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Abstract

The action language C+ of Giunchiglia, Lee, Lifschitz, McCain and Turner
is a formalism for specifying and reasoning about the effects of actions and
the persistence (‘inertia’) of facts over time. An ‘action description’ in C+
defines a labelled transition system of a certain kind. n C+ is an extended
form of C+ designed for representing normative and institutional aspects
of (human or computer) societies. The deontic component of n C+ pro-
vides a means of specifying the permitted (acceptable, legal) states of a
transition system and its permitted (acceptable, legal) transitions. We
present this component of n C+, motivating its details with reference to
some small illustrative examples, and elaborate the formalism by allow-
ing scope for norms governing individual agents. We describe the various
kinds of investigation possible on the semantic structures which n C+ de-
fines.

1 Introduction

The action language C+ [1] is a formalism for specifying and reasoning about
the effects of actions and the persistence (‘inertia’) of facts over time, build-
ing on a general-purpose non-monotonic representation formalism called ‘causal
theories’. An ‘action description’ in C+ is a set of C+ rules which define a la-
belled transition system of a certain kind. Implementations supporting a wide
range of querying and planning tasks are available, notably in the form of the
‘Causal Calculator’ CCalc [2]. C+ and CCalc have been applied successfully
to a number of benchmark examples in the knowledge representation literature
(see e.g. [3] and the CCalc website [2]). We have used it in our own work to
construct executable specifications of agent societies (see e.g. [4, 5]).

n C+ [6, 7] is an extended form of C+ designed for representing normative
and institutional aspects of (human or computer) societies. There are two main
extensions. The first is a means of expressing ‘counts as’ relations between
actions, also referred to as ‘conventional generation’ of actions. This feature
will not be discussed in this paper. The second extension is a way of specifying
the permitted (acceptable, legal) states of a transition system and its permitted
(acceptable, legal) transitions. The aim of the paper is to present this component
of n C+ and some simple illustrative examples. n C+ was called (C+)++ in earlier
presentations.

In previous versions of this work [8], our emphasis in describing and defining
n C+ has been on the modelling of system behaviour from an external, ‘bird’s
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eye’ perspective, that is to say, from the system designer’s point of view. It
could then be verified whether properties hold or not of the system specified (a
process analogous to that described in [9, 10], which concentrates on epistemic
properties and communicative acts). In the current paper, we extend this work
to allow the representation of norms governing an individual agent’s actions,
and show how this more expressive n C+ can be defined to determine a richer
class of ‘coloured’ labelled transition systems, on which a number of interesting
deontic properties may be verified.

We have three existing implementations of the n C+ language. The first em-
ploys the ‘Causal Calculator’ CCalc. As explained later in the paper, the re-
quired modifications to CCalc are minor and very easily implemented. The sec-
ond implementation provides an ‘event calculus’ style of computation with C+
and n C+ action descriptions. Given an action description and a ‘narrative’—a
record of what events have occurred—this implementation allows all past states,
including what was permitted and obligatory at each past state, to be queried
and computed. The third implementation connects C+ and n C+ to model
checking software. System properties expressed in temporal logics such as CTL
can then be verified by means of standard model checking techniques (specifi-
cally the model checker NuSMV) on transition systems defined using the n C+
language. A small example is presented in [7]. We do not discuss the imple-
mentations further for lack of space, except to explain how the CCalc method
works.

Related work Some readers may see a resemblance between n C+ and John-
Jules Meyer’s Dynamic Deontic Logic [11], and other well known works based
on ‘modal action logics’ generally (e.g. [12, 13]). There are three fundamental
differences. (1) C+ and n C+ are not variants of dynamic logic or modal action
logic. They are languages for defining specific instances of labelled transition
systems. Other languages—we refer to them as ‘query languages’—can then
be interpreted on these structures. Dynamic logic is one candidate, the query
language in CCalc is another, but there are many other possibilities: each
C+ or n C+ action description defines a Kripke-structure, on which a variety
of (modal) query languages, including a wide range of deontic and temporal
operators, can be evaluated. We do not have space to discuss any of these
possibilities in detail. (2) The representation of action is quite different from that
in dynamic logic and modal action logic. (3) There are important differences of
detail, in particular concerning the interactions between permitted states and
permitted transitions between states.

Moses and Tennenholtz [14] define ‘artificial social systems’: automata-based
systems of multiple agents together with social laws. Their concept of a social
law is that of a subset of the (joint) actions which agents may perform in a given
state, and where the interest is in social laws which enable all agents to achieve
their individual goals together. As with many other formalisms, artificial social
systems take the structure of a transition system as given—by contrast, one of
our purposes is to investigate languages suitable for the specification of such
systems, together with their deontic properties.

The semantical devices employed in n C+—classification of states and tran-
sitions into green/red (good/bad, ideal/sub-ideal), violation constants, explicit
names for norms, orderings of states according to how well they comply with
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these norms, names for individual agents and partitionings of actions into sets
of those performed by a given agent—are all frequently encountered in the de-
ontic logic literature. The novelty here lies, first, in the details of how they are
incorporated into labelled transition systems, and second, in the way the n C+
language is used to define these structures.

Finally, C+ is a (recent) member of a family of formalisms called ‘causal
action languages’ in the AI literature. Several groups have suggested encoding
normative concepts in such formalisms. We have done so ourselves in other
work (see e.g. [15, 4, 5]) where we have used both C+ and the ‘event calculus’
for this purpose. Leon van der Torre [16] has made a suggestion along similar
lines, though using a different causal action language and a different approach.
See also the discussion in [13]. One feature that distinguishes C+ from other AI
action languages is that it has an explicit semantics in terms of transition sys-
tems. It thereby proves a bridge between AI formalisms and standard methods
in other areas of computer science and logic. It is this feature that n C+ seeks
to exploit.

2 The language C+

We begin with a concise, and necessarily rather dense, summary of the C+
language. Some features (notably ‘statically determined fluents’ and ‘exogenous
actions’) are omitted for simplicity. There are also some minor syntactic and
terminological differences from the version presented in [1]. See [6] for details.

A multi-valued propositional signature σ is a set of symbols called constants.
For each constant c in σ there is a non-empty set dom(c) of values called the
domain of c. For simplicity, in this paper we will assume that each dom(c) is
finite and has at least two elements. An atom of a signature σ is an expression
of the form c= v where c is a constant in σ and v ∈ dom(c). A formula ϕ of
signature σ is any propositional compound of atoms of σ. The expressions >
and ⊥ are 0-ary connectives, with the usual interpretation.

A Boolean constant is one whose domain is the set of truth values {t, f}. If
p is a Boolean constant, p is shorthand for the atom p= t and ¬p for the atom
p= f. Notice that, as defined here, ¬p is an atom when p is a Boolean constant.

In C+, the signature σ is partitioned into a set σf of fluent constants (also
known as ‘state variables’ in other areas of Computer Science) and a set σa of
action constants. A fluent formula is a formula whose constants all belong to
σf; an action formula is a formula containing at least one action constant and
no fluent constants.

An interpretation of a multi-valued signature σ is a function that maps every
constant c in σ to some value v in dom(c); an interpretation I satisfies an atom
c= v, written I |= c= v, if I(c) = v. The satisfaction relation |= is extended
from atoms to formulas in accordance with the standard truth tables for the
propositional connectives. We write I(σ) for the set of interpretations of σ.

Transition systems Every C+ action description D of signature (σf, σa) de-
fines a labelled transition system 〈S,A, R〉 where

• S is a (non-empty) set of states, each of which is an interpretation of the
fluent constants σf of D; S ⊆ I(σf);
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• A is a set of transition labels, also called events; A is the set of interpre-
tations of the action constants σa, A = I(σa);

• R is a set of labelled transitions, R ⊆ S ×A× S.

As usual, we say that ε is executable in a state s when there is a transition
(s, ε, s′) in R, and non-deterministic in s when there are transitions (s, ε, s′) and
(s, ε, s′′) in R with s′ 6= s′′. A path or run of length m of the labelled transition
system 〈S,A, R〉 is a sequence s0 ε0 s1 · · · sm−1 εm−1 sm (m ≥ 0) such that
(si−1, εi−1, si) ∈ R for i ∈ 1..m.

It is convenient in what follows to represent a state by the set of fluent atoms
that it satisfies, i.e., s = {f = v | s |= f = v}. A state is then a (complete, and
consistent) set of fluent atoms. We sometimes say a formula ϕ ‘holds in’ state
s or ‘is true in’ state s as alternative ways of saying that s satisfies ϕ.

Action constants in C+ are used to name actions, attributes of actions, or
properties of a transition as a whole. Since a transition label/event ε is an
interpretation of the action constants σa, it is meaningful to say that ε satisfies
an action formula α (ε |= α). When ε |= α we say that the transition (s, ε, s′)
is a transition of type α. Moreover, since a transition label is an interpretation
of the action constants σa, it can also be represented by the set of atoms that
it satisfies.

An action description D in C+ is a set of causal laws, which are expressions
of the following three forms. A static law is an expression:

F if G (1)

where F and G are fluent formulas. Static laws express constraints on states.
A state s satisfies a static law (1) if s |= (G→ F ). A fluent dynamic law is an
expression:

F if G after ψ (2)

where F and G are fluent formulas and ψ is any formula of signature σf ∪ σa.
Informally, (2) states that fluent formula F is satisfied by the resulting state s′

of any transition (s, ε, s′) with s ∪ ε |= ψ, as long as fluent formula G is also
satisfied by s′. Some examples follow. An action dynamic law is an expression:

α if ψ (3)

where α is an action formula and ψ is any formula of signature σf ∪ σa. Action
dynamic laws are used to express, among other things, that any transition of
type α must also be of type α′ (written α′ if α), or that any transition from a
state satisfying fluent formula G must be of type β (written β if G).

The C+ language provides various abbreviations for common forms of causal
laws. We will employ the following in this paper.

α causes F if G expresses that fluent formula F is satisfied by any state fol-
lowing the occurrence of a transition of type α from a state satisfying
fluent formula G. It is shorthand for the dynamic law F if > after G ∧ α.
α causes F is shorthand for F if > after α.

nonexecutable α if G expresses that there is no transition of type α from a state
satisfying fluent formula G. It is shorthand for the fluent dynamic law
⊥ if > after G ∧ α, or α causes ⊥ if G.

4



inertial f states that values of the fluent constant f persist by default (by ‘iner-
tia’) from one state to the next. It is shorthand for the collection of fluent
dynamic laws f = v if f = v after f = v for every v ∈ dom(f).

Of most interest are definite action descriptions, which are action descrip-
tions in which the head of every law (static, fluent dynamic, or action dynamic)
is either an atom or the symbol ⊥, and in which no atom is the head of infinitely
many laws of D. We will restrict attention to definite action descriptions in this
paper.

Causal theories The language C+ is presented in [1] as a higher-level notation
for defining particular classes of theories in a general-purpose non-monotonic
formalism called ‘causal theories’. For present purposes the important points are
these: for every (definite) action description D and non-negative integer m there
is a natural translation from D to a causal theory ΓD

m which encodes the paths
of length m in the transition system defined by D; moreoever, for every definite
causal theory ΓD

m there is a formula comp(ΓD
m) of (classical) propositional logic

whose (classical) models are in 1-1 correspondence with the paths of length m
in the transition system defined by D. Thus, one method of computation for
C+ action descriptions is to construct the formula comp(ΓD

m) from the action
description D and then employ a (standard, classical) satisfaction solver to
determine the models of comp(ΓD

m). This is the method employed in the ‘Causal
Calculator’ CCalc.

A causal theory of signature σ is a set of expressions (‘causal rules’) of the
form

F ⇐ G

where F and G are formulas of signature σ. F is the head of the rule and G
is the body. A rule F ⇐ G is to be read as saying that there is a cause for F
when G is true (which is not the same as saying that G is the cause of F ).

Let Γ be a causal theory and let X be an interpretation of its signature.
The reduct ΓX is the set of all rules of Γ whose bodies are satified by the
interpretation X: ΓX =def {F | F ⇐ G is a rule in Γ and X |= G}. X is a
model of Γ iff X is the unique model (in the sense of multi-valued signatures)
of ΓX .

Given a definite action description D in C+, and any non-negative integer
m, translation to the corresponding causal theory ΓD

m proceeds as follows. The
signature of ΓD

m is obtained by time-stamping every fluent constant of D with
non-negative integers between 0 and m and every action constant with integers
between 0 and m−1: the (new) atom f [i] = v represents that fluent f = v holds
at integer time i, or more precisely, that f = v is satisfied by the state si of a
path s0 ε0 · · · εm−1 sm of the transition system defined by D; the atom a[i] = v
represents that action atom a= v is satisfied by the transition εi of such a path.
The domain of each timestamped constant c[i] is the domain of c. In what
follows, ψ[i] is shorthand for the formula obtained by replacing every atom
c= v in ψ by the timestamped atom c[i] = v.

Now, for every static law F if G in D and every i ∈ 0 ..m, include in ΓD
m a

causal rule of the form
F [i] ⇐ G[i]
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For every fluent dynamic law F if G after ψ in D and every i ∈ 0 ..m−1, include
a causal rule of the form

F [i+1] ⇐ G[i+1] ∧ ψ[i]

And for every action dynamic law α if ψ in D and every i ∈ 0 ..m−1, include a
causal rule of the form

α[i] ⇐ ψ[i]

We also require the following ‘exogeneity laws’. For every fluent constant f and
every v ∈ dom(f), include a causal rule:

f [0]= v ⇐ f [0]= v

And for every action constant a, every v ∈ dom(a), and every i ∈ 0 ..m−1,
include a causal rule:

a[i] = v ⇐ a[i] = v

It is straightforward to check [1] that the models of causal theory ΓD
m, and

hence the (classical) models of the propositional logic formula comp(ΓD
m), cor-

respond 1-1 to the paths of length m of the transition system defined by the C+
action description D. In particular, models of comp(ΓD

1 ) encode the transitions
defined by D and models of comp(ΓD

0 ) the states defined by D.

3 n C+: Coloured transition systems

An action description of n C+ defines a coloured transition system, which is a
structure of the form 〈S,A, R, Sg, Rg〉 where 〈S,A, R〉 is a labelled transition
system of the kind defined by C+ action descriptions, and where the two new
components are

• Sg ⊆ S, the set of ‘permitted’ (‘acceptable’, ‘ideal’, ‘legal’) states—we call
Sg the ‘green’ states of the system;

• Rg ⊆ R, the set of ‘permitted’ (‘acceptable’, ‘ideal’, ‘legal’) transitions—
we call Rg the ‘green’ transitions of the system.

We refer to the complements Sred = S − Sg and Rred = R − Rg as the ‘red
states’ and ‘red transitions’, respectively. Semantical devices which partition
states (and here, transitions) into two categories are familiar in the field of de-
ontic logic. For example, Carmo and Jones [17] employ a structure which has
both ideal/sub-ideal states and ideal/sub-ideal transitions (unlabelled). van der
Meyden’s ‘Dynamic logic of permission’ [18] employs a structure in which transi-
tions, but not states, are classified as ‘permitted/non-permitted’. van der Mey-
den’s version was constructed as a response to problems of Meyer’s ‘Dynamic
deontic logic’ [11] which classifies transitions as ‘permitted/non-permitted’ by
reference only to the state resulting from a transition. ‘Deontic interpreted sys-
tems’ [9] classify states as ‘green’/‘red’, where these states have further internal
structure to model the local states of agents in a multi-agent context. In all of
these examples (and others) the task has been to find axiomatisations of such
structures in one form of deontic logic or another. Here we are concerned with
a different task, that of devising a language for defining coloured transition
systems of the form described above.
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A coloured transition system 〈S,A, R, Sg, Rg〉 must further satisfy the fol-
lowing constraint, for all states s and s′ in S and all transitions (s, ε, s′) in
R:

if (s, ε, s′) ∈ Rg and s ∈ Sg then s′ ∈ Sg (4)

We refer to this as the green-green-green constraint, or ggg for short. (It is
difficult to find a suitable mnemonic.) The ggg constraint (4) expresses a kind
of well-formedness principle: a green (permitted, acceptable, legal) transition in
a green (permitted, acceptable, legal) state always leads to a green (acceptable,
legal, permitted) state. What is the rationale? Since we are here classifying
both states and transitions into green/red, it is natural to ask whether there
are any relationships between the classification of states and the classification
of transitions between them. As observed previously by Carmo and Jones [17]
any such relationships are necessarily quite weak. In particular, and contra the
assumptions underpinning John-Jules Meyer’s construction of Dynamic Deontic
Logic [11], a red (unacceptable, non-permitted) transition can result in a green
(acceptable, permitted) state. Indeed such cases are frequent: suppose that
there are two different transitions, (s, ε1, s′) and (s, ε2, s′), between a green or
red state s and a green state s′. It is entirely reasonable that the transition
(s, ε1, s′) is classified as green whereas (s, ε2, s′) is classified as red. (s, ε1, s′)
might represent an action by one agent, for example, and (s, ε2, s′) an action
by another. This situation cannot arise if the transition system has a tree-like
structure in which there is at most one transition between any pair of states, but
we do not want to restrict attention to transition systems of this form. Similarly,
it is easy to encounter cases in which a green (acceptable, permitted) transition
can lead sensibly to a red (unacceptable, non-permitted) state: not all green
(acceptable, permitted) transitions from a red state must be such that they
restore the system to a green state. Some illustrations will arise in the examples
later. The only plausible relationship between the classification of states and
the classification of transitions, as also noted by Carmo and Jones [17], is what
we called the ggg constraint above, if we regard it (as we do) as a required
property of any well-formed system specification. Since the ggg constraint is so
useful for the applications we have in mind, we choose to adopt it as a feature
of every coloured transition system.

Note that the ggg constraint (4) may be written equivalently as:

if (s, ε, s′) ∈ R and s ∈ Sg and s′ ∈ Sred then (s, ε, s′) ∈ Rred (5)

Any transition from a green (acceptable, permitted) state to a red (unaccept-
able, non-permitted) state must itself be red, in a well-formed system specifica-
tion.

One can consider a range of other properties that we might require of a
coloured transition system: that the transition relation must be serial, for ex-
ample, or that there must be at least one green state, or that from every green
state there must be at least one green transition, or that from every green
state reachable from some specified initial state(s) there must be at least one
green transition, and so on. The investigation of these, and other, properties is
worthwhile but not something we undertake here. We place no restrictions on
coloured transition systems, beyond the ggg constraint.
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The language n C+ To avoid having to specify separately which states and
transitions are green and which are red, an n C+ action description specifies
those that are red and leaves the remainder to be classified as green by default.
This is for convenience, and also to ensure that all states and transitions are
classified completely and consistently. (One might ask why the defaults are not
chosen to operate the other way round. It is very much more awkward to specify
concisely what is green and allow the remainder to be red by default.)

Accordingly, the language n C+ extends C+ with two new forms of rules. A
state permission law is an expression of the form

n : not-permitted F if G (6)

where n is an (optional) identifier for the rule and F and G are fluent formu-
las. not-permitted F is shorthand for the law not-permitted F if >. An action
permission law is an expression of the form

n : not-permitted α if ψ (7)

where n is an (optional) identifier for the rule, α is an action formula and
ψ is any formula of signature σf ∪ σa. not-permitted α is a shorthand for
the law not-permitted α if >. We also allow oblig F as an abbreviation for
not-permitted ¬F and oblig α as an abbreviation for not-permitted ¬α.1

Informally, in the transition system defined by an action description D, a
state s is red whenever s |= F∧G for a state permission law not-permitted F if G.
All other states are green by default. A transition (s, ε, s′) is red whenever
s ∪ ε |= ψ and ε |= α for any action permission law not-permitted α if ψ. All
other transitions are green, subject to the ggg constraint which may impose
further conditions on the colouring of a given transition.

Let D be an action description of n C+. Dbasic refers to the subset of laws
of D that are also laws of C+. The coloured transition system defined by
D has the states S and transitions R that are defined by its C+ component,
Dbasic, and green states Sg and green transitions Rg given by Sg =def S − Sred,
Rg =def R−Rred where

Sred =def {s | s |= F ∧G for some law of the form (6) in D}
Rred =def {(s, ε, s′) | s ∪ ε |= ψ, ε |= α for some law of the form (7) in D}

∪ {(s, ε, s′) | s ∈ Sg and s′ ∈ Sred}

The second component of the Rred definition ensures that the ggg constraint is
satisfied. (The state permission laws not-permitted F if G and not-permitted (F∧
G) are thus equivalent in n C+; we allow both forms for convenience.) It can be
shown easily [6] that the coloured transition system defined in this way is unique
and satisfies the ggg constraint. The definition of course does not guarantee
that the coloured transition system satisfies any of the other possible properties
that we mentioned earlier. If they are felt to be desirable in some particular
application, they must be checked separately as part of the specification process.
(These checks are easily implemented.)

The overall effect is thus:
1This does not raise the issue of ‘action negation’ as encountered in modal action logics.

(See e.g. [13].) In C+ and n C+, α is not the name of an action but a formula expressing a
property of transitions.
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• a state is green unless coloured red by some static permission law;

• a transition is red if it is coloured red by some action permission law, or
by the ggg constraint; otherwise it is green.

That the colouring of transitions is dependent on the colouring of states should
not be interpreted as a commitment to any philosophical position about the
priority of the ought-to-be and the ought-to-do, and the derivability of one from
the other. It is merely a consequence of, first, adopting the ggg constraint as
an expression of the well-formedness of a system specification, and second, of
choosing to specify explicitly what is red and letting green be determined by
default.

Causal theories Any (definite) action description of n C+ can be translated
to the language of (definite) causal theories, as follows. Let D be an action
description and m a non-negative integer. The translation of the C+ component
Dbasic of D proceeds as usual. For the permission laws, introduce two new fluent
and action constants, status and trans respectively, both with possible values
green and red. They will be used to represent the colour of a state and the
colour of a transition, respectively.

For every state permission law n : not-permitted F if G and time index i ∈
0 ..m, include in ΓD

m a causal rule of the form

status[i] = red ⇐ F [i] ∧G[i] (8)

and for every i ∈ 0 ..m, a causal rule of the form

status[i] = green ⇐ status[i] = green (9)

to specify the default colour of a state. A state permission rule of the form
n : oblig F if G produces causal rules of the form status[i] = red ⇐ ¬F [i] ∧G[i].

For every action permission law n : not-permitted α if ψ and time index
i ∈ 0 ..m−1, include in ΓD

m a causal rule of the form

trans[i] = red ⇐ α[i] ∧ ψ[i] (10)

and for every i ∈ 0 ..m−1, a causal rule of the form

trans[i] = green ⇐ trans[i] = green (11)

to specify the default colour of a transition. An action permission law of the
form n : oblig α if ψ produces causal rules of the form trans[i] = red ⇐ ¬α[i]∧ψ[i].

Finally, to capture the ggg constraint, include for every i ∈ 0 ..m−1 a causal
rule of the form

trans[i] = red ⇐ status[i] = green ∧ status[i+1]= red (12)

It is straightforward to show [6] that models of the causal theory ΓD
m correspond

to all paths of length m through the coloured transition system defined by D,
where the fluent constant status and the action constant trans encode the colours
of the states and transitions, respectively.

The translation of n C+ into causal theories effectively treats status = red and
trans = red as ‘violation constants’. Notice that, although action descriptions in
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n C+ can be translated to causal theories, they cannot be translated to action
descriptions of C+: there is no form of causal law in C+ which translates to the
ggg constraint (12). However, implementation in CCalc requires only that the
causal rules (8)–(12) are included in the translation to causal theories, which is
a very simple modification.

In [8] we presented a refinement of the current approach, where instead of the
binary classification of states as red or green, states in defined transition systems
were ordered, depending on how well each complied with the state permission
laws of an n C+ action description. We also discussed possible generalisations
of the ggg constraint. In the current paper, we keep to the more simple case of
a classification of states as green or red.

4 Examples

The examples in this section are deliberately chosen to be as simple as possible,
so that in each case we can show the transition system defined in its entirety.
Other examples may be found in [6, 7]. The first example illustrates the use
of n C+ in a typical (but very simple) system specification. The second is to
motivate the more complicated account to come in section 5.

Example (File system) I is some piece of (confidential) information. I,
or material from which I can be derived, is stored in a file. Let x range over
some set of agent names. Boolean fluent constants Kx represent that agent
x has access to information I, that x ‘knows’ I. Boolean fluent constants Fx
represent that x has read access to the file containing I. If x has read access to
the file (Fx) then x knows I (Kx). Fx is inertial: both Fx and ¬Fx persist by
default. ¬Kx persists by default but once Kx holds, it holds for ever.

Suppose, for simplicity, that there are two agents, a and b. Suppose moreover
that the file is the only source of information I, in the sense that if Kx holds
for any x then either Fa or Fb holds. This does not change the essence of the
example but it reduces the number of states and simplifies the diagrams.

There are two types of acts: Boolean action constants read(x) represent that
x is given read access to the file containing I. Boolean action constant a tells b
represents that a communicates to b the information I (whether or not b knows
it already), and b tells a that b communicates it to a. In this simple example
there are no actions by which read access to the file is removed once it is granted.

We can represent the above as a definite action description as follows, for x
ranging over a and b.

inertial Fx read(x) causes Fx

¬Kx if ¬Kx after ¬Kx a tells b causes Kb

Kx if > after Kx b tells a causes Ka

nonexecutable a tells b if ¬Ka
Kx if Fx nonexecutable b tells a if ¬Kb
⊥ if Kx ∧ ¬Fa ∧ ¬Fb nonexecutable read(x) if Fx

Now suppose that a is permitted to know I, and b is not. We add the
following law to the action description. (Ka is permitted by default.)

10



not-permitted Kb

The transition system defined by these laws is shown in Figure 1. The label

¬Fa ¬Fb
¬Ka ¬Kb

¬Fa Fb
¬Ka Kb

¬Fa Fb
Ka Kb

Fa ¬Fb
Ka Kb

Fa ¬Fb
Ka ¬Kb

Fa Fb
Ka Kb

read(a)

read(b)

read(a),read(b)

a tells b

b tells a

read(b)

read(a)

read(b)

read(a) red

green

Figure 1: Transition system for file access example.

read(a) stands for the transition {read(a),¬read(b),¬a tells b,¬b tells a}; the
label read(b) stands for {¬read(a), read(b),¬a tells b,¬b tells a}; and similarly
for the labels a tells b and b tells a. The label read(a), read(b) is shorthand
for the transition label {read(a), read(b),¬a tells b,¬b tells a}. Reflexive arcs,
corresponding to the ‘null event’ or to transitions of type a tells b and b tells a
from state {Fa,Ka,¬Fb,Kb} to itself, are omitted from the diagram to reduce
clutter. Also omitted from the diagram are transitions of type read(a)∧a tells b,
a tells b ∧ b tells a, etc. Again, this is just to reduce clutter.

Notice that transitions of type read(b) are red because of the ggg constraint,
except that read(b) transitions come out to be green in states where Kb already
holds. If the latter is felt to be undesirable, one could add another action
permission law not-permitted read(b), or a state permission law not-permitted Fb.

In a computerised system, b’s access to information I would be controlled
by the file access system. Naturally the file access system cannot determine
whether b knows I: in practice, a specification of the computer system would
simply say that read(b) actions are nonexecutable, or simply that Fb is false.
The latter can be expressed by adding the following static law to the action
description:

⊥ if Fb

This eliminates all states in which Fb holds from the transition system.
The transition system defined by this extended action description is depicted in
Figure 2. As usual, reflexive arcs are omitted from the diagram for clarity. Here,
the action read(a) is under the control of the file access system, and a tells b
is an action that can be performed by agent a. This difference is not explicit
in the semantics of C+ nor of n C+ in the form we have introduced so far.
Modifications to n C+ to allow a greater scope for representing the actions of,
and permission laws governing individual agents will follow, in the next section.
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¬Fa ¬Fb
¬Ka ¬Kb

Fa ¬Fb
Ka Kb

Fa ¬Fb
Ka ¬Kb

read(a) a tells b

Figure 2: Transition system for extended file access example.

Example (Rooms) A second example concerns the specification of norm-
governed interactions between agents acting independently. There are two cate-
gories of agents, male and female, who move around in a world of interconnecting
rooms. The rooms are connected by doorways through which agents may pass
(the precise topography, and number of rooms, can vary). Each doorway con-
nects two rooms. Rooms can contain any number of male and female agents.
The action constants in these domains will take the form move(x)=p, where x
ranges over the agents in a particular example, and p typically ranges over a
number of values representing directions in which agents can move, in addition
to a value f: if a transition label (s, ε, s′) has ε |= move(a)=f, that is to be taken
to represent that agent a does not move during that transition. A normative
element is introduced by insisting that a female may not be present in a room
alone with a male; such configurations are physically possible, and the transi-
tion systems defined by our action descriptions will include states representing
them, but all such states will be coloured red.

Although this blueprint for action descriptions seems relatively simple, it
shares essential features with a number of real-world domains, in which there
are large numbers of interacting agents or components which may be in different
states, and where some of those combinations of states are prohibited. (These
real-world examples are not restricted to domains where agents perform physical
actions.)

For the purposes of illustration, we shall consider a concrete instance of the
example in which there are just two rooms, on the left and right, with one
connecting door, and three agents, two males m1 and m2, and a female f1.
We have deliberately made the example simple in order to concentrate on the
essentials of the action description and its deontic features, and so that we can
depict the various states and transitions in their entirety. We will also insist
that only one agent can move through the doorway at once; although this is
a more significant restriction, it is both plausible (the doorways may be too
narrow to let more than one agent pass through at once), and also enables us
to depict the defined transition system in diagrammatic form with a minimum
of clutter.

The signature of this instance of the ‘rooms’ domain contains simple fluent
constants loc(x)=l and loc(x)=r, where x ranges over m1,m2, f1; loc(m1)=l is
true when the male agent m1 is in the left-hand room, loc(m2)=r is true when
m2 is in the right-hand room, and so on. The action constants are, in line with
previous remarks, move(x)=p, where x ranges over the agents and p ranges over
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l, r, f. The causal laws are as follows:

inertial loc(x)
caused loc(x)=p after move(x)=p (p ∈ {l, r})
nonexecutable move(x)=p if loc(x)=p (p ∈ {l, r})
nonexecutable move(x)=p if move(y) 6= f (x 6= y, p ∈ {l, r})
not-permitted loc(m1) = loc(f) if loc(m2) 6= loc(f)
not-permitted loc(m2) = loc(f) if loc(m1) 6= loc(f)

The last two laws clearly represent our insistence that it is undesirable that a
male and a female should be alone in a room together. The action description
is depicted in Figure 3. We have not drawn the transitions from states to

m1
m2
f1

m1
m2
f1

m1
m2

f1

m1
m2

f1

m1
m2

f1

m1
m2

f1

m1
m2
f1

m1
m2
f1 red

green

Figure 3: A simple ‘rooms’ example.

themselves, in order to keep the drawing clear; all such transitions are coloured
green. Also, we have not included labels for transitions. These can easily
be deduced, for every arc in the diagram should have a label which makes
precisely one move(x)=p (for p one of l, r) action constant true; which action
constant this is can in each case be seen from the the components s and s′ of the
transition (s, ε, s′): for example, the (red) transition from the top-most state
to the one immediately below and to the right move(m2)=r, and therefore also
move(m1)=f, move(f1)=f.

Given the permission laws in the action description, the semantics for n C+
determines the intended states as red, as can be seen from the diagram. There
are no action permission laws, and so the red transitions are wholly determined
by the ggg constraint: the red transitions are simply those where the system
moves from a green state to one in which a male and a female are alone in a
room together.
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This latter feature of the transition system indicates a very inconvenient
expressive paucity in n C+ as it currently stands. For consider, again, the tran-
sition from the top-most state, where all agents are in the left-hand room, to
the state below and to the right of it, where m1 and f1 are left alone together
after m2 has exited to the right. In some sense, it is m2 who has acted wrongly:
he has left the room, leaving m1 and f1 alone together, in a configuration which
thus violates the norms governing the system. On the other hand, if we remove
the restriction that at most one agent can pass through the doorway at one
time, it is far from clear which of the three agents, if any, acted wrongly when
m2 exited: it might have been m2, or it might have been m1, who should have
followed m2 out, or it might have been f1, who should have followed m2, or all of
them collectively who acted wrongly, or none of them. The coloured transition
systems we have defined, as they currently stand, do not have the capacity to
represent that it is specifically one agent’s actions rather than another’s which
must be marked as ‘red’. There is no way to extract from, or represent in, the
coloured transition system that a particular agent’s ‘strand’ of the transition is
sub-ideal, undesirable, and so on; indeed, there is no explicit concept of an indi-
vidual agent in the semantics at all, something which surely must be introduced
if we are to be able to reason effectively about the deontic properties of systems
in which there are known to be large numbers of interacting agents.

5 Agent Refinements

The language n C+ provides us with a means of representing when states and
transitions satisfy, or fail to satisfy, a standard of legality, acceptability, de-
sirability, and so on. Much can be said using the resources of this language.
However, in representing systems in which there are a number of interacting
agents (as with both of the simple domains depicted in the previous section), it
is often essential to be able to speak about an individual agent’s behaviour: in
particular, about whether individual agents’ actions are in the right or wrong—
whether they are conforming to norms which govern specifically their behaviour.
This is not possible using the resources of n C+ which we have introduced so
far. The semantical structures in place are the labelled transition systems which
describe behaviour, together with colourings (red or green) of a whole transi-
tion and whole state: there is no scope for speaking of coloured strands of a
transition, for a given agent.

That this greater scope for reference to the behaviour of an individual agent
is desirable can easily be seen. Suppose, for example, that we are representing
the workings of a bank: we may have a transition over which agent a withdraws
£20 and agent b withdraws £30. If the transition is coloured red, we have no
way of telling from the transition system whether it was a’s action which was not
permitted, b’s action, or both, or indeed neither of their actions—it may have
been some other factor in the environment, or a third agent. In this section we
will refine our language and the graphical models determined by it, allowing the
greater expressivity we desire, and letting us colour individual agents’ strands
of a transition.

The new semantical structure, which we will call a coloured agent-stranded
transition system, is a tuple 〈S,A, R, Sg, Rg,Ag , strand , green〉 where S is a set
of states, A a set of transition labels/events, and R the labelled transitions
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between states, R ⊆ S ×A× S; Sg and Rg are the (globally) green states and
transitions, as usual. Ag is a (finite) set of agent names. It is often conventional
that one of the elements of Ag represents ‘the environment’. We do not follow
that convention: there are things we want to be able to say about actions of
agents that are at best stilted if ‘the environment’ is treated as an agent like
any other. In the present context an ‘agent’ in Ag could be a deliberative
(human or computer) agent, or it could be a purely reactive component such as
a simple computational unit or some other device. At the level of detail we are
modelling here we do not make any distinction between these agents. strand
is a function on Ag × A: strand(x, ε) picks out from a transition label/event
ε the component or ‘strand’ that corresponds to agent x’s contribution to ε.
We will write εx for strand(x, ε). Given a transition (s, ε, s′) and x ∈ Ag , εx

may be thought of as the actions of agent x in the transition, where this does
not imply that εx represents deliberate action, or action which has been freely
chosen. As usual, εx may represent several concurrent actions by x, or actions
with non-deterministic effects. εenv denotes the actions that have occurred in
the environment in a transition (s, ε, s′). Although ‘the environment’ is not
treated here as an agent, we will want to be able to refer to actions that occur
in the environment, outside the control of any agents in Ag .

Now, for each agent x ∈ Ag , there will be a set green(x) of the green tran-
sitions for x: these are to be thought of as transitions where the actions of x
have been in accordance with norms for x. For each agent x there will also
be a set red(x) = R − green(x) of those transitions in which the actions of x
have failed to conform to x’s norms. green is thus a function from the set of
agents Ag to ℘(R). green(x) can be thought of as those transitions in which x’s
‘strand’ is green, and red(x) as the transitions where x’s strand is red. When
(s, ε, s′) ∈ green(x), or (s, ε, s′) ∈ red(x), we sometimes say that the transition
(s, ε, s′) is green(x) or red(x), respectively. We also say that εx is an action ex-
ecutable by agent x in a global state s when there is a transition (s, ε, s′) in R,
and that εx is green(x) (resp., red(x)) in global state s when (s, ε, s′) ∈ green(x)
(resp., (s, ε, s′) ∈ red(x)).

We do not, at this stage, introduce more granularity into the colourings of
states or consider norms which regulate the state of an individual agent. These
are possible developments for further work. Our interest here is to study the
norm-governed behaviour of agents, and how this may be related to the norms
pertaining to the system as a whole. To that end, we will concentrate on the
transitions which are used to represent agents’ actions.

There is no analogue of the ggg constraint for the colouring of agent-specific
strands of transitions. However, we do impose the following constraint: if
(s, ε, s′) is a transition in green(x) (resp., red(x)), then every transition (s, ε′, s′′)
in which x behaves in the same way as in (s, ε, s′), that is, every transition
(s, ε′, s′′) with ε′x = εx, must also be in green(x) (resp., red(x)). In other words,
for all transitions (s, ε, s′) and (s, ε′, s′′) in R and all agents x ∈ Ag :

if εx = ε′x then (s, ε, s′) ∈ green(x) iff (s, ε′, s′′) ∈ green(x) (13)

(and hence also (s, ε, s′) ∈ red(x) iff (s, ε′, s′′) ∈ red(x) when εx = ε′x). This
reflects the idea that whether actions of agent x are in accordance with x’s
norms depends only on x’s actions, not the actions of other agents, nor actions
in the environment, or other extraneous factors: we might, with appropriate
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philosophical caution, think of this constraint as an insistence on the absence
of ‘moral luck’.

Notice that the constraint (13) covers the case where ε = ε′, that is to say,
the case where there is a transition (s, ε, s′) and another transition (s, ε, s′′) with
a different resulting state: ε is non-deterministic in the state s. Constraint (13)
requires that, for every agent x, both of these transitions are coloured the same
way irrespective of their resulting states. This is how we want it to be. For
an agent x, there is no difference whether the results of its actions in a given
state are not fully determined because x’s own actions are non-deterministic,
or because actions by other agents acting independently determine what the
resulting state will be, or whether that depends also on actions that take place
in the environment.

We also have an optional coherence constraint relating the colouring of agent-
specific strands to the colouring of transitions as a whole. The colouring of a
transition as (globally) red represents that the system as a whole fails to satisfy
the required standard of acceptability, legality, desirability represented by the
global green/red colouring. In many settings it is then natural to say that
if any one of the system components (agents) fails to satisfy its standards of
acceptability, legality, desirability, then so does the system as a whole: if a
transition is red(x) for some agent x then it is also (globally) red. Formally,
the transition system 〈S,A, R, Sg, Rg,Ag , strand , green〉 satisfies the local-global
coherence constraint whenever, for all agents x ∈ Ag ,

red(x) ⊆ Rred. (14)

The coherence constraint (14) is optional and not appropriate in all settings.
We will adopt it in the examples discussed below. Notice though, that even
if the coherence constraint is adopted, it is possible that a transition has all
its agent-specific strands coloured green(x) for every agent x and still itself be
coloured globally red. We will give some examples presently.

There are now two separate lines of development we can pursue.

1. Given a coloured agent-stranded transition system of the kind just de-
fined, to what extent is it possible to determine from the colouring of its
global transitions the implied colourings of the agent-specific strands of
its transitions, or in other words, to derive from a specification of global
system norms the implied agent-specific norms that govern an individual
agent x’s own actions? This would require us to formulate the conditions
under which it is an agent x’s actions εx that are, in some appropriate
sense, responsible for, or the cause of, a system transition (s, ε, s′)’s being
coloured (globally) red. Such conditions can be formulated but raise a
number of further questions, and will not be discussed here. We leave
that for a separate paper.

2. We specify for every agent x in Ag the norms specific to x that govern
x’s individual actions: some subset of the actions executable by x in a
given global state will be designated as green(x) and the others as red(x).
If we want to think in terms of agent protocols, a transition (s, ε, s′) is
designated as green(x) when x’s actions εx in system state s comply with
agent x’s local protocol. We then specify, separately, system norms which
constrain various combinations of actions by individual agents, or other
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interactions of interest, by classifying global system transitions and global
system states as globally red or green. So we have two separate layers
of specification: (i) norms specific to agents governing their individual
actions, and (ii) norms governing system behaviour as a whole. We are
interested in examining the relationships, if any, between these two sep-
arate layers. We might be interested in verifying, for example, that all
behaviour by agent x compliant with the norms for x guarantees that the
system avoids globally red states, or produces only globally green runs, or
always recovers from a global red state to a global green state, and so on.
This is the setting we have in mind for discussion in this paper. We will
present some concrete examples below.

The required modifications to the language n C+ are very straightforward.
First we partition the action constants σa into those that represent actions by
agents in Ag , and a (possibly empty) category of action constants representing
actions in the environment:

σa =
⋃

x∈Ag σ
a
x ∪ σa

env

where σa
x are the action constants representing actions by agent x and σa

env is
a disjoint, and possibly empty, set of action constants representing actions in
the environment. (In other work we sometimes also include a further set of
action constants σa

ext, representing properties we may wish to ascribe, globally,
to system transitions. We make no use of σa

ext in the following examples, and
will not mention it again in the paper.)

The transition labels/events ε in a transition system defined by n C+ are
interpretations of the action constants, and are represented by the set of action
atoms satisfied by ε. The strand εx for an agent x of a transition label ε is
therefore simply the subset of atoms in ε that belong to σa

x, and the strand εenv

representing actions in the environment is the subset of atoms in ε that belong
to σa

env. In the files example of section 4, for instance, the set of agents Ag =
{a, b,file system}. The Boolean action constants a tells b and b tells a represent
actions by agents a and b, respectively, and Boolean action constants read(a)
and read(b) represent actions by the file system whereby a and b are granted
read-access to the file, respectively. There are no actions in the environment in
this example. In the transition label/event

ε = {read(a), read(b), a tells b,¬b tells a}

representing a transition in which the file system simultaneously grants read
access to a and b while a tells b and b does not tell a, has strands εfile system =
{read(a), read(b)}, εa = {a tells b}, and εb = {¬b tells a}.

We now introduce a new form of agent-specific permission law, as follows:

n : not-permitted(x) α if ψ (15)

where α is any formula containing only action constants from σa
x, and where

ψ, as usual, is any formula of σf ∪ σa. n is an optional identifier for the law.
oblig(x) α can be used as a shorthand for not-permitted(x) ¬α.

The rest is as one might expect. The coloured agent-stranded transition
system defined by an action description D of agent-centric n C+ has states S,
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transitions R, (globally) green states Sg, and (globally) green transitions Rg

just as for n C+, and, for every agent x ∈ Ag , green(x) =def R− red(x) where

red(x) =def {(s, ε, s′) | s ∪ ε |= ψ, ε |= α for some law of the form (15) in D}

There is no ggg constraint for agent-specific strands; the optional coherence
constraint (14) is easily added if required. Translation of agent-centric n C+
action descriptions to causal theories, computation methods, and so on, proceed
exactly as for n C+. We omit the details since they are straightforward.

Notice that there is a difference between an agent-specific permission law of
the form (15) and the n C+ permission law

n : not-permitted α if ψ (16)

even when α is a formula of σa
x. The former colours only the x-specific strand

of a transition; the latter colours the global transition as a whole, and expresses
a system norm not an agent-specific norm. If we choose to adopt the coherence
constraint (14), however, we can view a law of the form (15) where α is a formula
of σa

x as shorthand for both (16) and the law (15).
Henceforth, the remainder of the discussion is more general. It pertains to

coloured agent-stranded transition systems in general, not just to those that are
defined by means of an agent-centric n C+ action description.

6 Example

In order to illustrate some of the distinctions we are now able to articulate using
the agent-stranded refinement of coloured transition systems, we consider in this
section an extended version of the ‘rooms’ example of section 4. As before, we
have two categories of agents, male and female, say, and some configuration of
interconnecting rooms between which the agents can move. In any transition,
an agent can move to an adjoining room or stay where it is, and, in the first
instance, we will suppose that any number of agents can move at a time, even
through the same connecting doorway. We also have a system norm to the effect
that any state in which a male agent and a female agent are alone in a room
is (globally) red. This part is just as before. We now extend the example with
some agent-specific norms. As a concrete example (one of many that could be
devised) let us attempt to specify an (imperfect) protocol for recovery from red
system states: whenever a male agent and a female agent are alone in a room,
anywhere, every male agent is required to move to the room to its left (if there
is one), and every female agent is required to move to the room to its right (if
there is one). More precisely: in any state s of the system in which there is
a male agent and a female agent alone in a room, for every male agent x, the
action of moving to the room on its left is green(x), the action of staying where
it is when there is no room to its left is green(x), and any other move by x
is red(x). And similarly for female agents, but with ‘left’ replaced by ‘right’.
Further (let us suppose) in a global state s of the system where there is not a
male agent and a female agent alone in a room, for any agent x, a move by x
in any direction, including staying where it is, is green(x). Thus, the agents are
free to move around from room to room, but if ever the system enters a red
global state, their individual norms or protocols require them to move to the
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left or right as the case may be; once the system re-enters a green global state
they are free to move around again.

The precise mechanism by which agents detect that there is a male agent
and a female agent alone in a room somewhere is not modelled at this level of
detail. We will simply assume that there is some such mechanism — a klaxon
sounds, or a suitable message is broadcast to all agents — the details do not
matter for present purposes. Similarly, we are not modelling here how an agent
determines which way to move. In a more detailed representation, we could
model an agent’s internal state, its perceptions of the environment in which
it operates, how it determines where to move, and the mechanism by which
it perceives that there is a male agent and a female agent alone in a room.
We will not do so here: the simpler model is sufficient for present purposes.
Evidently, the agent-specific norms described above are easily expressed using
n C+ permission laws of the form (15); we omit the details.

6.1 Fully compliant behavour

As suggested above, we might now be interested in examining the relationship
between system norms and individual agent-specific norms — in the present
example, for instance, to determine whether the agent-specific norms expressed
by the green(x) specification do have the desired effect of guaranteeing recovery
from a red system state to a green system state. Given a coloured agent-stranded
transition system representing the system norms and individual norms, defined
by an n C+ action description or by some other means, we focus attention on
those paths of the transition system that start at a red system state, and along
which every agent always acts in accordance with its protocol: we consider
only those paths in which every transition is green(x) for each of the agents
x. A natural property to look for is whether all such paths eventually pass
through a green system state; if this property holds, it indicates that the agent-
centric protocols are doing a good job in ensuring that systems in violation
of their global system norms eventually recover to a green state, assuming (as
we are) that all agents follow their individual protocols correctly. (It ought to
be noted that there is a further natural requirement: in the case where the
system is initially in a red system state s, there should be at least one transition
(s, ε, s′) ∈ R. Otherwise, the requirement that all paths starting at s eventually
reach a green system state would be vacuously satisfied.)

In particular applications, it might not be a reasonable assumption to make
that agents always act in accordance with their individual protocols; this might
be for several reasons. Sometimes physical constraints in the environment being
modelled prevent joint actions in which all agents act well; in other circum-
stances, and noteworthy especially because we have in mind application areas
in multi-agent systems, agents may not comply with the norms that govern
them because it is more in their interests not to comply. In the latter case,
penalties are often introduced to try and coerce agents into compliance, and it
would clearly be possible to introduce more detail into our action descriptions
in order to study such penalty mechanisms. We leave that discussion to one
side, however, as it is tangential to the current line of enquiry.

We now move to the ‘rooms’ example in particular, and study what happens
when we assume that all agents are acting in accordance with their individual
protocols. It is clear that the effectiveness of our protocol (if in a red state,
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males move to the left when possible, females move to the right when possible)
in guaranteeing that the system will eventually reach a green state, depends on
the topography of rooms and connecting doors. However, let us assume that
there is a finite number of rooms, each room has at least one connecting room
to its left or one to its right, and that there are no cycles in the configuration, in
the sense that if an agent continues moving in the same direction it will never
pass first out of, then back into, the same room. Under these circumstances,
and removing the restriction on how many agents can pass through a door
at the same time, it is intuitive that there is always a recovery, in the sense
defined, from every red system state. Since all agents act in accordance with
their protocols, every male will move to the left (if it can), and every female
will move to the right (if it can). If the resulting system state is not green, they
will move again. Eventually, in the worst case, the males and females will be
segregated in separate rooms, which is a green system state.

Of course, we cannot guarantee that having reached a green system state,
the agents will not re-enter a red state: the individual protocols only dictate
how agents should behave when the system is globally red. Once the system has
recovered, the agents may mingle again. It is easy to imagine how we might use
a model-checker to verify this and similar properties on coloured agent-stranded
transition systems; we will not discuss the details in this paper.

6.2 Non-compliant behaviours

One must be careful not to assume that if an agent x fails to comply with
its individual norms — if some transition (s, ε, s′) ∈ red(x) — then it must
be that agent x acted wilfully, perhaps to seek some competitive advantage,
or carelessly, or if it is a simple reactive device, that its constructors failed to
implement it correctly. This may be so, but an agent may also fail to comply
with its norms because of factors beyond its control, because it is prevented
from complying by the actions of other agents, or by extraneous factors in the
environment. To illustrate: suppose we modify the ‘rooms’ example so that now
it is impossible for more than one agent to pass through the same doorway at
the same time. All other features, including the specification of system norms
and agent-specific norms, remain as before. Clearly the situation can now arise
where several agents are required by their individual norms to pass through the
same doorway; at most one of them can comply, and if one does comply, the
others must fail to comply.

Again, in order to keep diagrams of the transition system small enough to
be shown in full, we will consider just the case of two interconnecting rooms,
and three agents, m1, m2, and f1, of whom the first two are male and the last
is female. Figure 4 shows the coloured agent-stranded transition system for
this version of the example. We have adopted here the local-global coherence
constraint (14) which is why some transitions that were globally green in the
version of section 4 are now globally red. Nothing essential in what follows
depends on this. Transition labels are omitted from the diagram: since at most
one agent can move at a time, they are obvious from looking at the states.
Annotations on the arcs indicate the colourings of the three agent strands for
each transition; where arcs have no such annotation all strands are green(x) for
each of the three agents x. Omitted from the diagram are reflexive arcs from the
green system states to themselves, representing transitions in which no agent

20



moves. These transitions are all globally green, and therefore also (given local-
global coherence) green(x) for each agent x. The significance of the asterisks in
some of the annotations will be explained presently.
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Figure 4: Transitions without annotations have all three stands coloured green.
Reflexive arcs on green nodes, where no agent moves, are omitted from the
diagram: they are all globally green, and each agent strand is green. (The
concept of a sub-standard strand is explained in Section 6.3.)

One can see from the diagram that the system exhibits the following kinds
of behaviour, among others.

• There are transitions whose strands are green(x) for all three agents x but
which are nevertheless globally red (all those from a green system state to
a red system state). This is because the individual norms do not constrain
agents’ actions in green system states, as discussed earlier.

• There are globally green transitions from red system states to green system
states (such as the one from the state at the lower right of the diagram in
which m2 moves to the left and m1 and f1 stay where they are). These
are transitions in which all three agents are able to comply with their
individual norms. In this example, though not necessarily in other versions
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with more elaborate room configurations and more agents, such transitions
always recover from a red system state to a green system state.

• There are also globally red transitions in which at least one agent fails to
comply with its individual norms and that lead from a red system state
to a green system state (such as the one from the state at the lower right
of the diagram in which m1 moves to the right and m2 and f1 stay where
they are). These transitions recover from a red system state to a green
system state but not in accordance with the individual norms for agents.

• There are globally red transitions, such as the one from the state at the
upper right of the diagram in which m1 moves to the right, and f1 and
m2 stay where they are, in which no agent complies with its individual
norms.

• And as the example is designed to demonstrate, there are globally red
transitions where one agent complies with its individual norms but in
doing so makes it impossible for one or both of the others to comply with
theirs. For example, in the red system state at the upper right of the
diagram, where m1 and f1 are in the room on the left and m2 is on the
room on the right, there is no transition in which both m2 and f1 can
comply with their individual norms.

In this modified version of the example, what are the possible system be-
haviours in the case where all agents do comply with their individual norms?
Figure 5 shows the transition system that results if all red(x) transitions are
discarded, for all three agents x. The diagram confirms that when there is a
constraint preventing more than one agent from moving through a doorway at
a time, the system can enter a state from which there is no transition unless at
least one agent fails to comply with its individual norms. In the diagram, these
are the two red system states where the female agent f1 is in the left-hand room
with a male.

6.3 Sub-standard behaviours

The example is designed to demonstrate several different categories of non-
compliant agent behaviour. We pick out one for particular attention. Consider
the state in which m1 and f1 are in the room on the left and m2 is in the room
on the right. (This is the red system state at the upper right of the diagram.)
Because of the constraint on moving through the doorway, it is not possible for
all three agents to comply with their individual norms. But suppose that each
agent behaves in such a way that it will comply with its individual norms in as
much as it can. A purely reactive agent, let us suppose, is programmed in such a
way that it will attempt to act in accordance with its individual norms though it
may not always succeed if something prevents it. A deliberative agent (human or
computer) incorporates its individual norms in its decision-making procedures
and takes them into account when planning its actions: it will always attempt to
act in accordance with its individual norms but again may be unsuccessful. If all
agents in the system behave in this way, then there are two possible transitions
from the red system state in which m1 and f1 are on the left and m2 is on the
right: either f1 succeeds in moving to the right in accordance with its individual
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Figure 5: System behaviour if all three agents comply with their individual
norms. The colours of transition strands are not shown: all are green. Reflexive
arcs on green nodes are omitted from the diagram.

norms, or m2 succeeds in moving to the left in accordance with its. The third
possible transition from this system state, in which every agent stays where it
is, can be ignored: it can only occur if no agent attempts to act in accordance
with its individual norms, and this, we are supposing, is not how the agents
behave. The exact mechanism which determines which of the two agents m2

and f1 is successful in getting through the doorway is not represented at the
level of detail modelled here. At this level of detail, all we can say is that one
or other of the agents m2 and f1 will pass through the doorway but we cannot
say which.

Similarly, in the red system state at the lower right of the diagram, in which
m1 is on the left and m2 and f1 are on the right, we can ignore the transition in
which m1 moves to the right, if m1’s behaviour is such that it always attempts to
comply with its individual norms. The transition in which f1 moves to the left
can also be ignored, if f1’s behaviour is to attempt to comply with its individual
norms. And the transition in which m2 stays where it is can be ignored, if m2’s
behaviour is to attempt to comply with its individual norms. This leaves just
one possible transition, in which m2 attempts to move to the left; this will
succeed because the other two agents will not act in such a way as to prevent it.
(We are tempted to refer to this kind of behaviour as behaviour in which every
agent ‘does the best that it can’ to comply with its individual norms. The term
has too many unintended connotations, however, and so we avoid it.)

We are not suggesting, of course, that agents always behave in this way,
only that there are circumstances where they do, or where it can be reasonably
assumed that they do, and where we are interested in examining what system
behaviours result in that case.

We now make these ideas more precise. We will say that x’s behaviour εx
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in a transition (s, ε, s′) is sub-standard if the transition is red(x) and, had x
acted differently in state s while all other agents, and the environment, acted
in the same way they did, the transition from system state s could have been
green(x): x could have acted differently and complied with its individual norms.
Formally, let sub-standard be a function from the set of agents Ag to ℘(R). For
every agent x ∈ Ag and every transition (s, ε, s′) ∈ R:

(s, ε, s′) ∈ sub-standard(x) iff (s, ε, s′) ∈ red(x) and there exists
(s, ε′, s′′) ∈ green(x) such that ε′env = εenv and
ε′y = εy for every agent y ∈ Ag − {x}

(17)

Notice that the definition allows for the possibility of actions in the environment.
It is easy to imagine other versions of the example where an agent may be unable
to act in accordance with its individual norms not because of the actions of
other agents but because of extraneous factors in the environment. (Suppose,
for instance, that an agent is unable to move to the room on the left while it is
raining.) And here is a reason why we prefer not to treat ‘the environment’ as a
kind of agent: we do not want to be talking about sub-standard behaviours of the
environment, or of agents preventing the environment from acting in accordance
with its individual norms. In this respect at least, ‘the environment’ is a very
different kind of agent from the others. Notice finally that the definition does
not need to refer to the possibility of non-deterministic transitions: the ‘absence
of moral luck’ constraint (13) makes that unnecessary.

Alternatively, as another way of looking at it, we could say that a red(x)
transition (s, ε, s′) is unavoidably red(x) if, for every transition (s, ε′, s′′) ∈ R
such that ε′env = εenv and ε′y = εy for every agent y ∈ Ag − {x}, we have that
(s, ε′, s′′) ∈ red(x). This is closer to the informal discussion above. It is easy
to see that every red(x) transition is sub-standard(x) if and only if it is not
unavoidably red(x). Indeed, every red(x) transition is either sub-standard(x) or
unavoidably red(x), but not both.

The diagram of the transition system for this example shown earlier in Fig-
ure 4 shows the sub-standard transitions for each agent. They are those in
which the transition annotations are marked with an asterisk. For example,
in the red system state at the upper right of the diagram, where m1 and f1
are on the left and m2 is on the right, the transition in which all three agents
stay where they are is sub-standard(m2), because there is a green(m2) transition
from this state in which m1 and f1 act in the same way and m2 acts differently,
namely the transition in which m1 and f1 stay where they are and m2 moves
to the left in accordance with its individual norms. Similarly, the transition
from that same system state, in which m1 moves to the right and m2 and f1
stay where they are, is sub-standard(m1) because the transition where all three
agents stay where they are is green(m1). And likewise for the other transitions
marked as sub-standard in the diagram. The red(x) transitions not marked as
sub-standard(x) are unavoidably red(x).

Suppose we wish to examine what system behaviours result if all three agents
comply, in as much as they can, with their individual norms, in other words,
if we disregard those transitions which are sub-standard for any of the three
agents x. The result is shown in Figure 6.

Many other variations of the example could be examined in similar fashion.
If female agents are more reliable than male agents, for instance, we might
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Figure 6: System behaviour if all three agents comply with their individual
norms, in as much as they can. Transitions without annotations have all three
strands coloured green. Reflexive arcs on green nodes are omitted from the
diagram.

be interested in examining what system behaviours result when there is never
sub-standard behaviour by females though possible sub-standard behaviour by
males.

As a final remark, notice that what is sub-standard or unavoidably red(x)
for an agent x can depend on normative as well as physical constraints. Suppose
(just for the sake of an example) that there is another individual norm for m1

to the effect that it should never stay in a particular room (say, the room on
the left) but should move out immediately if it enters it: a transition in which
m1 stays in the room on the left is red(m1), in every system state, red or green.
With this additional constraint, some of the transitions that were globally green
are now globally red because of the local-global coherence constraint (assuming
we choose to adopt it). But further, the transition from the red system state at
the upper right of the diagram in Figure 4, in which m1 moves to the right and
m2 and f1 stay in the room on the right, was previously sub-standard(m1). It
is no longer sub-standard(m1): there is now no green(m1) transition from this
state when m2 and f1 stay where they are.

Clearly, in this example, if m1 is in the room on the left in a red system state,
it has conflicting individual norms: one requiring it to move to the right, and one
requiring it to stay where it is. It cannot comply with both, so neither action is
sub-standard(m1); both are unavoidably red(m1). How m1 should resolve this
conflict is an interesting question but not one that we intend to consider here.
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It is also a question that only has relevance when m1 is a deliberative agent
which must reason about what to do. If m1 is a purely reactive device, then
its behaviour in this case could perhaps be predicted by examining its program
code. Both of these possibilities are beyond the level of detail of agent and
system behaviours modelled in this paper.

7 Conclusion

We presented the main elements of the language n C+, leaving out its treatment
of ‘counts as’ relations between actions [6] which we did not discuss and a re-
finement which deals with ‘graded transition systems’ where system states are
classified according to how well they satisfy system norms [8]. We focussed in-
stead on a new agent-centric refinement of n C+ which allows us to speak about
an individual agent’s actions and the individual norms which govern them in ad-
dition to norms which govern system behaviour as a whole. There are really two
separate aspects to the presentation. The first concerns the varieties of coloured
transition systems that we use as a semantic device: for the original version of
n C+, a simple green/red colouring of system states and system transitions, and
for the agent centric version, a more elaborate structure which picks out the
agent-specific strands in each system transition and allows these to be coloured
independently to represent individual norms. The second aspect concerns the
use of n C+ as a convenient formalism for defining these structures succinctly
and encoding them in a computational representation. These methods, and the
associated computational tools, are inherited from the language C+ with minor
modification. We did not discuss in this paper the range of query languages
that could be used with these semantic structures. A wide variety of deontic
and branching-time temporal operators, in various combinations, can already be
defined and evaluated on the simple coloured transition systems. The possibili-
ties are even greater for coloured agent-stranded transition systems. It would be
interesting to examine, for example, how to adapt recent proposals for deontic
query languages based on CTL [20] in this connection.

We used a simple example of agents moving around rooms to illustrate how
the finer structure of agent-stranded transition systems allows us to distinguish
several different categories of non-compliant agent behaviour. We focussed in
particular on what we called ‘unavoidably red’ agent behaviour, and how to
investigate what system behaviours result when agents can be assumed to ‘do
the best that they can’ to comply with their individual norms, in the sense
that they never perform what we called ‘sub-standard’ actions. Clearly there
are further distinctions that could be investigated. We also mentioned, but
did not pursue, the question of whether it is possible to derive agent-specific
individual norms from system norms. This raises a number of new questions,
however, which deserve fuller discussion and which we therefore leave for a
separate paper.

It might be felt that our main ‘rooms’ example is too simple to be taken
seriously as representative of real-world domains. We deliberately chose the
simplest configuration of rooms and agents that allowed us to make the points
we wanted to make, while still being able to be depicted in their entirety. The
example works just as well with more rooms, more than two categories of agents,
and a wider repertoire of actions that the agents are able to perform. Generally,
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the issues we have addressed arise whenever we put together a complex system
of interacting agents, acting independently, whose individual behaviours are
subject to norms or protocols, and where we wish to impose further system
norms to regulate their possible interactions.
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