
A tableux system for Deontic Interpreted Systems

Guido Governatori1 Alessio Lomuscio2 Marek J. Sergot3

1 School of Information Technology and Electrical Engineering, The University of Queensland,
Brisbane, Australia. guido@itee.uq.edu.au

2 Department of Computer Science, King’s College London, London, UK.
alessio@dcs.kcl.ac.uk

3 Department of Computing, Imperial College, London, UK. mjs@doc.ic.ac.uk

Abstract. We develop a labelled tableaux system for the modal logic KD45i � j
n

extended with epistemic notions. This logic characterises a particular type of in-
terpreted systems used to represent and reason about states of correct and incor-
rect functioning behaviour of the agents in a system, and of the system as a whole.
The resulting tableaux system provides a simple decision procedure for the logic.
We discuss these issues and we illustrate them with the help of simple examples

1 Introduction

One of the main areas of interest in the use formal methods in Software Engineering
involve the use of tools based on mathematical logic for the specification and verifica-
tion of computing systems. This is true in general but it specially applies to the area
of multi-agent systems. Here, multi-modal logics are normally used to specify the be-
haviour of a multi-agent systems. Several formalisms have been designed for this task,
most importantly logics for knowledge [5], logics for Belief-Desires-Intentions [15],
deontic logics [14], etc. The usual approach in this line of work is to suggest a logic, in
terms of its syntax and axiomatisation, to show that it captures the intuitive properties of
the concept under investigation, and to show metalogical properties of the logic system,
such as its completeness and decidability.

This is adequate for the task of specifying distributed systems but methodologies
need to be developed for verifying that a system complies with a given specification.
Several methods are employed to perform this task, traditionally theorem provers, and
more recently model checkers.

It has been argued elsewhere [13, 12] that a formalism for specifying properties of a
system could make use of a deontic component. That can be used for example to distin-
guish in a precise and unambiguous way among properties that should hold in a system,
properties that may hold in a system, properties that simply hold in a system. While de-
ontic concepts are useful on their own, especially when paired to temporal operators,
they become even more of importance in multi-agent systems when paired with infor-
mational properties such as their knowledge, beliefs, intentions, etc. The formalism of
deontic interpreted systems was designed to make a step in that direction.

In deontic interpreted systems a semantics based on interpreted systems [5] is given
to interpret a multi-modal language consisting of a family of operators

�
Oi � , represent-

ing correct functioning behaviour of agent i, a family of operators
�
Ki � representing

the knowledge of agent i, and a family of operators
���
K j

i � representing the knowledge
agent i has under the assumption of correctness of agent j. It was argued in [13, 12] that
this set of operators could be useful to represent a number of key interesting scenarios,
including communication and security examples.

A complete axiomatisation for deontic interpreted systems limited to the fragment
of

�
Oi � Ki � , was also shown. This comprises the logics S5n for the modalities Ki for

knowledge and the logic KD45i � j
n for the modalities Oi for correct functioning be-

haviour. While a Hilbert style axiomatisation is a theoretically valuable result, proving
properties of particular examples by means of this is notoriously awkward. Automated
technologies, such as the ones based on theorem provers or model checkers are called
for. In this paper we define and investigate a tableaux system for the full logic above.

The remaining of this paper is organised as follows. In Section 2 we define the
language of the logic, the semantics, and present its axiomatisation. In Section 3 we
define a tableaux system for it. In Section 4 we present an example, the bit transmission
problem, and we prove properties about it by means of the tableaux strategy. In Section
5 we wrap up and point to further work.

2 Deontic Interpreted Systems

We present here the main definitions for the notation we are going to use in this paper,
as from [5, 13]. Due to space consideration we are forced to assume working knowledge
with some of the technical machinery presented there.

Interpreted Systems Consider n agents in a system and n non-empty sets L1 ��������� Ln of
local states, one for every agent of the system, and a set of states for the environment
LE . Elements of Li will be denoted by l1 � l �1 � l2 � l

�
2 ������� . Elements of LE will be denoted

by lE � l �E ������� .
A system of global states for n agents S is a non-empty subset of a Cartesian product

L1
	�
�
�
�	 Ln

	 LE . When g �
l1 ��������� ln � lE � is a global state of a system S, li

�
g � denotes

the local state of agent i in global state g. lE
�
g � denotes the local state of the environment

in global state g. An interpreted system of global states is a pair IS �
S � h � where S

is a system of global states and h : S � 2P is an interpretation function for a set of
propositional variables P. Systems of global states can be used to interpret epistemic
modalities Ki, one for each agent.

�
IS � g ��� Ki ϕ iff � g

�
: li

�
g � li

�
g
� ��� �

IS � g � ��� ϕ �
Alternatively one can consider generated models

�
S ��� 1 ����������� n � h � of the standard form,

where the equivalence relations � i are defined on equivalence of local states, and then
interpret modalities in the standard modal tradition (e.g. [3, 10]). The resulting logic for
modalities Ki is S5n; this models agents with complete introspection capabilities and
veridical knowledge.

Deontic interpreted systems The notion of interpreted systems can be extended to in-
corporate the idea of correct functioning behaviour of some or all of the components
[13].

Given n agents and n � 1 non-empty sets GE � G1 ��������� Gn, a deontic system of global
states is any system of global states defined on LE � GE ��������� Ln � Gn. GE is called
the set of green states for the environment, and for any agent i, Gi is called the set of
green states for agent i. The complement of GE with respect to LE (respectively Gi with
respect to Li) is called the set of red states for the environment (respectively for agent i).

The terms ‘green’ and ‘red’ are chosen as neutral terms, to avoid overloading them
with unintended readings and connotations. The term ‘green’ can be read as ‘legal’,
‘acceptable’, ‘desirable’, ‘correct’, depending on the context of a given application.

Deontic systems of global states are used to interpret modalities such as the follow-
ing �

IS � g ��� Oi ϕ iff � g
�
: li

�
g
� ��� Gi � �

IS � g � ��� ϕ �
Oi ϕ is used to represent that ϕ holds in all (global) states in which agent i is function-
ing correctly. Again, one can consider generated models

�
S ��� 1 ����������� n � RO

1
��������� RO

n � h � ,
where the equivalence relations are defined as above and the relations RO

i are defined
by gRO

i g
�
if li

�
g
� ��� Gi, with a standard modal logic interpretation for the operators Oi.

Knowledge can be modelled on deontic interpreted systems in the same way as on
interpreted systems, and one can study various combinations of the modalities such as
Ki O j, O j Ki, and others. Another concept of particular interest is knowledge that an
agent i has on the assumption that the system (the environment, agent j, group of agents
X) is functioning correctly. We employ the (doubly relativised) modal operator

�
K j

i for
this notion, interpreted as follows:

�
IS � g ��� �

K j
i ϕ iff � g

�
: li

�
g � li

�
g
� � and l j

�
g
� ��� G j � �

IS � g � ��� ϕ �
An axiomatisation of deontic interpreted systems The multi-modal language defined
by Oi � Ki is axiomatised by the logics S5n union KD45i � j

n where there are defined as
follows:

The component S5n is defined by the smallest normal multi-modal logic (i.e., closed
under the necessitation rule for Ki) satisfying the axioms T , 4, and 5 for each modal op-
erator Ki. Semantically S5n is determined by the class of Kripke frames

�
W ��� 1 ����������� n �

where each � i is an equivalence relation.
The component KD45i � j

n is defined by the smallest normal multi-modal logic (i.e.,
closed under the necessitation rule for Oi) satisfying the axioms D, 4, 5 and � Oi � ϕ �
O j � Oi � ϕ � for each pair of modal operators Oi, O j. Semantically KD45i � j

n is deter-
mined by the class of serial, transitive and i- j Euclidean Kripke frames

�
W � RO

1
��������� RO

n �
where a frame is i- j Euclidean iff for all w

� � w � � � w � � � � W an for all i � j such that 1 �
i � j � n, we have that wRO

i w
�

and wRO
j w

� �
implies wRO

i w
� �
.

For the operator
�
K j

i , determined semantically by � i � RO j , we do not have a com-
plete axiomatisation. In this paper we provide a sound and complete tableuax system
for it.

3 Tableaux for Deontic Interpreted Systems

In [1, 9, 2] a tableau-like proof system, called KEM, has been presented, and it has
been proven to be able to cope with a wide variety of logics accepting possible world

semantics. KEM is based on D’Agostino and Mondadori’s [4] classical proof system
KE, a combination of tableau and natural deduction inference rules which allows for
a restricted (“analytic”) use of the cut rule. The key feature of KEM, besides its being
based neither on resolution nor on standard sequent/tableau inference techniques, is that
it generates models and checks them using a label scheme for bookkeeping states in in-
terpreted systems. In [7–9] it has been shown how this formalism can be extended to
handle various systems of multi-modal logic with interaction axioms. The mechanism
KEM uses in manipulating labels is close to the possible world semantic constructions.
In the following section we show how to adapt it to deal with deontic interpreted sys-
tems.

Label Formalism KEM uses Labelled Formulas (L-formulas for short), where an L-
formula is an expression of the form A : t, where A is a wff of the logic, and t is a
label. In the case of deontic interpreted systems we have a type of labels corresponding
to various modalities for each agent; the set of atomic labels for i (Φ i) is defined as
follows:

Φ i Φ i
O � Φ i

K � Φ ij

Each set of atomic labels for the modalities is partitioned into the (non-empty) sets of
variables and constants.

Φ i
O V i

O � Ci
O; Φ i

K V i
K � Ci

K ; Φ ij V ij � Cij for any j

where V i
O �

Oi
1 � Oi

2 ������� � , Ci
O �

oi
1 � oi

2 ������� � , V i
K �

Ki
1 � Ki

2 ������� � , Ci
K �

ki
1 � ki

2 ������� � ,
V ij �

IJ1 � IJ2 ������� � , and Cij �
ij1 � ij2 ������� � . Finally we add a sets of auxiliary unindexed

atomic labels ΦA V A � CA – here V A �
W1 � W2 ������� � and CA �

w1 � w2 ������� � –, that
will be used in unifications and proofs. With ΦC and ΦV we denote, respectively, the
set of constants and the set of variables.

The set of labels ℑ is then defined inductively as follows: a label is either (i) an
element of the set ΦC, or (ii) an element of the set ΦV , or (iii) a path term

�
s
� � s � where

(iiia) s
�
� ΦC � ΦV and (iiib) s � ΦC or s �

t
� � t � where

�
t
� � t � is a label. From now on

we shall use t � s � r������� to denote arbitrary labels.
As an intuitive explanation, we may think of a label t � ΦC as denoting a world (a

given one), and a label t � ΦV as denoting a set of worlds (any world) in some Kripke
model. A label s �

t
� � t � may be viewed as representing a path from t to a (set of)

world(s) t
�
accessible from t (i.e., from the world(s) denoted by t).

For any label t �
s
� � s � we shall call s

�
the head of t, s the body of t, and denote them

by h
�
t � and b

�
t � respectively. Notice that these notions are recursive (they correspond to

projection functions): if b
�
t � denotes the body of t, then b

�
b
�
t ��� will denote the body of

b
�
t � , and so on. We call each of b

�
t � , b

�
b
�
t ��� , etc., a segment of t. The length of a label t,� �

t � , is the number of world-symbols in it, i.e.,
� �

t � n � t � ℑn. sn � t � will denote the
segment of t of length n and we shall use hn � t � as an abbreviation for h

�
sn � t ��� . Notice

that h
�
t � h ��� t � � t � .

For any label t � � � t ��� n, we define the counter-segment-n of t, as follows (for 0 	
n 	 k 	 � �

t �):
cn � t � h

�
t � 	 �
�
�
 	 �

hk � t � 	 �
�
�
 	 �
hn
 1 � t � � w0 �������

where w0 is a dummy label, i.e., a label not appearing in t (the context in which such
a notion occurs will tell us what w0 stands for). The counter-segment-n defines what
remains of a given label after having identified the segment of length n with a ‘dummy’
label w0. The appropriate dummy label will be specified in the applications where such
a notion is used. However, it can be viewed also as an independent atomic label.

So far we have provided definitions about the structure of the labels without regard
of the elements they are made of. The following definitions will be concerned with the
type of world symbols occurring in a label.

Let t be a label and t
�

an atomic label, in what follows we shall use
�
t
�
; t � as a

notation for the label
�
t
� � t � if t

��� h
�
t � , or for t otherwise.

We say that a label t is i-preferred iff h
�
t � � Φ i, and a label t is i-pure iff each

segment of t of length n � 1 is i-preferred, and we shall use ℑi to denote the set of
i-pure labels. A label is i-compatible iff each segment of t of length n � 1 is either i-
preferred or ij-preferred (for any j). A label t is ij-ground iff every label of type Φ ij is a
constant.

Label Unifications In the course of proofs labels are manipulated in a way closely
related to the semantic of the logics under analysis. Labels are compared and matched
using a specialised logic dependent unification mechanism. The notion that two labels
t and s unify means that the intersection of their denotations is not empty and that we
can “move” to such a set of worlds, i.e., to the result of their unification.

According to the semantics each modality is evaluated using an appropriate binary
relation on the model and the model results from the combination of the relations. Simi-
larly we provide an unification for each modality, the unification characterising it in the
KEM formalism, then we combine them into a single unification for the whole logic.
Every unification is built from a basic unification defined in terms of a substitution
ρ : ℑ1 �� ℑ such that:

ρ : 1ΦC
� V i

O �� Φ i
O for any j � V i

K �� Φ i
K � CA for any j � V ij �� Φ ij � VC �� ℑ �

The above substitution is appropriate to characterise the logic without interaction among
the modal operators. To capture them we have to introduce two specialized substitutions
based on it.

ρO : ρ � V i
O �� Φ i

O � Φ ji for any j

ρK : ρ � V i
K �� Φ i

K � Φ ij � CA for any j

Accordingly we have that two atomic (“world”) labels t and s σ -unify iff there is a
substitution ρ such that ρ

�
t � ρ

�
s � , with the constraint that a label in V ij cannot unify

with another variable. We shall use � s � t � ρ both to indicate that there is a substitution
ρ for s and t, and the result of the substitution. The notion of σ -unification (or label
unification) is extended to the case of composite labels (path labels) as follows:

� i � j � σ k iff � ρ : h
�
k � ρ

�
h
�
i ��� ρ

�
h
�
j ��� and b

�
k � �� b � i � � b � j � � σ �

Clearly σ is symmetric, i.e., � i � j � σ iff � j � i � σ. Moreover this definition offers a flexible
and powerful mechanism: it allows for an independent computation of the elements of

the result of the unification, and variables can be freely renamed without affecting the
result of a unification. Notice that a label Wi σ -unifies with every label. The intuition
here is that Wi denotes the set of world in a Kripke model.

We are now ready to introduce the unifications corresponding to the modal operators
at hand. The first unification is that for Oi.

� s � t � σ O � � h � s � � h � t � � ρO � � h1 � s � � h1 � t � � σ � iff min
� � �

s � � � � t � ��� 2 and s � t are ij-ground

Here we notice that the main structure is the structure for a KD45 modal operator
(min

�
l
�
s � � l � t � ��� 2) [8, 1]. However here we have that Oi is defined globally over the

green states of an interpreted systems, so we can ignore the intermediate steps with
the proviso that there are no variables of type IJ. Intuitively we can think of a vari-
able of type IJ as the intersection of the worlds accessible from a given world using
RO

j and � i; but in general such intersection can be empty, hence the proviso about the

ij-groundness of the labels; moreover the restriction to ρ O prevents unwanted unifica-
tions of labels in V j

O and in V i
K. According to the above definition we have that the

labels t �
O j

1
� � Km

1
� w1 ��� and s �

o j
1
� w1 � σO-unify. In the same way t σ O-unifies with�

ij1 � � kn
1
� w1 ��� , but not with

�
o j

1
� � IJ1 � w1 ��� .

The following is the unification for Ki

� s � t � σ K � � h � s � � h � t � � ρK ; � h1 � s � � h1 � t � � σ � iff s and t are ij-ground, and ij-compatible

This is the condition for a unification corresponding to an equivalence relation [1, 9].
The important point here are that all the atomic symbols should be compatible. A label
such as ijn denotes a world in the intersection of the world accessible from a given world
by RO

j and � i. But this means that it is also one of the world accessible from � i.

Let us consider the label t �
K i

2 �
�
ij1 � � Ki

1 � w1 ����� . The result of the σ K-unification of
t and w1 is w1; similarly the unification of t and s �

ij2 � w1 � is s. Notice that the label t
does not σ K-unify with

�
O j

1
� w1 � .

� s � t � σ � � � h � s � � h � t � � σ � � h1 � s � � h1 � t � � σ �
iff s � t are ij-compatible, and either h2 � s � or h2 � t � is ij-restricted

This unification is mainly designed for labels of type ij, and it corresponds to the uni-
fication for a K45 modal operator [8, 1]. A label

�
IJ1 � w1 � is intended to denote the

equivalence class of type IJ associated to w1. Since
�
K j

i is not serial the equivalence
class associated to a given world may be empty. However if we have that one of the
labels in position 2 is a constant of type ij, then we are guaranteed that the equivalence
class is not empty, and we can use the unification conditions for equivalence classes.
Accordingly the labels

�
IJ1 � � Ki

1
� w1 ��� and

�
ij1 � w1 � σ � -unify, and so do

�
IJ1 � � ij1 � w1 ���

and
�
IJ2 � � ij2 � w1 ��� .

The above three unifications cover occurrences of sequences of compatible labels
(relations). However we have to cover occurrences of interleaved labels. To this end we
are going to define a recursive unification combining the unifications for the various
operators. For convenience we introduce a unification corresponding to their simple

combination. Hence � s � t � σ DIS iff either � s � t � σ or � s � t � σ � or � s � t � σ O or � s � t � σ K . At this
point the (recursive) unification for the logic DIS is defined as follows.

� s � t � σDIS
�
� s � t � σ DIS

� cn � s � � cm � t � � σDIS

where w0 �� sn � s � � sm � t � � σDIS.
As we have seen the labels t �

K i
2 �
�
ij1 � � Ki

1 � w1 ����� and s �
O j

1
� w1 � neither σ O-

unify, nor σ K-unify. However � t � s � σDIS �
ij1 � w1 � , and so the labels σDIS-unify. We can

decompose the unification as follows: � c3 � t � � c2 � s � � σ K , where c3 � t � �
Ki

2 � w0 � , c2 � s �
w0, and w0 � s3 � t � � s � σDIS. s3 � t � �

ij1 � � Ki
1 � w1 ��� .

Let us consider the following set of labels
�
t �

O j
1 � w1 � � s �

Ki
1 � w1 � � r �

ij1 � w1 � � .
Intuitively t � s � r denote, respectively, the set of worlds accessible from w1 by the relation
RO

j , the set of worlds accessible from w1 by the relation � i, and a world in RO
j � � i. In

general labels such as t and s should not unify. The intersection of their denotations may
be empty, but in cases like the present one h

�
s � and h

�
t � can be mapped to a common

label (i.e., ij1) but with different substitution, and this is not permitted in σDIS. So we
have to introduce a label-unification that takes care of context in which labels occur.

Let � be a set of labels (i.e., the labels occurring in a KEM-proof). Then � s � t � σ �DIS
iff

1. � s � t � σDIS or
2. � k � � , � n � m � Nat such that

– � sn � s � � k � σ �DIS �� sm � t � � k � σ �DIS and
– � cn � s � � cm � t � � σ �DIS where w0 �� sn � s � � k � σ �DIS

It is easy to verify that that the labels s and t described in the previous paragraph now
σ �DIS unify in the presence of the label r.

Inference Rules For the presentation of the inference rules of KEM we shall assume
familiarity with Smullyan-Fitting α , β , ν , π unifying notation [6].

α : t
α1 : t
α2 : t

A � B : t
A : t
B : t

� � A � B � : t
� A : t

� B : t

� � A � B � : t
A : t

� B : t

�
α �

The α-rules are just the familiar linear branch-expansion rules of the tableau method.
For the β -rules (formulas behaving disjunctively) we exemplify only the rules for im-
plication.

β : t
β c

i : s

�
i 1 � 2 �

β3 � i : � t � s � σ �DIS

A � B : t
A : s

B : � t � s � σ �DIS

A � B : t
� B : s

� A : � t � s � σ �DIS

�
β �

The β -rules are nothing but natural inference patterns such as Modus Ponens, Modus
Tollens and Disjunctive syllogism generalised to the modal case. In order to apply such
rules it is required that the labels of the premises unify and the label of the conclusion
is the result of their unification.

ν : t
ν0 :

�
Xn � t �

Oi A : t
A :

�
Oi

n � t �
Ki A : t

A :
�
Ki

n � t �
�
K j

i A : t

A :
�
IJn � t �

�
ν �

where Oi
n, K i

n, and IJn are new labels.

π : t
π0 :

�
xn � t �

� Oi A : t
A :

�
oi

n � t �
� Ki A : t
A :

�
ki

n � t �
� �

K j
i A : t

A :
�
ijn � t �

�
π �

where oi
n, ki

n, and ijn are new labels. ν- and π- rules allow us to expand labels according
to the intended semantics, where, with “new” we mean that the label does not occur
previously in the tree.

A : t � � A : t

�
PB �

The “Principle of Bivalence” represents the semantic counterpart of the cut rule of the
sequent calculus (intuitive meaning: a formula A is either true or false in any given
world). PB is a zero-premise inference rule, so in its unrestricted version can be applied
whenever we like. However, we impose a restriction on its application. Then PB can
be only applied w.r.t. immediate sub-formulas of unanalysed β -formulas, that is β for-
mulas for which we have no immediate sub-formulas with the appropriate labels in the
branch (tree).

A : t
� A : s	 � if � t � s � σ �DIS �

�
PNC �

The rule PNC (Principle of Non-Contradiction) states that two labelled formulas are σL-
complementary when the two formulas are complementary and their labels σL-unify.

Theorem 1. � KEM A � � IS � A

We sketch only the proof. The main idea is to define a Kripke model where the possible
worlds are the labels (�) occurring in a KEM-proof for A, where the accessibility
relations are defined as follows: (i) t � i s iff � � K i

0 � t � � s � σ �DIS; (ii) tRO
i s iff � � Oi

0 � t � � s � σ �DIS;
and (iii)

�
t � s � � � i � RO

j iff � � IJ0 � t � � s � σ �DIS. For (i) and (ii) it is immediate to verify that
the frame induced from the above construction is a frame for DIS. The result for (iii)
depends on the definition of the substitution ρ where labels of type V j

O and V i
K can be

mapped to labels in Cij. Hence t � i
�
ijn � t � and tRO

j

�
ijn � t � .

Proof search Let Γ �
X1 ��������� Xm � be a set of formulas. Then � is a KEM-tree for Γ

if there exists a finite sequence
�
� 1 � � 2 ��������� � n � such that (i) � 1 is a 1-branch tree con-

sisting of
�
X1 : t1 ��������� Xm : tm � ; (ii) � n �� , and (iii) for each i 	 n � � i
 1 results from � i

by an application of a rule of KEM. A branch τ of a KEM-tree � of L-formulas is said
to be σDIS-closed if it ends with an application of PNC, open otherwise. As usual with
tableau methods, a set Γ of formulas is checked for consistency by constructing a KEM-
tree for Γ . It is worth noting that each KEM-tree is a (class of) Hintikka’s model(s)
where the labels denote worlds (i.e., Hintikka’s modal sets), and the unifications behave
according to the conditions placed on the appropriate accessibility relations. Moreover
we say that a formula A is a KEM-consequence of a set of formulas Γ �

X1 ��������� Xn �
(Γ � KEM A) if a KEM-tree for

�
X1 : t ��������� Xn : t � � A : s � is closed, where s � CA, and

t � V A. The intuition behind this definition is that A is a consequence of Γ when we
take Γ as a set of global assumptions [6], i.e., true in every world in a Kripke model.

We now describe a systematic procedure for KEM. First we define the following
notions.

Given a branch τ of a KEM-tree, we shall call an L-formula X : t E-analysed in τ if
either (i) X is of type α and both α1 : t and α2 : t occur in τ ; or (ii) X is of type β and one
of the following conditions is satisfied: (a) if βC

1 : s occurs in τ and � t � s � σ �DIS, then also
β2 : � t � s � σ �DIS occurs in τ , (b) if βC

2 : s occurs in τ and � t � s � σ �DIS, then also β1 : � t � s � σ �DIS
occurs in τ ; or (iii) X is of type ν and ν0 :

�
m � t � occurs in τ for some m � ΦV , of the

appropriate type, not previously occurring in τ , or (iv) X is of type π and π0 :
�
m � t �

occurs in τ for some m � ΦC, of the appropriate type, not previously occurring in τ .
A branch τ of a KEM-tree is E-completed if every L-formula in it is E-analysed and

it contains no complementary formulas which are not σ �DIS-complementary. We shall
say a branch τ of a KEM-tree completed if it is E-completed and all the L-formulas
of type β in it either are analysed or cannot be analysed. We shall call a KEM-tree
completed if every branch is completed.

The following procedure starts from the 1-branch, 1-node tree consisting of
�
X1 :

t ��������� Xm : s � and applies the inference rules until the resulting KEM-tree is either closed
or completed. At each stage of proof search (i) we choose an open non completed branch
τ . If τ is not E-completed, then (ii) we apply the 1-premise rules until τ becomes E-
completed. If the resulting branch τ

�
is neither closed nor completed, then (iii) we apply

the 2-premise rules until τ becomes E-completed. If the resulting branch τ
�

is neither
closed nor completed, then (iv) we choose an LS-formula of type β which is not yet
analysed in the branch and apply PB so that the resulting LS-formulas are β1 : t

�
and

βC
1 : ti

�
(or, equivalently β2 : ti

�
and βC

2 : t
�
), where t t

�
if t is restricted (and already

occurring when h
�
t � � ΦC), otherwise t

�
is obtained from t by instantiating h

�
t � to a con-

stant not occurring in t; (v) (“Modal PB”) if the branch is not E-completed nor closed,
because of complementary formulas which are not σ �DIS-complementary, then we have
to see whether a restricted label unifying with both the labels of the complementary
formulas occurs previously in the branch; if such a label exists, or can be built using
already existing labels and the unification rules, then the branch is closed, (vi) we repeat
the procedure in each branch generated by PB.

The above procedure is based on on a (deterministic) procedure working for canon-
ical KEM-trees. A KEM-tree is said to be canonical if it is generated by applying the
rules of KEM in the following fixed order: first the α-, ν- and π-rule, then the β -rule
and PNC, and finally PB. Two interesting properties of canonical KEM-trees are (i)
that a canonical KEM-tree always terminates, since for each formula there are a finite
number of subformulas and the number of labels which can occur in the KEM-tree
for a formula A (of DIS) is limited by the number of modal operators belonging to A,
and (ii) that for each closed KEM-tree a closed canonical KEM-tree exists. Proofs of
termination and completeness for canonical KEM-trees have been given in [8].

4 The bit transmission problem

The bit-transmission problem [5] involves two agents, a sender S, and a receiver R,
communicating over a faulty communication channel. The channel may drop mes-
sages but will not flip the value of a bit being sent. S wants to communicate some

information—the value of a bit for the sake of the example—to R. We would like to
design a protocol that accomplishes this objective while minimising the use of the com-
munication channel.

One protocol for achieving this is as follows. S immediately starts sending the bit to
R, and continues to do so until it receives an acknowledgement from R. R does nothing
until it receives the bit; from then on it sends acknowledgements of receipt to S. S stops
sending the bit to R when it receives an acknowledgement. Note that R will continue
sending acknowledgements even after S has received its acknowledgement. Intuitively S
will know for sure that the bit has been received by R when it gets an acknowledgement
from R. R, on the other hand, will never be able to know whether its acknowledgement
has been received since S does not answer the acknowledgement.

We assume fairness ([5], p.164) for the communication channel: every message that
is repeatedly sent in the run is eventually delivered.

What we would like to do is to check mechanically that the protocol above guaran-
tees that when sender receives the acknowledgement it then knows (in the information-
theoretic sense defined in Section 2) that the receiver knows the value of the bit. In order
to do this, first we model the scenario in the interpreted systems paradigm.

An interesting scenario arises when we assume that the agents may not behave as
they are supposed to. For example, the receiver may not send an acknowledgement
message when it receives a bit ([12]). We deal with this case by considering a new
protocol which extends the original one.

Bit transmission problem — no violations First of all we give an axiomatisation of the
bit transmission problem (BTP). For a detailed discussion of the BTP in the framework
of Deontic Interpreted Systems see [13, 12].

– Sender

(S1) recack � KS recack
(S2)

�
bit n � � KS

�
bit n � , for n 1 � 2

– Receiver

(R1) recbit � �
bit n � � KR

�
bit n � , for n 1 � 2

– Communication

(C1) recack � recbit

We can derive the following key property

recack � �
bit n � � KS KR

�
bit n � for n 1 � 2

So, if an acknowledgement is received by the sender S, then S is sure that receiver R
knows the value of the bit: although the communication channel is potentially faulty,
if messages do manage to travel back and forth between the sender and receiver the
protocol is strong enough to eliminate any uncertainty in the communication. Let us
examine the KEM-proof for this property

1 � recack � KS recack : W1
2 � � bit � n � � KS

�
bit � n � : W1

3 � recbit � � bit � n � � KR
�
bit � n � : W1

4 � recack � recbit : W1
5 ��� � recack � � bit � n � � KS KR

�
bit � n ��� : w1

6 � recack : w1 5α
7 � bit � n : w1 5α
8 ��� KS KR

�
bit � n � 5α

9 ��� KR
�
bit � n � :

�
s1 	 w1 � 8π

10 � KS recack : w1 1 	 6β
11 � KS

�
bit � n � : w1 2 	 7β

12 � recack :
�
S1 	 w1 � 10ν

13 � bit � n :
�
S2 	 w1 � 11ν

14 ��� � recbit � � bit � n �
� :
�
s1 	 w1 � 3 	 9β

15 ��� recbit :
�
s1 	 w1 � 13 	 14β

16 � recbit :
�
S1 	 w1 � 4 	 12β

17 ��� 15 	 16PNC
Bit transmission problem — violation by the receiver Now we admit the possibility that
the receiver, in violation of the protocol, may send acknowledgements without having
received the bit. In this version, the axiom

�
C1 � does not hold. It is replaced by

OR
�
recack � recbit � �

C1 �
which represents what holds when R is working correctly according to the protocol. All
other parts of the formalisation are unchanged.

A particular form of knowledge still holds. Intuitively if S makes the assumption of
R’s correct functioning behaviour, then, upon receipt of an acknowledgement, it would
make sense for S to assume that R does know the value of the bit. To model this intuition
we use the operator

�
K j

i “knowledge under the assumption of correct behaviour”.
We now derive, given

�
C1 � instead of

�
C1 �

recack � �
bit n � � �

KR
S KR

�
bit n � for n 1 � 2

We give a KEM-proof for it.

1 � recack � KS recack : W1
2 � � bit � n � � KS

�
bit � n � : W1

3 � recbit � � bit � n � � KR
�
bit � n � : W1

4 � recack � recbit : W1

5 ��� � recack � � bit � n � ���KR
S KR

�
bit � n �
� : w1

6 � recack : w1 5α
7 � bit � n : w1 5α
8 ��� �KR

S KR
�
bit � n � 5α

9 � recack � recbit :
�
OR

1 	 w1 � 4ν
10 � KS recack : w1 1 	 6β
11 � KS

�
bit � n � : w1 2 	 7β

13 ��� KR
�
bit � n � :

�
sr1 	 w1 � 8π

14 ��� � recbit � � bit � n ��� :
�
sr1 	 w1 � 3 	 13β

15 � recack :
�
S1 	 w1 � 10ν

16 � bit � n :
�
S2 	 w1 � 11ν

17 ��� recbit :
�
sr1 	 w1 � 14 	 16β

18 � recbit :
�
sr1 	 w1 � 9 	 15β

19 ��� 17 	 18PNC

The only step that deserves some attention is step 18. This step is the consequence of
a β -rule on 9 and 15. The labels of the relevant formulas are

�
OR

1 � w1 � and
�
S1 � w1 � .

Normally such labels do not unify, and the β -rule would not be applicable. However,
thanks to the presence of

�
sr1 � w1 � in the tree, the labels of 9 and 15 do σ �DIS-unify.

5 Conclusions

In this paper we presented a tableaux-based system for proving properties of a system
whose properties can be expressed in an epistemic-deontic language. The tableaux sys-
tem was used to prove properties about variations of the bit transmission problem, a
widely explored protocol to reason about information exchange in communication pro-
tocols. The results obtained confirmed results obtained by model checking techniques
presented elsewhere [11]. Further work involves an implementation of this method so
that experimental results based on larger scenarios can be evaluated.

References

1. A. Artosi, P. Benassi, G. Governatori, and A. Rotolo. Shakespearian modal logic: A labelled
treatment of modal identity. In M. Kracht, M. de Rijke, H. Wansing, and M. Zakharyaschev,
editors, Advances in Modal Logic. Volume 1, pages 1–21. CSLI Publications, Stanford, 1998.

2. A. Artosi, G. Governatori, and A. Rotolo. Labelled tableaux for non-monotonic reasoning:
Cumulative consequence relations. Journal of Logic and Computation, 12(6):1027–1060,
December 2002.

3. B. Chellas. Modal Logic: An Introduction. Cambridge University Press, Cambridge, 1980.
4. M. D’Agostino and M. Mondadori. The taming of the cut. Journal of Logic and Computa-

tion, 4:285–319, 1994.
5. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. MIT Press,

Cambridge, 1995.
6. M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel, Dordrecht, 1983.
7. D. M. Gabbay and G. Governatori. Fibred modal tableaux. In D. Basin, M. D’Agostino,

D. Gabbay, S. Matthews, and L. Viganó, editors, Labelled Deduction, volume 17 of Applied
Logic Series, pages 163–194. Kluwer, Dordrecht, 2000.

8. G. Governatori. Labelled tableaux for multi-modal logics. In P. Baumgartner, R. Hähnle, and
J. Posegga, editors, Theorem Proving with Analytic Tableaux and Related Methods, volume
918 of LNAI, pages 79–94, Berlin, 1995. Springer-Verlag.

9. G. Governatori. Un modello formale per il ragionamento giuridico. PhD thesis, CIRFID,
University of Bologna, Bologna, 1997.

10. G. E. Hughes and M. J. Cresswell. A New Introduction to Modal Logic. Routledge, New
York, 1996.

11. A. Lomuscio, F. Raimondi, and M. Sergot. Towards model checking interpreted systems. In
Proceedings of Mochart — First International Workshop on Model Checking and Artificial
Intelligence, 2002.

12. A. Lomuscio and M. Sergot. Violation, error recovery, and enforcement in the bit transmis-
sion problem. In Proceedings of DEON’02, London, May 2002.

13. A. Lomuscio and M. Sergot. Deontic interpreted systems. Studia Logica, 75, 2003.
14. J.-J. C. Meyer and W. Hoek. Epistemic Logic for AI and Computer Science, volume 41 of

Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1995.
15. A. S. Rao and M. P. Georgeff. Decision procedures for BDI logics. Journal of Logic and

Computation, 8(3):293–343, June 1998.

