Circular Coinduction in CoQ using Bisimulation-Up-To Techniques

Jörg Endrullis Dimitri Hendriks Martin Bodin

VU University Amsterdam, Inria Rennes and ENS Lyon
$26^{\text {th }}$ of July, 2013

ITP 2013

Motivation

- Tools proving equalities on streams: Circ, Streambox, ...
- They use rewriting circular proofs.

```
Variables (A : stream bit) (f : stream bit }->\mathrm{ stream bit).
Hypothesis hyp_A : A == zero :: one :: A
Hypothesis hyp_f_0:\foralls, f (zero :: s) === zero :: one :: f s
Hypothesis hyp_f_1:}\foralls,f(one:: s)==fs
Lemma A_bis_f_A:A == f A.
Proof.
cofix CIH. constructor
rewrite hyp_A; rewrite hyp_f_0; simpl.
```


Motivation

- Tools proving equalities on streams: Circ, Streambox, ...
- They use rewriting circular proofs.

```
Variables (A : stream bit) (f : stream bit }->\mathrm{ stream bit).
Hypothesis hyp_A : A == zero :: one :: A.
Hypothesis hyp_f_0: }\forall\textrm{s},\textrm{f}(zero :: s)== zero :: one :: f s
Hypothesis hyp_f_1: }\forall\textrm{s},\textrm{f}(\mathrm{ (one :: s) == f s.
Lemma A_bis_f_A : A == f A.
Proof.
cofix CIH. constructor.
rewrite hyp_A; rewrite hyp_f_0; simpl.
(* ... *)
reflexivity.
```

No more subgoals.

Motivation

- Tools proving equalities on streams: Circ, Streambox, ...
- They use rewriting circular proofs.

But those proofs aren't directly accepted by CoQ!

```
Error:
Recursive definition of CIH is ill-formed.
In environment
(* . . . *)
CIH : A == f A
Sub-expression "(fun H : tail (tail (zero :: one :: A)) == tail (tail (f A)) =>
    Morphisms.trans_co_eq_inv_impl_morphism
    (hyp_f_1 A) H) (reflexivity (f A))))))" not in
guarded form (should be a constructor, an abstraction, a match, a cofix or a
recursive call).
```

reflexivity.
Qed.

(1) About Guardedness

(2) Bisimilarity Proofs

- Coinduction Loading
(3) Bisimulation-up-to

4 Dealing with Contexts

- Coinduction and Equational Reasoning

Coinduction and Guardedness

Induction

Enforce termination.

Inductive list :=

```
| nil : list
    cons : bool }->\mathrm{ list }->\mathrm{ list.
```

```
Fixpoint f (l : list) : list :=
    match 1 with
    | nil \(\Rightarrow\) nil
    |cons b l' \(\Rightarrow \operatorname{rev}\left(f l^{\prime}\right)\)
    end.
```


Coinduction

Enforce productivity.

```
CoInductive stream :=
    | cons: bool }->\mathrm{ stream }->\mathrm{ stream.
```

```
CoFixpoint f (s : stream) : stream :=
    match s with
    | cons b s' \(\Rightarrow\) cons (neg b) (f (zip s' s))
    end.
```


Coinduction and Guardedness

Induction

Enforce termination.

Inductive list :=

```
| nil : list
    cons : bool }->\mathrm{ list }->\mathrm{ list.
```

```
Fixpoint f (l : list) : list :=
    match 1 with
    | nil \(\Rightarrow\) nil
    |cons b l' \(\Rightarrow \operatorname{rev}\left(\mathrm{f} \mathrm{l}^{\prime}\right)\)
    end.
```


Coinduction

Enforce productivity.

```
CoInductive stream :=
    | cons: bool }->\mathrm{ stream }->\mathrm{ stream.
```

```
CoFixpoint f (s : stream) : stream :=
    match s with
    | cons b s' \(\Rightarrow\) cons (neg b) (f (zip s' s))
    end.
```


Guardedness and Productivity

	specification	guarded	productive
ones	$=1::$ ones	\checkmark	\checkmark
$\operatorname{read}(s)$	$=\operatorname{hd} s:: \operatorname{read}(\mathrm{tl} s)$	\checkmark	\checkmark
$\operatorname{plus}(s, t)$	$=(\mathrm{hd} s+\operatorname{hd} t)::$ plus $(\mathrm{tl} s, \mathrm{tl} t)$	\checkmark	\checkmark

Guardedness and Productivity

	specification	guarded	productive
ones	$=1::$ ones	\checkmark	\checkmark
$\operatorname{read}(s)$	$=$ hd $s::$ read(tl $s)$	\checkmark	\checkmark
$\operatorname{plus}(s, t)$	$=(\mathrm{hd} s+\mathrm{hd} t)::$ plus $(\mathrm{tl} s, \mathrm{tl} t)$	\checkmark	\checkmark
J	$=0:: \mathrm{tl} J$	\checkmark	\checkmark

Guardedness and Productivity

	specification	guarded	productive
ones	$=1::$ ones	\checkmark	\checkmark
$\operatorname{read}(s)$	$=\operatorname{hd} s::$ read $(\mathrm{tl} s)$	\checkmark	\checkmark
$\operatorname{plus}(s, t)$	$=(\mathrm{hd} s+\mathrm{hd} t)::$ plus $(\mathrm{tl} s, \mathrm{tl} t)$	\checkmark	\checkmark
J	$=0:: \mathrm{tl} J$	\checkmark	\checkmark

$$
\begin{aligned}
& J_{1}=0:: 0:: 0:: 0:: 0:: 0:: 0:: . \\
& J_{2}=0:: 1:: 1:: 1:: 1:: 1:: 1:: \ldots \\
& J_{3}=0:: 1:: 1:: 0:: 1:: 1:: 0:: \ldots
\end{aligned}
$$

Guardedness and Productivity

Guardedness and Productivity

	specification	guarded	productive
ones	$=1::$ ones	\checkmark	\checkmark
$\operatorname{read}(s)$	$=$ hd $s::$ read(tl s)	\checkmark	\checkmark
$\operatorname{plus}(s, t)$	$=$ (hd $s+$ hd $t)::$ plus(tl s, tl $t)$	\checkmark	\checkmark
J	$=0::$ tl J	\checkmark	\checkmark
twos	$=2::$ read(twos)	\checkmark	\checkmark
nats	$=0::$ plus(nats, ones)	\checkmark	\checkmark
from (n)	$=n::$ from $(n+1)$	\checkmark	\checkmark
nats	$=$ from (0)		\checkmark

Idea

Hide the computation of the next stream element in an argument.

Bisimilarity

- In Coq, \sim is defined coinductively by the rule

$$
\frac{\pi_{0}: \operatorname{hd} s=\operatorname{hd} t \quad \pi^{\prime} \quad \mathrm{tl} s \sim \mathrm{tl} t}{\pi_{0} \pi^{\prime}: s \sim t} \sim^{+}
$$

- \sim is the largest relation reversely closed under \sim^{+}, \sim is the largest bisimulation
- A proof of $s \sim t$ can be viewed as an infinite sequence

$$
\pi_{0}\left(\sim^{+} \pi_{1}\left(\sim^{+} \pi_{2}\left(\sim^{+} \ldots\right)\right)\right)
$$

Bisimilarity

- In Coq, \sim is defined coinductively by the rule

$$
\frac{\pi_{0}: \operatorname{hd} s=\mathrm{hd} t \quad \pi^{\prime} \quad \mathrm{tl} s \sim \mathrm{tl} t}{\pi_{0} \pi^{\prime}: s \sim t} \sim^{+}
$$

- \sim is the largest relation reversely closed under \sim^{+}, \sim is the largest bisimulation
- A proof of $s \sim t$ can be viewed as an infinite sequence

Bisimilarity

- In Coq, \sim is defined coinductively by the rule

$$
\frac{\pi_{0}: \text { hd } s=\mathrm{hd} t \quad \pi^{\prime}: \mathrm{tl} s \sim \mathrm{tl} t}{\sim^{+} \pi_{0} \pi^{\prime}: s \sim t} \sim^{+}
$$

- \sim is the largest relation reversely closed under \sim^{+}, \sim is the largest bisimulation
- A proof of $s \sim t$ can be viewed as an infinite sequence

$$
\sim^{+} \pi_{0}\left(\sim^{+} \pi_{1}\left(\sim^{+} \pi_{2}\left(\sim^{+} \ldots\right)\right)\right)
$$

Some Productive Proofs are not Guarded

Define $Z_{1}=0:: Z_{2}$ and $Z_{2}=0:: Z_{1}$. Show $Z_{1} \sim Z_{2}$.

Some Productive Proofs are not Guarded

Define $Z_{1}=0:: Z_{2}$ and $Z_{2}=0:: Z_{1}$. Show $Z_{1} \sim Z_{2}$.

$$
\begin{gathered}
\pi=\sim(\text { refl }=0)\left(\sim^{+}(\text {refl }=0) \pi\right) \\
\pi=\sim+(\text { refl }=0)(s y m \pi)
\end{gathered}
$$

Some Productive Proofs are not Guarded

Define $Z_{1}=0:: Z_{2}$ and $Z_{2}=0:: Z_{1}$. Show $Z_{1} \sim Z_{2}$.

Guardedness and Rewritings

Prove $A \sim f A$ where Γ consists of

$$
\begin{aligned}
A \sim 0:: 1:: A \quad f(0:: \sigma) \sim 0:: 1:: f \sigma \\
\quad f(1:: \sigma) \sim f \sigma
\end{aligned}
$$

$$
A \sim f A
$$

as a proof term:

Guardedness and Rewritings

Prove $A \sim f A$ where Γ consists of

$$
\begin{aligned}
A \sim 0:: 1:: A \quad f(0:: \sigma) \sim 0:: 1:: f \sigma \\
\quad f(1:: \sigma) \sim f \sigma
\end{aligned}
$$

$$
\frac{A \sim f A}{A \sim f A} \text { COFIX } \pi
$$

as a proof term:
cofix π. (...)

Guardedness and Rewritings

Prove $A \sim f A$ where Γ consists of

$$
\begin{aligned}
A \sim 0:: 1:: A \quad f(0:: \sigma) \sim 0:: 1:: f \sigma \\
f(1:: \sigma) \sim f \sigma
\end{aligned}
$$

as a proof term:
$\operatorname{cofix} \pi .\left(\sim^{+} \pi_{1} \ldots\right)$

Guardedness and Rewritings

Prove $A \sim f A$ where Γ consists of

$$
\begin{aligned}
& A \sim 0:: 1:: A \quad f(0:: \sigma) \sim 0:: 1:: f \sigma \\
& \\
& f(1:: \sigma) \sim f \sigma
\end{aligned}
$$

as a proof term:
$\operatorname{cofix} \pi .\left(\sim^{+} \pi_{1}\left(\sim^{+} \pi_{2} \ldots\right)\right)$

Guardedness and Rewritings

Prove $A \sim f A$ where Γ consists of

$$
\begin{aligned}
& A \sim 0:: 1:: A \quad f(0:: \sigma) \sim 0:: 1:: f \sigma \\
& \\
& \qquad(1:: \sigma) \sim f \sigma
\end{aligned}
$$

as a proof term:
$\operatorname{cofix} \pi .\left(\sim^{+} \pi_{1}\left(\sim^{+} \pi_{2}\left(\right.\right.\right.$ trans $\left.\left.\left.\pi_{3} \ldots\right)\right)\right)$

Guardedness and Rewritings

Prove $A \sim f A$ where Γ consists of

$$
\begin{aligned}
A \sim 0:: 1:: A \quad f(0:: \sigma) \sim 0:: 1:: f \sigma \\
f(1:: \sigma) \sim f \sigma
\end{aligned}
$$

as a proof term:
cofix $\pi .\left(\sim^{+} \pi_{1}\left(\sim^{+} \pi_{2}\left(\right.\right.\right.$ trans $\pi_{3}\left(\right.$ trans $\left.\left.\left.\left.\ldots \pi_{4}\right)\right)\right)\right)$

Guardedness and Rewritings

Prove $A \sim f A$ where Γ consists of

$$
\begin{aligned}
& A \sim 0:: 1:: A \quad f(0:: \sigma) \sim 0:: 1:: f \sigma \\
& f(1:: \sigma) \sim f \sigma
\end{aligned}
$$

as a proof term:
$\operatorname{cofix} \pi .\left(\sim^{+} \pi_{1}\left(\sim^{+} \pi_{2}\left(\right.\right.\right.$ trans $\left.\left.\left.\pi_{3}\left(\operatorname{trans} \pi \pi_{4}\right)\right)\right)\right)$

Guardedness and Rewritings

Prove $A \sim f A$ where Γ consists of

$$
\begin{aligned}
& A \sim 0:: 1:: A \quad f(0:: \sigma) \sim 0:: 1:: f \sigma \\
& f(1:: \sigma) \sim f \sigma
\end{aligned}
$$

$$
\frac{\pi_{3} \quad \frac{\pi_{4}}{A \sim f A} \pi \frac{r^{2}}{f A \sim \operatorname{tl}(\mathrm{tl}(f A))}}{A \sim \operatorname{tl}(\mathrm{tl}(f A))} \text { TRANS }
$$

as a proof term:

$$
\frac{A \sim f A}{A \sim f A} \text { COFIX } \pi
$$

Guardedness and Rewritings

Remember this?

$$
\begin{aligned}
\text { nats } & =0:: \text { nats }+ \text { ones } \\
\text { from }(n) & \checkmark \quad \checkmark \\
\text { nats } & =\text { from }(0)
\end{aligned}
$$

- Hide equational reasoning in the arguments!
- Prove $s \sim t$ by showing the equivalent

- New rule:

Guardedness and Rewritings

Remember this?

$$
\begin{aligned}
\text { nats } & =0:: \text { nats }+ \text { ones } \\
\text { from }(n) & \checkmark \quad \checkmark \\
\text { nats } & =\text { from }(0)
\end{aligned}
$$

- Hide equational reasoning in the arguments!
- Prove $s \sim t$ by showing the equivalent

$$
\forall u v .(u \sim s \Rightarrow t \sim v \Rightarrow u \sim v)
$$

- New rule:

$$
\frac{\forall u v .(u \sim s \Rightarrow t \sim v \Rightarrow u \sim v)}{s \sim t} \text { LOAD }
$$

Guardedness and Rewritings

$$
\text { load } A(f A)\left(\operatorname{cofix} \pi \cdot\left(\lambda u v \rho_{u} \rho_{v} \cdot\left(\sim^{+} \pi_{1}\left(\sim^{+} \pi_{2}\left(\pi(\operatorname{tl}(\operatorname{tl} u))(\operatorname{tl}(\operatorname{tl} v)) \ldots \pi_{3} \pi_{4}\right)\right)\right)\right)\right)
$$

Guardedness and Rewritings

$$
\text { load } A(f A)\left(\operatorname{cofix} \pi \cdot\left(\lambda u v \rho_{u} \rho_{v} \cdot\left(\sim^{+} \pi_{1}\left(\sim^{+} \pi_{2}\left(\pi(\operatorname{tl}(\operatorname{tl} u))(\operatorname{tl}(\operatorname{tl} v)) \ldots \pi_{3} \pi_{4}\right)\right)\right)\right)\right)
$$

Guardedness and Rewritings

$$
\text { load } A(f A)\left(\operatorname{cofix} \pi .\left(\lambda u v \rho_{u} \rho_{v} \cdot\left(\sim^{+} \pi_{1}\left(\sim^{+} \pi_{2}\left(\pi(\operatorname{tl}(\operatorname{tl} u))(\operatorname{tl}(\mathrm{tl} v)) \ldots \pi_{3} \pi_{4}\right)\right)\right)\right)\right)
$$

- We only know about u and v what we needed to know in the previous proof.

(1) About Guardedness

(2) Bisimilarity Proofs

- Coinduction Loading
(3) Bisimulation-up-to

4 Dealing with Contexts

- Coinduction and Equational Reasoning

Intuition

$$
\frac{\pi_{3} \quad \frac{\pi_{4}}{A \sim f A} \pi \frac{\pi_{4}}{f A \sim \operatorname{tl}(\mathrm{tl}(f A))}}{\frac{\pi_{2}}{\overparen{x}}} \text { TRANS }
$$

What we did in the original proof

- Rewrite the left term to A.
- Rewrite the right term to $f A$.

What we loaded

$$
\forall u v .(u \sim A \Rightarrow f A \sim v \Rightarrow u \sim v)
$$

Bisimulation-up-to

Idea from process algebra (Milner, Sangiorgi):

- Instead of proving $s \sim t$, define a relation R such that $s R t$ and prove $R \subseteq \sim$.
- Instead of proving $R \subseteq \sim$, let's prove $\mathcal{F}(R) \subseteq \sim$.

Bisimulation-up-to

Idea from process algebra (Milner, SANGiorgi):

- Instead of proving $s \sim t$, define a relation R such that $s R t$ and prove $R \subseteq \sim$.
- Instead of proving $R \subseteq \sim$, let's prove $\mathcal{F}(R) \subseteq \sim$.

Definition

Bisimulation-up-to

We want to prove $\mathcal{F}(R) \subseteq \sim$.

Definition

$$
\mathrm{R}^{\mathrm{n}} \text { progresses to } R^{\prime} \Longleftrightarrow \mathrm{s} R t \Rightarrow s(0)=t(0) \wedge s^{\prime} R^{\prime} t^{\prime}
$$

R is a bisimulation-up-to \mathcal{F} if R progresses to $\mathcal{F}(R)$.

Theorem (meta)

If R is a bisimulation-up-to \mathcal{F}, then $\mathcal{F}(R)$ is a bisimulation.

The loading technique is an instance of this, using $\sim R \sim \subseteq \mathcal{F}(R)$.

Bisimulation-up-to

We want to prove $\mathcal{F}(R) \subseteq \sim$.

Definition

$$
R \text { progresses to } R^{\prime} \Longleftrightarrow s R t \Rightarrow s(0)=t(0) \wedge s^{\prime} R^{\prime} t^{\prime}
$$

R is a bisimulation-up-to \mathcal{F} if R progresses to $\mathcal{F}(R)$.

Theorem (meta)

If R is a bisimulation-up-to \mathcal{F}, then $\mathcal{F}(R)$ is a bisimulation.

The loading technique is an instance of this, using $\sim R \sim \subseteq \mathcal{F}(R)$.

What About Rewriting Under a Context?

How does a rule like

$$
\frac{\pi: s \sim t}{C[\pi]: C[s] \sim C[t]} \text { CONTEXT }
$$

combine with coinduction?

- Taking $C=\mathrm{tl} \square$ is not productive.
- When is $\pi=\sim^{+}($refl $\left.=0)(\ldots C \mid \pi] \ldots\right): s \sim t$ productive?
- When C is causal, this is correct. Moreover, then $X=0:: C[X]$ is productive.

What About Rewriting Under a Context?

How does a rule like

$$
\frac{\pi: s \sim t}{C[\pi]: C[s] \sim C[t]} \text { CONTEXT }
$$

combine with coinduction?

- Taking $C=$ tl \square is not productive.
- When is $\pi=\sim^{+}($refl $=0)(\ldots C[\pi] \ldots): s \sim t$ productive?
- When C is causal, this is correct. Moreover, then $X=0:: C[X]$ is productive.

What About Rewriting Under a Context?

How does a rule like

$$
\frac{\pi: s \sim t}{C[\pi]: C[s] \sim C[t]} \text { CONTEXT }
$$

combine with coinduction?

- Taking $C=$ tl \square is not productive.
- When is $\pi=\sim^{+}\left(\right.$refl $\left._{=} 0\right)(\ldots C[\pi] \ldots): s \sim t$ productive?
- When C is causal, this is correct. Moreover, then $X=0:: C[X]$ is productive.

Causal Contexts

s and t are bisimilar up to depth n :

$$
s \sim_{n} t \Longleftrightarrow \forall k<n \cdot s(k)=t(k)
$$

Definition

A stream function $f: A^{\omega} \rightarrow B^{\omega}$ is causal if

$$
s \sim_{n} t \Longrightarrow f s \sim_{n} f t
$$

for all $s, t \in A^{\omega}$ and $n \in \mathbb{N}$.
Let Γ be a set of equations. A stream context C is causal if $\llbracket C, \alpha \rrbracket_{\mathcal{A}}$ is causal for all models \mathcal{A} of Γ, and assignments $\alpha: \mathcal{X} \rightarrow A$.

We Can Extend the Theorem

We can add causal context to $\mathcal{F}(R)$

$$
\mathcal{F}(R)::=R|\sim| C[\mathcal{F}(R)]\left|\mathcal{F}(R)^{-1}\right| \mathcal{F}(R) \mathcal{F}(R)
$$

with C causal context.
R is a bisimulation-up-to if R progresses to $\mathcal{F}(R)$.

And the theorem holds

If R is a bisimulation-up-to, then $\mathcal{F}(R)$ is a bisimulation.

This Proves the Soundness of This System

- Γ, Δ sets of equations, Δ is the set of coinduction hypotheses.

Equational Reasoning

$$
\begin{gathered}
\overline{\Gamma, \Delta \vdash C\left[s^{\sigma}\right] \sim C\left[t^{\sigma}\right]} \text { if } s \sim t \in \Gamma \\
\overline{\Gamma, \Delta \vdash s \sim s} \\
\frac{\Gamma, \Delta \vdash t \sim s}{\Gamma, \Delta \vdash s \sim t} \quad \frac{\Gamma, \Delta \vdash s \sim u \quad \Gamma, \Delta \vdash u \sim t}{\Gamma, \Delta \vdash s \sim t}
\end{gathered}
$$

Coinduction

$$
\begin{aligned}
& \overline{\Gamma, \Delta \vdash C\left[s^{\sigma}\right] \sim C\left[t^{\sigma}\right]} \text { if } s \sim t \in \Delta \text { and } C \text { is causal } \\
& \frac{\Gamma, \varnothing \vdash \mathrm{hd} s=\mathrm{hd} t \quad \Gamma, \Delta \cup\{s \sim t\} \vdash \mathrm{tl} s \sim \mathrm{tl} t}{\Gamma, \Delta \vdash s \sim t} \text { coin }
\end{aligned}
$$

This Proves the Soundness of This System

- Γ, Δ sets of equations, Δ is the set of coinduction hypotheses.

Equational Reasoning

$$
\begin{gathered}
\overline{\Gamma, \Delta \vdash C\left[s^{\sigma}\right] \sim C\left[t^{\sigma}\right]} \text { if } s \sim t \in \Gamma \\
\overline{\Gamma, \Delta \vdash s \sim s} \\
\frac{\Gamma, \Delta \vdash t \sim s}{\Gamma, \Delta \vdash s \sim t}
\end{gathered} \frac{\Gamma, \Delta \vdash s \sim u \quad \Gamma, \Delta \vdash u \sim t}{\Gamma, \Delta \vdash s \sim t}
$$

Coinduction

$$
\begin{aligned}
& \overline{\Gamma, \Delta \vdash C\left[s^{\sigma}\right] \sim C\left[t^{\sigma}\right]} \text { if } s \sim t \in \Delta \text { and } C \text { is causal } \\
& \frac{\Gamma, \varnothing \vdash \mathrm{hd} s=\mathrm{hd} t \quad \Gamma, \Delta \cup\{s \sim t\} \vdash \mathrm{tl} s \sim \mathrm{tl} t}{\Gamma, \Delta \vdash s \sim t} \text { coin }
\end{aligned}
$$

- NB. without causality $\varnothing,\{s \sim t\} \vdash \mathrm{tl} s \sim \mathrm{tl} t$ can always be derived!

Conclusion

- We defined a system of axioms, mixing equationnal and corecursive reasoning.
- We proved this system sound.
- There is a systematic way to convert a proof in this system to a proof accepted by Coq.
- We provide a Haskell implementation:
http://www.cs.vu.nl/~diem/research/up_to.tgz
- This can easily be generalised to other coinductive structures.

Conclusion

- We defined a system of axioms, mixing equationnal and corecursive reasoning.
- We proved this system sound.
- There is a systematic way to convert a proof in this system to a proof accepted by Coq.
- We provide a Haskell implementation:
http://www.cs.vu.nl/~diem/research/up_to.tgz
- This can easily be generalised to other coinductive structures.

Thank you for listening!
even $s=h d s:: \operatorname{even}(\mathrm{tl}(\mathrm{tl} s))$
$\forall s t, s \sim t \Longrightarrow$ even $s \sim$ even t

```
import Prelude hiding (head, tail, Left, Right, flip, id)
import qualified Data.Map as Map
import Lang
zeros1 = Fun "zeros1" []
zeros2 = Fun "zeros2" []
env :: Environment
env = (
        Map.fromList [
            ("zeros1", ([], Stream, False)),
                ("zeros2", ([], Stream, False))
        ],
        hypFromList [
            ("hyp_zeros1", (zeros1, cons zero zeros1, Stream)),
            ("hyp_zeros2", (zeros2, cons zero zeros2, Stream))
        ]
    )
lemma = ("zeros1_eq_zero2", proof,
    (zeros1, zeros2, Stream))
```

```
proof :: BisProof
proof = Cofix "F" (Eq2Bis e1) (Eq2Bis h1)
-- e1 = ..
h1 = Transitivity step1 h2
step1 = (Step "hyp_zeros1" Right (CFun "tail" [] Hole []) Map.empty)
h2 = Transitivity step2 h3
step2 = (Step "hyp_tail" Right Hole (Map.fromList [("x", zero), ("\sigma", zeros1)]))
h3 = Transitivity step3 h4
step3 = (Step "F" Right Hole Map.empty)
h4 = Transitivity step4 h5
step4 = (Step "hyp_tail" Left Hole (Map.fromList [("x", zero), ("\sigma", zeros2)]))
h5 = Transitivity step5 h6
step5 = (Step "hyp_zeros2" Left (CFun "tail" [] Hole []) Map.empty)
h6 = Reflexivity
```


(1) About Guardedness

(2) Bisimilarity Proofs

- Coinduction Loading
(3) Bisimulation-up-to

4 Dealing with Contexts

- Coinduction and Equational Reasoning

