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Abstract

The design of complex multi-agent systems is increasingly having to con-
front the possibility that agents may not behave as they are supposed to.
In addition to analysing the properties that hold if protocols are followed
correctly, it is also necessary to predict, test, and verify the properties
that would hold if these protocols were to be violated. We illustrate how
the formal machinery of deontic interpreted systems can be applied to
the analysis of such problems by considering three variations of the bit
transmission problem. The first, an example in which an agent may fail
to do something it is supposed to do, shows how we deal with violations of
protocols and specifications generally. The second, an example in which
an agent may do something it is not supposed to do, shows how it is pos-
sible to specify and analyse remedial or error-recovery procedures. The
third combines both kinds of faults and introduces a new component into
the system, a controller whose role is to enforce compliance with the pro-
tocol. In each case the formal analysis is used to test whether critical
properties of the system are compromised, in this example, the reliable
communication of information from one agent to the other.

1 Introduction

The design of complex multi-agent systems is increasingly having to confront the
possibility that agents may not behave as they are supposed to. In e-commerce,
in security, in automatic negotiation, in any application where agents are pro-
grammed by different parties with competing interests, it is unrealistic to as-
sume that all agents will behave according to some given protocol or standard
of behaviour. In addition to analysing the properties that hold if protocols
are followed correctly, it is also necessary to predict, test, and verify the prop-
erties that would hold if these protocols were to be violated, and to test the
effectiveness of introducing proposed enforcement mechanisms.

Consider an online auction mechanism modelled and implemented as a multi-
agent system, where agents play the parts of auctioneers and bidders. At each
round the protocol of the system gives the opportunity to a selected number of
agents to bid for some goods, according to the specific auction protocol being
employed. Suppose that an agent bids an amount which it is unable to fulfil
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(either by mistake, or perhaps with the sole intention of raising the bid so that an
opponent will have to pay a higher price). If that bid is made in the prescribed
manner then it would still count as a valid bid—even if it were to be regarded as
illegal, anti-social, unethical to make a bid in those circumstances. Undesirable
behaviour of this kind will often have adverse effects on the system as a whole.
Perhaps the agent will be forced to de-commit from the commitment it entered
upon by bidding, as a result of which the seller will (at least temporarily) lose
the deal, which in turn may have consequences on other deals it has entered
upon with other agents. At the very least, the resulting disputes will have to
be resolved at a cost.

One way out of such problems is to attempt to devise tighter controls in
the protocols, such as stipulating that a bid by an agent is valid only if made
with previously cleared funds. The opportunities for inventing such controls are
limited, however, and in any case have associated costs too (in the example, the
costs of the clearing mechanism and the consequently diminished liquidity of
the market). Moreover forcing agents of an open multi-agent system to behave
according to a rigid set of rules is seen as increasingly unfeasible because of the
inherent distribution of the system. One alternative, having specified what is
correct, desirable, or acceptable behaviour of the agents within a given context,
is to strive to handle and reason about violations of these norms within the
system. The required formalisms not only have to be capable of handling local
violations, but must also be capable of representing the usual attributes ascribed
to agents in a multi-agent setting, such as knowledge, intentions, and goals (see
e.g., [Woo00]).

It is important to emphasise that the focus of the approach presented in
this paper is not on formalisms used internally by the agents as part of their
reasoning mechanisms, but rather for specification of properties of the system as
a whole, ideally accompanied by verification mechanisms. The question of how
an agent may reason internally about the norms that constrain its behaviour
is an interesting one, but it is a different question that will not be pursued
in this paper. Note that it is legitimate and perfectly meaningful to make
this separation. Consider the familiar problem of controlling access to sensitive
or confidential data. There is a specification of what access is permitted or
forbidden at the system level but the agents who actually make the access need
not be aware, and usually are not aware, of what this specification is.

These are inherently complex issues, and we do not expect to have methods
able to give comprehensive answers to all of them in the near future. One
approach being explored by the authors as a step in this direction is an attempt
to extend interpreted systems [FHMV95], a mainstream and well-developed
semantics for reasoning about knowledge in distributed and multi-agent systems,
with a deontic component. Deontic interpreted systems [LS03] are designed to
represent correct and incorrect functioning behaviour of agents as well as their
epistemic properties.

While a considerable amount of theoretical work considers constructs not
dissimilar to those employed here (among others: [ML85, Mey88, KM89, FM91,
GMP92, Coe93, JS93, CJ96]), we are not aware of any study that puts these
theoretical constructs to the test in an actual application. It is surprisingly
difficult to find concrete examples in the literature, let alone case studies showing
how the formal approaches may be applied in detail. Our aim in this paper is to
advance the state-of-the-art by constructing a fully worked out formal analysis
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of a concrete example, and to illustrate and evaluate the formalism of deontic
interpreted systems in the process.

Specifically, we show how the formalism of deontic interpreted systems [LS03]
may be applied to model and reason about protocol violations in a simple ex-
ample, the bit-transmission problem [HZ92]. This is a much discussed scenario
in distributed computing involving two agents attempting to communicate the
value of a bit over a faulty communication channel. Of course, the example
is trivial compared to the kinds of applications alluded to in the introductory
sections. Still, we argue that it is rich enough to raise many important issues
such as error correction and control/enforcement mechanisms, and in this sense
is representative. Furthermore, using a small, well understood, and widely dis-
cussed problem offers the possibility of testing rigorously a formal apparatus
and investigating how it performs in detail.

We will examine three variations of the bit-transmission problem. The first
(Section 5) is an example in which an agent may fail to do something it is
supposed to do, and shows how we deal with violations of protocols and specifi-
cations generally. The second (Section 6) is an example in which an agent may
do something it is not supposed to do, and shows how it is possible to specify
and analyse remedial or error-recovery procedures. The third (Section 7) com-
bines both kinds of faults and introduces a new component into the system, a
controller whose role is to enforce compliance with the protocol. In each case
the formal analysis is used to test whether critical properties of the system are
compromised, in this example, the reliable communication of information from
one agent to the other.

2 Preliminaries

In this paper we use the machinery of interpreted systems as presented in
[FHMV95], and the extensions for modelling correct and incorrect function-
ing behaviours as developed in [LS03]. We present the main definitions here,
but refer to the cited literature for more details.

Consider n non-empty sets L1, . . . , Ln of local states, one for every agent of
the system, and a set of states for the environment LE . Elements of Li will be
denoted by l1, l

′
1, l2, l

′
2, . . .. Elements of LE will be denoted by lE , l′E , . . ..

Definition 1 (System of global states) A system of global states for n agents
S is a non-empty subset of a Cartesian product L1 × · · · × Ln × LE.

An interpreted system of global states is a pair IS = (S, h) where S is a
system of global states and h : S → 2P is an interpretation function for a set of
propositional variables P.

When g = (l1, . . . , ln, lE) is a global state of a system S, li(g) denotes the
local state of agent i in global state g. lE(g) denotes the local state of the
environment in global state g.

Systems of global states can be used to interpret epistemic modalities Ki,
one for each agent.

(IS , g) |= Ki ϕ if for all g′ we have that li(g) = li(g
′) implies (IS , g′) |= ϕ.

Alternatively one can consider generated models (S,∼1, . . . ,∼n, h) of the stan-
dard relational (Kripke) kind, where the equivalence relations ∼i are defined on
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equivalence of local states, i.e., g ∼i g′ iff li(g) = li(g
′). Modalities are then

interpreted on these models in the usual way. The resulting logic for modalities
Ki is of type S5n; this models agents with complete introspection capabilities
and veridical knowledge [Hin62, MH95], though it is important to see that the
notion of knowledge modelled here is an information-theoretic one. An agent
‘knows’ ϕ when from an external perspective it has enough information to de-
termine that ϕ is true.

The notion of interpreted systems can be extended to incorporate the idea
of correct functioning behaviour of some or all of the components [LS03], as
follows.

Definition 2 (Deontic system of global states) Given n agents and n + 1
non-empty sets G1, . . . , Gn, GE, a deontic system of global states is any system
of global states defined on L1 ⊇ G1, . . . , Ln ⊇ Gn, LE ⊇ GE. For any agent i,
Gi is called the set of green states for agent i. GE is called the set of green states
for the environment. The complement of Gi with respect to Li (respectively GE

with respect to LE) is called the set of red states for agent i (respectively for
the environment).

The terms ‘green’ and ‘red’ are chosen as neutral terms, to avoid overloading
them with unintended readings and connotations. The term ‘green’ can be read
as ‘legal’, ‘acceptable’, ‘desirable’, ‘correct’, depending on the context of a given
application.

Note that global states can also be classified as green/red. Let Gi denote the
set of global states in which agent i is in a green local state: g ∈ Gi iff li(g) ∈ Gi.

Deontic systems of global states are used to interpret modalities such as the
following

(IS , g) |= Oi ϕ if for all g′ we have that li(g
′) ∈ Gi implies (IS , g′) |= ϕ

(or equivalently: if for all g′ ∈ Gi we have (IS , g′) |= ϕ).

Oi ϕ is used to represent that ϕ holds in all (global) states in which agent
i is functioning correctly. Again, one can consider generated models of the
standard form (S,∼1, . . . ,∼n, RO

1 , . . . , RO
n , h) where the equivalence relations ∼i

are defined as above and the relations RO
i are defined by g RO

i g′ if li(g
′) ∈ Gi.

In particular, the semantics of Oi is essentially that of an obligation operator in
(a strengthened form of) standard deontic logic: each Oi is a normal modality of
type KD45; the multi-modal case can be axiomatised by the system KD45i−j

[LS03]. However, it would not be appropriate to read the expression Oi ϕ as
‘there is an obligation on agent i that ϕ’.

Knowledge can be modelled on deontic interpreted systems in the same way
as on interpreted systems, and one can study various combinations of the modal-
ities such as Ki Oj , Oj Ki, and others. It is particularly important when reading
these expressions, however, to remember that they express the external “bird’s
eye” view of the system: Oj Ki ϕ says that in all states of the system in which
agent j is functioning correctly, from an external perspective agent i has suf-
ficient information to know that ϕ. There are many other senses of ‘ought to
know’ that are not captured by this construction.

Another concept of particular interest is knowledge that an agent i has on
the assumption that the system (the environment, agent j, group of agents X)
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is functioning correctly. We employ the (doubly relativised) modal operator K̂
j
i

for this notion, interpreted as follows:

(IS , g) |= K̂
j
i ϕ if for all g′ such that li(g) = li(g

′) and lj(g
′) ∈ Gj

we have that (IS , g′) |= ϕ.

Ki, Oi, and K̂
j
i are all normal modalities (of type S5, KD45, and KD45,

respectively). Various relationships hold between them, such as Ki ϕ → K̂
j
i ϕ,

Ki Oj ϕ → K̂
j
i ϕ, Oj ϕ → K̂

j
i ϕ, and others. Further details, and metalogical

properties such as frame correspondence and completeness, may be found in
[LS03]. Our aim in this present paper is to illustrate the use of these modalities
in the examples to follow.

Finally, interpreted systems can be extended to deal with temporal evolution.
Consider a set of runs over global states R = {r : NS}, representing flows of
time for the system. When this structure is in place one can interpret the
usual temporal connectives on it (see e.g. [GHR93]). In this paper we limit our
analysis to the static case.

3 The bit transmission problem

The bit-transmission problem [FHMV95] involves two agents, a sender S, and
a receiver R, communicating over a possibly faulty communication channel. S

wants to communicate some information—the value of a bit for the sake of
the example—to R. We would like to design a protocol that accomplishes this
objective while minimising the use of the communication channel.

Two (trivial) special cases of the scenario can immediately be solved. The
first is the one in which the channel is actually working, or is at least operative
for the first few rounds of computation. In this case we would require S to send
the value of the bit once as the system comes alive. The other special case arises
when the channel is constantly non-operative. There is obviously no protocol
that can ensure that R receives the information in that case.

The interesting scenario arises when the channel is working correctly at cer-
tain times while failing at others. There are several ways in which this can be
approached, for instance by stipulating that the channel delivers messages with
a fixed probability P > 0 at any given round. In this paper we do not make any
of these assumptions; instead, we analyse the most general case with respect to
a most simple protocol. The protocol is as follows. S immediately starts send-
ing the bit to R, and continues to do so until it receives an acknowledgement
from R. R does nothing until it receives the bit; from then on it sends acknowl-
edgements of receipt to S. S stops sending the bit to R when it receives an
acknowledgement. Note that R will continue sending acknowledgements even
after S has received its acknowledgement. Intuitively S will know for sure that
the bit has been received by R when it gets an acknowledgement from R. R,
on the other hand, will never be able to know whether its acknowledgement
has been received since S does not answer the acknowledgement1. We refer to
[HZ92, FHMV95] for further discussion.

1One might think that this problem can be solved by insisting that S sends an acknowl-
edgement of the acknowledgement, but by doing so we simply push the problem one level
deeper, and S would never know whether its acknowledgement of the acknowledgement has
been received by R.
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4 Analysis

The bit-transmission problem can be analysed using the formalism of interpreted
systems. To do this we follow the approach taken by Halpern and colleagues in
[FHMV95].

There are three active components in the scenario: a sender, a receiver, and
a communication channel. In line with the spirit of the formalism of inter-
preted systems, it is convenient to see sender and receiver as agents, and the
communication channel as the environment. Each of these can be modelled by
considering their local states. For the sender S, it is enough to consider four
possible local states. They represent the value of the bit that S is attempting
to transmit, and whether or not S has received an acknowledgement from R.
Three different local states are enough to capture the state of R: the value of
the received bit, if any, and the circumstance in which no bit has been received
yet, represented by ε. So we have

LS = {0, 1, 0-ack, 1-ack}, LR = {0, 1, ε}.

To model the environment it is often convenient to represent in the local state
(amongst other things) the combinations of messages that were sent in the
previous round, by S and R, respectively. The four local states would then be:

LE = {(., .), (sendbit , .), (., sendack), (sendbit , sendack)},

where ‘.’ represents configurations in which no message was sent by the corre-
sponding agent. However, for the examples we will be analysing in this paper
this level of detail is unnecessary, and so for simplicity we shall take the local
states of the environment to be just a singleton:

LE = {·}.

This is to simplify (and shorten) the presentation. It should be obvious how
the formulas of later sections can be adjusted for examples requiring a more
complicated representation of the environment’s local states.

Global states S for the system are defined as S ⊆ LS × LR × LE . A global
state g = (lS , lR, lE) gives a snapshot of the system at a given time. Note that
not all triples of the product are admissible in principle, but only those that can
be reached in a run of the protocol from given initial configurations, as will be
explained below. Although in this simple example the LE component is fixed,
it is not redundant, and we will retain it in the global states as a reminder that
reference to it would be required in more complicated settings.

The interpreted systems framework has the advantage of being suitable for
integration with finer semantics representing actions and protocols. To do so
consider a set of actions Acti for every agent in the system and the environment.
The actions for the agents S and R are as follows.

ActS = {sendbit , λ}, ActR = {sendack , λ}

Here λ stands for no action (‘no-op’).
The actions ActE for the environment correspond to the transmission of mes-

sages between S and R on the unreliable communication channel. To make the
example sufficiently rich, we will assume that the communication channel can

6



transmit messages in both directions simultaneously, and that a message travel-
ling in one direction can get through while a message travelling in the opposite
direction is lost. (Alternatively, think of a pair of unidirectional communication
channels whose faults are independent of one other.) The set of actions for the
environment is

ActE = {↔, →, ←, −}

↔ represents the action in which the channel transmits any message successfully
in both directions, → that it transmits successfully from S to R but loses any
message from R to S,← that it transmits successfully from R to S but loses any
message from S to R, and − that it loses any messages sent in either direction.
Alternatively, we could model the communications channel by having a single
action for the environment, transmit , and then representing the unreliability of
the channel by four possible local states of the environment. It comes to much
the same thing, except that this alternative treatment makes the specification
of the rest of the system slightly more cumbersome.

We can model the evolution of the system by means of a transition function
π : S × Act → 2S , where Act = ActS × ActR × ActE is the set of joint actions
for the system: π(g, (αS , αR, αE)) is the set of global states resulting (non-
deterministically) from performance in global state g of actions αS , αR, αE by
sender S, receiver R, and the environment, respectively. π codes the fact that the
state of the communication channel determines whether the actions performed
by the agents (i.e., the messages they send on the channel) get through or
not, and what their effects are. For example, the definition of π contains the
following2:

π( (0, ε, ·), (sendbit , λ,↔) ) = (0, 0, ·),

π( (0, ε, ·), (sendbit , λ,→) ) = (0, 0, ·),

π( (0, ε, ·), (sendbit , λ,←) ) = (0, ε, ·),

π( (0, ε, ·), (sendbit , λ,−) ) = (0, ε, ·),

to capture that when the channel works properly the message sendbit from S

gets through and gets processed accordingly by R.
Some other cases are as follows:

π( (0, 0, ·), (sendbit , sendack , αE) ) = (0-ack, 0, ·) (αE ∈ {←,↔})

π( (0, 0, ·), (sendbit , sendack , αE) ) = (0, 0, ·) (αE ∈ {→,−})

The remaining cases can be similarly expressed and are added straightforwardly.
We leave the details to the reader. The transition function π is depicted, in
simplified form, in Figure 1.

For compliance with a given protocol, only certain actions are performable
at a given time for an agent. For example if sender S has not yet received an
acknowledgement from receiver R, i.e., in the model, when S is in the local state
0 or 1, then according to the simple protocol under consideration, S should send
the value of the bit over the channel to R, i.e., perform the action sendbit . To
capture such requirements the concept of protocol can be used. A protocol for
agent i is a function Pi : Li → 2Acti mapping local states to sets of actions.
Pi(li) is the set of actions performable according to the protocol by agent i

2We omit brackets when writing singleton sets to reduce clutter.

7



(0, ε) (0, 0) (0-ack, 0)
sλ ss

sλ ss λs

Figure 1: The transition function π for the bit-transmission system . The case bit=1 is sim-
ilar and is omitted. Labels sλ, λs and ss stand for the joint actions (sendbit , λ), (λ, sendack)
and (sendbit , sendack), respectively. Actions of the environment ActE are omitted for sim-
plicity.

when its local state is li. For the example under consideration the protocol can
be defined as follows:

PS(0) = PS(1) = sendbit , PS(0-ack) = PS(1-ack) = λ,

PR(ε) = λ, PR(0) = PR(1) = sendack .

(As usual, singleton sets are written here without brackets.) For the environ-
ment, for this simple example, we use the constant function:

PE(lE) = ActE = {↔, →, ←, −}, for all lE ∈ LE .

If we assume that the system starts from an initial state (0, ε, ·) or (1, ε, ·),
it is possible to show that S will start sending the bit and will only stop after
having received an acknowledgement from R. In turn R will remain silent until
it receives the bit, and it will never stop sending acknowledgements from then
on. The analysis can be made formally by using the mechanism of contexts
[FHMV97] and implemented in model checking languages such as in [LRS02];
for our purposes it is not necessary to pursue that analysis here.

Definition 3 (Run, reachable global state, Pi-compliant run) Let S be
a set of global states, π : S × Act → 2S a transition function, Pi a protocol
function for the agent i, and I a set of initial configurations I ⊆ S. A run is
any sequence

g0 γ1 g1 . . . gk−1 γk gk . . . gn−1 γn gn (n ≥ 0)

where g0 ∈ I, each γk (k = 1 . . . n) is a joint action in Act, and gk ∈ π(gk−1, γk).
A global state g is π-reachable if g = gn for some run g0 γ1 g1 . . . gn−1 γn gn.

Let [γ]i denote the action performed by agent i in global transition γ, i.e.,
when γ = (α1, . . . , αn, αE), [γ]i = αi.

A run g0 γ1 g1 . . . gn−1 γn gn is Pi-compliant when [γk]i ∈ Pi(li(gk−1)) for
each k = 1 . . . n. A global state g is Pi-reachable if g = gn for some Pi-compliant
run g0 γ1 g1 . . . gn−1 γn gn.

The set of global states reachable from the initial configurations (0, ε, ·) and
(1, ε, ·) as defined by the transition function π and the protocol functions PS ,
PR and PE , is summarised in Figure 2. The environment component is omitted
for clarity.

Having defined the set of reachable global states, we can apply the tools
of formal logic to the analysis of the scenario by considering an interpreta-
tion of a suitably chosen set of propositional variables. We shall use the set
P = {bit = 0,bit = 1, recbit, recack}. We interpret these on the interpreted
system ISb = (Sπ,∼S ,∼R, h), where Sπ is the set of reachable global states as
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(0, 0) (0-ack, 0)

(1, 1) (1-ack, 1)

(0, ε) (1, ε)

Figure 2: The state space of the bit-transmission system. Columns (respectively rows)
represent global states epistemically equivalent for S (respectively for R). The environment
component is omitted for simplicity.

defined by π and the protocol functions PS , PR and PE , where ∼R and ∼S are
equivalence relations on global states as defined in Section 2, and where h is an
interpretation for the atoms in P such that the following holds:

(ISb, g) |= bit = 0 if lS(g) = 0, or lS(g) = 0-ack

(ISb, g) |= bit = 1 if lS(g) = 1, or lS(g) = 1-ack

(ISb, g) |= recbit if lR(g) = 1, or lR(g) = 0
(ISb, g) |= recack if lS(g) = 1-ack, or lS(g) = 0-ack.

This permits us to represent and check properties of the system directly on
the semantical models. For example, by employing standard temporal connec-
tives on the runs constructed above one can check that:

ISb 6|= recbit→ AF recack

which represents the intrinsic unreliability of the channel (AF here means truth
in some global state in all future branching runs).

Irrespective of the analysis of the dynamic properties of the system, there is
one interesting static epistemic property that is worth observing. By ascribing
knowledge to the agents using the standard [FHMV95] approach (see Section 2),
it can be checked from Figure 2 that

ISb |= recbit→
(
KR (bit = 0) ∨KR (bit = 1)

)
(1)

which confirms our intuition about the model. Furthermore:

ISb |= recack→ recbit (2)

ISb |= recack→
(
KR (bit = 0) ∨KR (bit = 1)

)
(3)

and perhaps most interestingly that

ISb |= recack→ KS

(
KR (bit = 0) ∨KR (bit = 1)

)
(4)

ISb |= recack ∧ (bit = 0)→ KS KR (bit = 0) (5)

(and similarly for the case (bit = 1)). So, if an ack is received by S, then S

is sure that R knows the value of the bit. Intuitively this represents the fact
that although the channel is potentially faulty, if messages do manage to travel
back and forth the protocol is strong enough to eliminate any uncertainty in the
communication. Whereas, for example,

ISb 6|= recack ∧ (bit = 0)→ KR KS KR (bit = 0)
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The properties (1–5) above can be checked by direct calculation on the table
in Figure 2. Properties (3), (4) and (5) can also be derived very straightforwardly
from (1) and (2) in the logic S5n. (3) follows from (1) and (2) by propositional
logic. (4) follows from (3) and the property, easy to check from Figure 2,
that ISb |= recack → KS recack: indeed, suppose ISb |= recbit → ϕ for
any formula ϕ. Then ISb |= recack → ϕ by propositional logic from (2),
and furthermore, since KS is normal, we have both ISb |= KS(recack → ϕ)
and ISb |= KS recack → KS ϕ. With ISb |= recack → KS recack, the
property ISb |= recack → KS ϕ follows immediately. Property (4) is a special
case. Property (5) can be derived in similar fashion. Again, the form of these
derivations surely accords with our intuition about the example. The derivations
will be useful, moreover, when we examine more complicated examples later.

It may be felt that the above is an unnecessarily complicated formalisation
of such a simple example. Indeed, it is possible to construct much simpler
formalisations that will still support the analysis conducted above. For example,
instead of having four different actions for the environment, the unreliability
of the communications channel can be modelled simply by non-determinism
of the transition function π. In this simplified model, the component for the
environment action is redundant (it is always ‘transmit’), and so the simplified
transition function is defined as follows:

π( (0, ε, ·), (sendbit , λ) ) = {(0, ε, ·), (0, 0, ·)},

π( (0, 0, ·), (sendbit , sendack) ) = {(0, 0, ·), (0-ack, 0, ·)},

π( (0-ack, 0, ·), (λ, sendack) ) = {(0-ack, 0, ·)}

It is easy to check that this simplified formalisation (with the same protocol
functions as before) generates exactly the same space of reachable global states
as shown in Figure 2, and so produces the same analysis of the example also.
The more complicated formalisation, however, with four explicit transmission
actions for the environment and a correspondingly more complicated definition
of the transition function π, will be necessary when we consider a more compli-
cated variant of the bit-transmission problem in Section 7 where an additional
controller agent is introduced to monitor the messages that pass along the com-
munication channel. It is for this reason that we show the more complicated
formalisation in this and subsequent sections.

5 Violation of specifications

In the previous section we have assumed that both agents and environment
follow their respective protocols. We now apply the machinery of deontic in-
terpreted systems [LS03] to analyse what happens when the specified protocols
are violated in the bit-transmission problem. We examine in detail only the
possibility that R is faulty. The possibility that S is faulty, and other combi-
nations of faulty R, S and E, can be treated in similar fashion. Specifically, we
shall consider in this section the possibility that R may send acknowledgements
without having received the bit. This is a simple example of an agent doing
something that it should not do. In the section that follows we shall consider
an example where an agent does not do something that it should do.

In order to apply the machinery we modify the framework of the previous
section so that the set of local states of agent i is composed of two disjoint
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sets of green (Gi) and red (Ri) local states, representing correct and incorrect
functioning behaviour respectively. For the sender S, since we are not admitting
(for the purposes of the example) the possibility of faults, its local states are all
green, that is to say, allowed by the protocol. We thus have:

LS = GS = {0, 1, 0-ack, 1-ack}, RS = ∅.

For the case of the environment, we have admitted the possibility of faulty, or
unreliable, behaviour but these ‘faults’ are not violations of the protocol under
examination, and are not therefore regarded as ‘red’ states. Accordingly, all
local states of the environment are also green, and we have:

LE = GE , RE = ∅.

It remains to model the local states of the, now potentially faulty, receiver
R. We can do so by extending the set of local states {0, 1, ε} with at least
one additional element ε-ack representing the (red) local state in which R has
sent an acknowledgement without having received the value of the bit. This is
a reasonable model if we assume that receiver R has at least some rudimen-
tary recall or memory capability that allows its local state to record whether a
sendack message has been sent (not necessarily successfully). In that case, it is
also reasonable to extend the set of R’s local states to include elements 0-ack

and 1-ack as well. It remains to determine whether these two elements should
be classified as red or green local states of R. We will discuss that presently.
In summary, the local states of R for this version of the problem are defined as
follows:

L′

R = {0, 1, ε, 0-ack, 1-ack, ε-ack}

with {0, 1, ε} ⊆ G′
R, {ε-ack} ⊆ R′

R, and states 0-ack and 1-ack still to be
classified into G′

R or R′
R.

How we classify these two remaining local states of R depends on how we
choose to interpret the ack component. One possibility is to view the ack as
indicating that at least one faulty acknowledgement was sent at some time before
the value of the bit had been received. On this reading, the local states 0-ack

and 1-ack would both be classified as red local states for R.
In this paper, however, we will do it differently, and in a more general way.

Here, we will interpret the ack in local states 0-ack and 1-ack for R as indicating
merely that a sendack action has been performed by R—ack in these states
does not signify that this acknowledgement was a faulty one, just that at least
one acknowledgement has been sent. We will let the protocol function P ′

R for
this extended system determine whether local states for R are green or red.
Specifically, we will say that a local state lR for receiver R is ‘green’ (belongs
to G′

R) iff there is a P ′
R-reachable global state (lS , lR, lE), i.e. by Definition 3,

iff (lS , lR, lE) is the final global state of some P ′
R-compliant run of the system

starting at one of the initial states (0, ε) or (1, ε). The green local states G′
R

for R will thus represent those local states of R that could have been reached
in a run in which R behaved according to its protocol at each step; this is the
appropriate notion of ‘green’ for the analysis we want to conduct. The red local
states R′

R are those local states of R which could only be reached by incorrect
functioning behaviour by R.

We turn now to defining the protocol functions P ′
R, P ′

S , P ′
E , and the transi-

tion function π′, of the deontic interpreted system for this version of the problem.
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Since the two sets of local states for S and E have not changed we can keep
the function PS and PE described in Section 4, i.e., we take P ′

S = PS and
P ′

E = PE . But we need to extend the protocol function PR of Section 4 so that
P ′

R is defined also on the local states L′
R of R that were not in LR. We want

to define what we might call a ‘conservative’ extension of the protocol function
PR: the protocol P ′

R should be the same as PR when evaluated on the local
states LR, leaving it only to define its values for the new local states L′

R − LR.
The projection of the new interpreted system onto the green local states should
result in the ‘old’ system IS b of Section 4. So we have:

P ′
R(ε) = PR(ε) = λ, P ′

R(0) = P ′
R(1) = PR(0) = PR(1) = sendack

How shall we define P ′
R for the new local states, and in particular for the (red)

local state ε-ack? Of course, the protocol described in Section 3 does not say :
as presented, it does not cover the possibility of violation, and does not specify
what actions are to be taken if errors (here, the sending of premature acknowl-
edgements) arise. For the sake of concreteness, let us define

P ′
R(0-ack) = P ′

R(1-ack) = sendack , P ′
R(ε-ack) = λ

In fact, in this example, it makes little difference how we define P ′
R for these new

local states. As is perhaps obvious, there is no extension of the bit-transmission
protocol that will recover effectively from the erroneous sending of an acknowl-
edgement by R. The point, however, is that in general it is meaningful to define
protocols on red states as well as green, whenever the protocol makes provision
for remedial or error recovery actions.

The question that we would now like to ask is how the runs of the system
change following the introduction of the new local states for R. Suppose the
system starts as before from the global state g0 = (0, ε, ·) or g0 = (1, ε, ·). It can
either produce an error-free run or R can act faultily at any time during the
evolution. Notice first that R’s faults may indeed inhibit the communication of
the bit. For example, if at any point R sends an ack without having received
the bit, this, if received by S, will make S stop sending messages, preventing
any communication between the agents. This simple observation indicates that
some of the properties that hold in the case of no incorrect behaviour will no
longer be valid here. This should be reflected in the analysis.

Let us explore then how the analysis turns out by applying the same multi-
modal language based on the set of atoms P = {bit = 0,bit = 1, recbit, recack},

and augmented by the modal operators Oi,Ki, K̂
j
i described in Section 2. We in-

terpret formulas on the deontic interpreted system IS ′

b = (S ′π,∼′
R,∼′

S , RO
R

′
, RO

S

′
, h′)

resulting from defining the relations ∼′
S , ∼′

R, RO
S

′
on the set of the π′-reachable

global states S ′π ⊂ LS × L′
R × LE , and with the relation RO

R

′
defined by taking

the green local states for R to be those in any P ′
R-reachable global state.

For the computation of reachable global states S ′
π, it remains to define the

transition function π′ for system IS ′

b, by extending the definition of π in system
ISb. First, we specify the effects of protocol-violating actions in the states Sπ

the original system ISb. For the case where the bit is 0 (the other can be done
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similarly) we shall impose:

π′( (0, ε, ·), (sendbit , sendack ,↔) ) = ( 0-ack, 0-ack, · )

π′( (0, ε, ·), (sendbit , sendack ,→) ) = ( 0, 0-ack, · )

π′( (0, ε, ·), (sendbit , sendack ,←) ) = ( 0-ack, ε-ack, · )

π′( (0, ε, ·), (sendbit , sendack ,−) ) = ( 0, ε-ack, · )

These definitions can be expressed more concisely in various ways3 but we
present them in this long-winded style for ease of reading. Note that in the
second and fourth cases the result state is a faulty (red) state even though the
erroneous acknowledgement sent by R was not received by S.

Now we extend the definition of π so that π′ is defined also on the new states
corresponding to the new local states L′

R − LR.

π′( (0, ε-ack), ·), (sendbit , sendack ,↔) ) = ( 0-ack, 0-ack, · )

π′( (0, ε-ack), ·), (sendbit , sendack ,→) ) = ( 0, 0-ack, · )

π′( (0, ε-ack), ·), (sendbit , sendack ,←) ) = ( 0-ack, ε-ack, · )

π′( (0, ε-ack), ·), (sendbit , sendack ,−) ) = ( 0, ε-ack, · )

Similarly, for further illustration:

π′( (0, 0-ack), ·), (sendbit , sendack , αE) ) = ( l′S , l′R, · )

where l′S = 0-ack, l′R = 0-ack for αE = ↔ or αE = ←; and l′S = 0, l′R = 0-ack

for αE =→ or αE = −.
The remaining cases are expressed similarly and are left to the reader. For

the rest of the system we define π′ to behave in the same way as π in IS b, i.e.,
the projection of π′ onto the components of S and E coincides with π. The
transition function π′ is depicted, in simplified form, in Figure 3.

Given these definitions we can compute the set of π′-reachable states as
before, and then pick out the set of P ′

R-reachable states (the green states for R)
by identifying the P ′

R-compliant runs. The state space for this version of the
problem is shown in Figure 4, again omitting the environment component for
clarity.

The interpretation h′ for the new system is the interpretation h from the
previous section with the interpretation of recbit updated, thus:

(IS ′

b, g) |= recbit if lR(g) = 1, or lR(g) = 0, or

lR(g) = 0-ack, or lR(g) = 1-ack.

We can now investigate whether or not the formulas that held true in the
scenario with no fault remain true here. It is easily checked that

IS ′

b |= recbit→
(
KR (bit = 0) ∨KR (bit = 1)

)
(6)

3In practice we formulate the definition of a transition function either as a (small) Prolog
program or by means of model checking languages such as SMV, and then use those to
generate the sets of reachable global states shown in Figures in this paper. Once again, a
much simpler formalisation of the example can be obtained by modelling the unreliability
of the communication channel by non-determinism of the transition function π′ instead of
dealing explicitly with the four different kinds of environment actions. We will need the more
complicated version when we consider the variant of the example in Section 7.
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Figure 3: The transition function π′ for the bit-transmission system in which R may send
incorrect acknowledgements. The case bit=1 is similar and is omitted. Labels sλ, λs and
ss stand for the joint actions (sendbit , λ), (λ, sendack) and (sendbit , sendack), respectively.
Actions of the environment ActE are omitted for simplicity. The

∗

s annotation indicates actions
by R that do not conform to the protocol PR.

(0, 0-ack) (0-ack, 0-ack)

(1, 1-ack) (1-ack, 1-ack)

(0, ε-ack) (1, ε-ack) (0-ack, ε-ack) (1-ack, ε-ack)

(0, 0)

(1, 1)

(0, ε) (1, ε)

Figure 4: The state space of the bit-transmission system in case R may send incorrect ac-
knowledgements. Columns (respectively rows) represent global states epistemically equivalent
for S (respectively for R). The shaded entries indicate the states that are not P ′

R
-reachable.
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which confirms our intuition about the model. Even if faults occur, if the bit has
been received, R will know its value. It is the mechanism of acknowledgements
that is no longer reliable. Indeed we find in our model that:

IS ′

b 6|= recack→ recbit

IS ′

b 6|= recack→
(
KR (bit = 0) ∨KR (bit = 1)

)

and as expected:

IS ′

b 6|= recack→ KS

(
KR (bit = 0) ∨KR (bit = 1)

)

IS ′

b 6|= recack ∧ (bit = 0)→ KS KR (bit = 0)

Notice however that using the operator OR introduced in Section 2, which repre-
sents what holds in states where R is operating correctly, we have the following:

IS ′

b |= OR( recack→ recbit ) (7)

IS ′

b |= OR( recack→
(
KR (bit = 0) ∨KR (bit = 1)

)
) (8)

More interesting is that a particular form of knowledge also still holds. In-
tuitively if S makes the assumption of R’s correct functioning behaviour, then,
upon receipt of an acknowledgement, it would make sense for it to assume that
R does know the value of the bit. To model this intuition we use the opera-
tor K̂

j
i “knowledge under the assumption of correct behaviour” as presented in

Section 2. This describes the knowledge agent i has if attention is restricted to
states in which j is performing as intended. We refer to [LS03] for more details,
but note that unlike the usual epistemic operators associated with interpreted
systems, K̂

j
i is not an S5 operator, and in particular it does not have axiom

T, i.e., knowledge under assumptions of correct functioning behaviour does not
imply truth. This operator is of particular interest here because it captures
precisely our intuition about the example. We have:

IS ′

b |= recack→ K̂R
S

(
KR (bit = 0) ∨KR (bit = 1)

)
(9)

IS ′

b |= recack ∧ (bit = 0)→ K̂R
S KR (bit = 0) (10)

Again, as in Section 4, we can check these properties by calculation from
the table in Figure 4, and we can derive them syntactically from properties
simpler to evaluate. Check first from Figure 4 that properties (6) and (7) hold.
These are the key properties. From (6) and (7), and OR normal, we easily
derive (8). To derive (9) and (10) we modify the argument used in Section 4
allowing now for the presence of OR. Suppose that the following generalised
form of property (8) is valid in the model: IS ′

b |= OR( recack → ϕ ). Since
KS is normal, we get IS ′

b |= KS OR( recack → ϕ ). The general property

KS OR ϕ → K̂R
S ϕ is valid in the class of all deontic interpreted systems (see

the summary of the logic in Section 2 and [LS03] for details), so we have IS ′

b |=

K̂R
S ( recack → ϕ ), and hence also IS ′

b |= K̂R
S recack → K̂R

S ϕ because K̂R
S is

normal. Now IS ′

b |= recack→ KS recack still holds, as is easily checked from

Figure 4, and the general property KS ϕ → K̂R
S ϕ of the logic (see Section 2)

gives IS ′

b |= recack→ K̂R
S recack. So we get IS ′

b |= recack→ K̂R
S ϕ, of which

(9) is a special case. The derivation of property (10) can be obtained in similar
fashion.
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To summarise: we have modified the scenario of the bit-transmission prob-
lem, relaxing slightly the assumptions of correct functioning behaviour that
hold true for it. In particular, we have allowed for the possibility that one of
the agents, the receiver R, may violate the protocol by performing an action it
should not perform according to the protocol. We have seen that some key prop-
erties of the system then no longer hold. In particular under the assumptions
we have studied, S will never know whether or not R knows the value of the
bit; at best S can know this only under the assumption of correct functioning
behaviour for R4. This is an intuitive result that was validated semantically
on the model, and derived syntactically from some simple key properties of the
model.

In specifying the extended protocol, a value of P ′
R for the new local states

of R had to be chosen. It seems intuitively obvious that no specification of
P ′

R for these states would allow us to recover the key property we require of
the protocol. In other words, it should be possible to show that recack ∧
(bit = 0)→ KS KR (bit = 0) is not valid in IS ′

b no matter how we extend the
definition of PR to cover the new local states of R—there is no protocol that
will ensure recovery of communication once a violation has occurred.

How could the system recover after R has sent an incorrect ack? It seems as
though the only way to proceed is for the two agents to re-synchronise, perhaps
with a message from R signalling the failure of all communication so far with a
request to restart the protocol from scratch. Clearly this request could per se
fail to reach S, so we would need to require S to acknowledge the request to R.
So the roles of S and R would need to be swapped before communication can
be resumed. We see no conceptual difficulty in modelling this setting with the
tools presented so far.

6 An error correcting protocol

Consider again the bit-transmission problem as modelled in Section 4, but as-
sume now that R can be faulty in a different way, in that it may fail to send
acknowledgements when in fact it has received the bit. To what extent would
this second kind of fault compromise communication, and are there ways of re-
covering from it? In line with the development of the previous section, let us
define the elements of the model for this new setting: sets local states, protocols,
the transition function, reachable global states, and the classification of states
into green (protocol-compliant) and red.

The set of local red and green states for S and E are the same as in the
models of Sections 4 and 5. The local states for R are as follows:

L′′

R = {0, 1, ε, 0-f, 1-f}, G′′

R ⊇ {0, 1, ε}

Here f is intended to indicate that the bit has been received but R has failed
(at least once) to send an acknowledgement. It seems obvious that the red local

4In the case where the communication channel operates symmetrically in both directions,
i.e., in the case where either the channel loses messages in both directions or both messages
get through, the sender S knows that receiver R knows the value of the bit when S receives
an acknowledgement, even without assuming correct behaviour by R. This is because if S

receives an acknowledgement, its transmission of the bit must also have got through to R.
The reader may care to re-work the analysis for the simpler case where ActE = {↔,−} to
check that the formal model confirms this informal argument.
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states for R are then {0-f, 1-f} but for the sake of following a general method
we will let the protocol function and the transition function pick these out when
we compute the protocol-compliant runs.

The protocol functions we use for S and E are again the ones we employed
in Sections 4 and 5; what changes is the protocol function for agent R. Again,
we wish to define an extension P ′′

R of PR that has the same values as PR for the
original (green) local states LR and specifies in addition how R should behave
when in one of the new (red) local states L′′

R − LR. The transition function
π′′ will specify the results of actions by R in these new states and of protocol-
violating actions by R in the original (green) local states LR. In this example,
unlike the one of Section 5, there is an obvious way of extending the protocol
so that we obtain error-correcting behaviour in case a fault has occurred: if R

has failed to send an acknowledgement, we simply require that R does so at the
next round. Formally:

P ′′

R(ε) = λ, P ′′

R(0) = P ′′

R(1) = sendack , P ′′

R(0-f) = P ′′

R(1-f) = sendack .

So in this case, it is easy to spell out the conditions for recovery from a red state.
To check that recovery is indeed obtained we evaluate formulas on the evolution
of the deontic interpreted system just constructed. It remains to define the
transition function of the system, so that we can compute the set of reachable
global states.

As usual, we extend the definition of π for the original model, by considering
first the conditions under which we move to one of the new local states for
agent R (i.e., one of the states L′′

R − LR), and then the outcome of transitions
originating from these local states. For all αE ∈ ActE , unless stated otherwise:

π′′( (0, 0, ·), (sendbit , λ, αE) ) = (0, 0-f, ·)

π′′( (0-ack, 0, ·), (λ, λ, αE) ) = (0-ack, 0-f, ·)

π′′( (0, 0-f, ·), (sendbit , λ, αE) ) = (0, 0-f, ·)

π′′( (0, 0-f, ·), (sendbit , sendack , αE) ) = (0-ack, 0-f, ·) (αE ∈ {↔,←})

π′′( (0, 0-f, ·), (sendbit , sendack , αE) ) = (0, 0-f, ·) (αE ∈ {→,−})

The definitions for bit=1 are analogous. For completeness, the remaining cases
are:

π′′( (0-ack, 0-f, ·), (λ, λ, αE) ) = (0-ack, 0-f, ·)

π′′( (0-ack, 0-f, ·), (λ, sendack , αE) ) = (0-ack, 0-f, ·)

With this information, we can compute the set of π′′-reachable global states
and pick out from them the P ′′

R-reachable ones. Once again we do not show the
entire computation here, but simply summarise the results in Figure 5, with the
environment component omitted as usual.

Following what is by now our standard procedure we can determine the
corresponding deontic interpreted system IS ′′

b and interpret the formulas of in-
terest. The interpretation function h′′ for atoms is as before, adjusted to cover
the newly introduced global states: h′′ is h with the obvious extension to make
atom recbit true also in all global states g with lR(g) = 0-f or lR(g) = 1-f . It

17



(0, 0-f) (0-ack, 0-f)

(1, 1-f) (1-ack, 1-f)

(0, 0) (0-ack, 0)

(1, 1) (1-ack, 1)

(0, ε) (1, ε)

Figure 5: The state space of the bit-transmission system in case R may fail to send ac-
knowledgements when supposed to do so. Columns (respectively rows) represent global states
epistemically equivalent for S (respectively for R). The shaded entries indicate the states that
are not P ′′

R
-reachable.

is easily confirmed that we have all of:

IS ′′

b |= recack→
(
KR (bit = 0) ∨KR (bit = 1)

)

IS ′′

b |= recack→ KS

(
KR (bit = 0) ∨KR (bit = 1)

)

IS ′′

b |= recack ∧ (bit = 0)→ KS KR (bit = 0)

Indeed, these follow immediately by checking in Figure 5 that

IS ′′

b |= recbit→
(
KR (bit = 0) ∨KR (bit = 1)

)

IS ′′

b |= recack→ recbit

The rest then follows by the same syntactic derivation as in Section 4.
Naturally, assuming correctness of R’s behaviour does not invalidate any of

the above, so that we have also, e.g.:

IS ′′

b |= recack ∧ (bit = 0)→ K̂R
S KR (bit = 0)

Indeed, KS ϕ → K̂R
S ϕ is valid in the class of all deontic interpreted systems:

Ki ϕ→ K̂
j
i ϕ is a property of the logic for all pairs of agents i and j (see [LS03]

for details).
This example demonstrates how the formalism of deontic interpreted systems

deals with two rather intuitive points. First, not all incorrect behaviours by the
participating agents necessarily compromise the validity of crucial properties of
the system being modelled. Secondly, it is possible and useful to reason about
these incorrect error states and devise protocols that attempt recovery from
them.

7 Control

In the previous section it was possible to devise a simple error-correcting pro-
tocol that, if followed, ensures that the system will get back to a state in which
all the agents are in a green local state. This is not always possible, of course.
Given a system in which agents cannot be assumed to behave in accordance
with the specified standards of behaviour or to follow the prescribed protocols,
it is natural to seek additional control or enforcement mechanisms that can be
introduced to encourage or even force agents to comply. Of these the simplest
(but by no means the only) strategy is to look for a way of constraining the
agents’ behaviour so that the possibility of violation is simply eliminated. In
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the present example, for instance, we could add an additional filter on the trans-
mission of messages from R to block out those that would cause violations of
the protocol. If successful, we would have an example of an enforcement strat-
egy called ‘regimentation’ in [JS93]. Discussion of other possible strategies is
beyond the scope of this paper.

So let us consider another variation of the bit-transmission problem. This
time we will assume that R may develop faults of either of the two kinds analysed
in Sections 5 and 6. We also introduce a third agent C into the system, a
controller whose function is to constrain the behaviour of R. The controller
agent C is a kind of ‘regimentation’ device. As we understand it, it is a (simple)
example of what is called an ‘inter-agent’ in [RAMN+98] and a ‘controller’ in
[MU00].

C’s actions are the following:

ActC = {allow , block}.

These actions provide an additional filter on the attempted actions of receiver R.
The block action will be used to override any transmit action of the environment
when R attempts to send an erroneous acknowledgement; allow allows a message
from R to enter the transmission channel to S.

The controller C must be able to detect violations of the protocol by R.
However, it is a fundamental assumption of the formalism of interpreted systems
that all local states are private and only actions are public. This is to model
what actually happens in distributed and multi-agent systems. The local state of
an agent i is invisible to a different agent j, unless there are actions by means of
which agent i communicates selected elements of its local state to agent j. And
likewise for the local state of the environment. Given this, the controller may
block R’s messages only on the basis of observations of the actions performed.
For this example, the behaviour of C can be modelled by giving it two local
states, ok and ok, say. We shall not model (in this paper) the possibility that
the controller C fails to act correctly, so both of its local states are green:

GC = LC = {ok, ok}, RC = ∅.

We use ok for the state where C is allowing messages from R to enter the
communication channel, and ok for the state where C has detected an attempted
violation by R and is thus blocking messages from R. The protocol of C is
simply:

P ′′′
C (ok) = allow , P ′′′

C (ok) = block .

It remains to specify how the controller’s local state switches from ok to ok

bearing in mind that the local state of R is invisible to C. That will be done
when specifying the transition function of the system.

The protocols for S and E are the same as those we have employed so far.
As for R, we are now assuming it can develop both kinds of faults discussed
in previous sections. So, in this version of the example its local states are the
following:

L′′′
R = {0, 1, ε, 0-ack, 1-ack, ε-ack, 0-f, 1-f, 0-ack-f, 1-ack-f}

where the states {0, 1, ε} are green as usual, and where we allow the protocol
and transition functions to determine which of the remaining states are green
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(reachable by a protocol-compliant run) and which are red. As before, we will
read ack as signifying that an acknowledgement (not necessarily faulty) has
been sent by R, and f that at least one erroneous failure to send an acknowl-
edgement by R has occurred. It is possible to devise models with much simpler
representation of R’s red local states but we will work with this larger one as it
is clearer how it combines elements from the two previous analyses.

For the protocol function for R, we want P ′′′
R to be the same as PR when

evaluated on the original (green) local states LR, as usual, and to have the
error-correcting behaviour discussed in Section 6 for the local states 0-f and
1-f . For these two states, P ′′′

R has the value of P ′′
R. We also want this behaviour

for the local states 0-ack-f and 1-ack-f . For the remaining states 0-ack, 1-ack,
ε-ack, the value of P ′′′

R can be chosen arbitrarily since again nothing of interest
will depend on this. For concreteness, we will follow the choice in Section 5. So
we have:

P ′′′
R (ε) = λ, P ′′′

R (0) = P ′′′
R (1) = sendack ,

P ′′′
R (0-f) = P ′′′

R (1-f) = P ′′′
R (0-ack-f) = P ′′′

R (1-ack-f) = sendack ,

P ′′′
R (0-ack) = P ′′′

R (1-ack) = sendack , P ′′
R(ε-ack) = λ

Note that while C is expected to block erroneous sendack messages when R is in
the critically faulty states (those with ack), it cannot prevent R from entering
these or any other faulty states.

We now consider the transition function of this system. In this case both
global states and joint actions are 4-tuples. Let us first consider agent C. The
controller may block R’s messages only on the basis of observations of the joint
actions performed. In this example, we get the desired effect by stipulating
that C starts in state ok (blocking) and remains in state ok until the successful
transmission of a bit from S to R is observed, i.e., given our assumptions about
the communication channel, until there occurs a sendbit action by S when the
environment action is either ↔ or →. When this happens, C switches to local
state ok, and it remains in that state for the rest of the run. How do we know
that this protocol for C does indeed give the desired effect? It is precisely the
point of the paper to demonstrate how such claims can be expressed and verified
formally.

It is clearer (and shorter) to define π′′′ in terms of another function π′′′
+ which

is a combination of the effects of π′ and π′′ defined in earlier sections, extended
to cover the new local states for R containing both elements ack and f . π′′′

+

corresponds to the transition function of the system without the presence of the
controller agent C. We sketch its definition presently. The definition of π′′′ is
(for all αR ∈ ActR, αS ∈ ActS , αE ∈ ActE):

π′′′( (lS , lR, ok, lE), (sendbit , αR, block ,−) ) = π′′′

+ ( (lS , lR, lE), (sendbit , αR,−) ) : ok

π′′′( (lS , lR, ok, lE), (sendbit , αR, block ,←) ) = π′′′

+ ( (lS , lR, lE), (sendbit , αR,−) ) : ok

π′′′( (lS , lR, ok, lE), (sendbit , αR, block ,→) ) = π′′′

+ ( (lS , lR, lE), (sendbit , αR,→) ) : ok

π′′′( (lS , lR, ok, lE), (sendbit , αR, block ,↔) ) = π′′′
+ ( (lS , lR, lE), (sendbit , αR,→) ) : ok

π′′′( (lS , lR, ok, lE), (αS , αR, allow , αE) ) = π′′′

+ ( (lS , lR, lE), (αS , αR, αE) ) : ok

where (lS , lR, lE) : lC represents the 4-tuple (lS , lR, lC , lE).
The key things to note are (1) when the controller C is blocking the trans-

mission of messages from the receiver, the effects of environment actions ↔
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and → are those of ← and −, respectively; and (2) a successful transmission of
sendbit from the receiver (cases 3 and 4 above) switches the controller C’s local
state from ok to ok.

It remains to define the function π′′′
+ . We wish to combine the effects of π′

and π′′ from previous sections. So, for the case where the local state lR ∈ LR

and the action αR of R belongs to PR(lR), the value of π′′′
+ is the value of π.

For the case where lR ∈ L′
R and αR ∈ P ′

R(lR) (which by construction subsumes
the previous case of LR also) the value of π′′′

+ is the value of π′. And for the
case where lR ∈ L′′

R and αR ∈ P ′′
R(lR) (which also subsumes the first case LR)

the value of π′′′
+ is the value of π′′. The remaining cases are those dealing with

the new local states. Various concise formulations are possible but it is perhaps
clearest to present the definition here in the form of a table (with corresponding
entries for the case bit=1). The ∗ in some entries indicates that the state remains
unchanged.

λ, λ sendbit , λ sendbit , λ λ, sendack λ, sendack
ActE ← − →↔ ←↔ → −

(0, ε) ∗ (0, 0)

(0, 0) (0, 0-f) (0, 0-f)

(0, ε-ack) ∗ (0, 0-ack)

(0, 0-ack) (0, 0-ack-f) (0, 0-ack-f)

(0, 0-ack-f) ∗ ∗

(0-ack, ε) ∗ (0-ack, ε-ack) (0-ack, ε-ack)

(0-ack, 0) (0-ack, 0-f) (0-ack, 0-ack) (0-ack, 0-ack)

(0-ack, ε-ack) ∗ ∗ ∗

(0-ack, 0-ack) (0-ack, 0-ack-f) ∗ ∗

(0-ack, 0-ack-f) ∗ ∗ ∗

sendbit , sendack sendbit , sendack sendbit , sendack sendbit , sendack
− → ← ↔

(0, ε) (0, ε-ack) (0, 0-ack) (0-ack, ε-ack) (0-ack, 0-ack)

(0, 0) (0, 0-ack) (0, 0-ack) (0-ack, 0-ack) (0-ack, 0-ack)

(0, ε-ack) ∗ (0, 0-ack) (0-ack, ε-ack) (0-ack, 0-ack)

(0, 0-ack) ∗ ∗ (0-ack, 0-ack) (0-ack, 0-ack)

(0, 0-ack-f) ∗ ∗ (0-ack, 0-ack-f) (0-ack, 0-ack-f)

We may now move to consider the deontic interpreted system

IS ′′′

b = (S ′′′π ,∼′′′
S ,∼′′′

R ,∼′′′
C , RO

S

′′′
, RO

R

′′′
, RO

C , h′′′)

generated by the system above. The set of reachable global states S ′′′
π ⊂ LS ×

L′′′
R ×LC×LE can be computed from the initial states (0, ε, ok, ·) and (1, ε, ok, ·)

using the transition function π′′′, with the green (P ′′′
R -reachable) states picked

out as usual. The resulting set of reachable global states is summarised in
Figure 6. Given that the local states of C do not affect the epistemic states of
S and R, which is our prime object of interest in this analysis, we leave out C’s
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(0, 0-ack-f) (0-ack, 0-ack-f)

(1, 1-ack-f) (1-ack, 1-ack-f)

(0, 0-f) (0-ack, 0-f)

(1, 1-f) (1-ack, 1-f)

(0, 0-ack) (0-ack, 0-ack)

(1, 1-ack) (1-ack, 1-ack)

(0, ε-ack) (1, ε-ack) (0-ack, ε-ack) (1-ack, ε-ack)

(0, 0) (0-ack, 0)

(1, 1) (1-ack, 1)

(0, ε) (1, ε)

Figure 6: The state space of the ‘regimented’ bit-transmission system in case R may both
fail to send acknowledgements when supposed to, and send acknowledgements when supposed
not to. Columns (respectively rows) represent global states epistemically equivalent for S

(respectively for R). The shaded entries indicate the states that are not P ′′′

R
-reachable. The

two entries struck out are those eliminated by introduction of the controller C.

component from the table as we have done for E earlier5. The table also shows
which global states are eliminated (made unreachable from the initial states) by
introduction of the regimentation mechanism C. Finally, we need to adjust the
interpretation function h′′′ in the obvious way so that the atom recbit is true
in all global states g except those with lR(g) = ε or lR(g) = ε-ack.

Let us now go back to the formulas we analysed before and check whether
they hold true on IS ′′′

b . We should expect that the introduction of the controller
C eliminates the possibility of incorrect acknowledgements reaching S. This is
indeed what we find by analysing the formulas. It is easy to check from Figure 6
that:

IS ′′′

b |= recbit→
(
KR (bit = 0) ∨KR (bit = 1)

)

IS ′′′

b |= recack→ recbit

from which follows, by exactly the same syntactic derivations as in Section 4:

IS ′′′

b |= recack→
(
KR (bit = 0) ∨KR (bit = 1)

)

IS ′′′

b |= recack→ KS

(
KR (bit = 0) ∨KR (bit = 1)

)

IS ′′′

b |= recack ∧ (bit = 0)→ KS KR (bit = 0)

These can also be confirmed by direct calculation from the table in Figure 6.
Once again, it is possible to construct other formalisations of the example, for

instance, corresponding to the cases where the receiver R has no recall/memory
capability. We leave it to the reader to confirm that an analysis in the same
style works also with these (simpler) formalisations.

8 Conclusions

We have presented three variations of the bit-transmission problem to illus-
trate, and evaluate, how the machinery of deontic interpreted systems provides

5More precisely, the table represents the quotient set of the set of reachable states with
respect to an equivalence relation defined by (lS , lR, lC , lE) ∼ (l′

S
, l′

R
, l′

C
, l′

E
) iff lS = l′

S
and

lR = l′
R

.
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a means of analysing violations and (certain) enforcement mechanisms. Clearly
the example is trivial compared to the complex multi-agent systems applications
referred to in the introductory section. Nevertheless, it does exhibit many of
the features we shall have to confront in these complex examples. The fact that
we have been able to carry out a detailed formal analysis of different kinds of
faults, and of the effects of enforcement and control mechanisms, encourages us
to believe that useful tools and methods can be developed on this basis.

Apart from examining further examples, we are pursuing three main lines
of development. First, we have identified a number of technical questions con-
cerning what we called ‘conservative’ extensions of protocol functions to include
red states. Generally, we can find ways of structuring the definition of protocol
functions and system transition functions to make them easier to construct and
maintain as the applications become more complex. Space limitations prevented
us from discussing alternative styles of definitions in this paper. Second, we are
investigating an extended formalism which colours transitions red or green and
not just states, combining the formalism of interpreted systems with the con-
struction of a dynamic logic of permission reported in [Mey96]. Third, and
perhaps most important, is the question of how these methods will scale up to
deal with realistic examples with many agents and many kinds of faults.

It is fortunate that in the bit transmission problem it is possible to derive
the properties of interest syntactically from very simple properties that are easy
to check semantically on the model. This will not always be the case. We do
believe, however, that computational support can be provided to enable the
analysis of large, realistic problems. We have been experimenting with model
checking software for this purpose. Specifically, we use the NuSMV temporal
model checker [CCGR99] to compute the set of runs of the system. From these
we extract the set of reachable global states, and feed them into Akka

6, a
software system for testing the validity of multi-modal formulas in a Kripke
model, to verify the epistemic properties of interest. Preliminary experiments
using this method are reported in [LRS02]. We are also experimenting with
the use of action description formalisms of the kind found in AI to make the
definition of protocol and system transition functions more concise.
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