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Motivation

Tools proving equalities on streams: Circ, Streambox, …
They use rewriting circular proofs.

Variables (A : stream bit) (f : stream bit → stream bit).

Hypothesis hyp_A : A == zero :: one :: A.

Hypothesis hyp_f_0 : ∀s, f (zero :: s) == zero :: one :: f s.
Hypothesis hyp_f_1 : ∀s, f (one :: s) == f s.

Lemma A_bis_f_A : A == f A.
Proof.
cofix CIH. constructor.
rewrite hyp_A; rewrite hyp_f_0; simpl.
(* ... *)
reflexivity.

Qed.

.

.No more subgoals.

.But those proofs aren’t directly accepted by Coq!..

.

Error:
Recursive definition of CIH is ill-formed.
In environment
(* ... *)
CIH : A == f A
Sub-expression "(fun H : tail (tail (zero :: one :: A)) == tail (tail (f A)) =>

Morphisms.trans_co_eq_inv_impl_morphism
(* ... *)
(hyp_f_1 A) H) (reflexivity (f A))))))" not in

guarded form (should be a constructor, an abstraction, a match, a cofix or a
recursive call).
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Coinduction and Guardedness

.Induction..

.Enforce termination.

Inductive list :=
| nil : list
| cons : bool → list → list.

Fixpoint f (l : list) : list :=
match l with
| nil ⇒ nil
| cons b l' ⇒ rev (f l')
end.

.Coinduction..

.Enforce productivity.

CoInductive stream :=
| cons : bool → stream → stream.

CoFixpoint f (s : stream) : stream :=
match s with
| cons b s’ ⇒ cons (neg b) (f (zip s’ s))
end.
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Guardedness and Productivity
.

.

specification guarded productive
ones = 1 :: ones ✓ ✓

read(s) = hd s :: read(tl s) ✓ ✓
plus(s, t) = (hd s + hd t) :: plus(tl s, tl t) ✓ ✓

J = 0 :: tl J � �
twos = 2 :: read(twos) � ✓
nats = 0 :: plus(nats, ones) � ✓

from(n) = n :: from(n + 1) ✓ ✓
nats = from(0) ✓
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Guardedness and Productivity
.

.

specification guarded productive
ones = 1 :: ones ✓ ✓
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.Idea..

.Hide the computation of the next stream element in an argument.
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Bisimilarity

In Coq, ∼ is defined coinductively by the rule
.

.
π0 : hd s = hd t π′ : tl s ∼ tl t

∼+ π0 π′ : s ∼ t ∼+

∼ is the largest relation reversely closed under ∼+,
∼ is the largest bisimulation
A proof of s ∼ t can be viewed as an infinite sequence

∼+ π0 (∼+ π1 (∼+ π2 (∼+ . . . )))
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Some Productive Proofs are not Guarded

.

.

Define Z1 = 0 :: Z2 and Z2 = 0 :: Z1. Show Z1 ∼ Z2.

refl= 0 = 0

refl= 0 = 0 Z1 ∼ Z2
π

0 :: Z1 ∼ 0 :: Z2
∼+

0 :: 0 :: Z1 ∼ 0 :: 0 :: Z2
∼+

Z1 ∼ Z2
cofix π

refl= 0 = 0
Z1 ∼ Z2

π

Z2 ∼ Z1
sym∼

0 :: Z2 ∼ 0 :: Z1
∼+

Z1 ∼ Z2
cofix π

proof term guarded productive (correct)
π = ∼+ (refl= 0) (∼+ (refl= 0) π) ✓ ✓

π = ∼+ (refl= 0) (sym∼ π) � ✓
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Guardedness and Rewritings
Prove A ∼ f A where Γ consists of

A ∼ 0 :: 1 :: A f (0 :: σ) ∼ 0 :: 1 :: f σ

f (1 :: σ) ∼ f σ

π1

hd
A
=

hd
(f

A)

π2

hd
(t

lA
)
=

hd
(t

l(
fA

))

π3

tl (tl A) ∼ A

A ∼ f A

π

π4

f A ∼ tl (tl (f A))

A ∼ tl (tl (f A))

trans..

tl (tl A) ∼ tl (tl (f A))

trans

tl A ∼ tl (f A)

∼+

A ∼ f A

∼+

A ∼ f A

cofix π

as a proof term:

cofix π. ( . . .)
..

obstruct guardedness!
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Guardedness and Rewritings

.Remember this?..

.

nats = 0 :: nats + ones � ✓
from(n) = n :: from(n + 1) ✓ ✓

nats = from(0) ✓

Hide equational reasoning in the arguments!
Prove s ∼ t by showing the equivalent

∀uv. ( u ∼ s ⇒ t ∼ v ⇒ u ∼ v )

New rule:
∀uv. ( u ∼ s ⇒ t ∼ v ⇒ u ∼ v )

s ∼ t
load
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Guardedness and Rewritings

π1

hd
u
=

hd
v

π2

hd
(t

lu
)
=

hd
(t

lv
)

tl (tl u) ∼ A ⇒ f A ∼ tl (tl v) ⇒ tl (tl u) ∼ tl (tl v)
π

...
tl (tl u) ∼ A

trans
...

f A ∼ tl (tl v)
trans

tl (tl u) ∼ tl (tl v)
∀− ⇒−

tl u ∼ tl v
∼+

u ∼ v
∼+

∀uv. ( u ∼ A ⇒ f A ∼ v ⇒ u ∼ v )
∀+ ⇒+

∀uv. ( u ∼ A ⇒ f A ∼ v ⇒ u ∼ v )
cofix π

A ∼ f A
load

load A (f A) (cofix π. (λuvρuρv. (∼+ π1 (∼+ π2 (π (tl (tl u)) (tl (tl v)) . . . π3 π4)))))

We only know about u and v what we needed to know in the previous
proof.



10

Guardedness and Rewritings

π1

hd
u
=

hd
v

π2

hd
(t

lu
)
=

hd
(t

lv
)

tl (tl u) ∼ A ⇒ f A ∼ tl (tl v) ⇒ tl (tl u) ∼ tl (tl v)
π

...
tl (tl u) ∼ A

trans
...

f A ∼ tl (tl v)
trans

tl (tl u) ∼ tl (tl v)
∀− ⇒−

tl u ∼ tl v
∼+

u ∼ v
∼+

∀uv. ( u ∼ A ⇒ f A ∼ v ⇒ u ∼ v )
∀+ ⇒+

∀uv. ( u ∼ A ⇒ f A ∼ v ⇒ u ∼ v )
cofix π

A ∼ f A
load

load A (f A) (cofix π. (λuvρuρv. (∼+ π1 (∼+ π2 (π (tl (tl u)) (tl (tl v)) . . . π3 π4)))))

We only know about u and v what we needed to know in the previous
proof.



10

Guardedness and Rewritings

π1

hd
u
=

hd
v

π2

hd
(t

lu
)
=

hd
(t

lv
)

tl (tl u) ∼ A ⇒ f A ∼ tl (tl v) ⇒ tl (tl u) ∼ tl (tl v)
π

...
tl (tl u) ∼ A

trans
...

f A ∼ tl (tl v)
trans

tl (tl u) ∼ tl (tl v)
∀− ⇒−

tl u ∼ tl v
∼+

u ∼ v
∼+

∀uv. ( u ∼ A ⇒ f A ∼ v ⇒ u ∼ v )
∀+ ⇒+

∀uv. ( u ∼ A ⇒ f A ∼ v ⇒ u ∼ v )
cofix π

A ∼ f A
load

load A (f A) (cofix π. (λuvρuρv. (∼+ π1 (∼+ π2 (π (tl (tl u)) (tl (tl v)) . . . π3 π4)))))

We only know about u and v what we needed to know in the previous
proof.



11

...1 About Guardedness

...2 Bisimilarity Proofs
Coinduction Loading

...3 Bisimulation-up-to

...4 Dealing with Contexts
Coinduction and Equational Reasoning



12

Intuition

π1

hd
A
=

hd
(f

A)

π2

hd
(t

lA
)
=

hd
(t

l(
fA

))

π3

tl (tl A) ∼ A
A ∼ f A

π
π4

f A ∼ tl (tl (f A))
A ∼ tl (tl (f A))

trans..

tl (tl A) ∼ tl (tl (f A))
trans

tl A ∼ tl (f A)
∼+

A ∼ f A
∼+

A ∼ f A
cofix π

.What we did in the original proof..

.

Rewrite the left term to A.
Rewrite the right term to f A.

.What we loaded..

. ∀uv. ( u ∼ A ⇒ f A ∼ v ⇒ u ∼ v )
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Bisimulation-up-to

Idea from process algebra (Milner, Sangiorgi):
Instead of proving s ∼ t, define a relation R such that s R t
and prove R ⊆∼.
Instead of proving R ⊆∼, let’s prove F(R) ⊆∼.

.Definition..

.

F(R) ::= R | ∼ | F(R)−1

Symmetry
| F(R)F(R)

Transitivity
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Bisimulation-up-to

.

.We want to prove F(R) ⊆∼.

.Definition..

.

R progresses to R′ ⇐⇒ s R t ⇒ s(0) = t(0) ∧ s′ R′ t′

R is a bisimulation-up-to F if R progresses to F(R).
.
Theorem (meta)..
.If R is a bisimulation-up-to F , then F(R) is a bisimulation.

.

.The loading technique is an instance of this, using ∼ R ∼ ⊆ F(R).
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What About Rewriting Under a Context?

.

.

How does a rule like
π : s ∼ t

C[π] : C[s] ∼ C[t]
context

combine with coinduction?

Taking C = tl 2 is not productive.
When is π = ∼+ (refl= 0) (. . . C[π] . . . ) : s ∼ t productive?
When C is causal, this is correct.
Moreover, then X = 0 :: C[X] is productive.
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Causal Contexts

.

.

s and t are bisimilar up to depth n:

s ∼n t ⇐⇒ ∀k < n. s(k) = t(k)
.Definition..

.

A stream function f : Aω → Bω is causal if

s ∼n t =⇒ f s ∼n f t

for all s, t ∈ Aω and n ∈ N.

Let Γ be a set of equations. A stream context C is causal
if JC, αKA is causal for all models A of Γ, and assignments α : X → A.
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We Can Extend the Theorem

.
We can add causal context to F(R)..

.

F(R) ::= R | ∼ | C[F(R)] | F(R)−1 | F(R)F(R)
with C causal context.

R is a bisimulation-up-to if R progresses to F(R).
.And the theorem holds..
.If R is a bisimulation-up-to, then F(R) is a bisimulation.
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This Proves the Soundness of This System

Γ,∆ sets of equations, ∆ is the set of coinduction hypotheses.
.Equational Reasoning..

.

Γ,∆ ⊢ C[sσ] ∼ C[tσ]
if s ∼ t ∈ Γ

Γ,∆ ⊢ s ∼ s
Γ,∆ ⊢ t ∼ s
Γ,∆ ⊢ s ∼ t

Γ,∆ ⊢ s ∼ u Γ,∆ ⊢ u ∼ t
Γ,∆ ⊢ s ∼ t

.Coinduction..

.

Γ,∆ ⊢ C[sσ] ∼ C[tσ]
if s ∼ t ∈ ∆ and C is causal

Γ,∅ ⊢ hd s = hd t Γ,∆ ∪ {s ∼ t} ⊢ tl s ∼ tl t
Γ,∆ ⊢ s ∼ t coin

NB. without causality ∅, {s ∼ t} ⊢ tl s ∼ tl t can always be derived!
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Conclusion

We defined a system of axioms, mixing equationnal and corecursive
reasoning.
We proved this system sound.
There is a systematic way to convert a proof in this system to a proof
accepted by Coq.
We provide a Haskell implementation:
http://www.cs.vu.nl/~diem/research/up_to.tgz
This can easily be generalised to other coinductive structures.

.

. Thank you for listening!

http://www.cs.vu.nl/~diem/research/up_to.tgz


19

Conclusion

We defined a system of axioms, mixing equationnal and corecursive
reasoning.
We proved this system sound.
There is a systematic way to convert a proof in this system to a proof
accepted by Coq.
We provide a Haskell implementation:
http://www.cs.vu.nl/~diem/research/up_to.tgz
This can easily be generalised to other coinductive structures.

.

. Thank you for listening!

http://www.cs.vu.nl/~diem/research/up_to.tgz


19



20

even s = hds :: even (tl (tl s))

∀st, s ∼ t =⇒ even s ∼ even t
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import Prelude hiding (head, tail, Left, Right, flip, id)
import qualified Data.Map as Map
import Lang

zeros1 = Fun "zeros1" []
zeros2 = Fun "zeros2" []

env :: Environment
env = (

Map.fromList [
("zeros1", ([], Stream, False)),
("zeros2", ([], Stream, False))

],
hypFromList [

("hyp_zeros1", (zeros1, cons zero zeros1, Stream)),
("hyp_zeros2", (zeros2, cons zero zeros2, Stream))

]
)

lemma = ("zeros1_eq_zero2", proof,
(zeros1, zeros2, Stream))
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proof :: BisProof
proof = Cofix "F" (Eq2Bis e1) (Eq2Bis h1)

−− e1 = ...

h1 = Transitivity step1 h2
step1 = (Step "hyp_zeros1" Right (CFun "tail" [] Hole []) Map.empty)

h2 = Transitivity step2 h3
step2 = (Step "hyp_tail" Right Hole (Map.fromList [("x", zero), ("σ", zeros1)]))

h3 = Transitivity step3 h4
step3 = (Step "F" Right Hole Map.empty)

h4 = Transitivity step4 h5
step4 = (Step "hyp_tail" Left Hole (Map.fromList [("x", zero), ("σ", zeros2)]))

h5 = Transitivity step5 h6
step5 = (Step "hyp_zeros2" Left (CFun "tail" [] Hole []) Map.empty)

h6 = Reflexivity
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