
Some examples formulated in a ‘seeing to it that’

logic: Illustrations, observations, problems

Marek Sergot

Department of Computing

Imperial College London

London SW7 2AZ, UK

m.sergot@imperial.ac.uk

March 2013

Abstract

The paper presents a series of small examples and discusses how they
might be formulated in a ‘seeing to it that’ logic. The aim is to identify
some of the strengths and weaknesses of this approach to the treatment of
action. The examples have a very simple temporal structure. An element
of indeterminism is introduced by uncertainty in the environment and by
the actions of other agents. The formalism chosen combines a logic of
agency with a transition-based account of action: the semantical frame-
work is a labelled transition system extended with a component that picks
out the contribution of a particular agent in a given transition. Although
this is not a species of the stit logics associated with Nuel Belnap and
colleagues, it does have many features in common. Most of the points
that arise apply equally to stit logics. They are, in summary: whether
explicit names for actions can be avoided, the need for weaker forms of
responsibility or ‘bringing it about’ than are captured by stit and simi-
lar logics, some common patterns in which one agent’s actions constrain
or determine the actions of another, and some comments on the effects
that level of detail, or ‘granularity’, of a representation can have on the
properties we wish to examine.

1 Introduction

Logics of ‘seeing to it that’ or ‘bringing it about that’ have a long tradition in
the analytical study of agency, ability, and action. The best known examples
are perhaps the stit (‘seeing to it that’) family associated with Nuel Belnap
and colleagues. (See e.g. (Belnap and Perloff, 1988; Horty and Belnap, 1995;
Horty, 2001; Belnap et al., 2001) and some of the other papers in this volume.)
Segerberg (1992) provides a summary of early work in this area, and Hilpinen
(1997) an overview of the main semantical devices that have been used, in
stit and other approaches. With some exceptions, notably (Pörn, 1977), the
semantics is based on a branching-time structure of some kind.

In recent years logics of this kind have also been attracting attention in com-
puter science. They have been seen as a potentially valuable tool in the formal

1

modelling of agent interaction (human or artificial), in distributed computer
systems and in the field of multi-agent systems. Works in this area have tended
to be quite technical, focussing on various extensions, usually to the stit frame-
work, or on connections to other formalisms used in computer science. There
are however very few examples to my knowledge of any actual applications and
so the usefulness of these formalisms in practice remains something of an open
question. Forms of stit and Pörn’s ‘brings it about’ have also been used as a
kind of semi-formal device in representation languages for regulations and norms
and in discussions of the logical form of normative and legal constructs.

In this paper I want to look at a series of simple examples and how they
might be formulated in a stit-like logic. An element of indeterminism is intro-
duced by the environment—in some examples it may be raining, in others a
fragile object might or might not break when it falls—and by the actions of
other agents. The aim is, first, to explore something of the expressive power
of this framework. An important feature of stit is that actions themselves are
never referred to explicitly. The semantics abstracts away these details. stit
thereby sidesteps what remains one of the most contentious questions in the
philosophy of action, which is the question of what is action itself. If a man
raises his arm, the arm goes up. But what is the action of raising the arm?
Opinions are divided on this point. In stit, actions are not referred to directly
and do not have to be named. On the other hand, there is sometimes a price
to be paid for this abstraction since it is difficult to do without names for ac-
tions in all circumstances. Some of the examples are intended to explore this
question. Second, I want to comment on some common patterns that arise,
particularly when one agent’s actions constrain, or possibly even determine, the
actions of another. Relying on informal readings of these patterns can be mis-
leading. And third, I want to identify some of the limitations and inadequacies
of the framework as a representational device. These concern the treatment of
causality, and questions regarding the effects of granularity, or level of detail,
of a representation. I am making no claims of completeness. The treatment of
temporal features is rudimentary, I will not touch on topics such as voluntary,
deliberative, intentional, purposeful action, and even in these simple examples
there are many issues that will not be addressed.

I will not formulate the examples in any form of stit-logic exactly, but using
a different formalism (Sergot, 2008a,b) that nevertheless has much in common.
It combines a logic of ‘brings it about’ with a transition-based account of ac-
tion: the semantical framework is a form of labelled transition system extended
with an extra component that picks out the contribution—intentional, deliber-
ative but perhaps also unwitting—of a particular agent in a given transition.
Although the development was influenced by the constructions used in (Pörn,
1977), it turned out (unexpectedly) to have much greater similarity with stit.
Indeed, as explained later, it can be seen as a special case of the deliberative
stit, with a different informal reading and some additional features. Although
some aspects of the representations will be specific to the use of my preferred
formalism, nearly all the points I want to make will apply equally to stit-logics.

2

2 Syntax and semantics

2.1 Preliminaries: Transition systems

Transition systems A labelled transition system (LTS) is usually defined as
a structure 〈S,A,R〉 where

• S is a (non-empty) set of states;

• A is a set of transition labels, also called events;

• R is a (non-empty) set of labelled transitions, R ⊆ S ×A× S.

When (s, ε, s′) is a transition in R, s is the initial state and s′ is the resulting
state, or end state, of the transition. ε is executable in a state s when there is a
transition (s, ε, s′) in R, and non-deterministic in s when there are transitions
(s, ε, s′) and (s, ε, s′′) in R with s′ 6= s′′. A path or run of length m of the labelled
transition system 〈S,A,R〉 is a sequence s0 ε0 s1 · · · sm−1 εm−1 sm (m ≥ 0)
such that (si−1, εi−1, si) ∈ R for i ∈ 1 . . .m. Some authors prefer to deal with
structures 〈S, {Ra}a∈A〉 where each Ra is a binary relation on S.

It is helpful in what follows to take a slightly more general and abstract view
of transition systems. A transition system is a structure 〈S,R, prev,post〉 where

• S and R are disjoint, non-empty sets of states and transitions respectively;

• prev and post are functions from R to S: prev(τ) denotes the initial state
of a transition τ , and post(τ) its resulting state.

A path or run of length m of the transition system 〈S,R, prev,post〉 is a sequence
τ1 · · · τm−1 τm (m ≥ 0) such that τi ∈ R for every i ∈ 1 . . .m, and post(τi) =
prev(τi+1) for every i ∈ 1 . . .m−1.

Two-sorted language Given a labelled transition system, it is usual to de-
fine a language of propositional atoms or ‘state variables’ in order to express
properties of states. We employ a two-sorted language. We have a set Pf of
propositional atoms for expressing properties of states, and a disjoint set Pa of
propositional atoms for expressing properties of transitions. Models are struc-
tures

M = 〈S,R, prev,post, hf, ha〉

where hf is a valuation function for atomic propositions Pf in states S and ha

is a valuation function for atomic propositions Pa in transitions R.
Transition atoms are used to represent events and attributes of events,

and properties of transitions as a whole. For example, atoms x:move=l and
x:move=r might be used to represent that agent x moves in direction l and
r, respectively. The atom falls(vase) might be used to represent transitions in
which the object vase falls. Transition atoms are also used to express proper-
ties of a transition as whole: for instance, whether it is desirable or undesirable,
timely or untimely, permitted or not permitted, and so on. So, for example, the
formula

a:lifts ∧ ¬ b:lifts ∧ c:move=l ∧ ¬ d:move=l ∧ falls(vase) ∧ trans=red

3

might represent an event in which a lifts its end of the table and b does not while
c moves in direction l, d does not move in direction l, and the vase falls. The
atom trans=red might represent that this event is illegal (say), or undesirable,
or not permitted.

When a transition satisfies a transition formula ϕ we say it is a transition
of type ϕ. So, for example, all transitions of type a:lifts ∧ ¬b:lifts are also
transitions of type a:lifts, and also transitions of type ¬b:lifts.

Formulas We extend this two-sorted propositional language with (modal)
operators for converting state formulas to transition formulas, and transition
formulas to state formulas.

Formulas are state formulas and transition formulas. State formulas are:

F ::= any atom p of Pf | ¬F | F ∧ F | 2−→ϕ

where ϕ is any transition formula. Transition formulas are

ϕ ::= any atom α of Pa | ¬ϕ | ϕ ∧ ϕ | 0:F | 1:F

where F is any state formula.
We have the usual truth-functional abbreviations. 3−→ is the dual of 2−→:

3−→ϕ =def ¬2−→¬ϕ.

Semantics Models are structures

M = 〈S,R, prev,post, hf, ha〉

where hf and ha are the valuation functions for state atoms and transition
atoms respectively. Truth-functional connectives have the usual interpretations.
The satisfaction definitions for the other operators are as follows, for any state
formula F and any transition formula ϕ.

State formulas:

M, s |= 2−→ϕ iff M, τ |= ϕ for every τ ∈ R such that prev(τ) = s

2−→ϕ is true at a state s when every transition from state s satisfies ϕ. 3−→ϕ says
that there is a transition of type ϕ from the current state.

Transition formulas:

M, τ |= 0:F iff M,prev(τ) |= F

M, τ |= 1:F iff M,post(τ) |= F

A transition is of type 0:F when its initial state satisfies the state formula F ,
and of type 1:F when its resulting state satisfies F .

s ...

ϕ

ϕ

2−→ϕ

all ϕ

s s′

F G
0:F ∧ 1:G

4

As usual, we say a state formula F is valid in a model M, written M |= F ,
when M, s |= F for every state s in S, and a transition formula ϕ is valid in
a model M, written M |= ϕ, when M, τ |= ϕ for every transition τ in R. A
formula is valid if it is valid in every model (written |= F and |= ϕ, respectively).

We use the following notation for ‘truth sets’:

‖F‖M =def {s ∈ S | M, s |= F}; ‖ϕ‖M =def {τ ∈ R | M, τ |= ϕ}.

M is omitted when it is obvious from context.

Examples: transition formulas The following represents a transition from
a state where (state atom) p holds to a state where it does not:

0:p ∧ 1:¬p

von Wright (1963) uses the notation pT q to represent a transition from a state
where p holds to one where q holds. It would be expressed here in the more
general notation as the transition formula:

0:p ∧ 1:q

Let the state atom on-table(vase) represent that a certain vase is on the
table. A transition of type 0:on-table(vase) ∧ 1:¬on-table(vase), equivalently,
of type 0:on-table(vase) ∧ ¬1:on-table(vase) is one from a state in which the
vase is on the table to one in which it is not on the table. Let the transition
atom falls(vase) represent the falling of the vase from the table. Any modelM
modelling this system will have the property:

M |= falls(vase) → (0:on-table(vase) ∧ 1:¬on-table(vase))

There may be other ways that the vase can get from the table to the ground.
Some agent might move it, for example. That would also be a transition of type
0:on-table(vase) ∧ 1:¬on-table(vase) but not a transition of type falls(vase).

The operators 0: and 1: are not normal in the usual sense because formulas
F and 0:F (and 1:F) are of different sorts. However, they behave like normal
operators in the sense that, for all n ≥ 0, if F1 ∧ · · · ∧ Fn → F is valid then so
are 0:F1 ∧ · · · ∧ 0:Fn → 0:F and 1:F1 ∧ · · · ∧ 1:Fn → 1:F . Since prev and post
are (total) functions on R, we have

|= 0:F ↔ ¬0:¬F and |= 1:F ↔ ¬1:¬F

(and 0: and 1: distribute over all truth-functional connectives).

Examples: state formulas 3−→ϕ says that there is a transition of type ϕ
from the current state, or in the terminology of transition systems, that ϕ is
‘executable’. 3−→1:F expresses that there is a transition from the current state

to a state where F is true. 2−→(ϕ → 1:F) says that all transitions of type ϕ from
the current state result in a state where F is true.

There are various relationships between state formulas and transition for-
mulas. For example, the state formula F → 2−→0:F is valid (true in all states,

in all models). Further details are given in the next section.

5

2.2 Agency modalities

We now extend the language with operators to talk about the actions of agents
and sets of agents in a transition. Ag is a finite set of (names of) agents. The
account can be generalised to deal with (countably) infinite sets of agents but
we will not do so here.

Language Transition formulas are extended with the operators 2, [x] and [G]
for every agent x in Ag and every non-empty subset G of Ag . State formulas are
unchanged. 2ϕ, [x]ϕ and [G]ϕ are transition formulas when ϕ is a transition
formula. 3, 〈x〉 and 〈G〉 are the respective duals.

Semantics Models are relational structures of the form

〈S,R, prev,post,∼, {∼x}x∈Ag , h
f, ha〉

where 〈S,R, prev,post, hf, ha〉 is a labelled transition model of the type discussed
above, and ∼ and every ∼x are equivalence relations on R.

∼ =def { (τ, τ ′) | prev(τ) = prev(τ ′) }

and, for every x ∈ Ag : ∼x ⊆ ∼.
Informally, for any transitions τ, τ ′ in R, τ ∼ τ ′ represents that τ and τ ′ are

transitions from the same initial state, and τ ∼x τ ′ that τ and τ ′ are transitions
from the same initial state (∼x ⊆ ∼) in which agent x performs the same action
in τ ′ as it does in τ .

The truth conditions are

M, τ |= 2ϕ iff M, τ ′ |= ϕ for every τ ′ such that τ ∼ τ ′

M, τ |= [x]ϕ iff M, τ ′ |= ϕ for every τ ′ such that τ ∼x τ ′

[x] is what some authors (e.g. (Horty, 2001)) call the ‘Chellas stit ’. However,
it is important to stress that [x]ϕ is a transition formula expressing a property
of transitions and that ϕ is also a transition formula. When [x]ϕ is true at a
transition τ , we will say that ϕ is necessary for how x acts in τ . 2 and each [x]
are normal modal operators of type S5. The schema

2ϕ → [x]ϕ

is valid for all agents x in Ag .
We also have the following relationships between state formulas and tran-

sition formulas. All instances of the transition formula 0:2−→ϕ ↔ 2ϕ are

valid, as are the state formulas F → 2−→0:F and (3−→> ∧ 2−→0:F) → F , i.e.,

3−→0:F ↔ (3−→> ∧ F).
In what follows it is convenient to employ a functional notation. Let:

alt(τ) =def {τ ′ | τ ∼ τ ′}
altx(τ) =def {τ ′ | τ ∼x τ ′}

alt is for ‘alternative’. (alt(τ) and altx(τ) are thus the equivalence classes [τ]∼

and [τ]∼x respectively. The altx notation is slightly easier to read.)

6

For every x ∈ Ag and every τ ∈ R, we have altx(τ) ⊆ alt(τ). The truth
conditions can be expressed as:

M, τ |= 2ϕ iff alt(τ) ⊆ ‖ϕ‖M

M, τ |= [x]ϕ iff altx(τ) ⊆ ‖ϕ‖M

alt(τ) is the set of transitions from the same initial state as τ , and altx(τ)
is the set of transitions from the same initial state as τ in which x performs
the same action as it does in τ : these are the possible alternative actions that
could be performed by x (deliberatively, intentionally, but possibly also unwit-
tingly). altx(τ) is the equivalence class that contains τ , and so, just as in the stit
framework, it can be regarded as the action performed by x in the transition τ .

For readers familiar with stit models, and models for the deliberative stit
in particular, the set of transitions from any given state s can be seen (some
technical details aside) as the set of histories passing through a moment s. (It
would be better to speak of mappings from moments to states but I do not want
to dwell on technical details here.) Since every transition τ has a unique initial
state prev(τ), every transition can also be thought of as a moment-history pair
m/h where the moment m is the initial state prev(τ) and the history h is the
transition τ . Putting aside technical details, one can think of transition system
models as the special case of a (deliberative) stit model in which there is a single
moment-history pair for every history. Evaluating formulas on transitions, as
we do, is then like evaluating formulas on moment-history pairs in stit-models.
Evaluating formulas on states, as we also do, would be like evaluating formulas
on moments in stit-models. (Mark Brown in his paper in this volume raises the
question of whether points of valuation should be moments or moment/history
pairs. We want both, which is why we employ a two-sorted language.) Put in
these terms, τ ∼ τ ′ represents two moment-history pairs τ = m/h and τ ′ = m/h′

through the same moment m. The equivalence relations ∼x determine what in
stit would be the agent x’s choice function. When τ = m/h, alt(τ) is the set
Hm of histories passing through m, and altx(τ) is Choicemx (h), i.e., the action
performed by x at moment m in history h, or equivalently, the subset of histories
Hm in which x performs the same action at moment m as it does at moment m
in history h.

Indeed, if we ignore states (or formulas on moments) and look only at tran-
sitions (or formulas on moment-history pairs), then models are of the form

〈R,∼, {∼x}x∈Ag , h
a〉

These are exactly the abstract models of the deliberative stit discussed in (Bal-
biani et al., 2008) except that there the models have a slightly different, but
equivalent, form because they incorporate an extra, very strong ‘independence
of agents’ assumption characteristic of stit.

stit-independence says (Horty, 2001, p30) that ‘at each moment, each agent
must be able to perform any of his available actions, no matter which actions
are performed at that moment by the other agents’ or (Belnap and Perloff, 1993,
p26) ‘any combination of choices made by distinct agents at exactly the same
moment is consistent.’

Expressed as a condition on altx, stit-independence would require that, for
all pairs of agents x and y in Ag , for all τx and τy such that τx ∼ τy,

altx(τx) ∩ alty(τy) 6= ∅

7

and more generally that, for all transitions τ and all mappings s′τ : Ag → alt(τ):⋂
x∈Ag altx(s′τ (x)) 6= ∅

We will not need the more general form in this paper since none of the examples
have more than two agents.

I do not understand what the ‘independence of agents’ assumption is for and
why it is adopted without question in works on stit. I have not been able to find
any convincing justification for it in the literature. (Belnap and Perloff, 1993,
p26) remark that ‘. . . we do not consider the evident fact that agents interact in
space-time’ but do not say why. Why not consider the evident fact that agents
interact in space-time? It is only a matter of dropping the stit-independence
condition. What purpose does it serve? It is sometimes suggested that stit-
independence is needed in order to ensure that some combination of actions by
individual agents always exists. But that is not so. In the stit framework some
combination of actions by agents always exists, without the stit-independence
assumption. The stit-independence condition insists that every combination of
actions always exists, which is much stronger. Further discussion is for another
occasion. In what follows, some of the models will satisfy the stit-independence
condition and some will not.

Group actions Just as in stit, the account generalises naturally to dealing
with the joint actions of groups (sets) of agents. Let G be a non-empty subset
of Ag . altx(τ) represents the action performed by x in the transition τ , which
is the set of transitions in alt(τ) in which x performs the same action as it does
in τ .

⋂
x∈G altx(τ) is the set of transitions in alt(τ) in which every agent in G

performs the same action as it does in τ , and is thus a representation of the
joint action performed by the group G in the transition τ .

The truth conditions are:

M, τ |= [G]ϕ iff altG(τ) ⊆ ‖ϕ‖M

where

altG(τ) =def

⋂
x∈G altx(τ)

∼G =def

⋂
x∈G∼x

That is, expressed in the relational notation:

M, τ |= [G]ϕ iff M, τ ′ |= ϕ for every τ ′ ∈
⋂
x∈G altx(τ)

iff M, τ ′ |= ϕ for every τ ′ ∈ altG(τ)
where altG(τ) =def

⋂
x∈G altx(τ)

iff M, τ ′ |= ϕ for every τ ′ such that τ ∼G τ ′

where ∼G=def

⋂
x∈G∼x

When [G]ϕ is true at τ we will say that ϕ is necessary for how the agents G
collectively act in τ . (Which is not the same as saying that they act together,
i.e., as a kind of coalition or collective agent. We are not discussing genuine
collective agency in this paper.) Clearly |= [{x}]ϕ ↔ [x]ϕ for every x in Ag .

8

Axiomatisation 2 and every [x] and every [G] are normal modal operators
of type S5. The logic is the smallest normal logic containing all instances of the
following axiom schemas, for all non-empty subsets G and G′ of Ag :

2 type S5

[G] type S5

2ϕ → [G]ϕ

[G]ϕ → [G′]ϕ (G ⊆ G′)

2.3 Acts differently

We also want to be able speak about alternative transitions from the same initial
state in which an agent x, or set of agents G, acts differently from the way it
acts in a transition τ . We further extend the language of transition formulas
with operators [x] and [G] for every agent x in Ag and every non-empty subset
G of Ag : [x]ϕ and [G]ϕ are transition formulas when ϕ is a transition formula.
〈x〉 and 〈G〉 are the respective duals.

The truth conditions are:

M, τ |= [x]ϕ iff (alt(τ)−altx(τ)) ⊆ ‖ϕ‖M

M, τ |= [G]ϕ iff (alt(τ)−altG(τ)) ⊆ ‖ϕ‖M

Note that |= [x]ϕ ↔ [{x}]ϕ, and that:

|= 〈G〉ϕ ↔
∨
x∈G〈x〉ϕ

|= [G]ϕ ↔
∧
x∈G[x]ϕ

2.4 ‘Brings it about’ modalities

In logics of agency, expressions of the form ‘agent x brings it about that’ or
‘sees to it that’ are typically constructed from two components. The first is a
‘necessity condition’: ϕ must be necessary for how agent x acts. The second
component is used to capture the fundamental idea that ϕ is, in some sense,
caused by or is the result of actions by x. Most accounts of agency introduce a
negative counterfactual or ‘counteraction’ condition for this purpose, to express
that had x not acted in the way that it did then the world would, or might,
have been different.

Let Exϕ represent that agent x brings it about, perhaps unwittingly, that
(a transition has) a certain property ϕ. Exϕ is satisfied by a transition τ in a
model M when:

(1) (necessity)M, τ |= [x]ϕ, that is, all transitions from the same initial state
as τ in which x acts in the same way as it does in τ are of type ϕ, or as
we also say, ϕ is necessary for how x acts in τ ;

(2) (counteraction) had x acted differently than it did in τ then the transition
might have been different: there exists a transition τ ′ in M such that
τ ∼ τ ′ and τ 6∼x τ ′ and M, τ ′ |= ¬ϕ.

9

Exϕ is then defined as Exϕ =def [x]ϕ ∧ 〈x〉¬ϕ, or equivalently:

Exϕ =def [x]ϕ ∧ ¬[x]ϕ

The difference modalities [x] are useful in their own right (see Section 6),
but in order to avoid introducing further technical machinery, we note that if
our purpose is only to construct the Ex modalities, then we can simplify. The
counterfactual condition (2) can be simplified because of the necessity condition
(1): if there is a transition τ ′ inM such that τ ∼ τ ′ andM, τ ′ |= ¬ϕ but where
τ ∼x τ ′, then the necessity condition (1) does not hold: M, τ 6|= ϕ. In other
words, the following schema is valid, for all x in Ag :

|= ([x]ϕ ∧ [x]ϕ) ↔ 2ϕ

So instead of (2) for the counteraction condition we can take simply:

(2′) there exists a transition τ ′ in M such that τ ∼ τ ′ and M, τ ′ |= ¬ϕ.

This is just M, τ |= 3¬ϕ, or equivalently, M, τ |= ¬2ϕ.
The following simpler definition is thus equivalent to the original:

Exϕ =def [x]ϕ ∧ ¬2ϕ

This is exactly the construction used in the definition of the ‘deliberative stit ’
(Horty and Belnap, 1995)

[x dstit: ϕ] =def [x]ϕ ∧ ¬2ϕ

except of course that we are reading ϕ as expressing a property of a transition.
The notation Exϕ is from (Pörn, 1977) (though the semantics are different).

It is chosen in preference to the dstit notation because it is more concise, and
in order to emphasise that we do not want to incorporate the very strong stit-
independence assumption that is built into dstit.

Notice that Exϕ ∧ Eyϕ is satisfiable even when x 6= y. Indeed

|= Exϕ ∧ Eyϕ ↔ [x]ϕ ∧ [y]ϕ ∧ ¬2ϕ

It is possible to define a stronger kind of ‘brings it about’ modality which rep-
resents a sense in which it is agent x and x alone who brings it about that ϕ.
We will not need that stronger form in this paper since none of the examples
has more than two agents. See (Sergot, 2008a,b) for details and for discussion
of some forms of collective action by groups (sets) of agents.

Note that adding the stit-independence condition validates, among other
things, the following schema, for all distinct x and y in Ag :

¬ExEyϕ (x 6= y)

Finally, in many of the examples that follow we will be interested in expres-
sions of the form Ex(0:F ∧ 1:G). We note for future reference that:

|= Ex(0:F ∧ 1:G) ↔ (0:F ∧ Ex1:G)

10

3 Example: Vase (one agent)

We begin with a very simple example containing just a single agent a. Agent a
can move a certain (precious) vase between indoors and outdoors. An element of
indeterminism is introduced by allowing that it might be raining or not raining
in any state, which is something that is outside the control of the agent a.
Further, for the sake of an example, suppose it is forbidden, illegal, wrong for
the vase to be outside in the rain.

Let state atoms in represent that the vase is indoors, rain that it is raining,
and red that the state is forbidden/illegal. out is shorthand for ¬in; green is
shorthand for ¬red .

out
¬rain
green

s1

out
rain
red

in
¬rain
green

s0

in
rain
green

τ ′0 green(a)

τ1

green(a)

τ ′1

red(a)

τ0 green(a)

τ1 ∼a τ ′1τ0 ∼a τ ′0

Figure 1: Transitions from state s0 (in ∧ ¬rain)

Figure 1 shows a fragment of a transition system modelling this example,
depicting the transitions from state s0 (in ∧ ¬rain). The labels green(a) and
red(a) on transitions will be explained presently. Figure 2 shows the transitions
from state s1 (out ∧ ¬rain). They are shown in a separate diagram simply to
reduce clutter. Not shown in the diagrams are the transitions from the other
two states in the model, where it is raining.

out
¬rain
green

s1

out
rain
red

in
¬rain
green

s0

in
rain
green

τ ′2 red(a)

τ3

green(a)

τ ′3

green(a)

τ2 green(a)

τ2 ∼a τ ′2τ3 ∼a τ ′3

Figure 2: Transitions from s1 (out ∧ ¬rain)

11

I have deliberately not included any transition atoms to name the actions
by a. A perceived advantage of the stit treatment of action is that we are not
forced to say exactly what action is performed by a when the vase is moved
or left where it is. We need only say (in the example as I am thinking of it)
that, whatever these actions are, the actions by a are the same in the two
transitions τ0 and τ ′0 (τ0 ∼a τ ′0); they differ only in whether it is raining or
not in the resulting state and not in what agent a does when the vase stays in
place. And similarly, τ1 ∼a τ ′1. The possible actions by a in state s0 are thus
{ {τ0, τ ′0}, {τ1, τ ′1} }, and those in state s1 are { {τ2, τ ′2}, {τ3, τ ′3} }. From the
diagram, one can see that they can be characterised in various ways, including:

{τ0, τ ′0} = ‖¬0:rain ∧ 0:in ∧ 1:in‖
= ‖¬0:rain ∧ Ea(0:in ∧ 1:in)‖
= ‖¬0:rain ∧ 0:in ∧ Ea1:in‖

{τ1, τ ′1} = ‖¬0:rain ∧ 0:in ∧ 1:out‖
= ‖¬0:rain ∧ Ea(0:in ∧ 1:out)‖
= ‖¬0:rain ∧ 0:in ∧ Ea1:out‖

And similarly for a’s possible actions in state s1. {τ2, τ ′2} = ‖¬0:rain ∧ 0:out ∧ 1:out‖
and {τ3, τ ′3} = ‖¬0:rain ∧ 0:out ∧ 1:in‖, and so on.

Not shown in Figures 1 and 2 are the transitions from the two states where
it is raining. It is for that reason that the actions by a in state s0 are not just
‖0:in ∧ 1:in‖ and ‖0:in ∧ 1:out‖ but ‖¬0:rain ∧ 0:in ∧ 1:in‖ and ‖¬0:rain ∧ 0:in ∧ 1:out‖.
The example as formulated leaves open the possibility that moving-when-it-is-
raining-now is not the same action as moving-when-it-is-not-raining-now, and
not-moving-when-it-is-raining-now is not the same action as not-moving-when-
it-is-not-raining-now.

Suppose however that we do want to say that the actions performed by
a are the same irrespective of whether it is raining or not in the initial or
final states: suppose the actions performed by a are the same in all transitions
‖0:in ∧ 1:out‖, the same in all transitions ‖0:out ∧ 1:in‖, and the same in all
transitions ‖(0:in ∧ 1:in) ∨ (0:out ∧ 1:out)‖ where the vase stays where it is.

That would require an adjustment to the model structures. We could add a
relation =x for every agent x in Ag , using τ =x τ

′ to represent that the action
performed by x is the same in any transitions τ and τ ′ not just those that have
the same initial state. We would then have:

∼x =def ∼ ∩=x

A strong argument could be made that, for modelling purposes, this would be a
useful and natural extension. It is easy to accommodate but I will not do so in
the rest of this paper. It would not fit so well in the stit-framework since that
would require relating actions/choices across moments in different, incompatible
histories which does not seem so natural.

One final remark: I am thinking here of ‘moving’ as a basic, simple kind of
act, such as moving an arm while it grasps the vase or pushing the vase in one
movement from one location to another. I am not thinking of ‘moving’ as an
extended process of some kind requiring the vase to be packed up, transported
somehow to the new location, and unpacked (say). In the latter case, the tran-
sitions in the diagrams would correspond to executions of this more elaborate

12

‘moving’ process. In that case we might well not want to say that τ1 ∼a τ ′1,
since the moving process might be different if it happens to be raining as the
vase reaches the out location. Indeed there might be many different ‘moving’
transitions between in and out , each corresponding to a different combination of
actions by a. We will return to this point later under discussions of granularity
of representations.

Example: obligations

There is an obligation on a that the vase is not outside in the rain. Let the
transition atom red(a) represent a transition in which a fails to comply with this
obligation. green(a) is shorthand for ¬red(a) and so is satisfied by transitions
in which a does comply. Figures 1 and 2 show these labels on transitions. (It
is an open question whether the transitions from a red state where the vase is
already out in the rain should be green(a) or red(a) transitions. We will ignore
that question here.)

One sense of ‘it is obligatory for agent x to ‘do’ ϕ’ in a state s can be defined
as follows:

Oxϕ =def 2−→(green(x) → ϕ)

or equivalently Oxϕ =def 2−→(¬ϕ → red(x)). It follows that |= Oxgreen(x).
But can x comply with its obligations?
One sense of agent ability is that discussed by Mark Brown (1988); it is

expressed in the stit framework by the formula 3[x]ϕ. In the present framework
where we distinguish between state formulas and transition formulas, that sense
of x can ‘do’ ϕ in state s would be expressed:

Canxϕ =def 3−→[x]ϕ

In the example:

s1 |= Canagreen(a) (3−→[a]green(a))

But what should a do to ensure green(a)? We are looking for transitions
from s1 of type [a]green(a). There are such transitions: those in which the vase
is moved from out to in. a might also comply with its obligation by leaving the
vase outdoors but compliance then is a matter of chance, outside a’s control.

‘Absence of moral luck’ (Craven and Sergot, 2008) is an (optional) rational-
ity constraint that we might often want to check for when considering sets of
regulations or specifications for computer systems. It reflects the idea that, for
practical purposes, whether actions of agent x are in accordance with the norms
directed at x should depend only on x’s actions, not on the actions of other
agents, nor actions in the environment, nor other extraneous factors. It can be
expressed

• ‘absence of moral luck’ (in a model M)

M |= green(x) → [x]green(x)

• ‘absence of moral luck’ (locally, in a state s)

M, s |= 2−→(green(x) → [x]green(x))

13

In the example, if agent a leaves the vase outside, it is a matter of luck
whether it complies with its obligation or not, for this will depend on whether
it rains, and that is an extraneous factor outside of a’s control. Thus:

τ2 6|= green(a) → [a]green(a)

s1 6|= 2−→(green(a) → [a]green(a)) (no ‘absence of moral luck’)

‘Absence of moral luck’ is a rather strong form of ‘Ought implies Can’.
Other, weaker forms can also be expressed. For instance, ‘Ought implies Can’
(1) (at state s in model M)

M, s |= Oxϕ → 3−→ϕ for all ϕ

This is equivalent (it turns out) toM, s |= 3−→green(x) and toM, s |= ¬Ox⊥.

Compare ‘Ought implies Can’ (2) (at state s in model M):

M, s |= Oxϕ → Canxϕ for all ϕ

This is equivalent (it turns out) to M, s |= Canxgreen(x). It is easy to check
that ‘Ought implies Can’ (2) is stronger than (implies) ‘Ought implies Can’ (1).
‘Absence of moral luck’ is stronger still: it implies ‘Ought implies Can’ (2).

In the example,
s1 |= Canagreen(a)

and so ‘Ought implies Can’ (2) at s1. But there is no ‘absence of moral luck’ at
s1, as demonstrated earlier.

States where the vase is in are similar. Refer to Figure 1. Here again

s0 6|= 2−→(green(a) → [a]green(a)) (no ‘absence of moral luck’)

s0 |= Canagreen(a) (3−→[a]green(a))

In contrast, suppose that the obligation on a is not to ensure that the vase
is not outdoors in the rain but instead that the vase is to be moved indoors if it
is outdoors. In that case, transition τ2 in Figure 2, which was labelled green(a)
would be labelled red(a). In that modified form of the example we have:

s1 |= Oa(0:out ∧ 1:in)

s1 |= 2−→(green(a) → [a]green(a)) (‘absence of moral luck’)

s1 |= Canagreen(a) (3−→[a]green(a)) (which follows from the above)

4 Example: Vase (two agents)

Let us now introduce another agent, b. Suppose that the vase can be in one of
three possible, mutually exclusive, locations, in, out , and over , say. Agent a
can move the vase between in and out , and b can move it between out and over
(but not simultaneously). There is an obligation on a to move the vase to in if
it is out . There is no obligation on b to move the vase.

Figure 3 shows the transitions from the state s1 where the vase is out and
it is not raining.

14

out
¬rain
green

s1

out
rain
red

in
¬rain
green

in
rain
green

over
¬rain
green

over
rain
green

τ3 red(a)

τ1

green(a)

τ2

green(a)

τ5

red(a)

τ4

red(a)

τ0 red(a)

Figure 3: Transitions from state s1 (out ∧ ¬rain)

The possible actions by a in state s1 are (as we conceive the example)
{{τ0, τ3, τ4, τ5}, {τ1, τ2}}. From the diagram:

{τ0, τ3, τ4, τ5} = ‖0:¬rain ∧ 0:out ∧ 1:¬in‖
{τ1, τ2} = ‖0:¬rain ∧ 0:out ∧ 1:in‖

The possible actions by b in state s1 are {{τ0, τ1, τ2, τ3}, {τ4, τ5}}.

{τ0, τ1, τ2, τ3} = ‖0:¬rain ∧ 0:out ∧ 1:¬over‖
{τ4, τ5} = ‖0:¬rain ∧ 0:out ∧ 1:over‖

This model does not satisfy stit-independence:

{τ1, τ2} ∩ {τ4, τ5} = ∅

That is as it should be: the actions of a and b are not independent. If a moves
the vase to in then b cannot simultaneously move it to over , and vice-versa.

a still has an obligation to move the vase out from in: the transitions in the
diagram are labelled green(a) and red(a) accordingly.

s1 |= Oa(0:out ∧ 1:in)

s1 |= 2−→(green(a) → [a]green(a)) (‘no moral luck’)

s1 |= Canagreen(a) (3−→[a]green(a))

That is as expected. But note also that:

s1 |= 3−→[b]red(a) (Canbred(a))

The last says that in state s1, b can act in such a way that a necessarily fails
to fulfill its obligation. And that is also surely right: if b moves the vase from
out to over , a could not simultaneously move it from out to in, which is a’s
obligation.

15

One can see from the diagram that all transitions where b moves the vase to
over are red(a). Thus:

s1 |= 2−→(Eb1:over → red(a))

s1 |= 2−→(red(a) → [a]red(a)) (‘no moral luck’)

s1 |= 2−→(Eb1:over → [a]red(a))

and moreover:

s1 |= 2−→(Eb1:over → Eared(a))

s1 |= 2−→(Eb1:over → EbEared(a))

The last two formulas in particular may seem counterintuitive on an informal
reading. The first seems to say that if b brings about or is responsible for the
vase’s moving to over then a brings about or is responsible for violating its obli-
gation; the second that b thereby brings about or is responsible for a’s violating
its obligation. The question of how these formulas may be read informally as
stit statements does not arise because the example is not a stit-model. It does
not satisfy the stit-independence condition.

5 Example: Vase, minor variation

The following minor variation of the example is intended to make some further
observations about the representation of actions.

Let us suppose there are just two (mutually exclusive) locations in and out
for the vase, and that agents a and b can both move the vase between them (but
not simultaneously).

out
¬rain
green

s1

out
rain
red

in
¬rain
green

in
rain
green

τa

τb

τ ′a

τ ′b

τ ′0

τ0

Figure 4: Transitions from state s1

Informally, in Figure 4 τa and τ ′a are transitions where a moves the vase, and
τb and τ ′b are transitions where b moves it.

Actions by a in state s1: { {τ0, τ ′0, τb, τ ′b}, {τa, τ ′a} }
Actions by b in state s1: { {τ0, τ ′0, τa, τ ′a}, {τb, τ ′b} }

16

There is no stit-independence in this model: a and b cannot both move the vase
simultaneously.

{τa, τ ′a} ∩ {τb, τ ′b} = ∅

Suppose for the sake of an example that a and b both have an obligation to
move the vase in if it is out : the transitions τa and τ ′a are green(a), τb and τ ′b
are green(b), and all other transitions from state s1 are red(a) and red(b).

In this example there are different transitions between the same pairs of
states and we cannot identify the actions of a and b by reference only to what
holds in initial and final states.

{τa, τ ′a} 6= ‖0:¬rain ∧ 0:out ∧ 1:in‖
{τ0, τ ′0, τb, τ ′b} 6= ‖0:¬rain ∧ 0:out ∧ 1:¬out‖

(And likewise for b.)
It seems that in order to refer to a and b’s actions we are forced to introduce

some new (transition) atoms, which is something we were trying to avoid. But
it happens that in this example the actions by a in state s1 can be picked out
as follows:

{τa, τ ′a} = ‖0:¬rain ∧ Ea(0:out ∧ 1:in)‖
= ‖0:¬rain ∧ 0:out ∧ Ea1:in‖

{τ0, τ ′0, τb, τ ′b} = ‖0:¬rain ∧ 0:out‖ − {τa, τ ′a}
= ‖0:¬rain ∧ 0:out ∧ ¬Ea(0:out ∧ 1:in)‖
= ‖0:¬rain ∧ 0:out ∧ ¬Ea1:in‖

(And likewise for b.)
So, for convenience only, in this example we could define two new transition

atoms a:moves(out , in) and b:moves(out , in) as follows:

a:moves(out , in) =def Ea(0:out ∧ 1:in)

b:moves(out , in) =def Eb(0:out ∧ 1:in)

The possible actions by a in state s1 are thus:

{τ0, τ ′0, τb, τ ′b} = ‖0:¬rain ∧ 0:out ∧ ¬a:moves(out , in)‖
{τa, τ ′a} = ‖0:¬rain ∧ a:moves(out , in)‖

(And likewise for b.)
I am not suggesting there is a general principle at work here. This is a very

simple example where there are just two agents, and where each agent has just
two possible actions in any state. In more complicated examples it is very far
from obvious how to characterise possible actions by means of ‘brings it about’
formulas in this way. In bigger examples it very rarely works out so neatly.

It is perhaps worth reiterating that what seems natural in this framework
is to say that the action performed by x in transition τ is not [τ]∼x but [τ]=x .
Then a’s possible actions in state s1 would be simply ‖0:out ∧ Ea1:in‖ and
‖0:out ∧ ¬Ea1:in‖, i.e., ‖a:moves(out , in)‖ and ‖0:out ∧ ¬a:moves(out , in)‖.

17

In this example we have, among other things:

s1 |= Oaa:moves(out , in) ∧ Obb:moves(out , in)

s1 |= OaEa(0:out ∧ 1:in) ∧ ObEb(0:out ∧ 1:in)

s1 |= Canaa:moves(out , in) ∧ Canbb:moves(out , in)

s1 |= ¬3−→(a:moves(out , in) ∧ b:moves(out , in))

s1 |= 2−→(green(a) ↔ red(b))

s1 |= 2−→(a:moves(out , in) → Ebred(b))

s1 |= CanaEbred(b)

s1 |= 2−→(a:moves(out , in) → EaEbred(b))

6 Example: Table

This example is intended to raise some questions about the treatment of agency,
and in particular about the ‘necessity’ condition.

Suppose there is an agent a who can lift or lower its end of a table, or do
neither. On the table stands a vase. If the table tilts, the vase might fall or it
might not. If the vase falls, it might break or it might not. If the table does not
tilt then the vase does not fall; if it does not fall, it does not break.

level
on-table
¬broken

¬level
¬on-table
broken

¬level
¬on-table
¬broken

¬level
on-table
¬broken

τ1

falls

τ ′1

falls

τ ′′1

¬falls

τ0

τ1 ∼a τ ′1
τ1 ∼a τ ′′1

Figure 5: Transitions from the state in which the table is level and the vase
stands on it

Figure 5 shows transitions from the state in which the table is level and
the vase stands on it. State atoms level , on-table and broken have the obvious
intended readings. There are other transitions not shown in the diagram and
two more states, those in which the table is level (level) but the vase is not on
it (¬on-table); in one of these the vase is broken, in the other it is not.

For convenience, let the transition atom falls be defined as follows:

falls =def 0:on-table ∧ 1:¬on-table

18

The possible actions by a in this state are { {τ0}, {τ1, τ ′1, τ ′′1 } }. By reference
to previous examples, there are various ways we can describe them, e.g.

{τ1, τ ′1, τ ′′} = ‖0:on-table ∧ Ea(0:level ∧ 1:¬level)‖
= ‖0:on-table ∧ 0:level ∧ Ea1:¬level‖

{τ0} = ‖0:on-table ∧ ¬Ea(0:level ∧ 1:¬level)‖
= ‖0:on-table ∧ 0:level ∧ ¬Ea1:¬level‖

(Here, there is just a single agent a in the example and so the operator Ea could
be omitted from all of the above.) The simpler expressions ‖Ea(0:level ∧ 1:¬level)‖
and ‖¬Ea(0:level ∧ 1:¬level)‖ are not sufficient to pick out a’s actions: there
are other transitions not shown in the diagram where a lifts or lowers its end of
the table when the vase is not on it. On the other hand, as observed earlier, we
might well want to say that the actions of a’s lifting its end of the table or not
lifting are the same whether the vase stands on it or not. That would identify
actions with equivalence classes of =a rather than ∼a.

But here is the main point. Suppose that a tilts the table and the vase falls
and breaks:

τ1 |= falls ∧ 0:¬broken ∧ 1:broken

Had a not tilted the table the vase would not have fallen. But a is not responsible
for, does not bring about, the breaking of the vase:

τ1 6|= Ea falls (because τ1 6|= [a]falls)

τ1 6|= Ea1:broken (because τ1 6|= [a]1:broken)

It is not necessary for what a does in τ1 that the vase falls, and it is not necessary
for what a does in τ1 that the vase breaks.

Examples such as this, and many others, suggest that there is a weaker sense
in which a ‘brings about’ or is responsible for the falling and breaking of the
vase when a tilts the table. What is this weaker form?

There are two obvious candidates:

(1) ϕ ∧ [x]¬ϕ
(2) ϕ ∧ 〈x〉¬ϕ

The first says that x is responsible for ϕ because ϕ is true and had x acted
differently, ϕ would not have been true. (1) is too strong (demands too much).
The second is more plausible and is mentioned briefly in (Pörn, 1977): x is
responsible for ϕ because ϕ is true, and had x acted differently, ϕ might not
have been true. But (2) is too weak.

In this particular example, both are plausible at first sight: in transition τ1,
the vase fell and broke but had a acted differently and not tilted the table, the
vase would not have fallen and would not have broken.

(1) ϕ ∧ [x]¬ϕ is too strong (demands too much). For suppose there were
another way in which agent a could cause the vase to fall: suppose that a could
dislodge the vase by jolting the table (say). Now, suppose that a lifts its end
of the table and the vase falls. That would be a transition of type falls; but
falls ∧ [a]¬falls is false in that transition since there is another transition, where

19

a jolts instead of lifting, which also has falls true. So on that reading, a is not
responsible for the vase’s falling.

The candidate form (2) ϕ∧〈x〉¬ϕ is more plausible but is too weak. Consider
a version of the earlier vase example in which agent a moves the vase between
in and out . Consider a transition in which a moves the vase to out and it rains,
that is, a transition of type 1:(out ∧ rain). It is a who moves the vase, no-one
else. In that transition, Ea1:(out ∧ rain) is false because it is not necessary for
what a does that 1:(out ∧ rain): [a]1:(out ∧ rain) is false because it might not
have rained. However, had a acted differently (by not moving the vase) it might
have been otherwise: 1:(out ∧ rain) ∧ 〈a〉¬1:(out ∧ rain) is true.

But that is too weak. By exactly the same argument, 1:rain ∧ 〈a〉¬1:rain
is also true in that transition: it rains, and had x acted differently, it might not
have rained. Yet we would not want to say that agent a is reponsible for, or the
cause of, or the one who brings about that it is raining.

It is far from clear whether this weaker sense of ‘brings it about’ or ‘respon-
sible for’ can be articulated using the available resources. The problem is that
nearly everything we want to say about agency in practice is of this weaker
form. If a man walks into a room, puts a loaded revolver in his mouth and
blows his brains out, we would surely want to say that he killed himself, that
he was responsible for his death, that it was his actions that caused it. Yet he
did not see to it or bring it about: it was not necessary for what he did that he
died. The gun might have jammed, the bullet might have hit a thick part of the
skull, the resulting injury might not have been fatal for any number of reasons.
And this has nothing to do with probabilities. If a man walks in a room, picks a
bullet at random from a barrel containing live and blank ammunition, loads his
revolver, spins the chamber, then pulls the trigger and blows his brains out, we
would say that he killed himself, even though the likelihood that those actions
result in death is very small.

7 Example: Avoidance (fixed)

The next series of examples illustrates some common patterns in which the ac-
tions of one agent constrain, or possibly even determine, the actions of another.

Two agents a and b (cyclists, say) approach each other on a path. If both
swerve left or both swerve right they avoid the crash; otherwise they crash.
There is an obligation on a that there is no crash.

s0

green(a)

crash

crash

green(a)

ll

lr

rl

rr

ll |= green(a) ∧ ¬[a]green(a)
lr |= red(a) ∧ ¬[a]red(a)
rl |= red(a) ∧ ¬[a]red(a)
rr |= green(a) ∧ ¬[a]green(a)

Figure 6: a and b can both swerve to left or right

Figure 6 shows the possible transitions as the agents approach each other.

20

The labels ll, lr, . . . on transitions are just mnemonics: ll indicates that a and
b both swerve left, lr that a swerves left and b swerves right, and so on. crash
is a transition atom with the obvious intended reading. The transition atom
green(a) represents transitions in which a complies with its obligation. red(a)
is shorthand for ¬green(a). In this model, green(a) ↔ ¬crash is valid, or at
least true in all transitions from the state s0 depicted in the diagram.

One can see that in the case of a crash, agents a and b collectively bring it
about that there is a crash, though neither individually does so. And similarly
in the case where both swerve and there is no crash. We will not discuss possible
forms of collective agency in this paper.

a has an obligation to avoid the crash but cannot guarantee that its actions
will comply: ‘Ought implies Can’ (2) fails for this obligation:

s0 6|= Canagreen(a) (s0 6|= 3−→[a]green(a))

And there is no ‘absence of moral luck’ (which follows from the above)

s0 6|= 2−→(green(a) → [a]green(a))

Agent as automaton

Consider the same example but suppose now that b has a fixed behaviour in this
situation—a reflex or a deliberative decision procedure of some kind that always
chooses the same action by b in these circumstances—b always swerves left (say).
The obligation is still on a that there is no crash (green(a) ↔ ¬crash).

s0

green(a)

crash

ll

rl

Figure 7: b always swerves left

At one level of detail, the possible transitions are as shown in Figure 7. Note
first that there is ‘absence of moral luck’: s0 |= 2−→(green(a) → [a]green(a)).
Moreover:

s0 |= 3−→[a]¬crash (Cana¬crash)

(though a might not know this, or know how to avoid the crash).
But who is responsible in the case of a crash?

ll |= [a]¬crash ∧ ¬[b]¬crash ∧ Ea¬crash

rl |= [a]crash ∧ ¬[b]crash ∧ Eacrash

Because b’s actions are fixed, b never brings about crash or no-crash: a is always
solely responsible.

s0 |= 2−→(crash ↔ Eacrash) ∧ 2−→(¬crash ↔ Ea¬crash)

21

Perhaps this seems odd. Perhaps not—after all, this transition system models
how b will actually behave. b’s behaviour is treated here as if it were just
part of the environment in which a operates, like a gate operated by a sensor
or a traffic light. This seems perfectly reasonable if b is an automaton or a
mechanical device of some kind. But what if b is not an automaton? What if
b makes deliberate decisions about other actions but reacts automatically when
faced by an oncoming a as here? b behaves like an automaton in this respect
but not in every other.

Here is an alternative way of modelling this scenario. Let transition atom
progb represent that b acts in accordance with its protocol/decision procedure.
(Here, to swerve left whatever a does.) We can assume M |= progb ↔ [b]progb.

We need some way of referring to b’s actions. Unlike in previous examples,
there seems to be no recourse but to introduce a transition atom for this purpose.
Let transition atom b:l represent that b swerves left. b’s protocol requires that
s0 |= 2−→(progb ↔ b:l).

s0

progb
green(a)

crash

progb
crash

green(a)

ll

lr

rl

rr

ll |= ¬crash ∧ progb
lr |= crash ∧ ¬progb
rl |= crash ∧ progb
rr |= ¬crash ∧ ¬progb

Figure 8: b swerves left (explicit protocol)

Figure 8 depicts the model. In this version:

s0 |= 2−→(progb → Ebprogb) ∧ 2−→(b:l → Ebb:l)

s0 6|= Canb¬crash

s0 |= Cana(progb → ¬crash)

s0 6|= 2−→(crash → Ea(progb → crash))

The last is because Ea(progb → crash) is false in the transition lr. Moreover:

s0 6|= 2−→(progb → (crash → Eacrash))

Of course it is a matter of choice how we model the example. It is not that
one is right and the other is wrong. They model different things. Let us call
the models in Figures 7 and 8 actual and explicit protocol, respectively.

In both models, b cannot avoid the crash, in the sense that:

s0 6|= Canb¬crash

And in both models a can avoid the crash (though a might not know this, nor
know how). In the ‘actual’ model (Figure 7):

s0 |= Cana¬crash

22

In the ‘explicit protocol’ model (Figure 8):

s0 |= Cana(progb → ¬crash)

What differs is who is responsible in the case of a crash. In the ‘actual’ model
(Figure 7) it is a:

s0 |= 2−→(crash → Eacrash)

However in the ‘explicit protocol’ model (Figure 8):

s0 6|= 2−→(crash → Ea(progb → crash))

s0 6|= 2−→(progb → (crash → Eacrash))

I find this slightly disturbing. I cannot see any general principles for choosing
one of these models over the other. Both seem reasonable formalisations of the
example, in their own way. And if one model has it that a is responsible for the
crash, then it seems the other should have something comparable. But what?
The two obvious candidates (the last two formulas above) do not work. It is
not immediately obvious whether a sense of responsibility for crashing in the
second model could be expressed and related neatly to the first.

8 Example: Avoidance (reaction)

Suppose now that b’s fixed reflex, program, deliberative procedure is to react to
a—if a goes left, so does b; if a goes right, so does b. (The obligation on a that
there is no crash will play no role in this example.)

As a first shot, let us ignore the temporal structure implicit in the term
‘reacts to’ and represent the possible behaviours in the example as atomic tran-
sitions.

We begin with ‘actual’ behaviour, as depicted in Figure 9.

s0

ll

b:l

rr

ll |= [a]¬crash ∧ [b]¬crash
rr |= [a]¬crash ∧ [b]¬crash

Figure 9: b reacts to a (atemporal, ‘actual’)

From the diagram:

s0 |= Canb¬crash (trivally, since 2−→¬crash)

s0 |= Cana¬crash

s0 |= 2−→(b:l → Ebb:l)

But also:

s0 |= 2−→(b:l → Eab:l)

23

For consider:

ll |= [a]b:l ∧ ¬2b:l, and hence ll |= Eab:l

ll |= Ebb:l (similarly)

Furthermore:

ll |= [a]Ebb:l ∧ ¬2Ebb:l

ll |= EaEbb:l

ll |= EbEab:l (similarly)

So then:

s0 |= 2−→(b:l → Eab:l)

s0 |= 2−→(b:l → EaEbb:l)

s0 |= 2−→(b:l → EbEaEbb:l)

There is obviously no stit-independence in this model. If there were then
EaEbϕ would be false for every formula ϕ. That is a property validated by
stit-independence.

Perhaps some of these formulas seem counterintuitive? What if we represent
the temporal structure implicit in ‘reacts to’? We will turn to that in a moment.
Before that, for the sake of completeness, let us consider the ‘explicit protocol’
formulation of the atemporal model.

Let the transition atom prog ′b represent that b acts in accordance with its
reaction procedure. We can assume M |= prog ′b → [b]prog ′b.

s0

prog′b

crash

crash

prog′b

ll

lr

rl

rr

ll |= ¬crash ∧ prog ′b
lr |= crash ∧ ¬prog ′b
rl |= crash ∧ ¬prog ′b
rr |= ¬crash ∧ prog ′b

Figure 10: b reacts to a (atemporal, ‘explicit protocol’)

Obviously in this example: s0 |= 2−→(crash ↔ ¬prog ′b). But suppose that b

fails to react correctly, that is, that prog ′b is false. Is b then responsible for the
crash? No:

s0 6|= 2−→(¬prog ′b → [b]crash)

s0 6|= 2−→(¬prog ′b → Ebcrash)

b’s protocol is to react to a: if b goes left and by doing so abides by its
protocol, does it follow that a brings this about? No:

s0 6|= 2−→(b:l → (prog ′b → Eab:l))

24

Though a does bring it about in the following sense:

s0 |= 2−→(b:l → Ea(prog ′b → b:l))

And if transition atom a:l represents that a swerves left, then:

s0 |= 2−→(a:l → Ea(prog ′b → b:l))

Furthermore:

s0 6|= Canb¬crash, but s0 |= Canb(prog ′b → ¬crash))

s0 6|= Cana¬crash, but s0 |= Cana(prog ′b → ¬crash))

s0 6|= 2−→(¬crash → Ea(prog ′b → ¬crash))

s0 6|= 2−→(¬crash → Eb(prog ′b → ¬crash))

Notice that in this example we have had to rely on transition atoms to refer
to the actions of a and b. I cannot see how we could do without them.

Temporal structure

Let us now compare a model at a finer level of detail, by making explicit the
temporal structure implicit in the term ‘reacts to’. We will consider the ‘actual
behaviour’ model. The ‘explicit protocol’ version can be constructed in similar
fashion but adds little new so we leave it out.

s0

s1

s2

a:l
τ1

a:r

b:l
τ2

b:r

Figure 11: b reacts to a (temporal structure, ‘actual behaviour’)

In transition τ2 of Figure 11 b reacts by swerving left after a swerves left in
transition τ1. We have

τ2 |= [b]b:l ∧ ¬Ebb:l

and hence at τ1

τ1 |= Ea1:2−→b:l

So:

s0 |= 2−→(a:l → Ea1:2−→b:l)

s0 6|= 2−→(a:l → Ea1:2−→Ebb:l)

25

Indeed, in general the following are validities:

|= ¬Ex1:2−→Eyϕ (any x, y, including x = y)

|= ¬[x]1:2−→Eyϕ

This is because:
|= ¬2−→Exϕ

It is straightforward to derive this in the logic, or one can argue informally
as follows. Suppose s |= 2−→Exϕ. Then all transitions from s must have Exϕ

true and hence also ϕ true and 3¬ϕ true (by definition of Exϕ). But if any
transition from s has 3¬ϕ true then it cannot be that all transitions from s
have ϕ true, which contradicts the assumption.

So to recap: in the atemporal representation where the behaviours of a then
b are modelled as atomic transitions

s0 |= 2−→(a:l → Eab:l)

s0 |= 2−→(a:l → EaEbb:l)

At this level of detail a brings it about that b brings it about that b turns left.
But at a finer level of detail where we make the temporal structure explicit

s0 6|= 2−→(a:l → Ea1:2−→Ebb:l)

Instead a’s actions force b’s reaction, in the following sense:

s0 |= 2−→(a:l → Ea1:2−→b:l)

In the temporal model then, b:l ↔ Ebb:l is not valid. On a casual reading one
might think it should be.

My point is that I can see no general principle why we should always insist
on picking the most detailed model. Indeed, why should we think that there
is a most detailed model? What looks like an atomic transition at one level of
detail can always be decomposed into something with finer structure if we look
closely enough.

9 Example: Granularity

This last example is to illustrate that granularity of a model does not always
depend on temporal structure.

Suppose there are two agents a and b. Both can be in one of two rooms,
left and right, separated by a doorway. The agents can stay where they are or
pass from one room to the other, but not simultaneously (the doorway is too
narrow).

The diagram on the left of Figure 12 shows the possible transitions from the
state where both agents are in the room on the left.

The possible actions by a and b in this state are as follows:

Actions by a: { {τ0, τ2}, {τ1} }
Actions by b: { {τ0, τ1}, {τ2} }

26

a
b

a
b

a
b

τ1

stays(b)

τ2

¬stays(b)

τ0

stays(b) a
b

a
b

a
b

(a+b−)

(a+b+)a

(a−b+)
(a−b−)

(a+b+)

Figure 12: The same example at two different levels of detail

There is no stit-independence in this model (a and b cannot both pass through
the doorway at the same time):

{τ1} ∩ {τ2} = ∅

Let transition atom stays(b) be true in transitions where b remains in the
room on the left, as shown in the diagram.

Consider the transition τ1 where a moves from left to right:

τ1 |= Ebstays(b)

But also:

τ1 |= Eastays(b)

τ1 |= EaEbstays(b)

Indeed, if transition atom moves(a) represents transitions where the location of
a changes from left to right, then (amongst other things):

M |= moves(a) → EaEbstays(b)

Let us now consider the same example, but at a greater level of precision.
a and b cannot both pass through the doorway at the same time. Why? For
the sake of an example, suppose that if both try then one of two things can
happen: either both fail and stay in the room on the left, or just a succeeds in
moving through, because a is a little stronger or faster than b, say. b can never
get through ahead of a. (Many other versions of the example are possible.)

The diagram on the right of Figure 12 depicts a model at this finer level of
detail. The labels on the transitions are just mnemonics. In (a+b−), a tries to
move to the room on the right (and succeeds) while b does not try to move.
In (a+b+) both a and b try to get through the door but neither succeeds. In
(a+b+)a both try to get through the door; a succeeds but b does not. In (a−b−)
neither try. The possible actions of a and b in this state are therefore:

Actions by a: { {(a−b−), (a−b+)}, {(a+b−), (a+b+), (a+b+)a} }
Actions by b: { {(a−b−), (a+b−)}, {(a−b+), (a+b+), (a+b+)a} }

At this level of detail there is stit-independence in the model. (That does not
always happen. Adding detail does not always produce stit-independence. It
happens in this example.)

27

Let the transition atom stays(b) again represent those transitions where b
stays on the left. stit-independence validates ¬EaEbϕ for all transition formulas
ϕ. In particular, in this more detailed model of the example

M 6|= moves(a) → EaEbstays(b)

We still have:

M |= moves(a) → Eastays(b)

Evidently in this more detailed version of the model

M 6|= stays(b) ↔ Ebstays(b)

My point is that again important properties of the example change as detail
is added. And it is not as though there is some most detailed model for which
we should always aim. In the present example, a can sometimes get through the
doorway ahead of b but not the other way round. We could also build a more
detailed representation that models how that happens. So again: the models are
different in some essential respects. We look to see which agent is responsible
for, say, bringing it about that b stays where it is. At one level of detail, it is
both a and b; at another level of detail it is only a. Indeed, it could be that at
this level of detail, a brings it about that b does not bring it about that b stays
where it is.

10 Conclusion

The purpose of the paper was to explore how easy or difficult it would be to
formulate some simple examples in a stit-like framework. I deliberately picked
examples with a simple temporal structure. An element of indeterminism is
present, either because of the uncertainty of the environment or because of the
actions of other agents (for simplicity in these examples, at most one other).
Here is a brief summary of the main points.

1) An essential feature of the stit framework is that it does not refer explicitly
to the actions performed by an agent but only to the way an agent’s choices
(intentional, deliberative but also possibly automatic or unwitting) shape the
course of future histories. The result is a very elegant and appealing abstraction
which gives a natural denotation for actions whilst doing away with the need to
identify and name them. The examples were intended in part to explore how
easy it would be to exploit this abstract treatment. In the first few it worked
out quite neatly. Here it was possible to identify and describe an agent’s actions
in terms of transitions of certain kinds between observable states, such as the
location of a vase or whether a certain table was level or not. In other examples
that does not work out so well. Often it is necessary to refer to the occurrence
of a specific kind of action—jolting a table, swerving to the left, kicking an
opponent—where the action cannot be picked out by reference to its effects on
states. Perhaps dislodging a vase by lifting one end of a table is forbidden but
causing it to fall by jolting the table is not. In these cases there seems to be no
alternative but to introduce propositional atoms to name specific actions.

28

2) We very often want to say that the actions of a particular agent are respon-
sible for or the cause of such-and-such in a much weaker sense than is captured
by typical stit or ‘brings it about’ constructions. Here it is the ‘necessity’ con-
dition that is too strong. When an agent lifts a table and a vase standing on
it falls and breaks, we want to say that the agent ‘broke the vase’: it was his
actions that were responsible for the falling and the breaking, even though the
vase might not have fallen when he lifted the table, and might not have broken
when it fell. I looked briefly at two natural candidates for expressing a weaker
sense of ‘brings it about’, which refer to what would, or might, have happened
had the agent acted differently. One of these candidates is clearly much too
strong (too demanding); the other is much too weak. It is far from clear that
there is a way of expressing the required causal relationships using the available
resources. I believe this is an important and urgent question because in practice
it is precisely these weaker senses of responsibility and ‘brings it about’ that
dominate.

3) Sometimes an agent (human or artificial) behaves in some respects like an
automaton, in that in some circumstances it follows a fixed protocol or decision
procedure to select its course of action. It might do this unwittingly, as in the
case of a reflex, or as a result of a long process of deliberation. Either way
it seems very unsatisfactory to model this form of behaviour as if it were a
fixed part of the environment in which other agents act. I suggested a simple
device for distinguishing between modelling what I called ‘actual’ and ‘explicit
protocol’ behaviours. I am sure there is much more that can be said about these
matters, and about the formal relationships between models of these respective
kinds.

4) Finally, some of the key properties of the examples seem to depend crit-
ically on the level of detail that is being modelled. For some purposes it is
perfectly reasonable to model, say, the moving of a vase from one place to an-
other as an atomic transition with no further structure. For other purposes
we might want to look more closely, and model in more detail how the vase is
picked up, transported, and set down. For some purposes, we choose to model
the movements of agents, physical robotic devices, say, as atomic transitions
where unarticulated spatio-temporal constraints make certain combinations of
movings impossible. At another level of detail, we model something of what
these spatio-temporal constraints are: a doorway is too narrow to allow two
agents to pass through simultaneously, there is a single power source which
some of the agents have to share, some of the agents are connected by inexten-
sible physical wires, and so on. What we find is that at one level of detail, agent
b sees to it that ϕ, and agent a sees to it that b sees to it that ϕ. When more
detail is added, the same example says that b does not see to it that ϕ, and
perhaps even that a sees to it that b does not see to it that ϕ. This is disturbing
because these are precisely the kinds of properties that we want to examine. Of
course there is nothing surprising about the fact that models at different levels
of detail have different properties. Some properties are preserved as detail is
added and some are not. There is a great deal of work on these matters, for
example in the current literature on abstraction methods in model checking.
However, the ‘stit’ and ‘brings it about’ patterns seem unusually sensitive to
choice of detail. I would like to understand better how different models of the
same example at different levels of detail relate to one another.

29

References

Philippe Balbiani, Andreas Herzig, and Nicolas Troquard. Alternative axiomatics
and complexity of deliberative stit theories. Journal of Philosophical Logic, 37(4):
387–406, 2008.

N. Belnap and M. Perloff. Seeing to it that: a canonical form for agentives. Theoria,
54:175–199, 1988. Corrected version in (Belnap and Perloff, 1990).

N. Belnap and M. Perloff. Seeing to it that: a canonical form for agentives. In H. E.
Kyburg, Jr., R. P. Loui, and G. N. Carlson, editors, Knowledge Representation and
Defeasible Reasoning, volume 5 of Studies in Cognitive Systems, pages 167–190.
Kluwer, Dordrecht, Boston, London, 1990.

Nuel Belnap and Michael Perloff. In the realm of agents. Annals of Mathematics and
Artificial Intelligence, 9(1–2):25–48, 1993.

Nuel Belnap, Michael Perloff, and Ming Xu. Facing the future: Agents and choices in
our indeterminist world. Oxford University Press, 2001.

Mark A. Brown. On the logic of ability. Journal of Philosophical Logic, 17:1–26, 1988.

Robert Craven and Marek Sergot. Agent strands in the action language nC+. Journal
of Applied Logic, 6(2):172–191, June 2008.

R. Hilpinen. On action and agency. In E. Ejerhed and S. Lindström, editors, Logic,
Action and Cognition—Essays in Philosophical Logic, volume 2 of Trends in Logic,
Studia Logica Library, pages 3–27. Kluwer Academic Publishers, Dordrecht, 1997.

J. F. Horty. Agency and Deontic Logic. Oxford University Press, 2001.

J. F. Horty and N. Belnap. The deliberative stit: a study of action, omission, ability,
and obligation. Journal of Philosophical Logic, 24(6):583–644, 1995.

Ingmar Pörn. Action Theory and Social Science: Some Formal Models. Number 120
in Synthese Library. D. Reidel, Dordrecht, 1977.

K. Segerberg. Getting started: Beginnings in the logic of action. Studia Logica, 51
(3–4):347–378, 1992.

Marek Sergot. Action and agency in norm-governed multi-agent systems. In A. Ar-
tikis, G.M.P. O’Hare, K. Stathis, and G. Vouros, editors, Engineering Societies in
the Agents World VIII. 8th Annual International Workshop, ESAW 2007, Athens,
October 2007, Revised Selected Papers, LNCS 4995, pages 1–54. Springer, 2008a.

Marek Sergot. The logic of unwitting collective agency. Technical Report 2008/6,
Department of Computing, Imperial College London, 2008b.

Georg Henrik von Wright. Norm and Action—A Logical Enquiry. Routledge and
Kegan Paul, London, 1963.

30

