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Chapter 1

Complex Numbers

This chapter is largely based on Jeremy Bradley’s lecture notes from 2014.

1.1 Introduction

We can see need for complex numbers by looking at the shortcomings of all the
simpler (more obvious) number systems that preceded them. In each case the next
number system in some sense fixes a perceived problem or omission with the previ-
ous one:

N Natural numbers, for counting, not closed under subtraction

Z Integers, the natural numbers with 0 and negative numbers, not closed under
division

Q Rational numbers, closed under arithmetic operations but cannot represent the
solution of all non-linear equations, e.g., x2 = 2

R Real numbers, solutions to some quadratic equations with real roots and some
higher-order equations, but not all, e.g., x2 +1 = 0

C Complex numbers, we require these to represent all the roots of all polynomial
equations.1

Another important use of complex numbers is that often a real problem can be solved
by mapping it into complex space, deriving a solution, and mapping back again: a
direct solution may not be possible or would be much harder to derive in real space,
e.g., finding solutions to integration or summation problems, such as

I =
∫ x

0
eaθ cosbθdθ or S =

n∑
k=0

ak coskθ . (1.1)

1Complex numbers form an algebraically closed field, where any polynomial equation has a root.
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1.1. Introduction Chapter 1. Complex Numbers

1.1.1 Applications

Complex numbers are important in many areas. Here are some:

• Signal analysis (e.g., Fourier transformation to analyze varying voltages and
currents)

• Control theory (e.g., Laplace transformation from time to frequency domain)

• Quantum mechanics is founded on complex numbers (see Schrödinger equa-
tion and Heisenberg’s matrix mechanics)

• Cryptography (e.g., finding prime numbers).

• Machine learning: Using a pair of uniformly distributed random numbers (x,y),
we can generate random numbers in polar form (r cos(θ), r sin(θ)). This can
lead to efficient sampling methods like the Box-Muller transform (Box and
Muller, 1958).2 The variant of the Box-Muller transform using complex num-
bers was proposed by Knop (1969).

1.1.2 Imaginary Number

An entity we cannot describe using real numbers are the roots to the equation

x2 +1 = 0, (1.2)

which we will call i and define as

i :=
√
−1. (1.3)

There is no way of squeezing this into R, it cannot be compared with a real number
(in contrast to

√
2 or π, which we can compare with rationals and get arbitrarily

accurate approximations in the rationals). We call i the imaginary number/unit,
orthogonal to the reals.

Properties From the definition of i in (1.3) we get a number of properties for i.

1. i2 = −1, i3 = i2i = −i, i4 = (i2)2 = (−1)2 = 1 and so on

2. In general i2n = (i2)n = (−1)n, i2n+1 = i2ni = (−1)ni for all n ∈N

3. i−1 = 1
i =

i
i2
= −i

4. In general i−2n = 1
i2n

= 1
(−1)n = (−1)n, i−(2n+1) = i−2ni−1 = (−1)n+1i for all n ∈N

5. i0 = 1
2This is a pseudo-random number sampling method, e.g., for generating pairs of independent,

standard, normally distributed (zero mean, unit variance) random numbers, given a source of uni-
formly distributed random numbers.

2



Chapter 1. Complex Numbers 1.1. Introduction

z = (x, y) = x+ iy
iy

i

x1 Re

Im

Figure 1.1: Complex plane (Argand diagram). A complex number can be represented
in a two-dimensional Cartesian coordinate system with coordinates x and y. x is the real
part and y is the imaginary part of a complex number z = x+ iy.

1.1.3 Complex Numbers as Elements of R2

It is convenient (and correct3) to consider complex numbers

C := {a+ ib : a,b ∈R, i2 = −1} (1.4)

as the set of tuples (a,b) ∈R2 with the following definition of addition and multipli-
cation:

(a,b) + (c,d) = (a+ c,b+ d) , (1.5)
(a,b) · (c,d) = (ac − bd,ad + bc) . (1.6)

In this context, the element i := (0,1) is the imaginary number/unit. With the
complex multiplication defined in (1.6), we immediately obtain

i2 = (0,1)2 = (0,1)(0,1) = −1, (1.7)

which allows us to factorize the polynomial z2 +1 fully into (z − i)(z+ i).
Since elements of R2 can be drawn in a plane, we can do the same with complex
numbers z ∈ C. The plane is called complex plane or Argand diagram, see Fig-
ure 1.1.
The Argand diagram allows us to visualize addition and multiplication, which are
defined in (1.5)–(1.6).

1.1.4 Closure under Arithmetic Operators

Closing R∪{i} under the arithmetic operators +, · as defined in (1.5)–(1.6) gives the
complex numbers, C. To be more specific, if z1, z2 ∈ C, then z1 + z2 ∈ C, z1 − z2 ∈ C,
z1 · z2 ∈ C and z1/z2 ∈ C.

3There exists a bijective linear mapping (isomorphism) between C and R2. We will briefly discuss
this in the Linear Algebra part of the course.

3



1.2. Representations of Complex Numbers Chapter 1. Complex Numbers

z1

z2

z1 + z2

Re

Im

Figure 1.2: Visualization of complex addition. As known from geometry, we simply add
the two vectors representing complex numbers.

1.2 Representations of Complex Numbers

In the following, we will discuss three important representations of complex num-
bers.

1.2.1 Cartesian Coordinates

Every element z ∈ C can be decomposed into

(x,y) = (x,0) + (0, y) = (x,0) + (0,1)(y,0) = (x,0)︸︷︷︸
∈R

+i (y,0)︸︷︷︸
∈R

= x+ iy. (1.8)

Therefore, every z = x + iy ∈ C has a coordinate representation (x,y), where x
is called the real part and y is called the imaginary part of z, and we write x =
<(z), y ==(z), respectively. z = x + iy is the point (x,y) in the xy-plane (com-
plex plane), which is uniquely determined by its Cartesian coordinates (x,y). An
illustration is given in Figure 1.1.

1.2.2 Polar Coordinates

Equivalently, (x,y) can be represented by polar coordinates, r,φ, where r is the
distance of z from the origin 0, and φ is the angle between the (positive) x-axis and
the direction 0z~. Then,

z = r(cosφ+ i sinφ), r ≥ 0, 0 ≤ φ < 2π (1.9)

uniquely determines z ∈ C. The polar coordinates of z are then

r = |z| =
√
x2 + y2 , (1.10)

φ = Argz , (1.11)

where r is the length of 0z~ (the distance of z from the origin) and φ is the argument
of z.

4



Chapter 1. Complex Numbers 1.2. Representations of Complex Numbers

z = (x, y) = r(cosφ+ i sinφ)
iy

i

x

φ

r

Figure 1.3: Polar coordinates.

Re

Im

r

r cosφ

r sinφ

φ

Figure 1.4: Euler representation. In the Euler representation, a complex number z =
r exp(iφ) “lives” on a circle with radius r around the origin. Therefore, r exp(iφ) =
r(cosφ+ i sinφ).

1.2.3 Euler Representation

The third representation of complex numbers is the Euler representation

z = r exp(iφ) (1.12)

where r and φ are the polar coordinates. We already know that z = r(cosφ+ i sinφ),
i.e., it must also hold that r exp(iφ) = r(cosφ+i sinφ). This can be proved by looking
at the power series expansions of exp, sin, and cos:

exp(iφ) =
∞∑
k=0

(iφ)k

k!
= 1+ iφ+

(iφ)2

2!
+
(iφ)3

3!
+
(iφ)4

4!
+
(iφ)5

5!
+ · · · (1.13)

= 1+ iφ−
φ2

2!
−
iφ3

3!
+
φ4

4!
+
iφ5

5!
∓ · · · (1.14)

5



1.2. Representations of Complex Numbers Chapter 1. Complex Numbers

=
(
1−

φ2

2!
+
φ4

4!
∓ · · ·

)
+ i

(
φ−

φ3

3!
+
φ5

5!
∓ · · ·

)
(1.15)

=
∞∑
k=0

(−1)kφ2k

(2k)!
+ i

∞∑
k=0

(−1)kφ2k+1

(2k +1)!
= cosφ+ i sinφ. (1.16)

Therefore, z = exp(iφ) is a complex number, which lives on the unit circle (|z| = 1)
and traces out the unit circle in the complex plane as φ ranges through the real
numbers.

1.2.4 Transformation between Polar and Cartesian Coordinates

Cartesian coordinates Polar coordinates
x, y r, φ

x = r cosφ

y = r sinφ

r =
√
x2 + y2

tanφ = y
x + quadrant

x

y
r

z = x+ iy = r(cosφ+ i sinφ)

Figure 1.5: Transformation between Cartesian and polar coordinate representations of
complex numbers.

Figure 1.5 summarizes the transformation between Cartesian and polar coordinate
representations of complex numbers z. We have to pay some attention when com-
puting Arg(z) when transforming Cartesian coordinates into polar coordinates.

Example: Transformation from Polar to Cartesian Coordinates

Transform the polar representation z = (r,φ) = (2, 2π3 ) into Cartesian coordinates
(x,y).
It is always useful to draw the complex number. Figure 1.6(a) shows the setting. We
are interested in the blue dots. With x = r cosφ and y = r sinφ, we obtain

x = r cos(23π) = −1 (1.17)

y = r sin(23π) =
√
3 . (1.18)

Therefore, z = −1+ i
√
3.

Example: Transformation from Cartesian to Polar Coordinates

Getting the Cartesian coordinates from polar coordinates is straightforward. The
transformation from Cartesian to polar coordinates is somewhat more difficult be-
cause of the argument φ. The reason is that tan has a period of π, which means

6
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x

y

z

φ = 2π
3

r = 2

(a) (r,φ) = (2, 2π3 )

z = 2− 2i

Re

Im

1

(b) (x,y) = (2,−2)

z = −1 + i

Re

Im

1

(c) (x,y) = (−1,1)

z = − 3
2 i

Re

Im

1

(d) (x,y) = (0,−3
2 )

Figure 1.6: Coordinate transformations

that y/x has two possible angles, which differ by π, see Figure 1.7. By looking at the
quadrant in which the complex number z lives we can resolve this ambiguity. Let us
have a look at some examples:

1. z = 2 − 2i. We immediately obtain r =
√
22 +22 = 2

√
2. For the argument,

we obtain tanφ = −22 = −1. Therefore, φ ∈ {34π,
7
4π}. We identify the correct

argument by plotting the complex number and identifying the quadrant. Fig-
ure 1.6(b) shows that z lies in the fourth quadrant. Therefore, φ = 7

4π.

2. z = −1+ i.

r =
√
1+1 =

√
2 (1.19)

tanφ =
−1
1

= −1 ⇒ φ ∈ {34π,
7
4π} . (1.20)

Figure 1.6(c) shows that z lies in the second quadrant. Therefore, φ = 3
4π.

3. z = −32 i.

r = 3
2 (1.21)

tanφ =
−32
0

⇒ φ ∈ {π
2
,
3
2
π} (1.22)

Figure 1.6(d) shows that z is between the third and fourth quadrant (and not
between the first and second). Therefore, φ = 3

2π

7



1.2. Representations of Complex Numbers Chapter 1. Complex Numbers

φ1 φ2 = φ1 + π

Figure 1.7: Tangens. Since the tangens possesses a period of π, there are two solutions
for the argument 0 ≤ φ < 2π of a complex number, which differ by π.

1.2.5 Geometric Interpretation of the Product of Complex Num-
bers

Let us now use the polar coordinate representation of complex numbers to ge-
ometrically interpret the product z = z1z2 of two complex numbers z1, z2. For
z1 = r1(cosθ1 + i sinθ1) and z2 = r2(cosθ2 + i sinθ2) we obtain

z1z2 = r1r2(cosθ1 cosθ2 − sinθ1 sinθ2 + i(sinθ1 cosθ2 + cosθ1 sinθ2))
= r1r2(cos(θ1 +θ2) + i sin(θ1 +θ2)) . (1.23)

1. The length r = |z| = |z1| |z2| is the product of the lengths of z1 and z2.

2. The argument of z is the sum of the arguments of z1 and z2.

This means that when we multiply two complex numbers z1, z2, the corresponding
distances r1 and r2 are multiplied while the corresponding arguments φ1,φ2 are
summed up. This means, we are now ready to visualize complex multiplication, see
Figure 1.8. Overall, multiplying z1 with z2 performs two (linear) transformations on
z1: a scaling by r2 and a rotation by φ2. Similarly, the transformations acting on z2
are a scaling by r1 and a rotation by φ1.

1.2.6 Powers of Complex Numbers

We will encounter situations where we need to compute powers of complex numbers
of the form zn. For this, we can use some advantages of some representations of
complex numbers. For instance, if we consider the representation using Cartesian
coordinates computing zn = (x + iy)n for large n will be rather laborious. However,
the Euler representation makes our lives a bit easier since

zn = (r exp(iφ))n = rn exp(inφ) (1.24)

8
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z2

z1

Re

Im

z1z2

Figure 1.8: Complex multiplication. When we multiply two complex numbers z1, z2,
the corresponding distances r1 and r2 are multiplied while the corresponding arguments
φ1,φ2 are summed up.

z = x+ iy

Re

Im

z = x− iy

Figure 1.9: The complex conjugate z is a reflection of z about the real axis.

can be computed efficiently: The distance r to the origin is simply raised to the
power of n and the argument is scaled/multiplied by n. This also immediately gives
us the result

(r(cosφ+ i sinφ))n = rn(cos(nφ) + i sin(nφ)) (1.25)

which will later (Section 1.4) know as de Moivre’s theorem.

1.3 Complex Conjugate

The complex conjugate of a complex number z = x+iy is z = x−iy. Some properties
of complex conjugates include:

1. <(z) =<(z)

2. =(z) = −=(z)

3. z+ z = 2x = 2<(z) ∈R

9



1.3. Complex Conjugate Chapter 1. Complex Numbers

4. z − z = 2iy = 2i=(z) is purely imaginary

5. z1 + z2 = z1 + z2

6. z1z2 = z1 z2. This can be seen either by noting that the conjugate operation
simply changes every occurrence of i to −i or since

(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + y1x2) , (1.26)
(x1 − iy1)(x2 − iy2) = (x1x2 − y1y2)− i(x1y2 + y1x2) , (1.27)

which are conjugates. Geometrically, the complex conjugate z is a reflection of
z where the real axis serves as the axis of reflection. Figure 1.9 illustrates this
relationship.

1.3.1 Absolute Value of a Complex Number

The absolute value (length/modulus) of z ∈ C is |z| =
√
zz, where

zz = (x+ iy)(x − iy) = x2 + y2 ∈R. (1.28)

Notice that the term ‘absolute value’ is the same as defined for real numbers when
=(z) = 0. In this case, |z| = |x|.
The absolute value of the product has the following nice property that matches the
product result for real numbers:

|z1z2| = |z1| |z2|. (1.29)

This holds since

|z1z2|2 = z1z2z1z2 = z1z2z1 z2 = z1z1z2z2 = |z1|2|z2|2. (1.30)

1.3.2 Inverse and Division

If z = x+ iy, its inverse (reciprocal) is

1
z
=
z
zz

=
z

|z|2
=
x − iy
x2 + y2

. (1.31)

This can be written z−1 = |z|−2z, using only the complex operators multiply and add,
see (1.5) and (1.6), but also real division, which we already know. Complex division
is now defined by z1/z2 = z1z

−1
2 . In practice, we compute the division z1/z2 by ex-

panding the fraction by the complex conjugate of the denominator. This ensures that
the denominator’s imaginary part is 0 (only the real part remains), and the overall
fraction can be written as

z1
z2

=
z1z2
z2z2

=
z1z2
|z2|2

(1.32)

10



Chapter 1. Complex Numbers 1.4. De Moivre’s Theorem

Geometric Interpretation of Division

When we use the Euler representations of two complex numbers z1, z2 ∈ C, we can
write the division as

z1
z2

= z1z
−1
2 = r1 exp(iφ1)

(
r2 exp(iφ2)

)
=
r1
r2

exp(i(φ1 −φ2)) . (1.33)

Geometrically, we divide r1 by r2 (equivalently: scale r1 by 1
r2

) and rotate z1 by −φ2.
This is not overly surprising since the division by z2 does exactly the opposite of
a multiplication by r2. Therefore, looking again at Figure 1.8, if we take z1z2 and
divide by z2, we obtain z1.

Example: Complex Division

Bring the following fraction into the form x+ iy:

z = x+ iy =
3+2i
7− 3i

(1.34)

Solution:

3+2i
7− 3i

=
(3+2i)(7 + 3i)
(7− 3i)(7 + 3i)

=
15+23i
49+9

=
15
58

+ i
23
58

(1.35)

Now, the fraction can be written as z = x+ iy with x = 15
58 and y = 23

58 .

1.4 De Moivre’s Theorem

De Moivre’s theorem (or formula) is a central result because it connects complex
numbers and trigonometry.

Theorem 1 (De Moivre’s Theorem)
For any n ∈N

(cosφ+ i sinφ)n = cosnφ+ i sinnφ (1.36)

The proof is done by induction (which you will see in detail in the course Reasoning
about Programs). A proof by induction allows you to prove that a property is true for
all values of a natural number n. To construct an induction proof, you have to prove
that the property, P (n), is true for some base value (say, n = 1). A further proof is
required to show that if it is true for the parameter n = k, then that implies it is also
true for the parameter n = k +1: that is P (k)⇒ P (k +1) for all k ≥ 1. The two proofs
combined allow us to build an arbitrary chain of implication up to some value n =m:

P (1) and (P (1)⇒ P (2)⇒ ·· · ⇒ P (m− 1)⇒ P (m)) |= P (m)

11



1.4. De Moivre’s Theorem Chapter 1. Complex Numbers

Proof 1
We start the induction proof by checking whether de Moivre’s theorem holds for n = 1:

(cosφ+ i sinφ)1 = cosφ+ i sinφ (1.37)

is trivially true, and we can now make the induction step: We assume that (1.36) is
true for k and show that it also holds for k +1.
Assuming

(cosφ+ i sinφ)k = coskφ+ i sinkφ (1.38)

we can write

(cosφ+ i sinφ)k+1 = (cosφ+ i sinφ)(cosφ+ i sinφ)k

= (cosφ+ i sinφ)(coskφ+ i sinkφ) using assumption (1.38)
= (cos(k +1)φ+ i sin(k +1)φ) using complex product (1.23)

which concludes the proof.

1.4.1 Integer Extension to De Moivre’s Theorem

We can extend de Moivre to include negative numbers, n ∈ Z

(cosφ+ i sinφ)n = cosnφ+ i sinnφ

We have tackled the case for n > 0 already, n = 0 can be shown individually. So we
take the case n < 0. We let n = −m for m > 0.

(cosφ+ i sinφ)n =
1

(cosφ+ i sinφ)m

=
1

cosmφ+ i sinmφ
by de Moivre’s theorem

=
cosmφ− i sinmφ
cos2mφ+ sin2mφ

= cos(−mφ) + i sin(−mφ) Trig. identity: cos2mφ+ sin2mφ = 1
= cosnφ+ i sinnφ

1.4.2 Rational Extension to De Moivre’s Theorem

Finally, for our purposes, we will show that if n ∈ Q, one value of (cosφ+ i sinφ)n is
cosnφ + i sinnφ. Take n = p/q for p,q ∈ Z and q , 0. We will use both de Moivre’s
theorems in the following:(

cos
p

q
φ+ i sin

p

q
φ

)q
= cospφ+ i sinpφ (1.39)

= (cosφ+ i sinφ)p (1.40)

12
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Hence cos pqφ+ i sin p
qφ is one of the qth roots of (cosφ+ i sinφ)p.

The qth roots of cosφ + i sinφ are easily obtained. We need to use the fact that
(repeatedly) adding 2π to the argument of a complex number does not change the
complex number.

(cosφ+ i sinφ)
1
q = (cos(φ+2nπ) + i sin(φ+2nπ))

1
q (1.41)

= cos
φ+2nπ

q
+ i sin

φ+2nπ
q

for 0 ≤ n < q (1.42)

We will use this later to calculate roots of complex numbers.
Finally, the full set of values for (cos+i sinφ)n for n = p/q ∈Q is:

cos
pφ+2nπ

q
+ i sin

pφ+2nπ
q

for 0 ≤ n < q (1.43)

Example: Multiplication using Complex Products

We require the result of:
(3 + 3i)(1 + i)3

We could expand (1+i)3 and multiply by 3+3i using real and imaginary components.
Alternatively, we could tackle this in polar form (cosφ + i sinφ) using the complex
product of (1.23) and de Moivre’s theorem.

(1 + i)3 = [21/2(cosπ/4+ i sinπ/4)]3

= 23/2(cos3π/4+ i sin3π/4)

by de Moivre’s theorem. 3+3i = 181/2(cosπ/4+ i sinπ/4) and so the result is

181/223/2(cosπ+ i sinπ) = −12

Geometrically, we just observe that the Arg of the second number is 3 times that of
1+ i, i.e., 3π/4 (or 3 ·45◦ in degrees). The first number has the same Arg, so the Arg
of the result is π.
Similarly, the absolute values (lengths) of the numbers multiplied are

√
18 and

√
23,

so the product has absolute value 12. The result is therefore −12.

1.5 Triangle Inequality for Complex Numbers

The triangle inequality for complex numbers is as follows:

∀z1, z2 ∈ C : |z1 + z2| ≤ |z1|+ |z2| (1.44)

An alternative form, with w1 = z1 and w2 = z1 + z2 is |w2| − |w1| ≤ |w2 − w1| and,
switching w1,w2, |w1| − |w2| ≤ |w2 −w1|. Thus, relabelling back to z1, z2:

∀z1, z2 ∈ C :
∣∣∣ |z1| − |z2| ∣∣∣ ≤ |z2 − z1| (1.45)

In the Argand diagram, this just says that “In the triangle with vertices at 0, z1, z2, the
length of side z1z2 is not less than the difference between the lengths of the other
two sides”.

13
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Proof 2
Let z1 = x1 + iy1 and z2 = x2 + iy2. Squaring the left-hand side of (1.45) yields

(x1 + x2)
2 + (y1 + y2)

2 = |z1|2 + |z2|2 +2(x1x2 + y1y2), (1.46)

and the square of the right-hand side is

|z1|2 + |z2|2 +2|z1||z2| (1.47)

It is required to prove x1x2 + y1y2 ≤ |z1||z2|. We continue by squaring this inequality

x1x2 + y1y2 ≤ |z1||z2| (1.48)

⇔ (x1x2 + y1y2)
2 ≤ |z1|2|z2|2 (1.49)

⇔ x21x
2
2 + y

2
1y

2
2 +2x1x2y1y2 ≤ x21x

2
2 + y

2
1y

2
2 + x

2
1y

2
2 + y

2
1x

2
2 (1.50)

⇔ 0 ≤ (x1y2 − y1x2)2 , (1.51)

which concludes the proof.

The geometrical argument via the Argand diagram is a good way to understand the
triangle inequality.

1.6 Fundamental Theorem of Algebra

Theorem 2 (Fundamental Theorem of Algebra)
Any polynomial of degree n of the form

p(z) =
n∑
k=0

akz
k , ak ∈ C, an , 0 (1.52)

possesses, counted with multiplicity, exactly n roots in C.

A root z∗ of p(z) satisfies p(z∗) = 0. Bear in mind that complex roots include all real
roots as the real numbers are a subset of the complex numbers. Also some of the
roots might be coincident, e.g., for z2 = 0. Finally, we also know that if ω is a root
and ω ∈ C\R, then ω is also a root. So all truly complex roots occur in complex
conjugate pairs.

1.6.1 nth Roots of Unity

In the following, we consider the equation

zn = 1 , n ∈N, (1.53)

for which we want to determine the roots. The fundamental theorem of algebra tells
us that there exist exactly n roots, one of which is z = 1.

14
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1 Re

Im

Figure 1.10: Then nth roots of zn = 1 lie on the unit circle and form a regular polygon.
Here, we show this for n = 8.

To find the other solutions, we write (1.53) in a slightly different form using the
Euler representation:

zn = 1 = eik2π , ∀k ∈ Z . (1.54)

Then the solutions are z = ei2kπ/n for k = 0,1,2, . . . ,n− 1.4

Geometrically, all n roots lie on the unit circle, and they form a regular polygon
with n corners where the roots are 360◦/n apart, see an example in Figure 1.10.
Therefore, if we know a single root and the total number of roots, we could even
geometrically find all other roots.

Example: Cube Roots of Unity

The 3rd roots of 1 are z = e2kπi/3 for k = 0,1,2, i.e., 1, e2πi/3, e4πi/3. These are often
referred to as ω1 ω1 and ω3, and simplify to

ω1 = 1

ω2 = cos2π/3+ i sin2π/3 = (−1+ i
√
3)/2 ,

ω3 = cos4π/3+ i sin4π/3 = (−1− i
√
3)/2 .

Try cubing each solution directly to validate that they are indeed cubic roots.

1.6.2 Solution of zn = a+ ib

Finding the n roots of zn = a + ib is similar to the approach discussed above: Let
a+ ib = reiφ in polar form. Then, for k = 0,1, . . . ,n− 1,

zn = (a+ ib)e2πki = re(φ+2πk)i (1.55)

⇒ zk = r
1
n e

(φ+2πk)
n i , k = 0, . . . ,n− 1 . (1.56)

4Note that the solutions repeat when k = n,n+1, . . .
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Example

Determine the cube roots of 1− i.

1. The polar coordinates of 1− i are r =
√
2, φ = 7

4π, and the corresponding Euler
representation is

z =
√
2exp(i 7π4 ) . (1.57)

2. Using (1.56), the cube roots of z are

z1 = 2
1
6 (cos 7π

12 + i sin 7π
12 ) = 2

1
6 exp(i 7π12 ) (1.58)

z2 = 2
1
6 (cos 15π

12 + i sin 15π
12 ) = 2

1
6 (cos 5π

4 + i sin 5π
4 ) = 2

1
6 exp(i 5π4 ) (1.59)

z3 = 2
1
6 (cos 23π

12 + i sin 23π
12 ) = 2

1
6 exp(i 23π12 ) . (1.60)

1.7 Complex Sequences and Series*

A substantial part of the theory that we have developed for convergence of sequences
and series of real numbers also applies to complex numbers. We will not reproduce
all the results here, there is no need; we will highlight a couple of key concepts
instead.

1.7.1 Limits of a Complex Sequence

For a sequence of complex numbers z1, z2, z3, . . ., we can define limits of convergence,
zn→ l as n→∞ where zn, l ∈ C. This means that for all ε > 0 we can find a natural
number N , such that

∀n > N : |zn − l| < ε . (1.61)

The only distinction here is the meaning of |zn − l|, which refers to the complex
absolute value and not the absolute real value.

Example of complex sequence convergence Prove that the complex sequence
zn =

1
n+i converges to 0 as n→∞. Straight to the limit inequality:∣∣∣∣∣ 1

n+ i

∣∣∣∣∣ < ε (1.62)

⇔ |n− i|
n2 +1

< ε (1.63)

⇔
√
(n− i)(n+ i)
n2 +1

< ε (1.64)

⇔ 1
√
n2 +1

< ε (1.65)
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⇒ n >

√
1
ε2
− 1 for ε ≤ 1 (1.66)

Thus, we can set

N (ε) =


⌈√

1
ε2
− 1

⌉
ε ≤ 1

1 otherwise
(1.67)

We have to be a tiny bit careful as N (ε) needs to be defined for all ε > 0 and the
penultimate line of the limit inequality is true for all n > 0 if ε > 1. In essence this
was no different in structure from the normal sequence convergence proof. The only
difference was how we treated the absolute value.

Absolute Convergence

Similarly, a complex series
∑∞
n=1 zn is absolutely convergent if

∑∞
n=1 |zn| converges.

Again the |zn| refers to the complex absolute value.

Complex Ratio Test

A complex series
∑∞
n=1 zn converges if

lim
n→∞

∣∣∣∣∣zn+1zn
∣∣∣∣∣ < 1 (1.68)

and diverges if

lim
n→∞

∣∣∣∣∣zn+1zn
∣∣∣∣∣ > 1 . (1.69)

Example of Complex Series Convergence

Let us take a general variant of the geometric series:

S =
∞∑
n=1

azn−1 (1.70)

We can prove that this will converge for some values of z ∈ C in the same way we
could for the real-valued series. Applying the complex ratio test, we get limn→∞ | az

n

azn−1
| =

|z|. We apply the standard condition and get that |z| < 1 for this series to converge.
The radius of convergence is still 1 (and is an actual radius of a circle in the complex
plane). What is different here is that now any z-point taken from within the circle
centred on the origin with radius 1 will make the series converge, not just on the
real interval (−1,1).
For your information, the limit of this series is a

1−z , which you can show using
Maclaurin as usual, discussed below.
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1.8 Complex Power Series

We can expand functions as power series in a complex variable, usually z, in the
same way as we could with real-valued functions. The same expansions hold in C
because the functions below (at any rate) are differentiable in the complex domain.
Therefore, Maclaurin’s series applies and yields

exp(z) =
∞∑
n=0

zn

n!
= 1+ z+

z2

2!
+
z3

3!
+ . . . (1.71)

sin(z) =
∞∑
n=0

(−1)n z2n+1

(2n+1)!
= z − z

3

3!
+
z5

5!
− . . . (1.72)

cos(z) =
∞∑
n=0

(−1)n z
2n

(2n)!
= 1− z

2

2!
+
z4

4!
− . . . (1.73)

1.8.1 A Generalized Euler Formula

A more general form of Euler’s formula (1.12) is

∀z ∈ C,n ∈ Z : z = rei(φ+2nπ) (1.74)

since ei2nπ = cos2nπ + i sin2nπ = 1. This is the same general form we used in the
rational extension to De Moivre’s theorem to access the many roots of a complex
number.
In terms of the Argand diagram, the points ei(φ+2nπ) for i ≥ 1 lie on top of each other,
each corresponding to one more revolution (through 2π).
The complex conjugate of eiφ is e−iφ = cosφ − i sinφ. This allows us to get useful
expressions for sinφ and cosφ:

cosφ = (eiφ + e−iφ)/2 (1.75)

sinφ = (eiφ − e−iφ)/2i. (1.76)

We will be able to use these relationships to create trigonometric identities.

1.9 Applications of Complex Numbers*

1.9.1 Trigonometric Multiple Angle Formulae

How can we calculate cosnφ in terms of cosφ and sinφ? We can use de Moivre’s
theorem to expand einφ and equate real and imaginary parts: e.g., for n = 5, by the
Binomial theorem,

(cosφ+ i sinφ)5 = cos5φ+ i5cos4φsinφ− 10cos3φsin2φ (1.77)

− i10cos2φsin3φ+5cosφsin4φ+ i sin5φ

18



Chapter 1. Complex Numbers 1.9. Applications of Complex Numbers*

Comparing real and imaginary parts now gives

cos5φ = cos5φ− 10cos3φsin2φ+5cosφsin4φ (1.78)

and

sin5φ = 5cos4φsinφ− 10cos2φsin3φ+ sin5φ (1.79)

Trigonometric Power Formulae

We can also calculate cosnφ in terms of cosmφ and sinmφ for m ∈N: Let z = eiφ so
that z+ z−1 = z+ z = 2cosφ. Similarly, zm + z−m = 2cosmφ by de Moivre’s theorem.
Hence by the Binomial theorem, e.g., for n = 5,

(z+ z−1)5 = (z5 + z−5) + 5(z3 + z−3) + 10(z+ z−1) (1.80)

25 cos5φ = 2(cos5φ+5cos3φ+10cosφ) (1.81)

Similarly, z − z−1 = 2i sinφ gives sinnφ
When n is even, we get an extra term in the binomial expansion, which is constant.
For example, for n = 6, we obtain

(z+ z−1)6 = (z6 + z−6) + 6(z4 + z−4) + 15(z2 + z−2) + 20 (1.82)

26 cos6φ = 2(cos6φ+6cos4φ+15cos2φ+10) (1.83)

and, therefore,

cos6φ =
1
32

(cos6φ+6cos4φ+15cos2φ+10) . (1.84)

1.9.2 Summation of Series

Some series with sines and cosines can be summed similarly, e.g.,

C =
n∑
k=0

ak coskφ (1.85)

Let S =
n∑
k=1

ak sinkφ. Then,

C + iS =
n∑
k=0

akeikφ =
1− (aeiφ)n+1

1− aeiφ
. (1.86)

Hence,

C + iS =
(1− (aeiφ)n+1)(1− ae−iφ)

(1− aeiφ)(1− ae−iφ)
(1.87)

=
1− ae−iφ − an+1ei(n+1)φ + an+2einφ

1− 2acosφ+ a2
. (1.88)
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Equating real and imaginary parts, the cosine series is

C =
1− acosφ− an+1 cos(n+1)φ+ an+2 cosnφ

1− 2acosφ+ a2
, (1.89)

and the sine series is

S =
asinφ− an+1 sin(n+1)φ+ an+2 sinnφ

1− 2acosφ+ a2
(1.90)

1.9.3 Integrals

We can determine integrals

C =
∫ x

0
eaφ cosbφdφ, (1.91)

S =
∫ x

0
eaφ sinbφdφ (1.92)

by looking at the sum5

C + iS =
∫ x

0
e(a+ib)φdφ (1.93)

=
e(a+ib)x − 1
a+ ib

=
(eaxeibx − 1)(a− ib)

a2 + b2
(1.94)

=
(eax cosbx − 1+ ieax sinbx)(a− ib)

a2 + b2
(1.95)

The result is therefore

C + iS =
eax(acosbx+ b sinbx)− a+ i(eax(asinbx − bcosbx) + b)

a2 + b2
(1.96)

and so we get

C =
eax(acosbx+ b sinbx − a)

a2 + b2
, (1.97)

S =
eax(asinbx − bcosbx) + b

a2 + b2
(1.98)

as the solutions to the integrals we were seeking.

5The reduction formula would require a and b to be integers.
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Chapter 2

Linear Algebra

This chapter is largely based on the lecture notes and books by Drumm and Weil
(2001); Strang (2003); Hogben (2013) as well as Pavel Grinfeld’s Linear Algebra
series1. Another excellent source is Gilbert Strang’s Linear Algebra lecture at MIT2.
Linear algebra is the study of vectors. Generally, vectors are special objects that can
be added together and multiplied by scalars to produce another object of the same
kind. Any object that satisfies these two properties can be considered a vector. Here
are three examples of such vectors:

1. Geometric vectors. This example of a vector may be familiar from High School.
Geometric vectors are directed segments, which can be drawn, see Fig. 2.1.
Two vectors x~,y~ can be added, such that x~+ y~ = z~ is another geometric vector.
Furthermore, λx~,λ ∈ R is also a geometric vector. In fact, it is the original
vector scaled by λ. Therefore, geometric vectors are instances of the vector
concepts introduced above.

2. Polynomials are also vectors: Two polynomials can be added together, which
results in another polynomial; and they can be multiplied by a scalar λ ∈R, and
the result is a polynomial as well. Therefore, polynomial are (rather unusual)
instances of vectors. Note that polynomials are very different from geometric
vectors. While geometric vectors are concrete “drawings”, polynomials are
abstract concepts. However, they are both vectors.

3. Rn is a set of numbers, and its elements are n-tuples. Rn is even more abstract
than polynomials, and the most general concept we consider in this course. For
example,

a =

12
3

 ∈R3 (2.1)

is an example of a triplet of numbers. Adding two vectors a,b ∈Rn component-
wise results in another vector: a+b = c ∈Rn. Moreover, multiplying a ∈Rn by
λ ∈R results in a scaled vector λa ∈Rn.

1http://tinyurl.com/nahclwm
2http://tinyurl.com/29p5q8j
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~x

~y

Figure 2.1: Example of two geometric vectors in two dimensions.

Linear algebra focuses on the similarities between these vector concepts: We can
add them together and multiply them by scalars. We will largely focus on the third
kind of vectors since most algorithms in linear algebra are formulated in Rn. There
is a 1:1 correspondence between any kind of vector and Rn. By studying Rn, we
implicitly study all other vectors. Although Rn is rather abstract, it is most useful.

Practical Applications of Linear Algebra

Linear algebra centers around solving linear equation systems and is at the core of
many computer science applications. Here is a selection:3

• Ranking of web pages (web search)

• Linear programming (optimziation)

• Error correcting codes (e.g., in DVDs)

• Decomposition of sounds into different sources

• Projections, rotations, scaling (computer graphics)

• Data visualization

• En/Decryption algorithms (cryptography)

• State estimation and optimal control (e.g., in robotics and dynamical systems)

2.1 Linear Equation Systems

2.1.1 Example

A company produces products N1, . . . ,Nn for which resources R1, . . . ,Rm are required.
To produce a unit of product Nj , aij units of resource Ri are needed, where i =
1, . . . ,m and j = 1, . . . ,n.
The objective is to find an optimal production plan, i.e., a plan how many units xj of
product Nj should be produced if a total of bi units of resource Ri are available and
(ideally) no resources are left over.
If we produce x1, . . . ,xn units of the corresponding products, we need a total of

ai1x1 + · · ·+ ainxn (2.2)

3More details can be found on Jeremy Kun’s blog: http://tinyurl.com/olkbkct
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many units of resource Ri . The desired optimal production plan (x1, . . . ,xn) ∈ Rn,
therefore, has to satisfy the following system of equations:

a11x1 + · · ·+ a1nxn
...

am1x1 + · · ·+ amnxn
=
b1
...
bm

, (2.3)

where aij ∈ R and bi ∈ R. Equation (2.3) is the general form of a linear equation
system, and x1, . . . ,xn are the unknowns of this linear equation system. Every n-
tuple (x1, . . . ,xn) ∈Rn that satisfies (2.3) is a solution of the linear equation system.
The linear equation system

x1 + x2 + x3 = 3 (1)
x1 − x2 + 2x3 = 2 (2)
2x1 + 3x3 = 1 (3)

(2.4)

has no solution: Adding the first two equations yields (1)+(2) = 2x1+3x3 = 5, which
contradicts the third equation (3).
Let us have a look at the linear equation system

x1 + x2 + x3 = 3 (1)
x1 − x2 + 2x3 = 2 (2)

x2 + x3 = 2 (3)
. (2.5)

From the first and third equation it follows that x1 = 1. From (1)+(2) we get 2+3x3 =
5, i.e., x3 = 1. From (3), we then get that x2 = 1. Therefore, (1,1,1) is the only
possible and unique solution (verify by plugging in).
As a third example, we consider

x1 + x2 + x3 = 3 (1)
x1 − x2 + 2x3 = 2 (2)
2x1 + 3x3 = 5 (3)

. (2.6)

Since (1)+(2)=(3), we can omit the third equation (redundancy). From (1) and
(2), we get 2x1 = 5 − 3x3 and 2x2 = 1 + x3. We define x3 = a ∈ R as a free variable,
such that any triplet (5

2
− 3
2
a,
1
2
+
1
2
a,a

)
, a ∈R (2.7)

is a solution to the linear equation system, i.e., we obtain a solution set that contains
infinitely many solutions.
In general, for a real-valued linear equation system we obtain either no, exactly one
or infinitely many solutions.
For a systematic approach to solving linear equation systems, we will introduce a
useful compact notation. We will write the linear equation system from (2.3) in the
following form:

x1


a11
...
am1

+ x2

a12
...
am2

+ · · ·+ xn

a1n
...
amn

 =

b1
...
bm

⇔

a11 · · · a1n
...

...
am1 · · · amn



x1
...
xn

 =

b1
...
bm

 . (2.8)

In order to work with these matrices, we need to have a close look at the underlying
algebraic structures and define computation rules.
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2.2 Groups

Groups play an important role in computer science. Besides providing a fundamental
framework for operations on sets, they are heavily used in cryptography, coding
theory and graphics.

2.2.1 Definitions

Consider a set G and an operation ⊗ : G→ G defined on G. For example, ⊗ could be
+, · defined on R,N,Z or ∪,∩,\ defined on P (B), the power set of B.
Then (G,⊗) is called a group if

• Closure of G under ⊗: ∀x,y ∈ G : x⊗ y ∈ G

• Associativity: ∀x,y,z ∈ G : (x⊗ y)⊗ z = x⊗ (y ⊗ z)

• Neutral element: ∃e ∈ G∀x ∈ G : x⊗ e = x and e⊗ x = x

• Inverse element: ∀x ∈ G∃y ∈ G : x⊗ y = e and y ⊗ x = e. We often write x−1 to
denote the inverse element of x.4

If additionally ∀x,y ∈ G : x⊗ y = y ⊗ x then (G,⊗) is Abelian group (commutative).

2.2.2 Examples

(Z,+) is a group, whereas (N0,+)5 is not: Although (N0,+) possesses a neutral ele-
ment (0), the inverse elements are missing.
(Z, ·) is not a group: Although (Z, ·) contains a neutral element (1), the inverse
elements for any z ∈ Z, z , ±1, are missing.
(R, ·) is not a group since 0 does not possess an inverse element. However, (R\{0}) is
Abelian.
(Rn,+), (Zn,+),n ∈N are Abelian if + is defined componentwise, i.e.,

(x1, · · · ,xn) + (y1, · · · , yn) = (x1 + y1, · · · ,xn + yn). (2.9)

Then, e = (0, · · · ,0) is the neutral element and (x1, · · · ,xn)−1 := (−x1, · · · ,−xn) is the
inverse element.

2.3 Matrices
Definition 1 (Matrix)
Withm,n ∈N a real-valued (m,n) matrix A is anm·n-tuple of elements aij , i = 1, . . . ,m,
j = 1, . . . ,n, which is ordered according to a rectangular scheme consisting of m rows

4The inverse element is defined with respect to the operation ⊗ and does not necessarily mean 1
x .

5N0 =N∪ {0}
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and n columns:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 , aij ∈R . (2.10)

(1,n)-matrices are called rows, (m,1)-matrices are called columns. These special ma-
trices are also called row/column vectors.

Rm×n is the set of all real-valued (m,n)-matrices. A ∈ Rm×n can be equivalently
represented as A ∈Rmn. Therefore, (Rm×n,+) is Abelian group (with componentwise
addition as defined in (2.9)).

2.3.1 Matrix Multiplication

For A ∈ Rm×n,B ∈ Rn×k (note the size of the matrices!) the elements cij of the
product C = AB ∈Rm×k are defined as

cij =
n∑
l=1

ailblj , i = 1, . . . ,m, j = 1, . . . , k. (2.11)

This means, to compute element cij we multiply the elements of the ith row of A
with the jth column of B6 and sum them up.7

Remark 1
Matrices can only be multiplied if their “neighboring” dimensions match. For instance,
an n× k-matrix A can be multiplied with a k ×m-matrix B, but only from the left side:

A︸︷︷︸
n×k

B︸︷︷︸
k×m

= C︸︷︷︸
n×m

(2.12)

The product BA is not defined if m , n since the neighboring dimensions do not match.

Remark 2
Note that matrix multiplication is not defined as an element-wise operation on matrix
elements, i.e., cij , aijbij (even if the size of A,B was chosen appropriately).8

Example

For A =
[
1 2 3
3 2 1

]
∈R2×3, B =

0 2
1 −1
0 1

 ∈R3×2, we obtain

AB =
[
1 2 3
3 2 1

]0 2
1 −1
0 1

 =
[
2 3
2 5

]
∈R2×2, (2.13)

6They are both of length k, such that we can compute ailblj for l = 1, . . . ,n.
7Later, we will call this the scalar product or dot product of the corresponding row and column.
8This kind of element-wise multiplication appears often in computer science where we multiply

(multi-dimensional) arrays with each other.
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BA =

0 2
1 −1
0 1


[
1 2 3
3 2 1

]
=

 6 4 2
−2 0 2
3 2 1

 ∈R3×3 . (2.14)

From this example, we can already see that matrix multiplication is not commuta-
tive, i.e., AB , BA.

Definition 2 (Identity Matrix)
In Rn×n, we define the identity matrix as

In =


1 0 · · · · · · 0
0 1 0 · · · 0
...
. . . . . . . . .

...
0 · · · 0 1 0
0 · · · · · · 0 1


∈Rn×n. (2.15)

With this, A·In = A = InA for all A ∈Rn×n. Therefore, the identity matrix is the neutral
element with respect to matrix multiplication “·” in (Rn×n, ·).9

Properties

• Associativity: ∀A ∈Rm×n,B ∈Rn×p,C ∈Rp×q : (AB)C = A(BC)

• Distributivity: ∀A1,A2 ∈Rm×n,B ∈Rn×p : (A1 +A2)B = A1B +A2B
A(B +C) = AB +AC

• ∀A ∈Rm×n : ImA = AIn = A. Note that Im , In for m , n.

2.3.2 Inverse and Transpose

Definition 3 (Inverse)
For a square matrix10 A ∈Rn×n a matrix B ∈Rn×n with AB = In = BA is called inverse
and denoted by A−1.

Not every matrix A possesses an inverse A−1. If this inverse does exist, A is called
regular/invertible, otherwise singular. We will discuss these properties much more
later on in the course.

Remark 3
The set of regular (invertible) matrices A ∈ Rn×n is a group with respect to matrix
multiplication as defined in (2.11) and is called general linear group GL(n,R).

Definition 4 (Transpose)
For A ∈Rm×n the matrix B ∈Rn×m with bij = aji is called the transpose of A. We write
B = A>.

9If A ∈ Rm×n then In is only a right neutral element, succh that AIn = A. The corresponding
left-neutral element would be Im since ImA = A.

10The number columns equals the number of rows.
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For a square matrix A> is the matrix we obtain when we “mirror” A on its main
diagonal.11 In general, A> can be obtained by writing the columns of A as the rows
of A>.

Remark 4
• AA−1 = I = A−1A

• (AB)−1 = B−1A−1

• (A>)> = A

• (A+B)> = A> +B>

• (AB)> = B>A>

• If A is invertible, (A−1)> = (A>)−1

• Note: (A+B)−1 , A−1 +B−1. Example: in the scalar case 1
2+4 = 1

6 ,
1
2 +

1
4 .

A is symmetric if A = A>. Note that this can only hold for (n,n)-matrices (quadratic
matrices). The sum of symmetric matrices is symmetric, but this does not hold for
the product in general (although it is always defined). A counterexample is[

1 0
0 0

][
1 1
1 1

]
=

[
1 1
0 0

]
. (2.16)

2.3.3 Multiplication by a Scalar

Let A ∈Rm×n and λ ∈R. Then λA =K, Kij = λaij . Practically, λ scales each element
of A. For λ,ψ ∈R it holds:

• Distributivity:
(λ+ψ)C = λC +ψC, C ∈Rm×n
λ(B +C) = λB +λC, B,C ∈Rm×n

• Associativity:
(λψ)C = λ(ψC), C ∈Rm×n
λ(BC) = (λB)C = B(λC), B ∈Rm×n,C ∈Rn×k.
Note that this allows us to move scalar values around.

• (λC)> = C>λ> = C>λ = λC> since λ = λ> for all λ ∈R.

11The main diagonal (sometimes principal diagonal, primary diagonal, leading diagonal, or major
diagonal) of a matrix A is the collection of entries Aij where i = j.
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2.3.4 Compact Representations of Linear Equation Systems

If we consider a linear equation system

2x1 +3x2 +5x3 = 1
4x1 − 2x2 − 7x3 = 8
9x1 +5x2 − 3x3 = 2

and use the rules for matrix multiplication, we can write this equation system in a
more compact form as 2 3 5

4 −2 −7
9 5 −3


x1x2
x3

 =
18
2

 . (2.17)

Note that x1 scales the first column, x2 the second one, and x3 the third one.
Generally, linear equation systems can be compactly represented in their matrix form
as Ax = b, see (2.3), and the product Ax is a (linear) combination of the columns of
A.12

2.4 Solving Linear Equation Systems via Gaussian Elim-
ination

In (2.3), we have introduced the general form of an equation system, i.e.,

a11x1 + · · ·+ a1nxn
...

am1x1 + · · ·+ amnxn

= b1
...

= bm

, (2.18)

where aij ∈ R and bi ∈ R are known constants and xj are unknowns, i = 1, . . . ,m,
j = 1, . . . ,n. Thus far, we have introduced matrices as a compact way of formulating
linear equation systems, i.e., such that we can write Ax = b, see (2.8). Moreover, we
defined basic matrix operations, such as addition and multiplication of matrices. In
the following, we will introduce a constructive and systematic way of solving linear
equation systems. Before doing this, we introduce the augmented matrix

[
A |b

]
of

the linear equation system Ax = b. This augmented matrix will turn out to be useful
when solving linear equation systems.

2.4.1 Example: Solving a Simple Linear Equation System

Now we are turning towards solving linear equation systems. Before doing this
in a systematic way using Gaussian elimination, let us have a look at an example.

12We will discuss linear combinations in Section 2.5.
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Consider the following linear equation system:

[
1 0 8 −4
0 1 2 12

]
x1
x2
x3
x4

 =
[
42
8

]
. (2.19)

This equation system is in a particularly easy form, where the first two columns
consist of a 1 and a 0.13 Remember that we want to find scalars x1, . . . ,x4, such that∑4
i=1xici = b, where we define ci to be the ith column of the matrix and b the right-

hand-side of (2.19). A solution to the problem in (2.19) can be found immediately
by taking 42 times the first column and 8 times the second column, i.e.,

b =
[
42
8

]
= 42

[
1
0

]
+8

[
0
1

]
. (2.20)

Therefore, one solution vector is [42,8,0,0]>. This solution is called a particular
solution or special solution. However, this is not the only solution of this linear
equation system. To capture all the other solutions, we need to be creative of gen-
erating 0 in a non-trivial way using the columns of the matrix: Adding a couple of
0s to our special solution does not change the special solution. To do so, we express
the third column using the first two columns (which are of this very simple form):[

8
2

]
= 8

[
1
0

]
+2

[
0
1

]
, (2.21)

such that 0 = 8c1 + 2c2 − 1c3 + 0c4. In fact, any scaling of this solution produces the
0 vector:

λ1


8
2
−1
0

 = 0, λ1 ∈R. (2.22)

Following the same line of reasoning, we express the fourth column of the matrix
in (2.19) using the first two columns and generate another set of non-trivial versions
of 0 as

λ2


−4
12
0
−1

 = 0 λ2 ∈R. (2.23)

Putting everything together, we obtain all solutions of the linear equation system
in (2.19), which is called the general solution, as

42
8
0
0

+λ1

8
2
−1
0

+λ2

−4
12
0
−1

 . (2.24)

13Later, we will say that this matrix is in reduced row echelon form.
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Remark 5
• The general approach we followed consisted of the following three steps:

1. Find a particular solution to Ax = b

2. Find all solutions to Ax = 0

3. Combine the solutions from 1. and 2. to the general solution.

• Neither the general nor the particular solution is unique.

The linear equation system in the example above was easy to solve because the
matrix in (2.19) has this particularly convenient form, which allowed us to find
the particular and the general solution by inspection. However, general equation
systems are not of this simple form. Fortunately, there exists a constructive way of
transforming any linear equation system into this particularly simple form: Gaussian
elimination.
The rest of this section will introduce Gaussian elimination, which will allow us to
solve all kinds of linear equation systems by first bringing them into a simple form
and then applying the three steps to the simple form that we just discussed in the
context of the example in (2.19), see Remark 5.

2.4.2 Elementary Transformations

Key to solving linear equation systems are elementary transformations that keep
the solution set the same14, but that transform the equation system into a simpler
form:

• Exchange of two equations

• Multiplication of an equation with a constant λ ∈R\{0}

• Addition of an equation to another equation

Example

−2x1 + 4x2 − 2x3 − x4 + 4x5 = −3
4x1 − 8x2 + 3x3 − 3x4 + x5 = 2
x1 − 2x2 + x3 − x4 + x5 = 0
x1 − 2x2 − 3x4 + 4x5 = a

, a ∈R (2.25)

Swapping rows 1 and 3 leads to

x1 − 2x2 + x3 − x4 + x5 = 0
4x1 − 8x2 + 3x3 − 3x4 + x5 = 2 | − 4R1
−2x1 + 4x2 − 2x3 − x4 + 4x5 = −3 |+2R1
x1 − 2x2 − 3x4 + 4x5 = a | −R1

(2.26)

14Therefore, the original and the modified equation system are equivalent.
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When we now apply the indicated transformations (e.g., subtract Row 1 4 times
from Row 2), we obtain

x1 − 2x2 + x3 − x4 + x5 = 0
− x3 + x4 − 3x5 = 2

− 3x4 + 6x5 = −3
− x3 − 2x4 + 3x5 = a | −R2

(2.27)

then

x1 − 2x2 + x3 − x4 + x5 = 0
− x3 + x4 − 3x5 = 2

− 3x4 + 6x5 = −3
− 3x4 + 6x5 = a− 2 | −R3

(2.28)

and finally

x1 − 2x2 + x3 − x4 + x5 = 0
− x3 + x4 − 3x5 = 2 | · (−1)

− 3x4 + 6x5 = −3 | · (−13 )
0 = a+1

(2.29)

If we now multiply the second equation with (−1) and the third equation with −13 ,
we obtain the row echelon form

x1 − 2x2 + x3 − x4 + x5 = 0
x3 − x4 + 3x5 = −2

x4 − 2x5 = 1
0 = a+1

(2.30)

Only for a = −1, this equation system can be solved. A particular solution is given
by 

x1
x2
x3
x4
x5

 =

2
0
−1
1
0

 (2.31)

and the general solution, which captures the set of all possible solutions, is given
as 

x1
x2
x3
x4
x5

 =

2
0
−1
1
0

+λ1

2
1
0
0
0

+λ2

2
0
−1
2
1

 , λ1,λ2 ∈R (2.32)

Remark 6 (Pivots and Staircase Structure)
The leading coefficient (pivot) of a row (the first nonzero number from the left) is
always strictly to the right of the leading coefficient of the row above it. This ensures
that an equation system in row echelon form always has a “staircase” structure.
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Remark 7 (Obtaining a Particular Solution)
The row echelon form makes our lives easier when we need to determine a particular
solution. To do this, we express the right-hand side of the equation system using the
pivot columns, such that b =

∑P
i=1λipi , where pi , i = 1, . . . , P are the pivot columns.

The λi are determined easiest if we start with the most-right pivot column and work
our way to the left.
In the above example, we would try to find λ1,λ2,λ3 such that

λ1


1
0
0
0

+λ2

1
1
0
0

+λ3

−1
−1
1
0

 =

0
−2
1
0

 (2.33)

From here, we find relatively directly that λ3 = 1,λ2 = −1,λ1 = 2. When we put every-
thing together, we must not forget the non-pivot columns for which we set the coefficients
implicitly to 0. Therefore, we get the particular solution

x =


2
0
−1
1
0

 . (2.34)

Example 2

In the following, we will go through solving a linear equation system in matrix form.
Consider the problem of finding x = [x1,x2,x3]>, such that Ax = b, where

A =

1 2 3
4 5 6
7 8 9

 , b =

46
8

 (2.35)

First, we write down the augmented matrix [A |b], which is given by

 1 2 3 4
4 5 6 6
7 8 9 8

 ,
which we now transform into row echelon form using the elementary row opera-
tions:  1 2 3 4

4 5 6 6
7 8 9 8

 −4R1
−7R1

;

 1 2 3 4
0 −3 −6 −10
0 −6 −12 −20

 ·(−13 )
−2R2

;

 1 2 3 4
0 1 2 10

3
0 0 0 0


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From the row echelon form, we see that x3 is a free variable. To find a particular
solution, we can set x3 to any real number. For convenience, we choose x3 = 0, but
any other number would have worked. With x3 = 0, we obtain a particular solutionx1x2

x3

 =
−

8
3

10
3
0

 . (2.36)

To find the general solution, we combine the particular solution with the solution of
the homogeneous equation system Ax = 0. There are two ways of getting there: the
matrix view and the equation system view. Looking at it from the matrix perspective,
we need to express the third column of the row-echelon form in terms of the first
two columns. This can be done by seeing that32

0

 = −
10
0

+2

21
0

⇔−
10
0

+2

21
0

−
32
0

 = 0 . (2.37)

We now take the coefficients [−1,2,−1]> of these colums that are a non-trivial repre-
sentation of 0 as the solution (and any multiple of it) to the homogeneous equation
system Ax = 0.
An alternative and equivalent way is to remember that we wanted to solve a linear
equation system, we find the solution to the homogeneous equation system by ex-
pressing x3 in terms of x1,x2. From the row echelon form, we see that x2 + 2x3 =
0 ⇒ x3 = −12x2. With this, we now look at the first set of equations and obtain
x1 +2x2 +3x3 = 0⇒ x1 − x3 = 0⇒ x3 = x1.
Independent of whether we use the matrix or equation system view, we arrive at the
general solution −

8
3

10
3
0

+λ
 1−2
1

 ,λ ∈R. (2.38)

Remark 8 (Reduced Row Echelon Form)
An equation system is in reduced row echelon form15 if

• It is in row echelon form

• Every pivot must be 1 and is the only non-zero entry in its column.

The reduced row echelon form will play an important role in later sections because it
allows us to determine the general solution of a linear equation system in a straight-
forward way.

15also: row reduced echelon form or row canonical form
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Example: Reduced Row Echelon Form Verify that the following matrix is in re-
duced row echelon form:

A =

1 3 0 0 3
0 0 1 0 9
0 0 0 1 −4

 (2.39)

The pivots are colored red.
To read out the solutions of Ax = 0, we are mainly interested in the non-pivot
columns, which we will need to express as a sum of the pivot columns. The re-
duced row echelon form makes this relatively straightforward, and we express the
non-pivot columns in terms of sums and multiples of the pivot columns that are on
their left: The second column is three times the first column (we can ignore the
pivot columns on the right of the second column). Therefore, to obtain 0, we need
to subtract the second column from three times the first column. Now, we look at
the fifth column, which is our second non-pivot column. The fifth column is given
by 3 times the first pivot column, 9 times the second pivot column, and -4 times the
third pivot column. We need to keep track of the indices of the pivot columns and
translate this into 3 times the first column, 9 times the third pivot column (which is
our second pivot column) and -4 times the fourth column (which is the third pivot
column). Then we need to subtract the fifth column to obtain 0—in the end, we are
still solving a homogeneous equation system.
To summarize, all solutions of Ax = 0,x ∈R5 are given by

λ1


3
−1
0
0
0

+λ2

3
0
9
−4
−1

 , λ1,λ2 ∈R. (2.40)

2.4.3 The Minus-1 Trick for Solving Homogeneous Equation Sys-
tems

In the following, we introduce a practical trick for reading out the solutions x of a
homogeneous linear equation system Ax = 0, where A ∈Rk×n,x ∈Rn.
To start, we assume that A is in reduced row echelon form without any rows that
just contain zeros (e.g., after applying Gaussian elimination), i.e.,

A =



0 · · · 0 1 ∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗
...

... 0 0 · · · 0 1 ∗ · · · ∗ ...
...

...
...

...
...

...
... 0 ∗ . . . ∗ 0

...
...

...
...

...
...

...
... ∗ . . . ∗ 0

...
...

0 · · · 0 0 0 · · · 0 0 ∗ · · · ∗ 1 ∗ · · · ∗


(2.41)

Note that the columns j1, . . . , jk with the pivots (marked red) are the standard unit
vectors e1, . . . ,ek ∈Rk.
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We now extend this matrix to an n×n-matrix Ã by adding n− k rows of the form[
0 · · · 0 −1 0 · · · 0

]
, (2.42)

such that the diagonal of the augmented matrix Ã contains only 1 or −1. Then,
the columns of Ã, which contain the −1 as pivots are solutions of the homogeneous
equation system Ax = 0.16 To be more precise, these columns form a basis (Sec-
tion 2.7) of the solution space of Ax = 0, which we will later call the kernel or null
space (Section 2.9.1).

Example

Let us revisit the matrix in (2.39), which is already in reduced row echelon form:

A =

1 3 0 0 3
0 0 1 0 9
0 0 0 1 −4

 . (2.43)

We now augment this matrix to a 5× 5 matrix by adding rows of the form (2.42) at
the places where the pivots on the diagonal are missing and obtain

Ã =


1 3 0 0 3
0 −1 0 0 0
0 0 1 0 9
0 0 0 1 −4
0 0 0 0 −1

 (2.44)

From this form, we can immediately read out the solutions of Ax = 0 by taking the
columns of Ã, which contain −1 on the diagonal:

λ1


3
−1
0
0
0

+λ2

3
0
9
−4
−1

 , λ1,λ2 ∈R, (2.45)

which is identical to the solution in (2.40) that we obtained by “insight”.

2.4.4 Applications of Gaussian Elimination in Linear Algebra

Gaussian elimination can also be used to find the rank of a matrix (Chapter 2.7), to
calculate the determinant of a matrix (Chapter 2.10), the null space, and the inverse
of an invertible square matrix. Because of its relevance to central concepts in Linear
Algebra, Gaussian elimination is the most important algorithm we will cover.

16The proof of this trick is out of the scope of this course.
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Calculating the Inverse

To compute the inverse A−1 of A ∈Rn×n, we need to satisfy AA−1 = In. We can write
this down as a set of simultaneous linear equations AX = In, where we solve for
X = [x1| · · · |xn]. We use the augmented matrix notation for a compact representation
of this set of linear equation systems and obtain[

A I
]
;

[
I A−1

]
.

This means that if we bring the augmented equation system into reduced row eche-
lon form, we can read off the inverse on the right-hand side of the equation system.

Example 1 For A =
[
1 2
3 4

]
, we determine its inverse by solving the following linear

equation system: [
1 2 1 0
3 4 0 1

]
We bring this system now into reduced row echelon form[

1 2 1 0
3 4 0 1

]
−3R1

;

[
1 2 1 0
0 −2 −3 1

]
+R2
·(−12 )

;

[
1 0 −2 1
0 1 3

2 −12

]
.

The right-hand side of this augmented equation system contains the inverse

A−1 =
[
−2 1
3
2 −12

]
. (2.46)

Example 2 To determine the inverse of

A =


1 0 2 0
1 1 0 0
1 2 0 1
1 1 1 1

 (2.47)

we write down the augmented matrix
1 0 2 0 1 0 0 0
1 1 0 0 0 1 0 0
1 2 0 1 0 0 1 0
1 1 1 1 0 0 0 1


and transform it into reduced row echelon form

1 0 0 0 −1 2 −2 2
0 1 0 0 1 −1 2 −2
0 0 1 0 1 −1 1 −1
0 0 0 1 −1 0 −1 2

 ,
36



Chapter 2. Linear Algebra 2.5. Vector Spaces

such that the desired inverse is given as its right-hand side:

A−1 =


−1 2 −2 2
1 −1 2 −2
1 −1 1 −1
−1 0 −1 2

 . (2.48)

Remark 9
You may have encountered a way of computing the inverse of a matrix using co-factors
and/or cross-products. This approach only works in three dimensions and is not used
in practice.

2.5 Vector Spaces

When we discussed group theory, we were looking at sets G and inner operations on
G, i.e., mappings G×G→ G. In the following, we will consider sets that in addition
to an inner operation + also contain an outer operation ·, the multiplication by a
scalar λ ∈R.

Definition 5 (Vector space)
A real-valued vector space (also called an R-vector space) is a set V with two opera-
tions

+ : V ×V → V (2.49)
· : R×V → V (2.50)

where

1. (V ,+) is an Abelian group

2. Distributivity:

(a) λ · (x+ y) = λ · x+λ · y ∀λ ∈R,x,y ∈ V

(b) (λ+ψ) · x = λ · x+ψ · x ∀λ,ψ ∈R,x ∈ V

3. Associativity (outer operation): λ · (ψ · x) = (λψ) · x ∀λ,ψ ∈R,x ∈ V

4. Neutral element with respect to the outer operation: 1 · x = x, ∀x ∈ V

The elements x ∈ V are called vectors. The neutral element of (V ,+) is the zero vector
0 = [0, . . . ,0]>, and the inner operation + is called vector addition. The elements λ ∈R
are called scalars and the outer operation · is a multiplication by scalars.17

17Note: A scalar product is something different, and we will get to this in Section 2.13.
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Remark 10
When we started the course, we defined vectors as special objects that can be added
together and multiplied by scalars to yield another element of the same kind (see p. 21).
Examples were geometric vectors, polynomials and Rn. Definition 5 gives now the
corresponding formal definition and applies to all kinds of vectors. We will continue
focusing on vectors as elements of Rn because it is the most general formulation, and
most algorithms are formulated in Rn.

Remark 11
Note that a “vector multiplication” ab, a,b ∈ Rn, is not defined. Theoretically, we
could define it in two ways: (a) We could define an element-wise multiplication, such
that c = a · b with cj = ajbj . This “array multiplication” is common to many program-
ming languages but makes mathematically only limited sense; (b) By treating vectors as
n × 1 matrices (which we usually do), we can use the matrix multiplication as defined
in (2.11). However, then the dimensions of the vectors do not match. Only the fol-
lowing multiplications for vectors are defined: ab> (outer product), a>b (inner/scalar
product).

2.5.1 Examples

• V =Rn,n ∈N is a vector space with operations defined as follows:

– Addition: x+y = (x1, . . . ,xn)+(y1, . . . , yn) = (x1+y1, . . . ,xn+yn) for all x,y ∈Rn

– Multiplication by scalars: λx = λ(x1, . . . ,xn) = (λx1, . . . ,λxn) for all λ ∈
R,x ∈Rn

• V =Rm×n,m,n ∈N is a vector space with

– Addition: A + B =


a11 + b11 · · · a1n + b1n

...
...

am1 + bm1 · · · amn + bmn

 is defined elementwise for

all A,B ∈ V

– Multiplication by scalars: λA =


λa11 · · · λa1n
...

...
λam1 · · · λamn

 as defined in Section 2.3.

Remember that Rm×n is equivalent to Rmn.

• V = C, where the addition is defined in (1.5).

Remark 12 (Notation)
The three vector spaces Rn,Rn×1,R1×n are only different with respect to the way of
writing. In the following, we will not make a distinction between Rn and Rn×1, which
allows us to write n-tuples as column vectors

x =


x1
...
xn

 . (2.51)
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This will simplify the notation regarding vector space operations. However, we will
distinguish between Rn×1 and R1×n (the row vectors) to avoid confusion with matrix
multiplication. By default we write x to denote a column vector, and a row vector is
denoted by x>, the transpose of x.

2.5.2 Generating Set and Vector Subspaces

Definition 6 (Linear Combination)
Consider a vector space V and a finite number of vectors x1, . . . ,xk ∈ V . Then, every
vector v ∈ V of the form

v = λ1x1 + · · ·+λkxk =
k∑
i=1

λixi ∈ V (2.52)

with λ1, . . . ,λk ∈R is a linear combination of the vectors x1, . . . ,xk.

Definition 7 (Generating Set/Span)
Consider an R-vector space V and A = {x1, . . . ,xk} ⊂ V . If every vector v ∈ V can be
expressed as a linear combination of x1, . . . ,xk, A is called a generating set or span,
which spans the vector space V . In this case, we write V = [A] or V = [x1, . . . ,xk].

Definition 8 (Vector Subspace)
Let V be an R-vector space and U ⊂ V , U , ∅. U is called vector subspace of V
(or linear subspace) if U is a vector space with the vector space operations + and ·
restricted to U ×U and R×U .

Examples

• For every vector space V the trivial subspaces are V itself and {0}.

• The solution set of a homogeneous linear equation system Ax = 0 with n un-
knowns x = [x1, . . . ,xn]> is a subspace of Rn.

• However, the solution of an inhomogeneous equation system Ax = b, b , 0 is
not a subspace of Rn.

• The intersection of arbitrarily many subspaces is a subspace itself.

• The intersection of all subspaces Ui ⊂ V is called linear hull of V .

Remark 13
Every subspace U ⊂ Rn is the solution space of a homogeneous linear equation system
Ax = 0.
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4 miles East

3 miles North 5 miles Northeast

Figure 2.2: Linear dependence of three vectors in a two-dimensional space (plane).

2.6 Linear (In)Dependence

In Section 2.5, we learned about linear combinations of vectors, see (2.52). The 0
vector can always be written as the linear combination of k vectors x1, . . . ,xk because
0 =

∑k
i=10xi is always true. In the following, we are interested in non-trivial linear

combinations of a set of vectors to represent 0.

Definition 9 (Linear (In)dependence)
Let us consider a vector space V with k ∈ N and x1, . . . ,xk ∈ V . If there is a non-
trivial linear combination, such that 0 =

∑k
i=1λixi with at least one λi , 0, the vectors

x1, . . . ,xk are linearly dependent. If only the trivial solution exists, i.e., λ1 = . . . = λk =
0 the vectors x1, . . . ,xk are linearly independent.

Intuitively, a set of linearly dependent vectors contains some redundancy, whereas
linearly independent vectors are all essential. Throughout this chapter, we will for-
malize this intuition more.

Remark 14 (From Wikipedia (2015))
A geographic example may help to clarify the concept of linear independence. A person
describing the location of a certain place might say, “It is 3 miles North and 4 miles East
of here.” This is sufficient information to describe the location, because the geographic
coordinate system may be considered as a 2-dimensional vector space (ignoring altitude
and the curvature of the Earth’s surface). The person might add, “The place is 5 miles
Northeast of here.” Although this last statement is true, it is not necessary to find this
place (see Fig. 2.2 for an illustration).
In this example, the “3 miles North” vector and the “4 miles East” vector are linearly
independent. That is to say, the north vector cannot be described in terms of the east
vector, and vice versa. The third “5 miles Northeast” vector is a linear combination of
the other two vectors, and it makes the set of vectors linearly dependent, that is, one of
the three vectors is unnecessary.

Remark 15
The following properties are useful to find out whether vectors are linearly independent.

• k vectors are either linearly dependent or linearly independent. There is no third
option.
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• If at least one of the vectors x1, . . . ,xk is 0 then they are linearly dependent. The
same holds if two vectors are identical.

• The vectors x1, . . . ,xk, k ≥ 2, are linearly dependent if and only if (at least) one of
them is a linear combination of the others.

• In a vector space V m linear combinations of k vectors x1, . . . ,xk are linearly
dependent if m > k.

• Consider an R-vector space V with k vectors b1, . . . ,bk and m linear combinations

x1 =
k∑
i=1

λi1bi , (2.53)

... (2.54)

xm =
k∑
i=1

λimbi . (2.55)

We want to test whether x1, . . . ,xm are linearly independent. For this purpose, we
follow the general approach of testing when

∑m
i=1ψixi = 0 and obtain

0 =
m∑
j=1

ψjxj =
m∑
j=1

ψj

 k∑
i=1

λijbi

 = m∑
j=1

k∑
i=1

ψjλijbi =
k∑
i=1

 m∑
j=1

ψjλij

bi . (2.56)

Therefore, x1, . . . ,xm are linearly independent if and only if the column vectors

x̂1 =


λ11
...
λk1

 ∈Rk , . . . , x̂m =


λ1m
...

λkm

 ∈Rk (2.57)

are linearly independent.

Proof 3
Since b1, . . . ,bk are linearly independent it follows that for all j = 1, . . . ,m we
get

∑k
i=1λijbi = 0 with λij = 0, i = 1, . . . , k. Therefore,

∑m
j=1ψjλij = 0 for i =

1, . . . , k. This implies
∑k
i=1(

∑m
j=1ψjλij)bi = 0. Hence,

∑m
j=1ψjxj = 0 is equivalent

to
∑m
j=1ψj x̂j .

• A practical way of checking whether the column vectors are linearly independent is
to use Gaussian elimination: Write all vectors as columns of a matrix A. Gaussian
elimination yields a matrix in (reduced) row echelon form. The pivot columns
indicate the vectors, which are linearly independent of the previous18 vectors (note
that there is an ordering of vectors when the matrix is built). If all columns are
pivot columns, the column vectors are linearly independent.

18the vectors on the left
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• The non-pivot columns can be expressed as linear combinations of the columns
that were before (left of) them. If the matrix is in reduced row echelon form, we
can immediately see how the columns relate to each other. For instance, in[

1 3 0
0 0 1

]
(2.58)

first and third column are pivot columns. The second column is a non-pivot col-
umn because it is 3 times the first column. If there is at least one non-pivot
column, the columns are linearly dependent.

2.6.1 Examples

• Consider R4 with

x1 =


2
−3
1
4

 , x2 =


1
0
1
2

 , x3 =


−2
1
−1
1

 . (2.59)

To check whether they are linearly dependent, we follow the general approach
and solve

λ1x1 +λ2x2 +λ3x3 = λ1


2
−3
1
4

+λ2

1
0
1
2

+λ3

−2
1
−1
1

 = 0 (2.60)

for λ1, . . . ,λ3. We write the vectors xi , i = 1,2,3, as the columns of a matrix
and apply Gaussian elimination.


1 1 −1 0
2 1 −2 0
−3 0 1 0
4 2 1 0


−2R1

+3R1

−4R1

;


1 1 −1 0
0 −1 0 0
0 3 −2 0
0 −2 5 0

 +3R2

−2R2

;


1 1 −1 0
0 −1 0 0
0 0 −2 0
0 0 5 0


·(−1)

+5
2R3

;


1 1 −1 0
0 1 0 0
0 0 1 0
0 0 0 0


Here, every column of the matrix is a pivot column19, i.e., every column is
linearly independent of the columns on its left. Therefore, there is no non-
trivial solution, and we require λ1 = 0,λ2 = 0,λ3 = 0. Hence, the vectors
x1,x2,x3 are linearly independent.

19Note that the matrix is not in reduced row echelon form; it also does not need to be.
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• Consider a set of linearly independent vectors b1,b2,b3,b4 ∈Rn and

x1 = b1 − 2b2 + b3 − b4
x2 = −4b1 − 2b2 + 4b4
x3 = 2b1 + 3b2 − b3 − 3b4
x4 = 17b1 − 10b2 + 11b3 + b4

(2.61)

Are the vectors x1, . . . ,x4 ∈ Rn linearly independent? To answer this question,
we investigate whether the column vectors


1
−2
1
−1

 ,

−4
−2
0
4

 ,

2
3
−1
−3

 ,

17
−10
11
1


 (2.62)

are linearly independent. The reduced row echelon form of the corresponding
linear equation system with coefficient matrix

A =


1 −4 2 17
−2 −2 3 −10
1 0 −1 11
−1 4 −3 1

 (2.63)

is given as 
1 0 0 −7
0 1 0 −15
0 0 1 −18
0 0 0 0

 . (2.64)

From the reduced row echelon form, we see that the corresponding linear
equation system is non-trivially solvable: The last column is not a pivot column,
and x4 = −7x1 −15x2 −18x3. Therefore, x1, . . . ,x4 are linearly dependent as x4
lies in the span of x1, . . . ,x3.

2.7 Basis and Dimension

In a vector space V , we are particularly interested in the set of linearly independent
vectors A that possesses the property that any vector v ∈ V can be obtained by a
linear combination of vectors in A.

Definition 10 (Basis)
Consider a real vector space V and A ⊂ V

• A generating set A of V is called minimal if there exists no smaller set Ã ⊂ A ⊂ V ,
which spans V .

• Every linearly independent generating set of V is minimal and is called basis of
V .
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Let V be a real vector space and B ⊂ V ,B , ∅. Then, the following statements are
equivalent:

• B is basis of V

• B is a minimal generating set

• B is a maximal linearly independent subset of V .

• Every vector x ∈ V is a linear combination of vectors from B, and every linear
combination is unique, i.e., with

x =
k∑
i=1

λibi =
k∑
i=1

ψibi (2.65)

and λi ,ψi ∈R, bi ∈ B it follows that ai = bi , i = 1, . . . , k.

2.7.1 Examples

• In R3, the canonical/standard basis is

B =


10
0

 ,
01
0

 ,
00
1


 . (2.66)

• Different bases in R3 are

B1 =


10
0

 ,
11
0

 ,
11
1


 , B2 =


 0.530.86
−0.43

 ,
1.830.31
0.34

 ,
−2.25−1.30
3.57


 (2.67)

• The set

A =



1
2
3
4

 ,

2
−1
0
2

 ,

1
1
0
−4


 (2.68)

is linearly independent, but not a generating set (and no basis): For instance,
the vector [1,0,0,0]> cannot be obtained by a linear combination of elements
in A.

Remark 16
• Every vector space V possesses a basis B.

• The examples above show that there can be many bases of a vector space V , i.e.,
there is no unique basis. However, all bases possess the same number of elements,
the basis vectors.

• We only consider finite-dimensional vector spaces V . In this case, the dimension
of V is the number of basis vectors, and we write dim(V ).

• If U ⊂ V is a subspace of V then dim(U ) ≤ dim(V ) and dim(U ) = dim(V ) if and
only if U = V .
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2.7.2 Example: Determining a Basis

• For a vector subspace U ⊂R5, spanned by the vectors

x1 =


1
2
−1
−1
−1

 , x2 =


2
−1
1
2
−2

 , x3 =


3
−4
3
5
−3

 , x4 =


−1
8
−5
−6
1

 ∈R
5, (2.69)

we are interested in finding out which vectors x1, . . . ,x4 are a basis for U . For
this, we need to check whether x1, . . . ,x4 are linearly independent. Therefore,
we need to solve

4∑
i=1

λixi = 0 , (2.70)

which leads to a homogeneous equation system with the corresponding matrix

[
x1|x2|x3|x4

]
=


1 2 3 −1
2 −1 −4 8
−1 1 3 −5
−1 2 5 −6
−1 −2 −3 1

 . (2.71)

With the basic transformation of linear equation systems, we obtain
1 2 3 −1
2 −1 −4 8
−1 1 3 −5
−1 2 5 −6
−1 −2 −3 1


−2R1

+R1

+R1

+R1

;


1 2 3 −1
0 −5 −10 10
0 3 6 −6
0 4 8 −7
0 0 0 0


·(−15 )
·13 | −R2

−4R2

;


1 2 3 −1
0 1 2 −2
0 0 0 0
0 0 0 1
0 0 0 0


+R4

+2R4

swap with R3

;


1 2 3 0
0 1 2 0
0 0 0 1
0 0 0 0
0 0 0 0


−2R2

;


1 0 −1 0
0 1 2 0
0 0 0 1
0 0 0 0
0 0 0 0


.

From this reduced-row echelon form we see that x1,x2,x4 are linearly inde-
pendent (because the linear equation system λ1x1 +λ2x2 +λ4x4 = 0 can only
be solved with λ1 = λ2 = λ4 = 0). Therefore, {x1,x2,x4} is a basis of U .
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• Let us now consider a slightly different problem: Instead of finding out which
vectors x1, . . . ,x4 of the span of U form a basis, we are interested in finding
a “simple” basis for U . Here, “simple” means that we are interested in basis
vectors with many coordinates equal to 0.

To solve this problem we replace the vectors x1, . . . ,x4 with suitable linear com-
binations. In practice, we write x1, . . . ,x4 as row vectors in a matrix and per-
form Gaussian elimination:

1 2 −1 −1 −1
2 −1 1 2 −2
3 −4 3 5 −3
−1 8 −6 −6 1

;


1 2 −1 −1 −1
0 −5 3 4 0
0 −10 6 8 0
0 10 −6 −7 0


;


1 2 −1 −1 −1
0 1 −35 −45 0
0 0 0 0 0
0 0 0 1 0

;


1 2 −1 0 −1
0 1 −35 0 0
0 0 0 1 0
0 0 0 0 0


;


1 0 1

5 0 −1
0 1 −35 0 0
0 0 0 1 0
0 0 0 0 0


From the reduced row echelon form, the simple basis vectors are the rows with
the leading 1s (the “steps”).

U = [


1
0
1
5
0
−1

︸︷︷︸
b1

,


0
1
−35
0
0

︸︷︷︸
b2

,


0
0
0
1
0

︸︷︷︸
b3

] (2.72)

and B = {b1,b2,b3} is a (simple) basis of U (check that they are linearly inde-
pendent!).

2.7.3 Rank

• The number of linearly independent columns of a matrix A ∈ Rm×n equals the
number of linearly independent rows and is called rank of A and is denoted
by rk(A).

• rk(A) = rk(A>), i.e., the column rank equals the row rank.

• The columns of A ∈Rm×n span a subspace U ⊂Rm with dim(U ) = rk(A)

• A basis of a subspace U = [x1, . . . ,xm] ⊂ Rn can be found by executing the
following steps:
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1. Write the spanning vectors as columns of a matrix A

2. Apply Gaussian elimination algorithm to A.

3. The spanning vectors associated with the pivot columns form a basis of
U .

• The rows of A ∈ Rm×n span a subspace W ⊂ Rn with dim(W ) = rk(A). A basis
of W can be found by applying the Gaussian elimination algorithm to the rows
of A (or the columns of A>).

• For all A ∈Rn×n holds: A is regular (invertible) if and only if rk(A) = n.

• For all A ∈ Rm×n and all b ∈ Rm: The linear equation system Ax = b can be
solved if and only if rk(A) = rk(A|b), where A|b denotes the “extended” system.

• For A ∈Rm×n the space of solutions for Ax = 0 possesses dimension n− rk(A).

• A matrix A ∈ Rm×n has full rank if its rank equals the largest possible for a
matrix of the same dimensions, which is the lesser of the number of rows and
columns, i.e., rk(A) = min(m,n). A matrix is said to be rank deficient if it does
not have full rank.

Examples

• A =

1 0 1
0 1 1
0 0 0

. A possesses two linearly independent rows (and columns).

Therefore, rk(A) = 2.

• A =
[
1 2 3
4 8 12

]
. We see that the second row is a multiple of the first row, such

that the row-echelon form of A is
[
1 2 3
0 0 0

]
, and rk(A) = 1.

• A =

 1 2 1
−2 −3 1
3 5 0

 We use Gaussian elimination to determine the rank:


1 2 1
−2 −3 1
3 5 0


+R1 −R2

;


1 2 1
−2 −3 1
0 0 0

 +2R1

;


1 2 1
0 −1 3
0 0 0


Here, we see that the number of linearly independent rows and columns is 2,
such that rk(A) = 2.
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2.8 Intersection of Subspaces

In the following, we consider two approaches to determining a basis of the intersec-
tion U1 ∩U2 of two subspaces U1,U2 ⊂ V . This means, we are interested in finding
all x ∈ V , such that x ∈U1 and x ∈U2.

2.8.1 Approach 1

Consider U1 = [b1, . . . ,bk] ⊂ V and U2 = [c1, . . . ,cl] ⊂ V . We know that and x ∈U1 can
be represented as a linear combination

∑k
i=1λibi of the basis vectors (or spanning

vectors) b1, . . . ,bk. Equivalently x =
∑l
j=1ψjcj . Therefore, the approach is to find

λ1, . . . ,λk and/or ψ1, . . . ,ψl , such that

k∑
i=1

λibi = x =
l∑
j=1

ψjcj (2.73)

⇔
k∑
i=1

λibi −
l∑
j=1

ψjcj = 0 . (2.74)

For this, we write the basis vectors into a matrix

A =
[
b1 · · · bk −c1 · · · −cl

]
(2.75)

and solve the linear equation system

A



λ1
...
λk
ψ1
...
ψl


= 0 (2.76)

to find either λ1, . . . ,λk or ψ1, . . . ,ψl , which we can then use to determine U1 ∩U2.

Example

We consider

U1 = [


1
1
0
0

 ,

0
1
1
0

 ,

0
0
1
1

] ⊂R4, U2 = [


−1
1
2
0

 ,

0
1
0
0

] ⊂R4 . (2.77)

To find a basis of U1∩U2, we need to find all x ∈ V that can be represented as linear
combinations of the basis vectors of U1 and U2, i.e.,

3∑
i=1

λibi = x =
2∑
j=1

ψjcj , (2.78)
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where bi and cj are the basis vectors of U1 and U2, respectively. The matrix A =
[b1|b2|b3| − c1| − c2] from (2.75) is given as

A =


1 0 0 1 0
1 1 0 −1 −1
0 1 1 −2 0
0 0 1 0 0

 . (2.79)

By using Gaussian elimination, we determine the corresponding reduced row eche-
lon form 

1 0 0 1 0
0 1 0 −2 0
0 0 1 0 0
0 0 0 0 1

 . (2.80)

We keep in mind that we are interested in finding λ1,λ2,λ3 ∈ R and/or ψ1,ψ2 ∈ R
with 

1 0 0 1 0
0 1 0 −2 0
0 0 1 0 0
0 0 0 0 1



λ1
λ2
λ3
ψ1
ψ2

 = 0 . (2.81)

From here, we can immediately see that ψ2 = 0 and ψ1 ∈R is a free variable since it
corresponds to a non-pivot column, and our solution is

U1 ∩U2 = ψ1c1 = [


−1
1
2
0

] , ψ1 ∈R . (2.82)

Remark 17
Alternatively, we could have used λ1 = −ψ1,λ2 = ψ1,λ3 = 0 and determined the (same)
solution via the basis vectors of U1 as

ψ1

−

1
1
0
0

+2


0
1
1
0


 = ψ1


−1
1
2
0

 = [


−1
1
2
0

] , ψ1 ∈R . (2.83)

2.8.2 Approach 2

In the second approach, we exploit Remark 13, which says that any subspace is the
solution of a homogeneous linear equation system, to determine the intersection
U1 ∩U2 of two subspaces U1,U2 ⊂Rn.
First, we show how to determine the linear equation system that generates a sub-
space; second, we exploit these insights to find U1 ∩U2.
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Lemma 1
Consider U = [x1, . . . ,xm] ⊂Rn and dim(U ) = r. We write the vectors x1, . . . ,xm as rows
of a matrix

A =


x>1
...
x>m

 ∈Rm×n (2.84)

and investigate the homogeneous linear equation system Ay = 0. First, the solution
space V possesses dimension k = n − rk(A) = n − dim(U ) = n − r. Second, we choose a
basis (b1, . . . ,bk) in this solution space and again write these basis vectors as the rows of
a matrix

B =


b>1
...
b>k

 ∈Rk×n (2.85)

with rk(B) = k. Then U is the solution space of By = 0.

Proof 4
Define Sh as the solution space of By = 0. It holds that dim(Sh) = n− rk(B) = n− k = r.
Therefore, dim(Sh) = dim(U ). From Abj = 0, j = 1, . . . , k it follows that x>i bj = 0 for
i = 1, . . . ,m and j = 1, . . . , k (remember how matrix-vector multiplication works), and at
the same time b>j xi = 0. Therefore, Bxi = 0, i = 1, . . . ,m and, hence, U ⊂ Sh. However,
since dim(Sh) = dim(U ) it follows that Sh =U .

Practical Algorithm

Let us summarize the main steps to determine U1 ∩U2:

1. Write U1,U2 as solution spaces of two linear equation systems B1x = 0 and
B2x = 0:

(a) Write spanning vectors of U1, U2 as the rows of two matrices A1,A2,
respectively.

(b) Determine S1 as the solution of A1x = 0 and S2 as the solution of A2x = 0

(c) Write spanning vectors of S1 and S2 as the rows of the matrices B1 and
B2, respectively.

2. U1 ∩U2 is the solution space of Cx = 0, where C =
[
B1
B2

]
, which we find by

means of Gaussian elimination.
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Example 1

To determine the intersection of two subspaces U1,U2 ⊂ Rn, we use the above
method. We consider again the subspaces U1,U2 ⊂ R4 from the example above
(and hopefully, we end up with the same solution):

U1 = [


1
1
0
0

 ,

0
1
1
0

 ,

0
0
1
1

] ⊂R4, U2 = [


−1
1
2
0

 ,

0
1
0
0

] ⊂R4 . (2.86)

1. To determine the intersection U1 ∩U2, we first write U1,U2 as solution spaces
of linear equation systems.

(a) We write the spanning vectors of U1,U2 as the rows of the matrices

A1 =

1 1 0 0
0 1 1 0
0 0 1 1

 , A2 =
[
−1 1 2 0
0 1 0 0

]
, (2.87)

respectively.

(b) We use Gaussian elimination to determine the corrsponding reduced row
echelon forms

Ã1 =

1 0 0 1
0 1 0 −1
0 0 1 1

 , Ã2 =
[
1 0 −2 0
0 1 0 0

]
. (2.88)

Third, we determine the solution spaces of A1x = 0 and A2x = 0, e.g.,
using the Minus-1 Trick from Section 2.4.3, as

S1 = [


1
−1
1
−1

] , S2 = [


2
0
1
0

 ,

0
0
0
1

] . (2.89)

(c) U1 is now the solution space of the linear equation system B1x = 0 with

B1 =
[
1 −1 1 −1

]
, (2.90)

and U2 is the solution space of the linear equation system B2x = 0 with

B2 =
[
2 0 1 0
0 0 0 1

]
. (2.91)

2. U1 ∩U2 is the solution space of the linear equation system Cx = 0 with

C =
[
B1
B2

]
=

1 −1 1 −1
2 0 1 0
0 0 0 1

 . (2.92)
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To determine this solution space, we follow the standard procedure of (a) com-
puting the reduced row echeolon form1 0 0 0 −1

0 1 0 −1 −1
0 0 1 −1 −1

 (2.93)

using Gaussian elimination and (b) finding the (general) solution using the
Minus-1 Trick from Section 2.4.3 as

U1 ∩U2 = [


−1
1
2
0

] , (2.94)

which is identical to the solution in (2.83) found by using Approach 1.

Example 2

We apply again Approach 2 and consider the two subspaces U1,U2 ⊂R5, where

U1 = [


1
−1
−1
−2
1

 ,

0
3
3
3
0

 ,

1
−3
1
−2
4

] , U2 = [


−1
0
−4
−5
1

 ,

−5
−1
2
2
−6

 ,

1
2
−1
3
2

 ,

3
1
0
3
3

] . (2.95)

1. To determine the intersection U1 ∩U2, we first write U1,U2 as solution spaces
of linear equation systems.

(a) We write the spanning vectors of U1,U2 as the rows of the matrices

A1 =

1 −1 −1 −2 1
0 3 3 3 0
1 −3 1 −2 4

 , A2 =


−1 0 −4 −5 1
−5 −1 2 2 −6
1 2 −1 3 2
3 1 0 3 3

 , (2.96)

respectively.

(b) We use Gaussian elimination to determine the corrsponding reduced row
echelon forms

Ã1 =

1 0 0 −1 1
0 1 0 1

2 −34
0 0 1 1

2
3
4

 , Ã2 =


1 0 0 0 12

13
0 1 0 0 6

13
0 0 1 0 − 5

13
0 0 0 1 − 1

13

 . (2.97)
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(c) We determine the solution spaces of A1x = 0 and A2x = 0, e.g., using the
Minus-1 Trick from Section 2.4.3, as

S1 = [


−2
1
1
−2
0

 ,

4
−3
3
0
−4

] , S2 = [


12
6
−5
−1
−13

] . (2.98)

U1 is the solution space of the linear equation system B1x = 0 with

B1 =
[
−2 1 1 −2 0
4 −3 3 0 −4

]
(2.99)

and U2 is the solution space of the linear equation system B2x = 0 with

B2 =
[
12 6 −5 −1 −13

]
. (2.100)

2. U1 ∩U2 is the solution space of the linear equation system Cx = 0 with

C =
[
B1
B2

]
=

−2 1 1 −2 0
4 −3 3 0 −4
12 6 −5 −1 −13

 . (2.101)

To determine this solution space, we follow the standard procedure of (a) com-
puting the reduced row echeolon form1 0 0 0 −1

0 1 0 −1 −1
0 0 1 −1 −1

 (2.102)

using Gaussian elimination and (b) finding the (general) solution using the
Minus-1 Trick from Section 2.4.3 as

U1 ∩U2 = [


0
1
1
1
0

 ,

1
1
1
0
1

] . (2.103)

2.9 Linear Mappings

In the following, we will study mappings on vector spaces that preserve their struc-
ture: Consider two real vector spaces V ,W . A mapping Φ : V → W preserves the
structure of the vector space if

Φ(x+ y) = Φ(x) +Φ(y) (2.104)
Φ(λx) = λΦ(x) (2.105)

for all x,y ∈ V and λ ∈R. We can summarize this in the following definition:
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Definition 11 (Linear Mapping)
For real vector spaces V ,W , a mapping Φ : V →W is called linear (or vector space
homomorphism) if

Φ(λx+ψy) = λΦ(x) +ψΦ(y) (2.106)

for all x,y ∈ V and λ,ψ ∈R.

Important special cases:

• Isomorphism: Φ : V →W linear and bijective

• Endomorphism: Φ : V → V linear

• Automorphism: Φ : V → V linear and bijective

• We define idV : V → V , x 7→ x as the identity mapping in V .

Example: Homomorphism

The mapping Φ :R2→ C, Φ(x) = x1 + ix2, is a homomorphism:

Φ

([
x1
x2

]
+
[
y1
x2

])
= (x1 + y1) + i(x2 + y2) = x1 + ix2 + y1 + iy2 = Φ

([
x1
x2

])
+Φ

([
y1
y2

])
Φ

(
λ

[
x1
x2

])
= λx1 +λix2 = λ(x1 + ix2) = λΦ

([
x1
x2

])
(2.107)

We have already discussed the representation of complex numbers as tuples in R2,
but now we know why we can do this: There is a bijective linear mapping (we only
showed linearity, but not the bijection) that converts the elementwise addition of
tuples in R2 the set of complex numbers with the corresponding addition.

2.9.1 Image and Kernel (Null Space)

Definition 12
Image and Kernel

For Φ : V →W , we define the kernel/null space

Ker(Φ) := Φ−1({0}) = {v ∈ V : Φ(v) = 0} (2.108)

and the image

Im(Φ) := Φ(V ) = {w ∈W |∃v ∈ V : Φ(v) = w} . (2.109)

An illustration is given in Figure 2.3.

Remark 18
Consider a linear mapping Φ : V →W , where V ,W are vector spaces.
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V W
Φ : V → W

Im(Φ)Ker(Φ)

00

Figure 2.3: Kernel and Image of a linear mapping Φ : V →W .

• It always holds that Φ({0V }) = 0W and, therefore, 0v ∈ ker(Φ). In particular, the
null space is never empty.

• Im(Φ) ⊂W is a subspace of W , and ker(Φ) ⊂ V is a subspace of V .

• Φ is injective (one-to-one) if and only if ker(Φ) = {0}

Remark 19
For A ∈Rm×n the mapping Φ :Rn→Rm, x 7→ Ax is linear. For A = (a1|...|an) we obtain

Im(Φ) = {Ax|x ∈Rn} = {λ1a1 + ...+λnan|λ1, . . . ,λn ∈R} = [a1, . . . ,an] ⊂Rm , (2.110)

i.e., the image is the span of the columns of A, also called the column space.
The kernel/null space ker(Φ) is the general solution to the linear homogeneous equation
system Ax = 0.

Example: Image and Kernel of a Linear Mapping

The mapping

Φ :R4→R2,


x1
x2
x3
x4

 7→
[
1 2 −1 0
1 0 0 1

]
x1
x2
x3
x4

 =
[
x1 +2x2 − x3
x1 + x4

]
(2.111)

= x1

[
1
1

]
+ x2

[
2
0

]
+ x3

[
−1
0

]
+ x4

[
0
1

]
(2.112)

is linear. To determine Im(Φ) we can simply take the span of the columns of the
transformation matrix and obtain

Im(Φ) = [
[
1
1

]
,

[
2
0

]
,

[
−1
0

]
,

[
0
1

]
]. (2.113)
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To compute the kernel (null space) of Φ, we need to solve Ax = 0, i.e., we need to
solve a homogeneous equation system. To do this, we use Gaussian elimination to
transform A into reduced row echelon form:[

1 2 −1 0
1 0 0 1

]
;

[
1 0 0 1
1 2 −1 0

]
−R1| · (12 )

;

[
1 0 0 1
0 1 −12 −

1
2

]
This matrix is now in reduced row echelon form, and we can now use the Minus-
1 Trick to compute a basis of the kernel (see Section 2.4.3). Alternatively, we can
express the non-pivot columns (columns 3 an 4) as linear combinations of the pivot-
columns (columns 1 and 2). The third column a3 is equivalent to −12 times the
second column a2. Therefore, 0 = a3+

1
2a2. In the same way, we see that a4 = a1− 1

2a2
and, therefore, 0 = a1 − 1

2a2 −a4. This gives us now the kernel (null space) as

ker(Φ) = [


0
1
2
1
0

 ,

−1
1
2
0
1

]. (2.114)

Theorem 3 (Rank-Nullity Theorem)
For vector spaces V ,W and a linear mapping Φ : V →W it holds that

dim(ker(Φ)) + dim(Im(Φ)) = dim(V ) (2.115)

Remark 20
Consider R-vector spaces V ,W ,X. Then:

• For linear mappings Φ : V →W and Ψ :W → X the mapping Ψ ◦Φ : V → X is
also linear.

• If Φ : V →W is an isomorphism then Φ−1 :W → V is an isomorphism as well.

• If Φ ,Ψ : V →W are linear then Φ +Ψ and λΦ ,λ ∈R are linear, too.

• For a linear mapping Φ : V → W the null space (kernel) captures all possible
linear combinations of the elements in V that produce 0 ∈W .

Theorem 4
Finite-dimensional R-vector spaces V and W are isomorph if and only if dim(V ) =
dim(W ).

2.9.2 Matrices to Represent Linear Mappings

Any n-dimensional R-vector space is isomorph to Rn (Theorem 4). If we define a
basis {b1, . . . ,bn} of V we can construct an isomorphism concretely. In the following,
the order of the basis vectors will be important. Therefore, we write

B = (b1, . . . ,bn) (2.116)

and call this n-tuple an ordered basis of V .
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Definition 13 (Coordinates)
Consider anR-vector space V and an ordered basis B = (b1, . . . ,bn). For x ∈ V we obtain
a unique representation (linear combination)

x = λ1b1 + . . .+λnbn (2.117)

of x with respect to B. Then λ1, . . . ,λn are the coordinates of x with respect to B and
the vector 

λ1
...
λn

 ∈Rn (2.118)

is the coordinate vector/coordinate representation of x with respect to B.

Now we are ready to make a connection between linear mappings between finite-
dimensional vector spaces and matrices.

Definition 14 (Transformation matrix)
Consider R-vector spaces V ,W with corresponding (ordered) bases = (b1, . . . ,bn) and
C = (c1, . . . ,cm). Moreover, we consider a linear mapping Φ : V →W . For j ∈ {1, . . .n}

Φ(bj) = a1jc1 + · · ·+ amjcm (2.119)

is the unique representation of Φ(bj) with respect to C. Then, we call the m×n-matrix

AΦ := ((aij)) (2.120)

the transformation matrix of Φ (with respect to the bases B of V and C of W ).

Remark 21
• The coordinates of Φ(bj) are the j-th column of AΦ .

• rk(AΦ ) = dim(Im(Φ))

• Consider (finite-dimensional) R-vector spaces V ,W with ordered bases B,C, Φ :
V → W linear and transformation matrix AΦ . If x̂ is the coordinate vector of
x ∈ V and ŷ the coordinate vector of y = Φ(x) ∈W , then

ŷ = AΦ x̂. (2.121)

This means that the transformation matrix can be used to map coordinates with
respect to an ordered basis in V to coordinates with respect to an ordered basis in
W .

Remark 22 (Null Space and Column Space)
• The null space describes all linear combinations of columns to get 0.

• The image (column space) of a transformation matrix A ∈ Rm×n is the span of
the columns of A and, therefore, has the same dimension as the “height” of the
matrix, whereas the kernel (null space) has the same dimension as the “width” of
the matrix.
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• The purpose of the null space is to determine whether a solution of the linear
equation system is unique and, if not, to capture all possible solutions.

• The null space focuses on the coefficients of the linear combinations of the columns,
whereas the column space focuses on the values of the linear combinations of
columns.

2.9.3 Basis Change

In the following, we will have a closer look at how transformation matrices of a
linear mapping Φ : V → W change if we change the bases in V and W . Consider
ordered bases

B = (b1, . . . ,bn), B̃ = (b̃1, . . . , b̃n) (2.122)

ordered bases of V and

C = (c1, . . . ,cm), C̃ = (c̃1, . . . , c̃n) (2.123)

ordered bases of W . Moreover, AΦ is the transformation matrix of the linear map-
ping Φ : V → W with respect to the bases B and C, and ÃΦ is the corresponding
transformation mapping with respect to B̃ and C̃. We will now investigate how A
and Ã are related, i.e., how/whether we can transform A into Ã if we choose to
perform a basis change from B,C to B̃, C̃.
We can write the vectors of the new basis B̃ of V as a linear combination of the basis
vectors of B, such that

b̃j = s1jb1 + · · ·+ snjbn , j = 1, . . . ,n. (2.124)

Similarly, we write the new basis vectors C̃ of W as a linear combination of the basis
vectors of C, which yields

c̃k = t1kc1 + · · · tmkcm. (2.125)

Note that both S = ((sij)) ∈Rn×n and T = ((tij)) ∈Rm×m are regular.
For all j = 1, . . . ,n, we get

Φ(b̃j) =
m∑
k=1

ãkj c̃k︸︷︷︸
∈W

=
m∑
k=1

ãkj

m∑
i=1

tikci =
m∑
i=1

 m∑
k=1

tik ãkj

ci (2.126)

where we expressed the new basis vectors c̃k ∈W as linear combinations of the basis
vectors ci ∈ W . When we express the b̃k ∈ V as linear combinations of bi ∈ V , we
arrive at

Φ(b̃j) = Φ

 n∑
k=1

skjbk

 = n∑
k=1

skjΦ(bk) =
n∑
k=1

skj

m∑
i=1

aikci =
m∑
i=1

 n∑
k=1

aikskj

ci (2.127)
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Comparing (2.126) and (2.127), it follows for all j = 1, . . . ,n and i = 1, . . . ,m that

m∑
k=1

tik ãkj =
n∑
k=1

aikskj (2.128)

and, therefore,

T Ã = AS, (2.129)

such that

Ã = T −1AS. (2.130)

Hence, with a basis change in V (B is replaced with B̃) and W (C is replaced with
C̃) the transformation matrix AΦ of a linear mapping Φ : V →W is expressed by an
equivalent matrix ÃΦ with

ÃΦ = T −1AΦS. (2.131)

Definition 15 (Equivalence)
Two matrices A, Ã are equivalent if there exist regular matrices S ∈ Rn×n and T ∈
Rm×m, such that Ã = T −1AS.

Definition 16 (Similarity)
Two matrices A, Ã are similar if there exists a regular matrix S ∈Rn×n with Ã = S−1AS

Remark 23
Similar matrices are always equivalent. However, equivalent matrices are not necessar-
ily similar.

Example

Consider a linear mapping Φ :R3→R4 whose transformation matrix is

AΦ =


1 2 0
−1 1 3
3 7 1
−1 2 4

 (2.132)

with respect to the standard bases

B = (

10
0

 ,
01
0

 ,
00
1

) , C = (


1
0
0
0

 ,

0
1
0
0

 ,

0
0
1
0

 ,

0
0
0
1

). (2.133)

We now want to perform a basis change toward the new bases

B̃ = (

11
0

 ,
01
1

 ,
10
1

 , ) ∈R3, C̃ = (


1
1
0
0

 ,

1
0
1
0

 ,

0
1
1
0

 ,

1
0
0
1

) . (2.134)
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Then,

S =

1 0 1
1 1 0
0 1 1

 , T =


1 1 0 1
1 0 1 0
0 1 1 0
0 0 0 1

 (2.135)

and, therefore,

ÃΦ = T −1AΦS =


1/2 1/2 −1/2 −1/2
1/2 −1/2 1/2 −1/2
−1/2 1/2 1/2 1/2
0 0 0 1



3 2 1
0 4 2
10 8 4
1 6 3

 =

−4 −4 −2
6 0 0
4 8 4
1 6 3

 . (2.136)

Remark 24
Consider R-vector spaces V ,W ,X. From Remark 20 we already know that for linear
mappings Φ : V → W and Ψ : W → X the mapping Ψ ◦ Φ : V → X is also linear.
With transformation matrices AΦ and AΨ of the corresponding mappings, the overall
transformation matrix AΨ ◦Φ is given by AΨ ◦Φ = AΨAΦ .

In light of this remark, we can look at basis changes from the perspective of concate-
nating linear mappings:

• ÃΦ implements a linear mapping Φ : V →W with respect to the bases B̃, C̃.

• S is the transformation matrix of a linear mapping V → V (automorphism)
that represents B̃ in terms of B.

• T is the transformation matrix of a linear mapping W → W (automorphism)
that represents C̃ in terms of C.

If we (informally) write down the transformations just in terms of bases then

• AΦ : B→ C

• ÃΦ : B̃→ C̃

• S : B̃→ B

• T : C̃→ C and T −1 : C→ C̃

and

B̃→ C̃ = B̃→ B→ C→ C̃ (2.137)

ÃΦ = T −1AΦS . (2.138)

Note that the execution order in (2.138) is from right to left because vectors are
multiplied at the right-hand side.
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2.10 Determinants

Determinants are important concepts in linear algebra. For instance, they indicate
whether a matrix can be inverted or we can use them to check for linear indepen-
dence. A geometric intuition is that the absolute value of the determinant of real
vectors is equal to the volume of the parallelepiped spanned by those vectors. Deter-
minants will play a very important role for determining eigenvalues and eigenvectors
(Section 2.11).
Determinants are only defined for square matrices A ∈Rn×n, and we write det(A) or
|A|.
Remark 25

• For n = 1, det(A) = det(a11) = a11

• For n = 2,

det(A) =
∣∣∣∣∣a11 a12
a21 a22

∣∣∣∣∣ = a11a22 − a12a21 (2.139)

• For n = 3 (Sarrus rule):∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣∣ = a11a22a33 + a21a32a13 + a31a12a23 (2.140)

− a31a22a13 − a11a32a23 − a21a12a33

• For an upper/lower triangular matrix A, the determinant is the product of the
diagonal elements: det(A) =

∏n
i=1 aii

Remark 26 (Properties of Determinants)
• det(AB) = det(A)det(B)

• det(A) = 0⇔ A is singular (not invertible)

• Alternatively: A is regular⇔ det(A) , 0.

• det(A) = det(A>)

• If A is regular then det(A−1) = 1/det(A)

• Similar matrices possess the same determinant. Therefore, for a linear mapping
φ : V → V all transformation matrices Aφ of φ have the same determinant.

Theorem 5
For A ∈Rn×n :

1. Adding a multiple of a column/row to another one does not change det(A).

2. Multiplication of a column/row with λ ∈ R scales det(A) by λ. In particular,
det(λA) = λndet(A).

3. Swapping two columns/rows changes the sign of det(A).

Because of this theorem, we can use Gaussian elimination to compute det(A). How-
ever, we need to pay attention to swapping the sign when swapping rows.
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Example∣∣∣∣∣∣∣∣∣∣∣∣∣
2 0 1 2 0
2 −1 0 1 1
0 1 2 1 2
−2 0 2 −1 2
2 0 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣
2 0 1 2 0
0 −1 −1 −1 1
0 1 2 1 2
0 0 3 1 2
0 0 −1 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣
2 0 1 2 0
0 −1 −1 −1 1
0 0 1 0 3
0 0 3 1 2
0 0 −1 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.141)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣
2 0 1 2 0
0 −1 −1 −1 1
0 0 1 0 3
0 0 0 1 −7
0 0 0 −1 4

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣
2 0 1 2 0
0 −1 −1 −1 1
0 0 1 0 3
0 0 0 1 −7
0 0 0 0 −3

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 6 (2.142)

We first used Gaussian elimination to bring A into triangular form, and then ex-
ploited the fact that the determinant of a triangular matrix is the product of its
diagonal elements.

Theorem 6
Consider a matrix A = ((aij)) ∈Rn×n. We define Ai,j to be the matrix that remains if we
delete the ith row and the jth column from A. Then, for j = 1, . . . ,n:

1. det(A) =
∑n
k=1(−1)k+jakj det(Ak,j)

2. det(A) =
∑n
k=1(−1)k+jajk det(Aj,k)

Example

Let us re-compute the above example:∣∣∣∣∣∣∣∣∣∣∣∣∣
2 0 1 2 0
2 −1 0 1 1
0 1 2 1 2
−2 0 2 −1 2
2 0 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣
2 0 1 2 0
0 −1 −1 −1 1
0 1 2 1 2
0 0 3 1 2
0 0 −1 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
1st col.= (−1)1+12 ·

∣∣∣∣∣∣∣∣∣∣
−1 −1 −1 1
1 2 1 2
0 3 1 2
0 −1 −1 1

∣∣∣∣∣∣∣∣∣∣ (2.143)

If we now subtract the fourth row from the first row and multiply (−2) times the
third column to the fourth column we obtain

2

∣∣∣∣∣∣∣∣∣∣
−1 0 0 0
1 2 1 0
0 3 1 0
0 −1 −1 3

∣∣∣∣∣∣∣∣∣∣
1st row= −2

∣∣∣∣∣∣∣∣
2 1 0
3 1 0
−1 −1 3

∣∣∣∣∣∣∣∣ 3rd col.= (−2) · 3 ·
∣∣∣∣∣2 1
3 1

∣∣∣∣∣ = 6 (2.144)

2.11 Eigenvalues

Definition 17 (Eigenvalue, eigenvector)
For an R-vector space V and a linear map Φ : V → V , the scalar λ ∈ R is called
eigenvalue if there exists a x ∈ V ,x , 0 with

Φ(x) = λx. (2.145)
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The corresponding vector x is called eigenvector of Φ associated with eigenvalue λ.

Definition 18 (Eigenspace and Spectrum)
• The set of all eigenvectors of Φ associated with an eigenvalue λ forms (together

with 0) a subspace of V , which is called eigenspace of Φ and denoted by Eλ.

• The set of all eigenvalues of Φ is called spectrum of Φ.

Remark 27
• Apparently, Eλ = Ker(Φ −λidV ) since

Φ(x) = λx⇔ Φ(x)−λx = 0⇔ (Φ −λidV )x = 0⇔ x ∈ Ker(Φ −λidV ). (2.146)

• A matrix A ∈ Rn×n uniquely determines the linear mapping Φ : Rn → Rn,x 7→
Ax. Therefore, we can also talk of eigenvalues, eigenvectors and eigenspaces of
square matrices.

• Similar matrices possess the same eigenvalues

• If x is an eigenvector of Φ with eigenvalue λ, then αx, α ∈ R is an eigenvector
with the same eigenvalue. Therefore, there exist an infinite number of eigenvectors
for every eigenvalue λ, i.e., the eigenvectors are not unique.

Theorem 7
Consider an R-vector space V and a linear map Φ : V → V with pairwise differ-
ent eigenvalues λ1, . . . ,λk and corresponding eigenvectors x1, . . . ,xk. Then the vectors
x1, . . . ,xk are linearly independent.

An endomorphism Φ : V → V , V ⊂ Rn (and equivalently the corresponding trans-
formation matrix A ∈Rn×n) possesses at most n different eigenvalues.
The following statements are equivalent:

• λ is eigenvalue of A ∈Rn×n

• There exists a x ∈Rn,x , 0 with Ax = λx or, equivalently, (A−λIn)x = 0

• (A−λIn)x = 0 can be solved non-trivially, i.e., x , 0.

• rk(A−λIn) < n

• det(A−λIn) = 0

• A and A> possess the same eigenvalues, but not the same eigenvectors.

2.11.1 Geometric Interpretation

Geometrically, an eigenvector corresponding to a real, nonzero eigenvalue points in
a direction that is stretched, and the eigenvalue is the factor by which it is stretched.
If the eigenvalue is negative, the direction is reversed. In particular, the eigenvector
does not change its direction under Φ.
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2.11.2 Characteristic Polynomial

In the following, we will discuss how to determine the eigenspaces of an endomor-
phism Φ.20 For this, we need to introduce the characteristic polynomial first.

Definition 19 (Characteristic Polynomial)
For λ ∈R and an endomorphism Φ on Rn

p = det(A−λI ) = a0 + a1λ+ a2λ2 + · · ·+ an−1λn−1 + (−1)nλn, a0, . . . , an−1 ∈R,
(2.147)

is the characteristic polynomial of A. In particular,

a0 = det(A), (2.148)

an−1 = (−1)n−1tr(A), (2.149)

where tr(A) =
∑n
i=1 aii is the trace of A and defined as the sum of the diagonal elements

of A.

Theorem 8
λ ∈R is eigenvalue of A ∈Rn×n if and only if λ is a root of the characteristic polynomial
p of A.

Remark 28
1. If λ is an eigenvalue of A ∈ Rn×n then the corresponding eigenspace Eλ is the

solution space of the homogeneous linear equation system (A−λIn)x = 0.

2. Similar matrices possess the same characteristic polynomial.

2.11.3 Example: Eigenspace Computation

• A =
[
1 0
1 1

]

1. Characteristic polynomial: p = |A−λI2| =
∣∣∣∣∣1−λ 0

1 1−λ

∣∣∣∣∣ = (1−λ)2. There-

fore λ = 1 is the only root of p and, therefore, the only eigenvalue of
A

2. To compute the eigenspace for the eigenvalue λ = 1, we need to compute
the null space of A− I :

A− 1 · I = 0⇔
[
0 0
1 0

]
= 0 (2.150)

⇒ E1 = [
[
0
1

]
] (2.151)

20It turns out that it is sufficient to work directly with the corresponding transformation mappings
AΦ ∈Rn×n.
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• A =
[
0 1
−1 0

]
1. Characteristic polynomial: p = det(A−λI ) = λ2 + 1. For λ ∈ R there exist

no eigenvalue of A. However, for λ ∈ C we find λ1 = i, λ2 = −i.
2. The corresponding eigenspaces (for λi ∈ C) are

Ei = [
[
1
i

]
], E−i = [

[
1
−i

]
]. (2.152)

• A =


0 −1 1 1
−1 1 −2 3
2 −1 0 0
1 −1 1 0


1. Characteristic polynomial:

p =

∣∣∣∣∣∣∣∣∣∣
−λ −1 1 1
−1 1−λ −2 3
2 −1 −λ 0
1 −1 1 −λ

∣∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣
−λ −1 1 1
0 −λ −1 3−λ
0 1 −2−λ 2λ
1 −1 1 −λ

∣∣∣∣∣∣∣∣∣∣ (2.153)

=

∣∣∣∣∣∣∣∣∣∣
−λ −1−λ 0 1
0 −λ −1−λ 3−λ
0 1 −1−λ 2λ
1 0 0 −λ

∣∣∣∣∣∣∣∣∣∣ (2.154)

= (−λ)2
∣∣∣∣∣−λ −1−λ
1 −1−λ

∣∣∣∣∣−
∣∣∣∣∣∣∣∣
−1−λ 0 1
−λ −1−λ 3−λ
1 −1−λ 2λ

∣∣∣∣∣∣∣∣ (2.155)

= (1+λ)2(λ2 − 3λ+2) = (1+λ)2(1−λ)(2−λ) (2.156)

Therefore, the eigenvalues of A are λ1 = −1,λ2 = 1,λ3 = 2.

2. The corresponding eigenspaces are the solutions of (A − λiI )x = 0, i =
1,2,3, and given by

Eλ1 = [


0
1
1
0

], Eλ2 = [


1
1
1
1

], Eλ3 = [


1
0
1
1

]. (2.157)

2.11.4 Applications

• Eigenvalues were used by Claude Shannon to determine the theoretical limit to
how much information can be transmitted through a communication medium
like your telephone line or through the air. This is done by calculating the
eigenvectors and eigenvalues of the communication channel (expressed a ma-
trix), and then waterfilling on the eigenvalues. The eigenvalues are then, in
essence, the gains of the fundamental modes of the channel, which themselves
are captured by the eigenvectors.
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• Google uses the eigenvector corresponding to the maximal eigenvalue of the
Google matrix to determine the rank of a page for search. The idea that the
PageRank algorithm21 brought up was that the importance of any web page
can be judged by looking at the pages that link to it. For this, we write down
all websites as a huge (weighted) directed graph that shows which page links to
which. Then, the navigation behavior of a user can be described by a transition
matrix A of this graph that tells us with what (click) probability somebody will
end up on a different website. The matrix A has the property that for any initial
rank/importance vector x of a website the sequence x,Ax,A2x, . . . converges to
a vector x∗. This vector is called the PageRank and satisfies Ax∗ = x∗, i.e., it is
an eigenvector (with corresponding eigenvalue 1).22

• Eigenvectors are fundamental to principal components analysis (PCA, Hotelling
(1936)), which is commonly used for dimensionality reduction in face recog-
nition and other machine learning applications.

• Geometry and computer graphics

2.12 Diagonalization

Diagonal matrices are possess a very simple structure and they allow for very fast
computation of determinants and inverses, for instance. In this section, we will have
a closer look at endomorphisms of finite-dimensional vector spaces, which are sim-
ilar to a diagonal matrix, i.e., endomorphisms whose transformation matrix attains
diagonal structure for a suitable basis.
For this purpose, we will exploit learned concepts about basis change (Chapter 2.9.3)
and eigenvalues (Chapter 2.11).

Definition 20 (Diagonal Form)
A matrix A ∈Rn×n is diagonalizable if it is similar to a diagonal matrix

c1 0 · · · · · · 0
0 c2 0 · · · 0
...

. . . . . .
...

0 · · · 0 cn−1 0
0 · · · · · · 0 cn


(2.158)

.

Theorem 9
For an endomorphism Φ of an n-dimensional R-vector space V the following statements
are equivalent:

1. Φ is diagonalizable.

2. The transformation matrix AΦ is diagonalizable.
21Developed at Stanford University by Larry Page and Sergey Brin in 1996
22When normalizing x∗, such that ‖x∗‖ = 1 we can interpret the entries as probabilities.
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3. There exists a basis in V consisting of eigenvectors of Φ.

4. The sum of the dimensions of the eigenspaces of Φ is n.23

Theorem 10
For an n-dimensional R-vector space V and a linear mapping Φ : V → V the following
holds: Φ is diagonalizable if and only if

1. Its characteristic polynomial p is given in the form

p = (−1)n(λ− c1)r1 · · · (λ− ck)rk (2.159)

with ri ∈N and pairwise different roots ci ∈R and

2. For i = 1, . . . , k

dim(Im(Φ − ciidV )) = n− ri (2.160)

In (2.159) we say that the characteristic polynomial decomposes into linear factors.
The second requirement in (2.160) says that the dimension of the eigenspace Eci
must correspond to the multiplicity ri of the eigenvalues in the characteristic poly-
nomial, i = 1, . . . , k. The dimension of the eigenspace Eci is the dimension of the
kernel/null space of Φ − ciidV .
Theorem 10 holds equivalently if we replace Φ with A ∈Rn×n and idV with In.
If Φ is diagonalizable it possesses a transformation matrix of the form

AΦ =



c1 0 · · · · · · · · · · · · 0

0 . . . . . .
...

...
. . . c1

. . .
...

...
. . . . . . . . .

...
...

. . . ck
. . .

...
...

. . . . . . 0
0 · · · · · · · · · · · · 0 ck


(2.161)

where each eigenvalue ci appears ri times (its multiplicity in the characteristic poly-
nomial and the dimension of the corresponding eigenspace) on the diagonal.

2.12.1 Examples

• A =
[
1 0
1 1

]
.

1. Characteristic polynomial: p = (1−λ)2

23In particular, an endomorphism Φ of an n-dimensional R-vector space with n different eigenval-
ues is diagonalizable.
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2. Dimension of eigenspace: rk(A − I ) = 1 , 2. Because of Theorem 10 A is
not diagonalizable.

• A =
[
0 1
−1 0

]
.

• Characteristic polynomial: p = 1+λ2.

– For λ ∈R there exist no roots of p and A is not diagonalizable.

– For λ ∈ C, p = (i − λ)(−i − λ) and A has two eigenvalues and is therefore
diagonalizable.

• A =


0 −1 1 1
−1 1 −2 3
2 −1 0 0
1 −1 1 0

.
1. Characteristic polynomial: p = (1 +λ)2(1−λ)(2−λ). The eigenvalues are
c1 = −1, c2 = 1, c3 = 2 with multiplicities r1 = 2, r2 = 1, r3 = 1, respectively.

2. Dimension of eigenspaces: dim(Ec1) = 1 , r1.

Therefore, A cannot be diagonalized.

• A =

3 2 −1
2 6 −2
0 0 2

.
1. Characteristic polynomial: p = (2−λ)2(7−λ). Therefore, c1 = 2, c2 = 7, r1 =

2, r2 = 1

2. Dimension of eigenspaces: rk(A−c1I3) = 1 = n−r1, rk(A−c2I3) = 2 = n−r2

Therefore, A is diagonalizable.

Let us now discuss a concrete way of constructing diagonal matrices.

Remark 29
If A ∈ Rn×n is diagonalizable and (b1, . . . ,bn) is a basis of eigenvectors of A with Abi =
cibi , i = 1, . . . ,n then it holds that for the regular matrix S = (b1| . . . |bn)

S−1AS =



c1 0 · · · · · · 0
0 c2 0 · · · 0
...

. . . . . . . . .
...

... · · · 0 cn−1 0
0 · · · · · · 0 cn


(2.162)

The diagonal matrix in (2.162) is the transformation matrix of x 7→ Ax with respect to
the eigenbasis (b1, . . . ,bn).
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Coming back to the above example, where we wanted to determine the diagonal

form of A =

3 2 −1
2 6 −2
0 0 2

. We already know that A is diagonalizable. We now de-

termine the eigenbasis of R3 that allows us to transform A into a similar matrix in
diagonal form via S−1AS:

1. The eigenspaces are

Ec1 = [

10
1

︸︷︷︸
=:b1

,

−21
0

︸︷︷︸
=:b2

] , Ec2 = [

21
0

︸︷︷︸
=:b3

] (2.163)

2. We now collect the eigenvectors in a matrix and obtain

S = (b1|b2|b3) =

1 −2 1
0 1 2
1 0 0

 (2.164)

such that

S−1AS =

2 0 0
0 2 0
0 0 7

 . (2.165)

Remark 30
So far, we computed diagonal matrices as D = S−1AS. However, we can equally write
A = SDS−1. Here, we can interpret the transformation matrix A as follows: S performs
a basis change from the eigenbasis into the standard basis, D then scales the vector
along the axes of the standard basis, and S−1 transforms the scaled vectors back into
the eigenbasis coordinates. In Section ??, we will discover that S represents a rotation.

2.12.2 Applications

Diagonal matrices D = S−1AS exhibit the nice properties that they can be easily
raised to a power.

Ak = (S−1DS)k = S−1DkS (2.166)

Computing Dk is easy because we apply this operation individually to any diagonal
element. As an example, this allows to compute inverses of D in O(n) instead of
O(n3).
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2.12.3 Cayley-Hamilton Theorem∗

Theorem 11 (Cayley-Hamilton)
Let V be an n-dimensional R-vector space and Φ : V → V an endomorphism with
transformation matrix AΦ and characteristic polynomial p. Then,

p(Φ) = 0 (2.167)

(and equivalently, p(AΦ ) = 0).

Remark 31
• Note that the right hand side of (2.167) is the zero mapping (or the 0-matrix

when we use the transformation matrix AΦ).

• The importance of the Cayley-Hamilton theorem is not the existence of a (non-
trivial) polynomial q, such that q(Φ) = 0, but that the characteristic polynomial
has this property.

Applications

• Find an expression for A−1 in terms of I ,A,A2, . . . ,An−1. Example: A =
[
1 −1
2 1

]
has the characteristic polynomial p(λ) = λ2 − 2λ + 3. Then Theorem 11 states
that A2 − 2A+3I = 0 and, therefore, −A2 +2A = 3I ⇔ A−1 = 1

3(2I −A)

• Find an expression of Am, m ≥ n, in terms of I ,A,A2, . . . ,An−1

2.13 Scalar Products
Definition 21
Let β : V ×V →R be a bilinear mapping (i.e., linear in both arguments).

• β is called symmetric if β(x,y) = β(y,x) for all x,y ∈ V .

• β is called positive definite if for all x , 0: β(x,x) > 0. β(0,0) = 0.

• A positive definite, symmetric bilinear mapping β : V × V → R is called scalar
product/dot product/inner product on V . We typically write 〈x,y〉 instead of
β(x,y).

• The pair (V ,〈·, ·〉) is called Euclidean vector space or (real) vector space with
scalar product.

2.13.1 Examples

• For V = Rn,β(x,y) = 〈x,y〉 := x>y =
∑n
i=1xiyi is called standard scalar prod-

uct.
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• V = R2. If we define β(x,y) := x1y1 − (x1y2 + x2y1) + 2x2y2 then β is a scalar
product but different from the standard scalar product 〈·, ·〉.

In a Euclidean vector space, the scalar product allows us to introduce concepts, such
as lengths, distances and orthogonality.

2.13.2 Lengths, Distances, Orthogonality

Definition 22 (Norm)
Consider a Euclidean vector space (V ,〈·, ·〉). Then ‖x‖ :=

√
〈x,x〉 is the length or norm

of x ∈ V . The mapping

‖ · ‖ : V →R (2.168)
x 7→ ‖x‖ (2.169)

is called norm.

2.13.3 Example

In geometry, we are often interested in lengths of vectors. We can now use scalar
product to compute them. For instance, if x = [1,2]> then its length is

√
12 +22 =

√
5

Remark 32
The norm ‖ · ‖ possesses the following properties:

1. ‖x‖ ≥ 0 for all x ∈ V and ‖x‖ = 0⇔ x = 0

2. ‖λx‖ = |λ| · ‖x‖ for all x ∈ V and λ ∈R

3. Minkowski inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x,y ∈ V

Definition 23 (Distance and Metric)
Consider a Euclidean vector space (V ,〈·, ·〉). Then d(x,y) := ‖x−y‖ is called distance of
x,y ∈ V . The mapping

d : V ×V →R (2.170)
(x,y) 7→ d(x,y) (2.171)

is called metric.

A metric d satisfies:

1. d is positive definite, i.e., d(x,y) ≥ 0 for all x,y ∈ V and d(x,y) = 0⇔ x = y

2. d is symmetric, i.e., d(x,y) = d(y,x) for all x,y ∈ V .

3. Triangular inequality: d(x,z) ≤ d(x,y) + d(y,z).

Definition 24 (Orthogonality)
x and y are orthogonal if 〈x,y〉 = 0, and we write x ⊥ y
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Theorem 12
Let V be a Euclidean vector space (V ,〈·, ·〉) and x,y,z ∈ V . Then:

1. Cauchy-Schwarz inequality: |〈x,y〉| ≤ ‖x‖‖y‖

2. Minkowski inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖

3. Triangular inequality: d(x,z) ≤ d(x,y) + d(y,z)

4. Parallelogram law: ‖x+ y‖+ ‖x − y‖ = 2‖x‖2 +2‖y‖2

5. 4〈x,y〉 = ‖x+ y‖2 − ‖x − y‖2

6. x ⊥ y⇔ ‖x+ y‖2 = ‖x‖2 + ‖y‖2

The Cauchy-Schwarz inequality allows us to define angles ω in Euclidean vector
spaces between two vectors x,y. Assume that x , 0,y , 0. Then

−1 ≤
〈x,y〉
‖x‖‖y‖

≤ 1 (2.172)

Therefore, there exists a unique ω ∈ [0,π] with

cosω =
〈x,y〉
‖x‖‖y‖

(2.173)

The number ω is the angle between x and y.
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