed in [5,7,2]. Strict intersection types are introduced in [19], and their
principal typing properties are studied in [20]. A comparison between some of
these approaches can be found in [21]. Intersection types have been used to
define filter-models for the λ-calculus [2], the π-calculus [8], and a variant of
Mobile Ambients [6]. Anyway, the approach and the aims of [8] are different to
the ones of this paper. In particular the types for the filter model are assigned
to processes, and reflect the process structure quite closely (containing con-
structors for replication, input, matching, parallel composition, etc.), whereas
we give type to channels only, and our types are simply sets representing the
possible exchange types for a channel. Our type system aims at preventing
communication errors, rather than precisely describing the behaviour of terms.

Polymorphism in its various flavours has been studied extensively in the
π-calculus: universal [9,24], predicative [23], existential [18,16] and generic
[3]. A different approach is the one of [10], which defines a sort inference
system based on tuples of input and output sorts (which could resemble our
sequences of types). Their system is incomparable to ours, since it adopts a
nominal rather than a structural approach, it does not enjoy subject reduction,
and in order to prevent communication errors it resorts to an auxiliary notion
of consistent types which rules out, for example, the possibility for a channel to
exchange types with different arities, which can be acceptable in our system.

As far as we are aware, this paper represents the first attempt to study
finitary polymorphism in the context of the π-calculus.

Structure of the Paper. In Section 2 we present the polyadic π-calculus
and its basic types. In Section 3 we introduce sequence types through a type
assignment system which enjoys subject reduction and which guarantees the
absence of communication errors, and we give examples of finitary polymor-

2

Maffeis

phism. In Section 4 we give a type-preserving encoding of the call-by-name
λ-calculus with the strict intersection type discipline into the π-calculus with
sequence types. In Section 5 we conclude with an extended example showing
how sequence types can be used to type inductively-defined polymorphic data
structures.

2 The π-calculus

2.1 Syntax and Semantics

For simplicity, we use the polyadic variant of the π-calculus [13] without the
silent action prefix and mixed choice. Let N be a denumerable set of channel
names, ranged over by x, y, z, w. We use the notation x̃ for the tuple x1, . . . , xn,
and we write x̃n when the specific n is important. Processes are given by

P ::= 0 | P |P | !P | (νx)P | y(x̃).P | y〈x̃〉.P

The empty process is denoted by 0, P |Q is the parallel composition of P
and Q, !P (replication) denotes an unbounded number of copies of P in par-
allel, (νx)P restricts the name x in P , y(x̃).P denotes the process ready to
perform an input along channel y, binding the variables x̃ in P , and y〈x̃〉.P
is the output process ready to pass x̃ along y. Processes are identified up-to
the structural congruence relation ≡, defined as the least congruence relation
satisfying alpha-conversion of bound names, the commutative monoidal laws
for (| ,0), and the axioms reported below

(νz)0 ≡ 0 (νz)(νw)P ≡ (νw)(νz)P

z 6∈ fn(P) ⇒ (νz)(P |Q) ≡ P | (νz)Q !P ≡ P | !P

We use the standard syntactic conventions of omitting trailing zeros in pro-
cesses and writing x.P and x.P for output and input of the empty tuple along
channel x. The reduction semantics is the least binary relation on processes
−→ satisfying the rules given in Table 1. The axiom (Com) is responsible for
the communication of the values z̃n along channel y.

A communication error condition is verified when two processes attempt
to communicate on two end-points of the same channel with different arities.

Definition 2.1 We define the error predicate on processes −† as

P† ⇐⇒ P ≡ (νz̃)(P1 | y(x̃n).R | y〈w̃m〉.Q)

where m 6= n. If it is not the case that P†, we write P 6 †.

2.2 Basic Type Assignment System

The basic Curry-style type assignment system for the π-calculus, as presented
in [18], is based on an environment Γ (a partial function) associating an ex-

3

Maffeis

(Com) y(x̃n).P | y〈z̃n〉.Q −→ P{z̃n/x̃n} | Q

(C-Res)
P −→ Q

(νx)P −→ (νx)Q
(C-Par)

P −→ P ′

P |Q −→ P ′ |Q

(Struct)
N ≡ N ′ N ′ −→ M ′ M ′ ≡ M

N −→ M

Table 1
Reduction Rules

(Par)
Γ ` P Γ ` Q

Γ ` P | Q
(Nil)

Γ ` 0

(Rep)
Γ ` P

Γ ` !P
(Res)

Γ, x : T ` P

Γ ` (νx)P

(B-In)
Γ(z) = [T̃] Γ, x̃ : T̃ ` P

Γ ` z(x̃).P
(B-Out)

Γ(z) = [T̃] Γ(x̃) = T̃ Γ ` P

Γ ` z〈x̃〉.P

Table 2
Basic type assignment system for the π-calculus.

change type to each channel, describing the objects that can be communicated.
The formal definition of basic types and environments is

(B-Types) S, T ::= [T̃]

(Type environments) Γ ::= Γ, x : T | ∅

The statement x : [T̃] means that x is a channel exchanging tuples of values
with the types specified by T̃ . If x̃ = x1, . . . , xn and T̃ = T1, . . . Tn, we use the
shorthand notation x̃ : T̃ for x1 : T1, . . . , xn : Tn. If Γ contains x̃ : T̃ we write
Γ(x̃) = T̃ . The type assignment rules are given in Table 2, and are defined
up-to alpha-conversion of bound names.

It is a well-established result that the basic type system satisfies the stan-
dard property of preserving types under reduction, and guarantees that well-
typed processes will not incur in communication errors.

Theorem 2.2 ([18]) (i) If Γ ` P and P → Q, then Γ ` Q. (ii) If Γ ` P
then P 6 †.

Note that from the Theorem 2.2 and rule (Par), follows that, if P does not

4

Maffeis

contain a communication error in an environment Γ, neither do its derivatives,
nor the systems obtained by composing P in parallel with other processes well-
typed with respect to the same environment.

Throughout the paper we will re-use the symbols `, Γ, S, T : the precise
meaning will always be clear from the context.

3 Channel Sequence Types

3.1 Sequence Type Assignment System

The sequence type assignment system for the π-calculus is a proper extension
of the basic type assignment system. In this new system a channel x can be
assigned a set of types ◦{[T̃1]; . . . ; [T̃n]}, with the dual interpretation that the
type of x is sometimes the intersection [T̃1] ∩ . . . ∩ [T̃n] and sometimes the
union [T̃1] ∪ . . . ∪ [T̃n] of the types in the sequence. This apparently strange
property can be understood considering the duality between the types of a
name when used as an input or as an output studied in [3], and by comparing
the rules (S-In) and (S-Out) below with the classical elimination rules for union
and intersection types in the λ-calculus.

The formal definition of channel sequence types is given by

(S-Types) S, T ::= ◦{[T̃1]; . . . ; [T̃n]}, n ≥ 0

(Type environments) Γ ::= Γ, x : T | ∅

where to each name x is assigned a (possibly empty) set ◦{[T̃1]; . . . ; [T̃n]} of
exchange types, which in turn are channel sequence types. For readability, we
write [T] for the singleton sequence type ◦{[T]}, and we use the reserved name
ω for sequences over the empty set ◦∅, with the intuitive meaning that the
corresponding channel cannot be used for communication. Types of the form
[T̃ , [S̃]] play a special role in encoding the functional behaviour of channels,
and for readability will sometimes be abbreviated by T̃ → S̃.

The type assignment system for sequence types is given by the rules of
Table 2, where the rules (B-In) and (B-Out) are replaced by

(S-In)
Γ(z) = ◦{[T̃1]; . . . ; [T̃n]} ∀i ∈ 1..n . Γ, x̃ : T̃i ` P

Γ ` z(x̃).P

(S-Out)
Γ(z) = ◦{[T̃1]; . . . ; [T̃n]} ∃i ∈ 1..n . Γ(x̃) = T̃i Γ ` P

Γ ` z〈x̃〉.P

Rule (S-In) can be intuitively explained as applying rule (B-In) to every possible
type for channel z, and rule (S-Out) is the dual, obtained using (B-Out) on at
least one of the possible types for the objects of communication.

The type system preserves types under reduction and guarantees that well-
typed processes will not incur in communication errors.

5

Maffeis

Theorem 3.1 (i) If Γ ` P and P → Q, then Γ ` Q. (ii) If Γ ` P then P 6 †.

3.2 Examples

We show how ω can be used to type terms which contain the potential for
errors only in points not reachable during an execution.

Example 3.2 (The relevance of ω) The process x(y).(z〈y〉 | z(w, y).Q) can
be typed if Γ(x) = ω. Under this assumption it is never possible to type
an output prefix with subject x, as rule (S-Out) requires the existence of at
least one exchange type for x. Consequently, the process can never reduce
to one containing a top-level communication error. Conversely, the process
x〈y〉 |x〈y, y〉 can be typed for example for Γ = y : T, x : ◦{[T]; [T, T]}, but
no process attempting an input on x can be composed to this process, since
rule (S-In) imposes two incompatible conditions on the number of variables
bound by channel x. Therefore, the communication error condition cannot be
verified. Both processes above cannot be typed in the usual type systems for
the π-calculus which rule out communication errors.

It should come as no surprise that sequence types can be used to express
polymorphism. Below, we give two concrete examples.

Example 3.3 (Generic polymorphism) The standard definition of a pro-
cess Id behaving like the identity function in π-calculus is given by

!Id(x, y).y〈x〉

A process can send any value v along with a fresh channel z, and receive the
same value v on z. The term above has a well-defined semantics with respect
to both the invocations below

(νz)Id〈a, z〉.z(w).P (νz)Id〈b, z〉.z(w).Q

but if a and b happen to have different types, then their parallel composition
cannot be typed in the basic type system. Intuitively, channel Id should be
typable for all types T such that x : T and y : [T]. Using sequence types,
we can give it a type for any (finite) set of types. For example, we show that
given Γ = {a : T, b : S, Id : ◦{T → T ; S → S}} the composition of the three
processes given above is well-typed:

Γ ` (νz)Id〈a, z〉.z(w).P | (νz)Id〈b, z〉.z(w).Q | !Id(x, y).y〈x〉 (1)

6

Maffeis

We show the interesting part of the derivation:

Γ ` (νz)Id〈a, z〉.z(w).P by (T-Par) (2)

Γ1 = Γ, z : [T], Γ1 ` Id〈a, z〉.z(w).P by (T-Res) (3)

Γ1(Id) = ◦{T → T ; S → S}
Γ1 ` a : T, z : [T]

Γ1 ` z(w).P

 by (S-Out) (4)

Γ ` (νz)Id〈b, z〉.z(w).Q by (T-Par) (5)

Γ2 = Γ, z : [S], Γ2 ` Id〈b, z〉.z(w).Q by (T-Res) (6)

Γ2(Id) = ◦{T → T ; S → S}
Γ2 ` b : S, z : [S]

Γ2 ` z(w).Q

 by (S-Out) (7)

Γ `!Id(x, y).y〈x〉 by (T-Par) (8)

Γ ` Id(x, y).y〈x〉 by (T-Rep) (9)

Γ(Id) = ◦{T → T ; S → S}
Γ, x : T, y : [T] ` y〈x〉
Γ, x : S, y : [S] ` y〈x〉

 by (S-In) (10)

The crucial points are (4), (7) and (10). In the former two cases we need only
check the arguments of communication along Id for one of the possible tuples
T, [T] and S, [S], and in the latter case we have to check that the final output
y〈x〉 is well-typed for both types assumed for x, y, again T, [T] and S, [S].

Example 3.4 (Ad-hoc polymorphism) In this example we show that a
value received on a polymorphic channel y can then be used in two different
ways, depending on its type. In order to do so, we must provide two different
implementations (in this case of the output on z) and guard each of them with
an input (respectively on one and two) used to recognise the specific type of
the polymorphic value (here represented by w). The process

(ν one, two)(y(z, x).(x〈z〉 | one(z).z〈a〉 | two(z).z〈a, a〉) | y〈b, one〉 | y〈c, two〉)

can be typed in the environment

Γ = a : T, b : [T], c : [T, T], y : ◦{[T] → [T]; [T, T] → [T, T]}

Both processes given in Example 3.3 and Example 3.4 can be typed in the
polymorphic system of Turner [18]; in Section 5 we show an example which
cannot be typed in that system.

7

Maffeis

4 Encoding of the λ-calculus

4.1 Strict intersection types for the λ-calculus

We report below a definition of the strict intersection type assignment system
of van Bakel for the λ-calculus, along the lines of [19]. We adapt the definition
from the natural deduction style, and we use sets of types in the intersections
to avoid an explicit definition of equivalence between types. Below, let α be
a type variable.

(Strict Types) τ ::= α | ∩{τ1; . . . ; τn} → τ n ≥ 0

(Strict Intersection Types) σ = ∩{τ1; . . . ; τn} n ≥ 0

(Basis) B ::= B, x : σ | ∅

We denote with ω the empty intersection, and we write τ for ∩{τ}. We denote
a basis by B, which is a partial function from variables to strict intersection
types. Strict derivations are:

(→ E)
B ` M : ∩{τ1; . . . ; τn} → τ N : τ1 . . . N : τn

B ` M N : τ
(n ≥ 0)

(→ I)
B, x : σ ` M : τ

B ` λ x.M : σ → τ
(∩ E)

B(x) = ∩{τ1; . . . ; τn}
B ` x : τi

(n ≥ 1, i ∈ [1..n])

Note that in rule (→ I) x can have a strict intersection type σ. A term M
has type σ with respect to a base B, written B `S M : σ, if σ = ω, or if
σ = ∩{τ1; . . . ; τn} and for all i ∈ [1..n], B ` M : τi. We report below some
interesting properties of this type system (from [19]):

(i) A term M has a normal form if and only if there exists B, σ, not con-
taining ω, such that B `S M : σ.

(ii) A term M has a head normal form if and only if there exists B, τ such
that B ` M : τ .

(iii) A term M is strongly normalizable if and only if there exists B, σ such
that B `S M : σ and ω does not appear in B, σ, or in any step of the
derivation.

4.2 Encoding into the π-calculus

Below we report the untyped encoding of the call-by-name λ-calculus into
the π-calculus, as proposed by Ostheimer and Davie [14]. The encoding is
parametric on a continuation channel a used to communicate the result of
evaluating a term.

[[x]]a = x〈a〉
[[λ x.M]]a = (νf)(a〈f〉 | !f(x, b).[[M]]b)

[[M N]]a = (νb, x)([[M]]b | b(f).(f〈x, a〉 | !x(c).[[N]]c))

8

Maffeis

We give a translation of strict types into sequence types which is a proper
extension of the one for basic types given by Turner [18] (for the purpose of
the encoding we assume to have type variables α also in our type system).

〈〈α〉〉 = α

〈〈∩{τ1; . . . ; τn} → τ〉〉 = [◦{[[〈〈τ1〉〉]]; . . . ; [[〈〈τn〉〉]]}, [〈〈τ〉〉]]

A type variable remains unchanged, whereas a function type is translated in
a channel type containing the encoding of the intersection of the argument
types into a sequence, where each type is a doubly nested channel containing
the encoding of the corresponding argument, and a channel containing the
encoding of the result type. The translation of basis and judgments is given
by

〈〈B, x : ∩{τ1; . . . ; τn}〉〉 = 〈〈B〉〉, x : ◦{[[〈〈τ1〉〉]]; . . . ; [[〈〈τn〉〉]]}
[[B ` M : τ]]a = 〈〈B〉〉, a : [〈〈τ〉〉] ` [[M]]a

The translation preserves types, as stated by the theorem below.

Theorem 4.1 If B ` M : τ then [[B ` M : τ]]a.

Proof. By structural induction on M .

(i) x: if B ` x : τ then rule (∩ E) has been applied, and we know that
B = B′, x : ∩{τ1; . . . ; τn} with τ = τi for some i. We need to show that
〈〈B′〉〉, x : ◦{[[〈〈τ1〉〉]]; . . . ; [[〈〈τn〉〉]]}, a : [〈〈τ〉〉] ` x〈a〉, which follows by rule
(S-Out).

(ii) λ x.M : if B ` λ x.M : ∩{τ1; . . . ; τn} → τ then rule (→ I) has been
applied, and we know that B, x : ∩{τ1; . . . ; τn} ` M : τ . By induc-
tive hypothesis we have 〈〈B〉〉, x : ◦{[[〈〈τ1〉〉]]; . . . ; [[〈〈τn〉〉]]}, b : [〈〈τ〉〉] `
[[M]]b. We need to show that Γ ` (νf)(a〈f〉 | !f(x, b).[[M]]b) for Γ =
〈〈B〉〉, a : [[◦{[[〈〈τ1〉〉]]; . . . ; [[〈〈τn〉〉]]}, [〈〈τ〉〉]]]. By (Res) it suffices to show
that Γ1 = Γ, f : [◦{[[〈〈τ1〉〉]]; . . . ; [[〈〈τn〉〉]]}, [〈〈τ〉〉]] ` a〈f〉 | !f(x, b).[[M]]b.
By rules (Par) and (S-Out) the term on the left is well typed. By rules
(Par) and (Rep) we need to show that Γ1 ` f(x, b).[[M]]b. Since f is a
unary intersection, applying rule (S-In) it is enough to show that Γ1, x :
◦{[[〈〈τ1〉〉]]; . . . ; [[〈〈τn〉〉]]}, b : [〈〈τ〉〉] ` [[M]]b, which follows by applying
weakening to the inductive hypothesis.

(iii) M N : if B ` M N : τ then rule (→ E) has been applied, and we have
both B ` M : ∩{τ1; . . . ; τn} → τ and, for all i ∈ [1..n], B ` N : τi.
The reasoning is similar to the previous case, the non-trivial point being
the application of rule (S-In) on the subterm x(c).[[N]]c where x has the
intersection type derived from the function argument. The rule requires
to use all the n inductive hypothesis derived from the premises B ` N : τi.

2

Remark 4.2 Theorem 4.1 implies that if B `S M : σ with σ = ∩{τ1; . . . ; τn}
9

Maffeis

and n ≥ 1, then we can type the encoding of M also in π-calculus, by definition
of `S. On the other hand, we cannot type M if σ = ω, because for example in
the case of a variable term we would not have any binding for x in Γ. As noted
by van Bakel, ω is effectively needed to type those subterms which are erased
during the reduction of a term towards its normal form, and which cannot be
typed otherwise. The encoding reflects this property by assigning ω to input
variables which will simply be discarded during reduction since, as explained
in Example 3.2, ω can be used in π-calculus to avoid typing the continuation
of an input which is known never to be evaluated.

The encoding of a lambda-term in π-calculus may receive types which are
not in the image of the encoding of λ-calculus types, because of the free-
dom given by rule (Res). Nevertheless, if we impose the condition that every
derivation in the π-calculus system assigns to restricted names arising from
the encoding of an application some types in the image of λ-types, we can
prove also the converse direction of Theorem 4.1.

Theorem 4.3 If [[B ` M : τ]]a with a derivation assigning to the restricted
names b, x of the encoding of an application respectively types of the form [〈〈ρ〉〉]
and ◦{[[〈〈ρ1〉〉]]; . . . ; [[〈〈ρn〉〉]]}, where ρ is a strict type, then B ` M : τ .

Proof. By induction on M , similar to the proof of Theorem 4.1, using the
condition on the types that can be assumed for restricted names. 2

The previous theorem has the interesting consequence that the properties
(1-3) reported above for the strict type assignment system can be transferred
to the image of λ-terms in π-calculus. Moreover, since the encoding preserves
termination [14], in the case of (3) we obtain a type-based characterisation
of a set of terminating π-processes (those in the image of the encoding) as
large as the set of all the strongly normalising λ-terms. An interesting topic
for further research would be a direct characterisation of the π-calculus terms
typable with sequence types (with and without ω).

Remark 4.4 We have chosen Ostheimer and Davie’s encoding of the call-
by-name (CBN) λ-calculus rather than Milner’s one because the former is
closer to the optimised call-by-value (CBV) encoding used by Turner (already
mentioned in [11]). The two encodings induce different types on π-terms in
the case of simply typed λ-calculus (see [18]), yet enjoy similar properties.
In the case of sequence types, we were not able to define a typed encoding
for the optimised CBV encoding. The problem arises with the encoding of
the variable term, which is [[x]]a = a〈x〉. Given this definition, the types for
the judgment x : ∩{τ1; . . . ; τn} ` x : τi are not preserved since the object
of communication x has more types than the subject a (compare with point
(1) in the proof of Theorem 4.1). We leave it to future work to investigate
Milner’s original CBV encoding.

10

Maffeis

5 Polymorphic Inductive Datatypes

It is well known (see Milner [12]) how to encode data structures in the π-
calculus. For example, we report below the encoding of lists and list operations
as given by Turner [18].

!nil(r).(νl)(r〈l〉 | !l(n, c).n)

!cons(h, t, r).(νl)(r〈l〉 | !l(n, c).c〈h, t〉)
!ccat(l,m, r).(νn, c)(l〈n, c〉.(n.r〈m〉 |

c(h, t).(νs)(ccat〈t,m, s〉 | s(res).cons〈h, res, r〉))

The process (νr)nil〈r〉.r(l).P creates a new empty list l for the continuation
P . If P is in turn (νr)cons〈h, l, r〉.r(m).Q, now Q knows about a list called
m with first element h and with tail the empty list !l(n, c).n. It is possible to
concatenate lists similar to the ones just described using the operation ccat

given above.

In the usual π-calculus approach, recursive types are necessary to type
lists 2 . Moreover, even if all the operations on lists are generic, and work for
data objects of any type, a simple recursive type system for the π-calculus
could type the operations only for one kind of data at a time. For example,
it would rule out the (perfectly reasonable) term

(νintr, strr)(ccat〈intl1, intl2, intr〉 | ccat〈strl1, strl2, strr〉 |P)

where P can receive from intr the concatenation of the two lists of inte-
gers intl1, intl2, and from strr the concatenation of the two lists of strings
strl1, strl2.

In our type system it is possible to typecheck this term, for example in an
environment Γ such that

Γ(ccat) = ◦({IL(h, k) | 0 ≤ h ≤ m, 0 ≤ k ≤ n}
∪ {SL(h, k) | 0 ≤ h ≤ i, 0 ≤ k ≤ j})

Γ(intl1) = IntLn Γ(intl2) = IntLm

Γ(srtl1) = StrLi Γ(strl2) = StrLj

where we have used the abbreviations

IL(h, k) = (IntLh, IntLk) → IntLh+k SL(h, k) = (StrLh, StrLk) → StrLh+k

Sequence types give us both the power to express finitary polymorphism and
inductive data structures.

2 Turner shows in [18] that Church-encoded lists (which can hardly be regarded as list
themselves, since selecting the tail is not a constant-time operation) can be typed in the
polymorphic π-calculus without using recursive types.

11

Maffeis

6 Conclusions and Future Work

We have introduced the notion of sequence types for π-calculus channels, which
play the role of both intersection and union types due to the intrinsic duality
of channel typing. We have shown that a Curry-like type assignment system
enjoys subject reduction and guarantees the absence of communication errors,
and we have given examples of terms typable with this discipline.

We have given a type-preserving encoding of the λ-calculus with strict in-
tersection types, deriving a type-based characterisation of a rather large set
(computationally speaking) of terminating π-terms: those resulting from the
encoding of strongly normalising λ-terms. This gives a hint of the undecid-
ability of our type system.

We have shown that sequence types can be used to type inductively defined,
polymorphic data structures.

We leave it to future work a formal study of principal typing and decidabil-
ity properties. One way to enforce decidability, following Pierce [15], consists
in adopting a typed system (Church-style), annotating restriction and input
variables with types. Alternatively, rank 2 intersection types have been studied
for example in [22] as a decidable restriction of the intersection typing disci-
pline which still enjoys many interesting properties. A corresponding notion
of rank 2 for our system is straightforward to define, and rank 2 intersection
types can be translated into sequence types of the same rank. We conjecture
that an analogous of Theorem 4.1 and Theorem 4.3 holds, but we leave it to
future work to study the formal properties of the restricted subsystem.

Our original motivation to study intersection types was the attempt to
give an expressive structural type-system for the eπ-calculus [4], an extension
of the π-calculus where channels are identified by vector of names (synchro-
nisation vectors). In eπ, a natural choice could be to type a channel with the
intersection of the types of the names constituting the synchronisation vector.
We expect this line of research to be promising, in view of the ability of the
calculus to encode faithfully cryptographic primitives and distributed calculi.

It would also be interesting to study sequence types in the context of
Ambient Calculi, in particular comparing with the work of Amtoft et.al. [1]
on ML-like polymorphism (where principal typing holds only for a restricted
fragment of Ambients), and where the use of shape types may be regarded as
a form of finitary polymorphism.

Apart from the definitions of filter models [8,6] mentioned in the intro-
duction, this work constitutes the first study of intersection types in process
calculi, and we hope that will serve as an inspiration for further research in
the area.

Acknowledgments. This work was inspired by a discussion with Steffen
van Bakel on polyadic-synchronisation types for the eπ-calculus. I am grateful
to the anonymous referees for helpful comments and suggestions.

12

Maffeis

References

[1] Amtoft, T., H. Makholm and J. Wells, Polya: True type polymorphism for mobile
ambients, Technical Report HW-MACS-TR-0015 School of Mathematical and
Computer Sciences Heriot-Watt University. To appear in the Proceedings of
IFIP-TCS’04. (2004).

[2] Barendregt, H., M. Coppo and M. Dezani-Ciancaglini, A filter lambda model
and the completeness of type assignment, Journal of Symbolic Logic 48 (1983),
pp. 931–940.

[3] Berger, M., K. Honda and N. Yoshida, Genericity and the pi-calculus, , 2620.

[4] Carbone, M. and S. Maffeis, On the expressive power of polyadic synchronisation
in π-calculus, Nordic Journal of Computing 10 (2003), pp. 70–98.

[5] Coppo, M. and M. Dezani-Ciancaglini, An extension of the basic functionality
theory for the λ-calculus, Notre-Dame Journal of Formal Logic 21 (1980),
pp. 685–693.

[6] Coppo, M. and M. Dezani-Ciancaglini, A fully abstract model for higherorder
mobile ambients, in: VMCAI ’02, LNCS 2294 (2002), pp. 255–271.

[7] Coppo, M., M. Dezani-Ciancaglini and B. Venneri, Functional characters
of solvable terms, Zeitschrift f ur Mathematische Logik und Grundlagen der
Mathematik (1981), pp. 45–58.

[8] Damiani, F., M. Dezani-Ciancaglini and P. Giannini, A filter model for mobile
processes, Mathematical Structures in Computer Science 9 (1999), pp. 63–102.

[9] Gay, S. J., A sort inference algorithm for the polyadic π-calculus, in: Proceedings
of the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (1993), pp. 429–438.

[10] Liu, X. and D. Walker, A polymorphic type system for the polyadic pi-calculus,
in: Proceedings of the 6th International Conference on Concurrency Theory
(1995), pp. 103–116.

[11] Milner, R., Functions as processes, INRIA RR-1154. (Revised version in
Mathematical Structures in Computer Science 2(2), 1992). (1990).

[12] Milner, R., The polyadic π-calculus: A tutorial, in: Logic and Algebra of
Specification, Springer-Verlag, Heidelberg, 1993 .

[13] Milner, R., J. Parrow and J. Walker, A calculus of mobile processes, I and II,
Information and Computation 100 (1992), pp. 1–40,41–77.

[14] Ostheimer, G. K. and A. J. T. Davie, π-calculus characterisations some practical
λ-calculus reduction strategies, Technical Report CS/93/14, Department of
Mathematical and Computing Sciences, University of St Andrews (1993).

[15] Pierce, B. C., “Programming with Intersection Types and Bounded
Polymorphism,” Ph.D. thesis, Carnegie Mellon University (1991).

13

Maffeis

[16] Pierce, B. C. and D. Sangiorgi, Behavioral equivalence in the polymorphic pi-
calculus, J. ACM 47 (2000), pp. 531–584.

[17] Reynolds, J. C., Preliminary design of the programming language forsythe,
Technical Report CMU-CS-88-159, Carnegie Mellon University (1988).

[18] Turner, D. N., “The Polymorphic Pi-calculus: Theory and Implementation,”
Ph.D. thesis, University of Edinburgh (1995).

[19] van Bakel, S., Complete restrictions of the intersection type discipline,
Theoretical Computer Science (1992), pp. 135–163.

[20] van Bakel, S., Principal type schemes for the strict type assignment system,
Journal of Logic and Computation 3 (1993), pp. 643–670.

[21] van Bakel, S., Intersection type assignment systems, Theoretical Computer
Science (1995), pp. 385–435.

[22] van Bakel, S., Rank 2 intersection type assignment in term rewriting systems,
Fundamenta Informatica 2 (1996).

[23] Vasconcelos, V. T., Predicative polymorphism in pi-calculus, in: Parallel
Architectures and Languages Europe, 1994, pp. 425–437.

[24] Vasconcelos, V. T. and K. Honda, Principal typing schemes in a polyadic pi-
calculus, in: Proceedings of the 4th International Conference on Concurrency
Theory (1993), pp. 524–538.

A Subject reduction and Safety

Lemma A.1 (Strengthening) If Γ, x : T ` P and x 6∈ fn(P) then Γ ` P .

Lemma A.2 (Weakening) If Γ ` P then Γ, x : T ` P for any type T and
any x 6∈ dom(Γ).

Both the previous lemmas follows easily by structural induction on P .

Lemma A.3 (Substitution Lemma) If Γ, x : T ` P and Γ(y) = T then
Γ, x : T ` P{y/x}.

Proof. By induction on the structure of P .

• 0: base case, trivial.

• P |Q: using the inductive hypothesis on P and Q and rule (Par).

• !P : trivial.

• (νz)P : Given Γ, x : T ` (νz)P and Γ(y) = T first of all we alpha convert z
to some fresh name w. By rule (Res), for some type S, we have Γ, x : T, w :
S ` P{w/z}, and by inductive hypothesis Γ, x : T,w : S ` P{w/z}{y/x},
which by (Res) and alpha-conversion gives us Γ, x : T ` (νz)P{y/x}, where
we have used the fact that w is fresh.

14

Maffeis

• z〈w〉.P : by syntactical reasoning, using the inductive hypothesis on the
rightmost precondition for rule (S-Out).

• z(w).P : combining the previous two points.

2

Lemma A.4 (Subject Congruence) If Γ ` P and P ≡ Q then Γ ` Q.

Proof. By induction on the definition of≡. We show the case for (νz)(P |Q) ≡
P | (νz)Q where z 6∈ fn(P), as the other ones are easy. From Γ ` (νz)(P |Q)
by rule (Res) we have, for some type S, that Γ, z : S ` P |Q, by rule (Par) we
have that Γ, z : S ` P and Γ, z : S ` Q, by Lemma A.1 we obtain Γ ` P .
Using (Res) we get Γ ` (νz)Q and by (Par) we conclude with Γ ` P | (νz)Q. The
other direction is symmetric, and uses weakening instead of strengthening. 2

Subject Reduction (Theorem 2.2.i). If Γ ` P and P → Q, then Γ ` Q.

Proof. By induction on the depth of the inference of P → Q.

• (Com): suppose y(x̃n).P | y〈z̃n〉.Q −→ P{z̃n/x̃n} |Q and Γ ` y(x̃n).P | y〈z̃n〉.Q.
By (Par) we have Γ ` y(x̃n).P and Γ ` y〈z̃n〉.Q. By (S-Out) we have
Γ(y) = ◦{[T̃1]; . . . ; [T̃m]}, Γ(z̃) = T̃i, and Γ ` Q. By (S-In) we also have
Γ, x̃ : T̃j ` P for any j, and in particular for i. By repeatedly applying
the substitution lemma (Lemma A.3), we get Γ, x̃ : T̃j ` P{z̃/x̃}, and by
strengthening and (Par), we conclude with Γ ` P{z̃n/x̃n} |Q.

• (C-Res): by (Res), the inductive hypothesis, and again (Res).

• (C-Par): by (Par), the inductive hypothesis, and again (Par).

• (Struct): by Lemma A.4, the inductive hypothesis, and again Lemma A.4.

2

Safety (Theorem 2.2.ii). If Γ ` P then P 6 †.

Proof. We show that for all P , if P† then there is no Γ such that Γ ` P .
By definition of −† we have that P ≡ (νz̃)(P1 | y(x̃n).R | y〈w̃m〉.Q) where
m 6= n. We show by contradiction. Suppose Γ ` P , by Lemma A.4 we would
have that Γ ` (νz̃)(P1 | y(x̃n).R | y〈w̃m〉.Q). Repeatedly using (Res) and (Par)

we reach the two sub-derivations for rules (S-In) and (S-Out) with conclusion,
respectively Γ ` y(x̃n).R and Γ ` y〈w̃m〉.Q. The first condition of both rules
forces y to have some type ◦{[T̃1]; . . . ; [T̃j]}. By the second condition of (S-In)

all the T̃i must have the same arity, precisely n, in order to match with x̃n,
but by the second condition of (S-Out) there must be an index h such that T̃h

has arity m, hence a contradiction since m 6= n by hypothesis. If y has type
ω, then it is not possible to derive the second precondition for (S-Out). 2

15

	Introduction
	The -calculus
	Syntax and Semantics
	Basic Type Assignment System

	Channel Sequence Types
	Sequence Type Assignment System
	Examples

	Encoding of the -calculus
	Strict intersection types for the -calculus
	Encoding into the -calculus

	Polymorphic Inductive Datatypes
	Conclusions and Future Work
	References
	Bibliography
	Subject reduction and Safety

