
Skeletal Semantics
Martin Bodin1 Philippa Gardner1 Thomas Jensen2 Alan Schmitt2

1 Imperial College London 2 Inria

This research has been partially supported by
the ANR projects AJACS ANR-14-CE28-0008 and
CISC ANR-17-CE25-0014-01, as well as the EPSRC
programme grant ‘REMS: Rigorous Engineering of
Mainstream Systems’, EP/K008528/1.

Motivation

A lot of large-scale Coq formalisations of real-world languages have been pub-
lished in the last years. Instances include:

▶ CH2O [KW11] for C (which can be linked to CompCert [Ler09; KLW14]),
▶ JSCert [Bod+14] for JavaScript,
▶ CoqR [BDT18] for R.

These formalisations stand out by their large sizes:

While CompCert C JSCert CoqR
∼ 20 rules

∼ 200 rules

∼ 900 rules

∼ 2,000 rules

These formalisations are written in different styles and are thus difficult to compare. This graph tries to compensate for that but it is to be taken with care.

The size of these formalisations is however not due to the complexity of the
objects that theymanipulate. This complexity can bemeasured by the number
of basic actions used in the language’s specification, pictured below.

While CompCert C JSCert CoqR
∼ 10 actions ∼ 120 actions ∼ 80 actions ∼ 160 actions

Instead, the large sizes of these formalisations come from semantic exceptions:
special behaviours for some values, leading to additional rules in the formalisa-
tion. For instance, most JavaScript operations on numbers are actually defined
on all sorts of objects, not only numbers. Convoluted heuristics convert these
objects to get a result, and these heuristics are fully part of the language spec-
ification, and thus of its formalisation. There is for instance no string involved
in the following example, yet changing toString has an effect somehow:

1 console.log (+[18]) ; // Prints 18.
2 Array.prototype.toString = function (){ return 42 } ;
3 console.log (+[18]) // Prints 42.

The size of these semantics has two implications:
▶ Mistakes are easy to be made when writing an interpreter or an analyser
for these languages. There is thus a need to formally prove such programs.

▶ Such proofs are themselves impractical to be built as they are based on
huge language specifications.

Our Solution

Our solution is to step away from the corner-cases of the specification by for-
malising the specification language itself. Interpreters and analysers can then
be written and proven generically, for any such specification. These generic
interpreters, analysers, and proofs rely on the language-specific parts: basic
actions. These actions have to be implemented for each language.

Skeletal
semantics

While

λ-calculus

Any programming
language

Concrete
Interpretation

Abstract
Interpretation

C
onsistency

Defined and proven once and for all

We first formalised how JSCert is specified [BJS15], then generalised it: skele-
tal semantics and skeletons [Bod+19] are nowmuch simpler and more general.
Skeletons have been designed to facilitate the definition of interpreters, analy-
sers, but also semantics. Skeletons are indeed associated with a general notion
of interpretation, of which the usual concrete and abstract interpretations are
instances. We were able to relate the concrete and abstract interpretations in
general, only assuming small lemmas about each basic action.
Skeletons thus enable users to only focus on what matters: how computations
are performed at the level of basic actions. All the semantic exceptions are
faded away at this level, leading to much simpler lemmas to prove to get a
particular theorem about the considered programming language.
Skeletons also enable formalisations to scale with specification changes: only
lemmas about basic actions that have been changed need to be proven again
to get a result about the new specification.

Skeletons and Skeletal Semantics

Skeletal Semantics [Bod+19] is a format to specify the semantics of a pro-
gramming language. A skeletal semantics is guided by syntax: a skeleton is
defined for each term constructor of the language. A skeleton is a sequence of
declarations involving either (language-specific) basic actions, inductive calls
to the skeletal semantics, or non-deterministic branchings. This enables to
express a wide range of programming languages. Here follows an example of
skeletal semantics for a small While language. (See full example in the artefact.)

type stmt =
| Skip
| Assign of ident * expr
| While of expr * stmt

val write : ident * value * state -> state
val isTrue : bool -> unit
val isFalse : bool -> unit
val isBool : value -> bool

eval (s : state) : stmt -> state =
| Skip -> s
| Assign (x, e) ->
let v = eval s e in
write x v s

| While (e, t) ->
let v = eval s e in
let b = isBool v in
branch

let () = isTrue b in
let s' = eval s t in
eval s' (While (e, t))

or
let () = isFalse b in s

Declaration of terms
and their constructors.

Declaration of basic actions.
Note that some are partial.

Declaration of the skeletal
semantics of statements.

Inductive call
to the skeletal semantics.

Call to a basic action.

Non-deterministical branching.
(In this particular case, it is actually deterministic
thanks to the partiality of isTrue and isFalse.)

This skeletal semantics looks like an interpreter, but it is not. Indeed, one can
extract from this skeletal semantics both a concrete and an abstract semantics.
More generally, a wide range of interpretations can be derived from a skeletal
semantics. Crucially, given a set of basic actions, these interpretations are
defined and related one with each other once and for all. This makes skeletons
scale with large specification sizes, but also with specification changes.
The interpretations that we provide in our paper [Bod+19] are only examples.
The simplicity of skeletons makes it easy to define new interpretations, forcing
us to focus on the interesting parts (typically the memory model and its asso-
ciated operations) instead of being lost in a sea of semantic exceptions. Future
works include exploring specific interpretations for separation logic, certified
compilation, etc., as well as building real-world skeletal semantics.

Artefact

The artefact can be found at skeletons.inria.fr:
▶ Coq formalisation of skeletons,
▶ Proof of correctness of the abstract interpretation with respect to the
concrete interpretation,

▶ OCaml tool to manipulate skeletons,
▶ Various examples of skeletal semantics.

References
[Bod+19] Martin Bodin, Philippa Gardner, Thomas Jensen, and Alan Schmitt. Skeletal Se-

mantics and their Interpretations. POPL. 2019.
[BDT18] Martin Bodin, Tomás Diaz, and Éric Tanter. A Trustworthy Mechanized Formal-

ization of R. DLS. 2018.
[BJS15] Martin Bodin, Thomas Jensen, and Alan Schmitt. Certified Abstract Interpretation

with Pretty-Big-Step Semantics. CPP. 2015.
[Bod+14] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio

Maffeis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. A Trusted Mech-
anised JavaScript Specification. POPL. 2014.

[KLW14] Robbert Krebbers, Xavier Leroy, and Freek Wiedijk. Formal C semantics: Com-
pCert and the C standard. ITP. 2014.

[KW11] Robbert Krebbers and FreekWiedijk. A Formalization of the C99 Standard inHOL,
Isabelle and Coq. Calculemus/MKM. 2011.

[Ler09] Xavier Leroy. Formal Verification of a Realistic Compiler. Communications of the
ACM (2009).

http://skeletons.inria.fr
http://skeletons.inria.fr

