Circular Coinduction in CoQ

using Bisimulation-Up-To Techniques

JORG ENDRULLIS DIMITRI HENDRIKS MARTIN BODIN

VU UNIVERSITY AMSTERDAM, INRIA RENNES and ENS LyonN

260 of July, 2013

ITP 2013

@ Tools proving equalities on streams: CIRC, STREAMBOX, ..

o They use rewriting circular proofs.

Motivation

@ Tools proving equalities on streams: CIRC, STREAMBOX, ..

o They use rewriting circular proofs.

Variables (A : stream bit) (f : stream bit — stream bit).
Hypothesis hyp_A : A == zero :: one :: A.

Hypothesis hyp_£_0 : Vs, f (zero :: s) == zero :: one :: f s.
Hypothesis hyp_f_1: Vs, f (one :: s) == £ s.

Lemma A_bis_f_A: A == f A.

Proof.

cofix CIH. constructor.

rewrite hyp_A; rewrite hyp_f_0; simpl.
(CEE))

reflexivity.

No more subgoals.

Motivation

@ Tools proving equalities on streams: CIRC, STREAMBOX, ..

o They use rewriting circular proofs.

But those proofs aren't directly accepted by C

Error:
Recursive definition of CIH is ill-formed.
In environment

&3 coc D)
CIH : A==1f A
Sub-expression "(fun H : tail (tail (zero :: one :: A)) == tail (tail (£ A)) =>

Morphisms.trans_co_eq_inv_impl_morphism

(x ... %)

(hyp_f_1 A) H) (reflexivity (£ A))))))" not in
guarded form (should be a constructor, an abstraction, a match, a cofix or a
recursive call).

reflexivity
Qed.

@ About Guardedness

@ Bisimilarity Proofs
o Coinduction Loading

Q Bisimulation-up-to

@ Dealing with Contexts
o Coinduction and Equational Reasoning

Coinduction and Guarde

Enforce termination.

Inductive list :=
| nil : list
| cons : bool —1list — 1list.

Fixpoint £ (1 : list) : list :=
match 1 with
| nil = nil
| cons b1l' =rev (f1')
end.

Coinduction

Enforce productivity.

CoInductive stream :=
| cons : bool — stream — stream.

CoFixpoint f (s : stream) : stream :=
match s with
| cons b s’ = cons (neg b) (f (zip s’ s))
end.

Coinduction and Guarde

Enforce termination.

Inductive list :=
| nil : list
| cons : bool —1list — 1list.

Fixpoint £ (1 : list) : list :=
match 1 with
| nil = nil
| cons b1l' =rev (£1')
end.

Coinduction

Enforce productivity.

CoInductive stream :=
| cons : bool — stream — stream.

CoFixpoint f (s : stream) : stream :=
match s with
| cons b s' = cons (neg b) (f (zip s’ s))
end.

Guardedness and Productivity

specification guarded productive
ones = 1: ones v v
read(s) = hds:: read(tls) v v
plus(s,t) = (hds+hdt) : plus(tls,tlt) v v

Guardedness and Productivity

specification guarded productive
ones = 1: ones v v
read(s) = hds:: read(tls) v v
plus(s,t) = (hds+hdt) : plus(tls,tlt) v v
J = 0:=tlJ g %

Guardedness and Productivity

specification guarded productive

ones = 1: ones v v

read(s) = hds:: read(tls) v v

plus(s,t) = (hds+hdt):: plus(tls, tlt) v v

J = 0:=:tlJ 4 5
J1=0:0:0::0::0::0::0::
bHb=0=:1:=:1=21=21:=1:1::
J=0:1:21:0:1::1:0::

Guardedness and Productivity

specification guarded productive
ones = 1: ones v v
read(s) = hds:: read(tls) v v
plus(s,t) = (hds+hdt):: plus(tls,tlt) v v
J = 0:=tlJ % g
twos = 2 :: read(twos) 4 v
nats = 0 :: plus(nats, ones) % v

J1=0:0:0::0::0::0::0::
bHb=0=:1:=:1=21=21:=1:1::
J=0:1:21:0:1::1:0::

Guardedness and Productivity

specification guarded productive
ones = 1::ones v v
read(s) = hds:: read(tls) v v
plus(s,t) = (hds+hdt):: plus(tls,tlt) v v
J = 0:tlJ 7 g
twos = 2 :: read(twos) 4 v
nats = 0 :: plus(nats, ones) 4 v
from(n) = n: from(n+ 1) v v
nats = from(0) v

Hide the computation of the next stream element in an argument.

o In CoQ, ~ is defined coinductively by the rule

hds=hdt tls~ tlt
s~ t

AP

o In CoQ, ~ is defined coinductively by the rule

hds=hdt tls~tlt
s~ t

AP

@ ~ is the largest relation reversely closed under ~*,
~ is the largest bisimulation

o In CoQ, ~ is defined coinductively by the rule

mo : hds=hdt 7' :tls~tlt
~Tmow s~ t

AP

@ ~ is the largest relation reversely closed under ~*,
~ is the largest bisimulation

@ A proof of s~ t can be viewed as an infinite sequence

o (v m (o (L))

Some Productive Proofs are not Guarded

Define Z1 =0:: 2, and 2, =0 :: Z;. Show Z; ~ Z5.

Some Productive Proofs are not Guarded

Define Z1 =0:: 2, and 2, =0 :: Z;. Show Z; ~ Z5.

REFL_ T ™
=0 Z1~ 2 o 2y~ 2
REFL_ ~ REFL_ SYM.,
0=0 0::21~0::Zg + 0=0 22N21 i
0:0::24~0:0:2 0:2~0:24
COFIX T COFIX T
Z1 ~ 2 Z1 ~ 2>

Some Productive Proofs are not Guarded

Define Z1 =0:: 2, and 2, =0 :: Z;. Show Z; ~ Z5.

REFL_— s ™
0=0 Zy ~ 2> o 2y~ 2
REFL_— ~ REFL— SYM~.
0=0 0::21~0::Zz + 0=0 22N21 i
0:0:24~0:0:2 0:24~0:2
COFIX 7 COFIX 7
Zl ~ ZQ Zl ~ Z2
proof term guarded productive (correct)
7w =n~"T (refl= 0) (~* (refl= 0)) v v
m=n~" (refl= 0) (sym_) 4 v

Guardedness and Rewritings

Prove A ~ fA where I consists of
A~0:u1:A f0xo)~0:1:fo
f(l:o)~fo

A~ fA

as a proof term:

Guardedness and Rewritings

Prove A ~ fA where I consists of

A~0:u1:A f0xo)~0:1:fo
f(l:o)~fo
A~ fA
———— COFIX T
A~ fA

as a proof term:

cofix m. (...)

Guardedness and Rewritings

Prove A ~ fA where I consists of

A~0:u1:A f0xo)~0:1:fo
f(l:o)~fo
E
=
=
Il
£ A~ (FA)
A~ fA
————— COFIX T
A~ fA

as a proof term:

cofix . (~T mp ...)

Guardedness and Rewritings

Prove A ~ fA where I consists of

A~0:u1:A f0xo)~0:1:fo
f(l:o)~fo
2
S
e
=3
ET
T
1 = t1(t1 A) ~ tl(t1(fA))
£ 1A ~ t1(FA)
A~ fA
————— COFIX T
A~ fA

as a proof term:

cofix . (~+ m (~T w2 ..0)

Guardedness and Rewritings

Prove A ~ fA where I consists of

A~0:u1:A f0o)~0:1:fo
f(l:o)~fo
2
S
‘E’
I 73
t1(t1A) ~ A ~ t1(t1 (FA))

RANS

1 (tlA) ~H(U(FA)
HA~t(FA)
A~ fA
A~ fA

hd A = hd (fA)| 3
hd (t1 A)

COFIX 7

as a proof term:

cofix . (~* my (~T mp (trans 73 ...)))

Guardedness and Rewritings

Prove A ~ fA where I consists of

A~0:u1:A f0o)~0:1:fo
f(l:o)~fo

2

S

= 4

=]

Tj s A~fA fA~tL(tl(FA))

TRANS

t1(t1A) ~ A ~ t1(t1 (FA))

RANS

1 (tlA) ~ (il (FA)
1A~ t1(FA)

hd A = hd (fA)| 3
hd (t1 A)

A~ TA
————— COFIX 7
A~ fA
as a proof term:
cofix 7. (~T my (~T mp (trans w3 (trans ... my))))

Guardedness and Rewritings

Prove A ~ fA where I consists of

A~0:u1:A f0o)~0:1:fo
f(l:o)~fo
2
S
= 4
g m
= 13 A~TfA | fA~tL(EL(FA))
TRANS
t1(t1A) ~ A ~ t1(t1 (FA))

RANS

1 (tlA) ~H(U(FA)
HA~t(FA)
A~ fA
A~ fA

hd A = hd (fA)| 3
hd (t1 A)

COFIX 7

as a proof term:

cofix 7. (~T m (~T m (trans w3 (trans 7 74))))

Guardedness and Rewritings

Prove A ~ fA where I consists of

A~0:u1:A f0o)~0:1:fo
f(l:o)~fo
2
S
= 4
g m
= 1 A~TfA | fA~tL(EL(FA))
TRANS
t1(t1A) ~ A ~ t1(t1 (FA))

RANS

1 (tlA) ~H(U(FA)
HA~t(FA)
A~ fA
A~ fA

hd A = hd (fA)| 3
hd (t1 A)

COFIX T obstruct guardedness!

as a proof term:

cofix . (~* my (~T mp (trans w3 (trans 7 74))))

Guardedness and Rewritings

Remember this?

nats = 0: nats+ones 5 V
from(n) = n:from(n+1) v V
nats = from(0) v

o Hide equational reasoning in the arguments!

Guardedness and Rewritings

Remember this?

nats = 0: nats+ones 5 V
from(n) = n:from(n+1) v V
nats = from(0) v

o Hide equational reasoning in the arguments!

@ Prove s ~ t by showing the equivalent
Vuv.(u~s = t~v = u~v)

o New rule:
Vuv.(u~s = t~v = u~v)

LOAD
s~ t

Guardedness and Rewritings

3
I~}

=5
= - .
m L : RANS - RANS
3T Uy~ A = FA~H(Y) = 0(te)~ () | (g~ A FA~ L (tLY) 3_ i
2= =
! E tl(tlu) ~ t1(tlv) N
= tlu~tlv ot
u~v vt ot
Yuv.(u~A = fA~v = un~v)
COFIX T
Yuv.(u~A = fA~v = ur~v)
LOAD

A~ fA

load A (fA) (cofix . (Auvpupy. (~T 71 (~ w0 (7 (81 (t1w)) (t1(t1v)) ... w3 74)))))

10

Guardedness and Rewritings

3
I~}

=5
= - .
m L : RANS - RANS
3T Uy~ A = FA~H(Y) = 0(te)~ () | (s~ A FA~ L (tLY) 3_ i
2= =
! E tl(tlu) ~ t1(tlv) N
= tlu~tlv ot
u~v vt ot
Yuv.(u~A = fA~v = un~v)
COFIX T
Yuv.(u~A = fA~v = ur~v)
LOAD

A~ fA

load A (fA) (cofix 7. (Auvpupy. (~T w1 (~ w0 (7 (81 (t1w)) (t1(t1v)) ... w3 74)))))

10

Guardedness and Rewritings

3
I~}

=5
= - .
m L : RANS - RANS
3T Uy~ A = FA~H(Y) = 0(te)~ () | (g~ A FA~ L (tLY) 3_ i
2= =
! E tl(tlu) ~ t1(tlv) N
= tlu~tlv ot
u~v vt ot
Yuv.(u~A = fA~v = un~v)
COFIX T
Yuv.(u~A = fA~v = ur~v)
LOAD

A~ fA

load A (fA) (cofix . (Auvpupy. (~T 71 (~ w0 (7 (81 (t1w)) (t1(t1v)) ... w3 74)))))

o We only know about v and v what we needed to know in the previous
proof.

10

@ About Guardedness

@ Bisimilarity Proofs
o Coinduction Loading

Q Bisimulation-up-to

@ Dealing with Contexts
o Coinduction and Equational Reasoning

11

s
73 A~fA " fA~tl(tl(FA))
tI(t1A) ~ A A~ t1(t1(FA))
H(tA) ~ t(t(FA)
t1A ~ t1(fA)
A~ A b

———— COFIX 7
A~ fA

What we did in the original proof

o Rewrite the left term to A.
o Rewrite the right term to fA.

What we loaded

Vuv.(u~A = fA~v = u~v)

5
Iy

)l

&

RANS

hd (FA)|

hd (t1 A) = hd (t1 (fA)

RANS

hd A

+

Bisimulation-up-to

|dea from process algebra (MILNER, SANGIORGI):

o Instead of proving s ~ t, define a relation R such that s R t
and prove R Cr~.

13

Bisimulation-up-to

|dea from process algebra (MILNER, SANGIORGI):

o Instead of proving s ~ t, define a relation R such that s R t
and prove R Cr~.

o Instead of proving R C~, let's prove F(R) C~.

F(R) == R| ~ | F(RA™" | F(RIF(R)

Symmetry Transitivity

13

Bisimulation-up-to

We want to prove F(R) C~.

14

Bisimulation-up-to

We want to prove F(R) C~.

Definition

R progresses to R <= sRt=s(0)=t0)As R ¢
R is a bisimulation-up-to F if R progresses to F(R).

Theorem (meta)

If R is a bisimulation-up-to F, then F(R) is a bisimulation.

The loading technique is an instance of this, using ~ R~ C F(R).

What About Rewriting Under a Context?

How does a rule like
mT.S~t

Clr] : Cs| ~ Ct]
combine with coinduction?

CONTEXT

15

What About Rewriting Under a Context?

How does a rule like
mT.S~t

- s ~ [

CONTEXT

combine with coinduction?

o Taking C=tlO is not productive.
o When is m = ~7 (refl= 0) (... C[n]...): s~ t productive?

15

What About Rewriting Under a Context?

How does a rule like
mT.S~t

- s ~ [

CONTEXT
combine with coinduction?

o Taking C=tlO is not productive.

o When is m = ~7 (refl= 0) (... C[n]...): s~ t productive?

@ When Ciis causal, this is correct.
Moreover, then X =0 :: C[X] is productive.

15

Causal Contexts

s and t are bisimilar up to depth n:
s~pt <= Vk< n. s(k)=t(k)

Definition

A stream function f: AY — B* is causal if
S~pt — fs~, ft
for all s,t € A“ and n € N.

Let [be a set of equations. A stream context C is causal
if [C,] 4 is causal for all models A of ', and assignments a : X — A.

16

We Can Extend the Theorem

We can add causal context to F(R)

F(R) == R| ~ | AFR)] | F(R)™ | F(RF(R)

with C causal context.
R is a bisimulation-up-to if R progresses to F(R).

And the theorem holds

If Ris a bisimulation-up-to, then F(R) is a bisimulation.

This Proves the Soundness of This System

o [, A sets of equations, A is the set of coinduction hypotheses.

Equational Reasoning

rarqel~qe] o~ ter

MAFt~s NMAFs~u TLAFu~t
NMAFs~s NAFs~t MAFs~t

FAF] ~ qF] if s~te A and Cis causal

NNokFhds=hdt IAU{s~t}Ftls~tlt
MAFs~t

coin

This Proves the Soundness of This System

o [, A sets of equations, A is the set of coinduction hypotheses.

Equational Reasoning

rarqel~qe] o~ ter

MAFt~s NMAFs~u TLAFu~t
NMAFs~s NAFs~t MAFs~t

FAF] ~ qF] if s~te A and Cis causal

NNokFhds=hdt IAU{s~t}Ftls~tlt
MAFs~t

coin

o NB. without causality @, {s ~ t} - tls ~ tl ¢ can always be derived!
18

Conclusion

o We defined a system of axioms, mixing equationnal and corecursive
reasoning.

We proved this system sound.

o There is a systematic way to convert a proof in this system to a proof
accepted by CoQ.

We provide a HASKELL implementation:
http://www.cs.vu.nl/~diem/research/up_to.tgz

This can easily be generalised to other coinductive structures.

19

http://www.cs.vu.nl/~diem/research/up_to.tgz

Conclusion

o We defined a system of axioms, mixing equationnal and corecursive
reasoning.

We proved this system sound.
o There is a systematic way to convert a proof in this system to a proof
accepted by CoQ.

We provide a HASKELL implementation:
http://www.cs.vu.nl/~diem/research/up_to.tgz

This can easily be generalised to other coinductive structures.

Thank you for listening!

19

http://www.cs.vu.nl/~diem/research/up_to.tgz

19

evens = hds :: even (t1(tls))

Vst,s~t = evens~ event

20

import Prelude hiding (head, tail, Left, Right, flip, id)
import qualified Data.Map as Map
import Lang

zerosl = Fun "zeros1" []
zeros2 = Fun "zeros2" []

env :: Environment
env = (
Map.fromList [
"zerosl1", ([], Stream, False)),
("zeros2", ([], Stream, False))
I,
hypFromList [
("hyp_zeros1", (zerosl, cons zero zerosl, Stream)),
("hyp_zeros2", (zeros2, cons zero zeros2, Stream))

]
)

lemma = ("zerosl_eq_zero2", proof,
(zerosl, zeros2, Stream))

21

proof :: BisProof
proof = Cofix "F" (Eq2Bis el) (Eq2Bis hil)

—— el = ..

hl = Transitivity stepl h2
stepl = (Step "hyp_zerosl" Right (CFun "tail" [] Hole []) Map.empty)

h2 = Transitivity step2 h3
step2 = (Step "hyp_tail" Right Hole (Map.fromList [("x", zero), ("o", zeros1)]))

h3 = Transitivity step3 h4
step3 = (Step "F" Right Hole Map.empty)

h4 — Transitivity step4 h5
step4 = (Step "hyp_tail" Left Hole (Map.fromList [("x", zero), ("o", zeros2)]))

hb5 = Transitivity step5 h6
step5 = (Step "hyp_zeros2" Left (CFun "tail" [] Hole []) Map.empty)

h6 = Reflexivity

22

@ About Guardedness

@ Bisimilarity Proofs
o Coinduction Loading

Q Bisimulation-up-to

@ Dealing with Contexts
o Coinduction and Equational Reasoning

23

	About Guardedness
	Bisimilarity Proofs
	Coinduction Loading

	Bisimulation-up-to
	Dealing with Contexts
	Coinduction and Equational Reasoning

