
Can Fireflies Gossip and Flock?: The possibility of combining well-know
bio-inspired algorithms to manage multiple global parameters in wireless

sensor networks without centralised control.

Michael Breza, Julie McCann
Department of Computing, Imperial College, London email: [mjb04, jamm]@doc.ic.ac.uk

Abstract

We have found that the structure of many well-known
emergent algorithms are very similar. In this paper we
discuss the structure and its elements, how it relates to
algorithms that show stable patterns, and we look at
some of the algorithms that can be built with this struc-
ture.

1. Introduction

In this paper we use algorithms that show emergent
behaviour to manage multiple global system parameters
in wireless sensor networks.

Wireless sensor networks (WSN) are networks of
small resource constrained devices which sense the
environment and report the results via wireless net-
works. They allow spacial/temporal measurements of
phenomenon previously impossible to analyse [8]. One
of the current challenges in the WSN field is the devel-
opemnt of management systems which allow WSN to be
easily deployed in various application domains [13, 15].
Different WSN application domains often have different
management requirements.

A definition of an emergent algorithm is given in [7]
which states that an emergent algorithm produces pre-
dictable, or stable global effects with respect to one or
more system parameters, by communicating with only
immediate neighbours and in the absence of global con-
trol or information. Our method of engineering emer-
gent algorithms is to base them on a simple algorithmic
structure which is common to many algorithms which
show emergent behaviour.

Many bio-inspired algorithms exist that use simple
rules and local information to create a global consensus
of a single parameter, such as clock time in the flashing
firefly algorithm [16], or location in the slime algorithm
[24].

In this paper we identify a control loop as the core
structure of several bio-inspired algorithms. Two ways
of combining these loops are identified, serially, and
nested. These methods of combination can be used to
combine algorithms to allow the control of multiple pa-
rameters (one per algorithm) on a global level without
the use of a centralised point of control.

2. Principles of collective animal behaviour

A paper called ”The Principles of Collective Ani-
mal Behaviour” [20] provides a list of primitives which
we use to understand algorithms that exploit emergent
behaviour. The principles given are: Integrity and
variability, positive feedback, negative feedback, re-
sponse thresholds, leadership, redundancy, synchronisa-
tion, and selfishness.

Some of the principles are already in heavy
use, such as positive/negative feedback and in-
tegrity(randomness). Others like response thresholds
and redundancy are such intrinsic parts of distributed
systems as to seem obvious and not worthy of note, but
the recognition of them is nonetheless important to un-
derstand their potential role in the engineering of emer-
gent systems.

Leadership is an architectural primitive. Its existence
in biological systems, and its benefit to performance in
distributed systems means that its further consideration
is important. Synchronisation is interesting in that it
gives us a possible primitive to use for the convergence
of temporal phenomenon. Selfishness gives us a way to
assess the value of a unit participating in a group, and
possibly defines conditions for an algorithm that uses
emergence.

The recognition of these principles can be used to un-
derstand the structure of algorithms that show emergent
behaviour. We aim to try and use these primitives to
build new algorithms out of the ones already understood,
to control global system parameters through emergence

without using any central control.

3. A reduction of the principles, and their
application to bio-inspired algorithms

We focus on four of the principles of collective be-
haviour, because they are fundamental to bio-inspired
algorithms which show emergent behaviour. Of these
four, two are fundamental to the structure of emergent
algorithms; which we refer to as a control loop. The
other two are types of behaviour that the algorithms can
exhibit. The four principles we focus on are:

• Integrity and variability (randomisation).

• Response threshold.

• Positive feedback.

• Negative feedback.

The other principles can either be expressed by one
of the principles above, are higher level concepts, or
express constraints on emergent algorithms. Synchro-
nisation is the equivalent of positive feedback with the
adapted state variable being time. Inhibition in its sim-
plest state is simply negative feedback. Leadership is
a higher level architectural concept, and relates to the
management architecture differences of purely decen-
tralised systems with no leadership, and hybrid systems
with local area leaders creating a smaller, higher level of
leadership above that of the regular node.

Redundancy and Selfishness both suggest some pos-
sible constraints for adaptive algorithms. Redundancy
may suggest a minimum population needed for a given
algorithm to work. As an example, the emergent leader
algorithm in [1] assumes large systems with a high
level of redundancy in order to justify its use of non-
determinism. ACO [5] does not have the same con-
straint, but the time it takes to find a solution is increased
as the ant population decreases. The constraint sug-
gested by selfishness is that the algorithm must provide
something to the participant in order to justify involve-
ment. For instance: in a Gossip based algorithm, each
node is willing to participate and initiate contact with a
random neighbour at a given period in time, and listen
for code updates the remainder of time. A node’s par-
ticipation in the system means that it receives updates
rapidly, while its overall energy expenditure is minimal.
It could only listen, and never participate in the active
communication side of the algorithm. That would mean
that it would have to listen for longer, and thereby use
more energy to receive updates.

loop
Measure outside world
if Response threshold is met or not metthen

Adjust state variable predictably or based on a
probabilistic choice.

else
Adjust state variable, randomly move, or just re-
peat.

end if
end loop

Figure 1. Control loop observed in algo-
rithms displaying emergent behaviour

3.1. A common structure, the control
loop.

The first two principles; response thresholds and ran-
domisation, are combined into a structure that is com-
mon to all of the bio-inspired algorithms that we discuss
in this paper. The way these principles are combined
is surprisingly regular, and creates a structure which we
refer to as a control loop, because it is similar to the con-
trol loop given in control theory. This loop is shown in
figure 1

Response thresholds can be see as conditional exe-
cution. The if statement in figure 1 embodies the use
of response thresholds. All of the algorithms we have
seen start by sampling the environment or their state, and
based on a threshold or condition, will change their own
state in some way. This process forms a loop, and by
constantly iterating this loop, the agent keeps some part
of its state consistent with that of all of the other agents
in the system. It creates this uniformity of state by using
randomisation.

Randomisation is the second principle. These algo-
rithms always contain some action or decision made in
a random way. The most common is random movement
of the agent if the threshold is not met. This often takes
place in the else statement in figure 1. By moving ran-
domly, and then sampling the environment, the agent
develops a good average view of its local made up of
random samples. When this involves agent to agent in-
teraction, the result is an ever increasing random sample
of the agent population. As the sample size gets larger,
it gives a closer approximation of the actual global aver-
age.

Another common usage of randomisation is in the
change made once the threshold is met. The change
itself can be made probabilistically. By making prob-
abilistic decisions, less than optimal symmetries can be
broken up and the state space can be constantly explored

so that when system change means that a parameter is no
longer sufficient, a better one can be found. An exam-
ple of this is the situation in a synchronisation protocol
where two stable groups synchronise out of phase with
each other, preventing global synchronisation. In this
case some random behaviour forcing one or more of the
agents out of their stable group could help them to find
the other group, and create a chain reaction leading to
global synchronisation.

The other two principles, positive and negative feed-
back, occur when the agents decisions are made prob-
abilistically, and the probabilities are changed dynami-
cally . In positive feedback, the weights of the proba-
bilistic choice are increased as their associated state is
increased. The best example of this behaviour is seen
with Ant Colony Optimisation [2], [5]. In ACO, the
environment has a state value, called pheromone. To
decide direction of movement, the agents measure the
pheromone levels around them. A path with higher
pheromone has a higher probability of being travelled,
and having its pheromone level increased. This then in-
creases the probability that another agent will choose the
same direction, creating a positive feedback loop. Neg-
ative feedback is a gradual decreasing of the associated
state value. Over time, the pheromone evaporates, re-
ducing the probability that the direction will be chosen.
The feedbacks can be used together to create a stable
system.

We looked at the control loops of seven well known
algorithms which show emergent behaviour: fireflies [3]
[16] [22]; flocking [18] [12] [23];heatbugs [27]; moths
[28]; termites [17] [25]; slime [24]; and gossip [9] [4].
The algorethms that were chosen come from the model
library of the netlogo simulator [21]. These models were
originally written in the netlogo language [26], a high
level logo like language that makes the algorithms very
easy to read and analyse.

We will look at four ways the control loops can be
varied. These include: the number of control loops cen-
tral to the algorithm (or states the algorithm can be in), if
loops are nested, if the agents move, and the type of de-
cision making process used to determine the threshold.

Table 1 summarises our comparison of algorithms
that show emergent behaviour. We can see from a com-
parison of firefly and flocking that there are two forms
of the control loop, and basic one and a nested one.
Termites gives an example of the basic control loop be-
ing serially combined so that the same random move-
ment can produce different results based on internal state
(presence or absence of a wood-chip). In the next sec-
tion we will look further into the combination of these
algorithms.

Much of the flexibility of the control loop structure

comes from its ability to accommodate different deci-
sion making processes. Our basic example of fireflies
shows simple fixed decisions made from the results of
the environmental measurements. Some randomisation
can be added into the decision making process by using
fixed probabilities to help break up non-optimal symme-
tries, as with heatbugs. The chance to make a poor short
term choice of position can result in the exploration of
more of the available space, and lead to the discovery
of a better long term choice. Finally, the probabilities
themselves can be changed by the decision making pro-
cess giving us feedback loops as in the slime algorithm.

Lastly, the importance of some form of random
movement of either the data or of the agent can be seen
in the fact that it is found in every algorithm. This sug-
gests that one of the central mechanisms of algorithms
that show emergent behaviour is the creation of a global
average by having each agent take a random sample
of its neighbour population. Movement means that al-
though the sample is taken only from the agents local
neighbours, those neighbours will change, so that over
time the random sample size will increase, and even-
tually converge with that of the global average. This
phenomenon is well understood in the area of epidemic
algorithms (gossip) [6] [9]. Work already exists on gos-
sip based systems for the aggregation of distributed data
[10] [11].

The next issue is to attempt to use these control loops
to allow several system parameters to be controlled at
the same time. In order to test this idea in the next sec-
tion we use the two observed forms of emergent control
loop combination, serial and nested and create an algo-
rithm using each method.

4. Combination of emergent control loops

From the discussion above, we find two ways to com-
bine control loops. The first is a serial combination. This
method can be seen in the interactions of the multiple
states of the Termites algorithm. This method is simple,
and means that when the threshold of one control loop
has been met, then the algorithm changes state to use
another control loop responding to a different threshold.
In the first threshold the termite looks for a wood chip,
completing that the termite looks for a wood pile (the
second threshold), then the termite looks for an empty
spot in the wood pile (the third threshold). The Termites
algorithm is circular, once the termite has completed all
three thresholds, it drops its wood chip, leaves the wood-
pile, and returns to the first control loop, looking for a
wood chip.

Fireflies Flocking Heatbugs Moths Termites Slime Gossip
Number of States 1 1 1 1 3 1 2
Nested no yes no yes no no no
Agent movement yes yes yes yes yes yes no
Decision fixed fixed probabilistic ?probabilistic? fixed feedback fixed

Table 1. Summary of all algorithms looked at.

The second combination method is to nest the con-
trol loops. This method is seen in both the Flocking
and Moth algorithms. In both cases, the meeting of one
threshold then leads to another threshold. For the flock-
ing, the first threshold is the discovery of a neighbour,
the second is distance from the neighbour. If a neigh-
bour is too close, then move away, else align movement
with the neighbour. The Moth algorithm is similar, once
the light has been found, an intensity thresholds deter-
mines if the light is approached or circled.

The next question is whether these methods of com-
bination can be used to combine the emergent algo-
rithms themselves to allow us to control multiple system
parameters at the same time. To test this idea, we cre-
ated an algorithm using each of our combinatorial meth-
ods. The firefly and flocking algorithms were combined
serially to create fireflies that flock, synchronising both
flash times and direction of movement. Gossip and fire-
fly were nested so that fireflies can flash together at the
same time and in the same colour. Below we describe
each algorithm and show the pseudo code.

4.1. Flocking-Fireflies

In figure 2 we can see the pseudo code for the
flocking-firefly algorithm. It is made up of the firefly
algorithm immediately followed by the Flocking algo-
rithm. In this case, the successful meeting of one thresh-
old is not required to move to the next state (as in Ter-
mites), but both control loops share the initial search for
neighbours. Both control loops are nested. In the case
of flocking, the existence of neighbours is followed by
the distance to the closest neighbour to determine how
to change state. With firefly the presence of the thresh-
old number of flashing neighbours causes the change of
state (clock reset). This algorithm succeeds in combing
both control loops, synchronising both flash times and
motion direction.

4.2. Firefly-Gossip

The Firefly-Gossip protocol shown in figure 3 works
by combining two emergent algorithms. The type of
combination is nesting, and the Gossip algorithm is
nested inside the Firefly algorithm. First we will begin

loop
Find flock-mates
if Flock-mates are foundthen

measure the number of flock-mates flashing.
if (state == NOT flashing) AND (flock-mates
flashing≥ threshold)then

reset clock to reset point. The clock is reset
based on the randomly obtained neighbour set.

else
do nothing.

end if
end if

end loop
loop

Find nearest neighbour
if Nearest neighbour existsthen

if Nearest neighbour is not too closethen
align to move with nearest neighbour

else ifNearest neighbour is too closethen
separate from nearest neighbour

end if
else

move randomly
end if

end loop

Figure 2. Pseudo code for the flocking-
fireflies algorithm made by serially com-
bining the flocking and the fireflies algo-
rithm

local clock = 0
cycle length = cyclelength
next broadcast = random(0, cyclelength)
local metadata = 0
samecount = 0
loop

if local clock = nextbroadcastthen
transmit localclock and localmetadata value
local clock = localclock + 1
restart at top of loop

end if
if clock≤ cycle lengththen

listen
if A message is overheardthen

adjust localclock to average of localclock
and time in message

end if
if The message contains metadata> lo-
cal metadatathen

transmit metadata now
else if the message contains metadata< lo-
cal metadatathen

transmit data now
else if the message contains metadata == lo-
cal metadata AND time in message == lo-
cal clock then

samecount = samecount + 1
end if

end if
if samecount> samethresholdthen

next broadcast = 0
end if
local clock = localclock + 1

end loop

Figure 3. Pseudo code for the Firefly-
Gossip algorithm made from nesting a
Gossip algorithm inside of a Firefly syn-
chronisation algorithm.

with a description of the Firefly algorithm, then we will
explain the nested Gossip algorithm.

The Firefly part of the algorithm is based on the use
of a listening window. When a node starts, it listens
for a neighbour broadcast. If it hears any neighbours,
it changes its clock time to the average of the clock
times advertised in the message packets of its neigh-
bours. Eventually the listening time windows of all of
the agents synchronises.

The Gossip part of the algorithm uses a polite gos-
sip similar to Trickle [14]. During a listen period,
each node randomly schedules a broadcast containing its
clock time at time of broadcast (assuming a MAC level
time-stamping as per Trickle), and the metadata of any
data the node may have to propagate (in our case, node
colour). If during the time period before the scheduled
broadcast, the node hears another broadcast with the
same clock time and the same metadata, then that node
will suppress its transmission (be polite). If the agent
hears some metadata that is newer than the metadata it
has, then it immediately broadcasts its old metadata. The
reason for this is that when the agents hear a broadcast
containing old metadata, they immediately broadcast the
new data. When one agent begins to broadcast data, the
others stay quite and cancel their broadcasts.

The nesting of Firefly and Gossip is different to the
nesting seen in Moths and Flocking. In Firefly-Gossip,
the nesting is temporal, the gossip only happens during
the time slot that Firefly is synchronising. In Moths and
Flocking, one threshold must be satisfied before the next
one will be evaluated. In the case of Firefly-Gossip, the
threshold for Gossip can be seen as being in the listening
period of Firefly.

Using this form of temporal nesting, it is possible to
combine the capabilities of the Gossip and Firefly algo-
rithms and synchronise time and other parameters. This
algorithm could be used in a wireless sensor network to
both synchronise the clocks of the sensors and dissemi-
nate control information, all from one algorithm.

5. Performance of the combined algorithms

Some analysis via simulation was done to determine
if the combination of algorithms affected their perfor-
mance. The main performance focused upon was time
for the agents of the system to synchronise their clocks
and achieve convergence of a give system parameter.
Experiments were run for both Flocking-Fireflies and
Firefly-Gossip. All of the simulations were written in
netlogo, and run on a 64 CPU cluster computer.

The results shown are both the averages of the results
of 100 experiment runs, and the standard deviation. We
say that the results shown for a given plot point show

equivalent performance if the plot point of one algorithm
falls within one standard deviation of the other.

5.1. Flocking-Fireflies Experiments

In Flocking-Fireflies the time for a given percentage
of the population to have the same direction (flocking)
was measured for the flocking algorithm on its own, and
when combined with the firefly synchronisation algo-
rithm. The time to synchronise clocks (and flashes) was
also measured for both the firefly synchronisation algo-
rithm on its own, and when combined with the flocking
algorithm.

In figure 4 we see the average population of agents
flocking over time. By 500 time units (clock ticks) both
algorithms have 90% of the agents flocking in the same
direction. The graph shows that the performance for
flocking is unaffected by the addition of the firefly al-
gorithm.

Figure 5 shows us a very different situation. The ad-
dition of the flocking behaviour to the firefly algorithm
reduces the time to synchronise. This effect is especially
pronounced at lower populations of agents. This result
is not surprising because the result of the flocking algo-
rithm is to drive the agents closer together and move in
the same direction. The agents not flocking just move
about randomly. When the agents group together, their
local neighbour population increases, and they are able
to share information much more rapidly and therefore
synchronise in a shorter period of time. This explains
why the synchronisation times are much closer at higher
populations where the local neighbour population of an
agent is very high regardless of whether it is flocking or
not.

5.2. Firefly-Gossip Experiments

With Firefly-Gossip we measured and compare the
time to synchronise and the convergence rate of data
(time to disseminate data to all nodes). Synchronisation
time of the firefly algorithm on its own and convergence
time of the gossip algorithm on their own are compared
to the respective performance for the Firefly-Gossip al-
gorithm. The agents in these experiments do not move,
and are organised in a grid topology. The communica-
tion range is fixed at 15 patches. A patch is a spatial unit
in netlogo. Each agent occupies one patch.

The x axis of the graphs 6 and 7 plots the inter-node
distance in patches. As the inter-node distance increases,
the average number of neighbours a node can hear gets
smaller. The inter-node distances of eight, nine and ten
patches all have very similar average neighbour popu-
lations (8.10, 8.03, and 7.94 respectively) and the same

median neighbour population of nine neighbours. These
similarities mean that the population of the network be-
comes the deciding factor of convergence and synchro-
nisation rates. Since the area the simulation was run in
was fixed, this means that the population of nodes de-
creased as the inter-node distance increased. The aver-
age neighbour population for each node decreased as the
inter-node distance increased between the distances of
two and eight patches. As stated above, eight, nine and
ten patches had very similar numbers of neighbours. The
inter-node distances of eleven through fifteen also had
similar average neighbour populations (4.6 to 4.4). So,
in those two groups of inter-node distances, we choose
to plot only the middle values of nine and thirteen.

Both graphs show very similar performance. The
average time to converge for data (figure 6) is consis-
tently greater for Gossip-Firefly than for gossip on its
own. Both averages are still within one standard devi-
ation, and the differences are very small. In the syn-
chronisation results (figure 7) it can be seen that neither
algorithm outperforms the other, evident from the fact
that the averages are almost the same for inter-node dis-
tances two through nine. The differences are the same
scale as those for data convergence, given that the range
of the y axis in figure 7 is greater than that for 6.

5.3. Discussion of the Experiments

In all cases we found the performance of the com-
bined algorithms the same as or better than the algo-
rithm on its own. The time to synchronise of the Firefly-
Flocking algorithm was better (shorter) than the firefly
algorithm on its own. This is because the addition of
the flocking algorithm increases the average neighbour
population of any given agent.

These experiments show that the combination of cer-
tain algorithms with others may have a beneficial effect
to the performance of one of the algorithms. By the
same logic, there must be certain combinations of al-
gorithms that can produce detrimental effects on perfor-
mance. This line of enquiry is left for future work.

6. Related Work

The idea of creating gossip based applications by
composing different gossip services is described in [19].
In this work, a group of gossip based services are sug-
gested. These services include a peer-sampling service
upon which all other services are built, and a broad-
cast service, group composition services, and distributed
computation service. These services are composed se-
rially in a component based fashion. The outputs of
one service becomes the input of another. Our work

Flocking−Fireflies
Flocking

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 200 400 600 800 1000

pe
rc

et
ag

e
of

 tu
rt

le
s

co
nv

er
ge

d

time in ticks

Figure 4. Average percentage of con-
verged turtles over time. Note: the stan-
dard deviation is shown, which is why the
y axis error bars maximum values some-
times go above 100%.

−1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 200 400 600 800 1000

tim
e

to
 c

on
ve

rg
e

population of turtles

Fireflies
Firefly−Flocking

Figure 5. Time for turtles to synchronise
for different populations of turtles.

deals with non-gossip based algorithms as well as gossip
based algorithms, and includes a nested form of combi-
nation.

The combination of various bio-inspired algorithms
is discussed in [] ADD CITATION. It views each algo-
rithm as a search hueristic in a given search space. The
heuristics are all common in that they have a method to
create and refine a solution set. This work tries to opti-
mize a given search by using methods of multiple algo-
rithms over a single solution set. The goal is to produce
a better solution set in a shorter period of time.

7. Conclusion

We have presented here a new approach to the use
of algorithms exhibiting emergent behaviour to control

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14

tim
e

to
 c

on
ve

rg
e

inter−turtle distance

Gossip
Gossip−Firefly

Figure 6. Time for turtle data to converge
over different turtle densities. Note: In this
case the turtle communication range was
always 15.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12 14

tim
e

to
 s

yn
ch

ro
ni

ze

inter−turtle distance

Fireflies
Gossip−Firefly

Figure 7. Time for turtles to synchro-
nise time over different turtle densities.
Note: In this case the turtle communica-
tion range was always 15.

multiple system parameters in a decentralised way. We
start with the idea that many well know emergent al-
gorithms are composed of basic principles, and that the
principles are organised into a generic control loop. This
control loop can be combined in a serial or nested fash-
ion to allow the combination of emergent algorithms
into larger ones that allow the decentralised control of
multiple parameters. We presented two algorithms, one
for each type of combination. For further work we will
work with the Firefly-Gossip algorithm to adapt it to
the application of decentralised wireless sensor network
management.

References

[1] R. Anthony. An autonomic election algorithm based
on emergence in natural systems.Integrated computer-
aided engineering, 13(1):3 –22, 2006.

[2] C. Blum. Ant colony optimization: Introduction and re-
cent trends.Physics of Life Reviews, 2(4):353–373, De-
cember 2005.

[3] J. Buck. Synchronous Rhythmic Flashing of Fireflies. II.
The Quarterly Review of Biology, 63(3):265–289, 1988.

[4] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epi-
demic algorithms for replicated database maintenance.
Proceedings of the sixth annual ACM Symposium on
Principles of distributed computing, pages 1–12, 1987.

[5] M. Dorigo and K. Socha.Approximation Algorithms and
Metaheuristics, chapter An Introduction to Ant Colony
Optimization. CRC Press, 2007.

[6] P. Eugster, R. Guerraoui, A. Kermarrec, and L. Mas-
soulie. Epidemic information dissemination in dis-
tributed systems.Computer, 37(5):60–67, 2004.

[7] D. Fisher and H. Lipson. Emergent algorithms-a new
method for enhancing survivability inunbounded sys-
tems.System Sciences, 1999. HICSS-32. Proceedings of
the 32nd Annual Hawaii International Conference on,
1999.

[8] J. Hart and K. Martinez. Environmental Sensor Net-
works: A revolution in the earth system science?Earth-
Science Reviews, 78:177–191, 2006.

[9] M. Jelasity. Engineering emergence through gossip.
Proc. AISB Convention, Joint Symposium on Socially In-
spired Computing, pages 123–126, 2005.

[10] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-
based aggregation in large dynamic networks.ACM
Transactions on Computer Systems (TOCS), 23(3):219–
252, 2005.

[11] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based com-
putation of aggregate information.Foundations of Com-
puter Science, 2003. Proceedings. 44th Annual IEEE
Symposium on, pages 482–491, 2003.

[12] J. Kennedy and R. Eberhart. Particle swarm optimiza-
tion. Neural Networks, 1995. Proceedings., IEEE Inter-
national Conference on, 4, 1995.

[13] W. L. Lee, A. Datta, and R. Cardell-Oliver.Handbook
of Mobile Ad Hoc and Pervasive Communications, chap-
ter Network Management in Wireless Sensor Networks.
American Scientific Publishers, USA, 2006.

[14] P. Levis et al.Trickle: A Self Regulating Algorithm for
Code Propagation and Maintenance in Wireless Sensor
Networks. Computer Science Division, University of
California, 2003.

[15] P. Marŕon, A. Lachenmann, D. Minder, M. Gauger,
O. Saukh, and K. Rothermel. Management and configu-
ration issues for sensor networks.International Journal
of Network Management, 15(4):235–253, 2005.

[16] R. Mirollo and S. Strogatz. Synchronization of Pulse-
Coupled Biological Oscillators.SIAM Journal on Ap-
plied Mathematics, 50(6):1645–1662, 1990.

[17] M. Resnick.Turtles, Termites, and Traffic Jams: Explo-
rations in Massively Parallel Microworlds. MIT Press,
1994.

[18] C. Reynolds. Flocks, herds and schools: A distributed
behavioral model.ACM SIGGRAPH Computer Graph-
ics, 21(4):25–34, 1987.

[19] É. Rivière, R. Baldoni, H. Li, and J. Pereira. Com-
positional gossip: a conceptual architecture for design-
ing gossip-based applications.ACM SIGOPS Operating
Systems Review, 2007.

[20] D. J. T. Sumpter. The principles of collective animal be-
haviour.Philosophical transactions of the Royal Society
of London, 361:5–22, 2006.

[21] S. Tisue and U. Wilensky. NetLogo: A Simple Environ-
ment for Modeling Complexity.International Confer-
ence on Complex Systems, 2004.

[22] U. Wilensky. NetLogo Fireflies model.Center for Con-
nected Learning and Computer-Based Modeling, North-
western University, Evanston, IL. http://ccl. northwest-
ern. edu/netlogo/models/Fire flies, 91.

[23] U. Wilensky. NetLogo Flocking model. Web page
http://ccl. northwestern. edu/netlogo/models/Flocking.
Center for Connected Learning and Computer-Based
Modeling, Northwestern University, Evanston, IL, 1998.

[24] U. Wilensky. NetLogo Slime model. Web page
http://ccl. northwestern. edu/netlogo/models/Slime.
Center for Connected Learning and Computer-Based
Modeling, Northwestern University, Evanston, IL, 1998.

[25] U. Wilensky. NetLogo Termites model.Web page
http://ccl. northwestern. edu/netlogo/models/Termites.
Center for Connected Learning and Computer-Based
Modeling, Northwestern University, Evanston, IL, 1998.

[26] U. Wilensky. Modeling natures emergent patterns with
multi-agent languages.Proceedings of EuroLogo, pages
1–6, 2002.

[27] U. Wilensky. NetLogo Heatbugs model.Web page
http://ccl. northwestern. edu/netlogo/models/Heatbugs.
Center for Connected Learning and Computer-Based
Modeling, Northwestern University, Evanston, IL, 2004.

[28] U. Wilensky. NetLogo Moth model.Web page http://ccl.
northwestern. edu/netlogo/models/Moths. Center for
Connected Learning and Computer-Based Modeling,
Northwestern University, Evanston, IL, 2005.

