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Abstract.
We show how it is possible to pair the NuSMV model checker

with Akka, a software platform used to check validity of proposi-
tional modal formulas, to verify properties of multi-agent systems
formalised on interpreted systems semantics. We demonstrate this
by analysing three variants of the bit-transmission problem.

1 INTRODUCTION

Artificial Intelligence and Model Checking are areas of research with
traditionally little or no interaction with one another. Artificial Intel-
ligence is concerned with the study and implementation of systems
exhibiting complex, human-like behaviour, while Model Checking
studies the development and practice of formal techniques leading to
the automatic verification of properties of software.

It is only recently, partly thanks to the emphasis on distributed
multi-agent systems, that the AI arena has become more interested
in the issue of formally verifying properties of a computational sys-
tem. Indeed, over the past 15 years a shift seems to have taken place
among researchers interested in Logic for AI from advocating the use
of formal logic as a computational mechanism—as it is used notably
in logic programming—to the idea of using mathematical logic as
a formal language to specify and reason about complex distributed
systems, perhaps intelligent agents. This shift of objectives has been
matched by a slow but persistent change in the techniques that have
been developed. One of the areas in which this shift is perhaps most
evident is that of multi-agent systems. Much of the formal work in the
area has focused on investigations of the suitability of particular log-
ics, often modal logics, to the task of modelling complex attributes of
intelligent agents, such as their knowledge, beliefs, desires, and their
temporal evolution. The rationale is to use such logics as specifica-
tions for intelligent agents.

The field of intelligent agents has made considerable progress in
the past few years, and applications have recently been deployed in
areas such as agent-mediated e-commerce. It is therefore natural that
researchers have recently become interested in verifying that agents
comply with their specifications.

A converse discovery path seems to have occurred in the more for-
mal areas of software engineering, where AI concepts—such as those
of defaults and non-monotonicity—have increasingly been receiving
attention. We do not discuss this here; rather, we report on possible
uses in AI of model checking technology.

The rest of the paper is organised as follows. In the next section,
we motivate and introduce the idea of model checking interpreted
systems. In Section 3 we present the formal apparatus that we shall

be using throughout the paper. Section 4 presents the main results in
this line of investigation. We conclude in Section 5 by evaluating the
results and comparing our work to recent developments.

2 MODEL CHECKING INTERPRETED
SYSTEMS

Researchers involved in the formalisation of intelligent agents have
investigated temporal extensions of particular modal logics used
to model intensional notions such as knowledge or belief. Several
modal logics have been proposed to deal with these concepts, and
properties such as completeness, decidability, and computational
complexity have been explored [4]. In this line of work the ques-
tion of verifying whether a system complies with a specification is
expressed by the formula: �����
where

�
is a logical theory or a set of formulas that represent the

specification in the language of the logic,
�

is a logical formula en-
coding the property that one would want to check, and

�
is the deriv-

ability relation of the logic.
The above is a syntactical, or proof-theoretical, check. If semanti-

cal considerations apply [16], the check above can be re-phrased in
semantical terms by evaluating the validity of the formula:

�	�
 �
where

�
is a class of models representing the specifications,

�
a

logical formula representing the property to be checked, and
� 


the
symbol of modal validity on a class of models. If the formalism un-
der investigation enjoys strong completeness the two properties are
equivalent. This allows for the possibility of using different tools
(theorem provers, or semantical checkers, etc) to check the validity
of the relations above in an automatic way.

This paradigm is certainly sound, but if we intend to use it to anal-
yse concrete scenarios, we may find that it offers too coarse a level
of detail, even in principle. Indeed, in the traditional approach, there
is little way of expressing that a particular functioning protocol of a
multi-agent system, or a program, generates a semantical class

�
,

or that it can be represented in a complete way by a set of formulas�
. On the contrary, in the literature either

�
or
�

are taken as the
starting points in the analysis. But by doing so we fail to represent
the protocols these agents are running, the actions they perform, etc.

One way to address the problem of representing both levels—
the protocols, or programs, and the semantical structures that these
generate— is through the techniques of model checking. While this



has been done successfully in a wide range of cases, it is not a truly
satisfying solution for the AI researcher. The problem is that the lan-
guage of temporal logic is too weak to represent typical AI proper-
ties, such as knowledge, beliefs, desires, goals, etc. On the one hand
we have fully-fledged model checkers only able to represent a tempo-
ral language; on the other, we have complex and refined multi-modal
logics to represent intensional aspects of agency that lack verifica-
tion tools. It seems to us that any attempt of integration of these
two areas is worth pursuing. This observation is not new by any
means: research along these lines has already appeared for instance
in [1, 7, 14, 13].

In this paper we attempt to contribute to this line of research by
trying to bring together interpreted systems and model checking on a
concrete and well-defined scenario—a variant of the bit transmission
problem.

The formalism of interpreted systems [4] is powerful enough to
be able to handle, at least in principle, both the temporal epistemic
evolution of a system by means of a modal language, and a low level
description of the protocols the agents are running. Interpreted sys-
tems have been successfully explored by Fagin, Halpern, Moses, and
Vardi and colleagues in more than 15 years of work. Crucially, in this
line of research not only has the temporal evolution of epistemic and
doxastic properties been explored, but, more importantly, complete
axiomatisations of these have been proven to correspond to concrete
classes of MAS—such as synchronous systems, asynchronous sys-
tems [5], perfect recall [6], broadcasting [9], etc.

In this paper we are only concerned with checking epistemic and
deontic properties of MAS. In particular, as is known, for a rather
large class of problems a static analysis is sufficient to represent key
properties of the system. We shall see later that this is the case for
example in a variation of the bit transmission problem. In this case,
even though we do not use the full power of model checking, it can
still be used to help prove epistemic properties of a formalisation.
The way we tackle the problem in this paper is as follows (see Fig-
ure 1).

1. We study our scenario formally using the formalism of deontic
interpreted systems, an extension of interpreted systems designed
to represent correct functioning behaviour of the agents as well as
epistemic states.

2. We code this representation in NuSMV and feed it to a NuSMV
checker [3].

3. We use the NuSMV checker to produce the set of runs of the sys-
tem, and deduce from there the set of reachable states of the sys-
tem (the idea that it suffices to consider the set of reachable states
when model checking a finite state system has already been made
in [15]).

4. We feed these into the modal checker Akka (after some simple
cosmetic operations on the format of the states)

5. We use the Akka front-end to check the epistemic properties of
the scenario.

The scenario examined here was investigated (together with a
more complex variation) in [12] without model checking techniques.

3 PRELIMINARIES

We present here the main definitions for the notation we are going
to use in this paper, as from [4, 12]. Due to space consideration we
are forced to assume working knowledge with some of the technical
machinery presented there.

NuSMV checker

AKKA checkerDIS representation

Set of reachable states

Figure 1. The methodology employed.

3.1 Interpreted Systems

Consider � agents in a system and � non-empty sets
�������������	��


of local states, one for every agent of the system, and a set of
states for the environment

��
. Elements of

���
will be denoted by� ��� ��� � � ��� � ���� �������

. Elements of
� �

will be denoted by
� � � ���� �������

.
A system of global states for � agents � is a non-empty subset of

a Cartesian product
����������������
���� �

. When � 
 � � ����������� � 
!� � �#"
is a global state of a system � ,

� � � � " denotes the local state of agent $
in global state � . � � � � " denotes the local state of the environment in
global state � .

An interpreted system of global states is a pair %'& 
(� � �*) " where
� is a system of global states and

),+ �.-0/21 is an interpretation
function for a set of propositional variables 3 .

Systems of global states can be used to interpret epistemic modal-
ities 4 � , one for each agent.

� %'& � � " � 
 4 � � if for all � � we have that
� � � � " 
 � � � � � " im-

plies
� %'& � � � " � 
 � .

Alternatively one can consider generated models
� � �	5 � ���������5 
 �	) "

of the standard (Kripke) form, where the equivalence rela-
tions
5 �

are defined on equivalence of local states, and then interpret
modalities in the standard modal tradition (e.g. [2, 8]). The resulting
logic for modalities 4 � is �#6 
 ; this models agents with complete
introspection capabilities and veridical knowledge.

3.2 Deontic interpreted systems

The notion of interpreted systems can be extended to incorporate the
idea of correct functioning behaviour of some or all of the compo-
nents [11].

Given � agents and ��798 non-empty sets : �;� : � ��������� : 
 , a de-
ontic system of global states is any system of global states defined
on
� �(< : � ���������'��
 < : 
 . : � is called the set of green states

for the environment, and for any agent $ , : � is called the set of green
states for agent $ . The complement of : � with respect to

��
(re-

spectively : � with respect to
� �

) is called the set of red states for the
environment (respectively for agent $ ).

The terms ‘green’ and ‘red’ are chosen as neutral terms, to avoid
overloading them with unintended readings and connotations. The
term ‘green’ can be read as ‘legal’, ‘acceptable’, ‘desirable’, ‘cor-
rect’, depending on the context of a given application.
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Deontic systems of global states are used to interpret modalities
such as the following

� %'& � � " � 
�� � �
if for all � � we have that

� � � � � "�� : � implies� %'& � � � " � 
 � .

� � �
is used to represent that

�
holds in all (global) states in which

agent $ is functioning correctly. Again, one can consider generated
models

� � �'5 �����������'5 
 ����� � �����������	�
 �	) " , where the equivalence re-
lations are defined as above and the relations

�
��
are defined by

� �	�� � � if
� � � � � "�� : � , with a standard modal logic interpretation

for the operators
� �

.
Knowledge can be modelled on deontic interpreted systems in the

same way as on interpreted systems, and one can study various com-
binations of the modalities such as 4 � �� , �� 4 � , and others. An-
other concept of particular interest is knowledge that an agent $ has
on the assumption that the system (the environment, agent � , group
of agents � ) is functioning correctly. We employ the (doubly rela-
tivised) modal operator �4

�� for this notion, interpreted as follows:

� %'& � � " � 
 �4
�� � if for all � � such that

� � � � " 
 � � � � � " and� � � � � "�� : � we have that
� %'& � � � " � 
 � .

Uses of this modal operator will be illustrated in the examples to
follow.

3.3 Protocols

Interpreted systems can be extended to deal with temporal evolution:
consider a set of runs over global states

� 
���� +�� - ��� , where
a run

�
is defined as a function from time to global states and time

ranges over natural numbers [4].
We assume that for every agent of the system and for the envi-

ronment there is a set ����� � and ����� � of actions. For example, in a
message passing system, send(x,i,j) could mean that agent $
sends a message � to agent � ; this action would then be in ����� � .

A protocol 3 � for agent $ is a function from the set
� �

of local
states to a non-empty set of actions ����� � (notice that, considering
sets of actions, we allow nondeterminism in the protocol):

3 � + � � - /! #"%$'&
We can then model the evolution of the system by means of a

transition function ( from global states and actions to global states:

( + � � ������- �
where � 
 ��� ������� � � 
�� � � and ����� 
 ����� � ������� � ����� 
#� ����� � .

4 THE BIT TRANSMISSION PROBLEM

In the rest of the paper we test the methodology of Figure 1 on three
variants of the bit transmission problem.

4.1 The basic version

The bit-transmission problem [4] involves two agents, a sender � ,
and a receiver

�
, communicating over a faulty communication chan-

nel. The channel may drop messages but will not flip the value of a
bit being sent. � wants to communicate some information—the value
of a bit for the sake of the example—to

�
. We would like to design

a protocol that accomplishes this objective while minimising the use
of the communication channel.

One protocol for achieving this is as follows. � immediately starts
sending the bit to

�
, and continues to do so until it receives an ac-

knowledgement from
�

.
�

does nothing until it receives the bit; from
then on it sends acknowledgements of receipt to � . � stops sending
the bit to

�
when it receives an acknowledgement. Note that

�
will

continue sending acknowledgments even after � has received its ac-
knowledgement. Intuitively � will know for sure that the bit has been
received by

�
when it gets an acknowledgement from

�
.
�

, on the
other hand, will never be able to know whether its acknowledgement
has been received since � does not answer the acknowledgement.

We assume fairness ([4], p.164) for the communication channel:
every message that is repeatedly sent in the run is eventually deliv-
ered.

What we would like to do is to check mechanically that the pro-
tocol above guarantees that when sender receives the acknowledge-
ment it then knows (in the information-theoretic sense defined in Sec-
tion 3.1) that the receiver knows the value of the bit. In order to do
this, first we model the scenario in the interpreted systems paradigm.

4.1.1 Interpreted Systems analysis

There are three active components in the scenario: a sender, a re-
ceiver, and a communication channel. In line with the spirit of the
formalism of interpreted systems, it is convenient to see sender and
receiver as agents, and the communication channel as the environ-
ment. Each of these can be modelled by considering their local states.
For the sender � , it is enough to consider four possible local states.
They represent the value of the bit � is attempting to transmit, and
whether or not � has received an acknowledgement from

�
. Three

different local states are enough to capture the state of
�

: the value
of the received bit, and ) representing a circumstance under which no
bit has been received yet. So we have

�+* 
,�.- � 8 � �/- �10 �32 " � � 8 �10 �32 " � �0�+4 
,�!- � 8 � )�� �

To model the environment we consider four different local states,
representing the possible combinations of messages that have been
sent in the current round, by � and

�
, respectively. The four local

states are:

� � 
,� � � ��� " � �65.7 �98;:�$<� ��� " � � � � 5�7 �98 0 �32 " � �65�7 �98;:�$<� � 5�7 �98 0 �32 " � �

where ‘.’ represents configurations in which no message has been
sent by the corresponding agent. These four local states are not
strictly necessary for the examples analysed in this paper but they
are used in other variants and so we retain them.

Global states for the system : are defined as :>= �*�� �4�� � � .
A global state � 
 � � * � � 4 � � ��" gives a snapshot of the system at a
given time. Note that not all triples of the product are admissible in
principle, but only those that can be reached in a run of the protocol,
as will be explained below.

Consider then a set of actions ����� � for every agent in the system
and the environment.

����� * 
��;?A@�B�CEDAF'G���H " � ?3@�B�CEDAF'G���I " ��J � � ����� 4 
��E?3@�B�CEKEL�M ��J � �

Here
J

stands for no action (‘no-op’).
The actions ����� � for the environment correspond to the transmis-

sion of messages between � and
�

on the unreliable communication
channel. To make the example sufficiently rich, we will assume that
the communication channel can transmit messages in both directions
simultaneously, and that a message travelling in one direction can get
through while a message travelling in the opposite direction is lost.
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(Alternatively, think of a pair of unidirectional communication chan-
nels whose faults are independent of one other.) The set of actions
for the environment is

����� � 
,� ��� ��� �#- � � � �
� �

��� � represents the action in which the channel transmits any mes-
sage successfully in both directions, �#- that it transmits success-
fully from � to

�
but loses any message from

�
to � , �

�
that it

transmits successfully from
�

to � but loses any message from � to�
, and � that it loses any messages sent in either direction.
We can model the evolution of the system by means of a transition

function ( + : � ����� - : , where ����� 
 ����� * � ����� 4 � ����� �
is the set of joint actions for the system. ( codes the fact that the
state of the communication channel determines whether the actions
performed by the agents (i.e., the messages they send on the chan-
nel) get through or not, and what their effects are. For example, the
definition of ( contains the following:

( � �/- � ) � � � ��� " " � �65�7 �98;:�$/� �/- " ��J � ��� � " " 
 �/- � - � �65�7 �98;:�$<� �/- " ��J " " �
( � �/- � ) � � � ��� " " � �65�7 �98;:�$<� �/- " ��J � �#- " " 
 �/- � - � �65�7 �98;:�$<� �/- " ��J " " �
( � �/- � ) � � � ��� " " � �65�7 � 8;:�$<� �/- " ��J � � � " " 
 �/- � ) � �65�7 �98;:�$/� �/- " �1J " " �
( � �/- � ) � � � ��� " " � �65�7 �98;:�$/� �/- " ��J � � " " 
 �/- � ) � �65�7 �98;:�$/� �/- " �1J " " �

to capture that when the channel works properly the message5�7 �98;:�$/� �/- " from � gets through and gets processed accordingly by�
.
Other cases can be similarly expressed. (They can be reconstructed

from the NuSMV code given later.)
For compliance with a given protocol, only certain actions are per-

formable at a given time for an agent. For example if � has not yet
received an acknowledgement from

�
and is in the local state 0,

then according to the simple protocol under consideration, � should
perform the action

?A@�B�CEDAF'G��/- "
. A protocol for agent $ is a function

3 � + � � - /  #" $'& mapping sets of actions from a local state. 3 � � � � "
is the set of actions performable according to the protocol by agent
$ when its local state is

� �
. For the example under consideration the

protocol can be defined as follows:

3 * �/- " 
 ?A@�B#C DAF'G��/- " � 3 * � 8 " 
>?A@�B#CEDAF G�� 8 " �
3 * � �/- �10 �32 " " 
 3 * � � 8 �10 �32 " " 
 J �
3 4 � ) " 
 J � 3 4 �/- " 
 3 4 � 8 " 
>?A@�B#CEK L�M �

We omit brackets when writing singleton sets.
For the environment, we use the constant function:

3 � � � �#" 
 ����� � 
�� ��� � � ��- � � ���
� � � for all

� � � � �

We assume that the system starts from a state ��� 
 �/- � ) � � � ��� " "
or � � 
 � 8 � ) � � � ��� " " . We are interested in the set of global states
reachable from these initial configurations as defined by the transi-
tion function ( and the protocol functions 3 * , 3 4 and 3 � .

4.1.2 Implementation

Given the description as above we can implement the scenario in
NuSMV by representing the local states as NuSMV variables and
translating the protocol functions and system evolution function (
into the syntax of NuSMV. For example, the local states for the
sender � are coded in NuSMV as:

LS : {LS0, LS1, LS2, LS3};
-- Local states for the sender:
-- LS0 = 0
-- LS1 = 1
-- LS2 = (0,ack)
-- LS3 = (1,ack)

In a similar way we can code the local states for
�

and for the envi-
ronment, and specify their actions. The NuSMV code, together with
code for assigning values to the initial states, is shown in Figure 2.
This part of the code is the same for all versions of the bit transmis-
sion problem discussed in this paper.

MODULE main
VAR

LS : {LS0, LS1, LS2, LS3};
-- Local states for the sender:
-- LS0 = 0
-- LS1 = 1
-- LS2 = (0,ack)
-- LS3 = (1,ack)

LR : {LR0, LR1, LR2};
-- Local states for the receiver:
-- LR0 = 0
-- LR1 = 1
-- LR2 = e [nothing received]
-- LR3 = (0,f)
-- LR4 = (1,f)
-- LR5 = (e,f)

LE : {LE0, LE1, LE2, LE3};
-- Local states for the environment:
-- LE0 = (.,.)
-- LE1 = (sendbit,.)
-- LE2 = (.,sendack)
-- LE3 = (sendbit,sendack)

ActE : {s->,<-r,s-r,x-x};
-- Actions of the environment:
-- s-> = transmit: receiver receives;
-- <-r = transmit: sender receives;
-- s-r = transmit: both receive;
-- x-x = transmit: lose both;

ActS : {sb0,sb1,snull};
-- Actions for the Sender:
-- sb0 = send bit 0
-- sb1 = send bit 1
-- snull = do nothing

ActR : {rnull,sendack};
-- Actions for the Receiver:
-- rnull = do nothing
-- sendack = obvious

ASSIGN
-- Initial local states
init(LS) := {LS0,LS1};
init(LR) := LR2;
init(LE) := LE0;
init(ActE) := {s->,<-r,s-r,x-x};
init(ActS) := snull;
init(ActR) := {rnull};

Figure 2. NuSMV code for the bit transmission problem: local states and
actions.

The protocol functions and the evolution function (called next in
the code) are coded in terms of local states and actions. For example,

next(LS) := case
( LS = LS0 ) & ( ActR = sendack )
& ( ActE = <-r | ActE = s-r ) : LS2;

( LS = LS1 ) & ( ActR = sendack )
& ( ActE = <-r | ActE = s-r ) : LS3;

1 : LS;
esac;

The rest of the code for the basic version of the bit transmission prob-
lem is shown in Figure 3.

We are now able to use NuSMV to check various temporal proper-
ties of this system in the standard manner. However, it is the analysis
of static epistemic properties of the system that is the focus of at-
tention in this paper, and for that we pass output from NuSMV to a
different model checker, Akka.

4



-- MODULE main continued (basic version)

-- Here we implement the protocol functions

next(ActE) := {s->,<-r,s-r,x-x};

next(ActS) := case
( LS = LS0 ) : sb0;
( LS = LS1 ) : sb1;
( LS = LS2 ) | ( LS = LS3) : snull;
1 : ActS;

esac;

next(ActR) := case
( LR = LR0 ) | ( LR = LR1 ) : {sendack};
( LR = LR2 ) : {rnull};

esac;

-- Here we compute the next local state, as a
-- function of actions and local states

next(LS) := case
( LS = LS0 ) & ( ActR = sendack ) &

( ActE = <-r | ActE = s-r ) : LS2;
( LS = LS1 ) & ( ActR = sendack ) &

( ActE = <-r | ActE = s-r ) : LS3;
1 : LS;

esac;

next(LR) := case
( ActS = sb0 ) & ( LR = LR2 ) &

( ActE = s-> | ActE = s-r ) : LR0;
( ActS = sb1 ) & ( LR = LR2 ) &

( ActE = s-> | ActE = s-r ) : LR1;
1 : LR;

esac;

next(LE) := case
( ActS = sb0 | ActS = sb1 ) &

( ActR = rnull ) : LE1;
( ActS = sb0 | ActS = sb1 ) &

( ActR = sendack ) : LE3;
( ActS = snull ) & ( ActR = sendack ) : LE2;
1 : LE;

esac;

FAIRNESS
AF(ActE != x-x ) & running

Figure 3. NuSMV code for the basic version of the bit transmission
problem.

4.1.3 Interface between NuSMV and Akka

The key properties we would like to verify are properties involving
epistemic modalities, whose interpretation depends on the internal
structure of the global states.

We modified the NuSMV code to generate the reachable global
states of the system. The output is a file with the list of all the reach-
able states:

...
-----------

LS3,LR5,LE3

-----------

LS3,LR5,LE1

-----------

LS3,LR5,LE2

-----------
...

We parse this file by means of a simple C++ program, producing as
output a Kripke model representing the epistemic relations generated
by the scenario. The format of the output file is tailored for Akka, a
software package that allows checking validity in a model, as dis-
cussed below.

4.1.4 Verification

Akka1 offers a Kripke Model Editor and supports model testing. Fig-
ure 4 shows a screen-shot of the model obtained as depicted by Akka.
The nodes represent the global states of the model and the arcs rep-
resent the epistemic (equivalence) relations between the states.

Figure 4. Screenshot in Akka of the model ����� for the basic version of the
bit transmission problem.

We are now in a position to check any epistemic property of the
system that can be written as a modal formula of arbitrary complexity
(as is known, the computational complexity of the check is linear in
the size of the formula, and of the number of states of the model).
To this end, let us name %'& � the model obtained by following the
process described above, on which an appropriate set of propositional
variables is interpreted in a natural way2.�
http://turing.wins.uva.nl/ � lhendrik/�
We assume the following:� ��� ���
	��� ����������� if � * � 	�������� or � * � 	���� � ������� �!�� ����� �
	��� ���������#" if � * � 	����%$&� or � * � 	���� � $&����� �!�� ����� �
	��� ��')(�*+���,� if � 4 � 	����%$&� or � 4 � 	��-���� ��� ���
	��� ��')(�*/.0*)1 if � * � 	���� � $&���+�2�3�4� or � * � 	��-� � ���5�+� �!�56
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For the example under consideration we shall want to check
whether, when the sender � receives an acknowledgement message,
� knows that the receiver

�
knows the value of the bit.

%'& � � 
����������
	 - 4 * � 4 4 � ������ 
�� "�� ������ 
�� " "

This proposition is easily translated into the syntax of Akka and we
can check it against the output of the parser. As expected, the propo-
sition is valid on %'& � .

In the same way, the following can be checked and confirmed to
be valid in the basic version of the problem:

%'& � � 
������
���� -�� 4 4 ������ 
�� "�� 4 4 ������ 
�� "��
%'& � � 
������
� ��	 - 4 * � 4 4 ������ 
�� "�� 4 4 ������ 
�� "��
%'& � � 
������
� ��	"! ������ 
�� " - 4 * 4 4 ������ 
#� "

4.2 Faulty Receiver —1

An interesting scenario arises when we assume that the agents may
not behave as they are supposed to. For example, the receiver may
not send an acknowledgement message when it receives a bit ([12]).
We deal with this case by considering a new protocol which extends
the original one.

4.2.1 Interpreted Systems Analysis

We introduce two new local states for the receiver
�

. The local states
for the receiver

�
are now:

� � 4 
��!- � 8 � ) � �/- �%$ " � � 8 �&$ " �
The states

� $ �'$ " ( $ 
>�!- � 8.� ) are faulty states in which
�

received a
bit but failed to send an acknowledgement.

We consequently modify the protocol for the receiver
�

:

3 �4 �/- " 
 3 �4 � 8 " 
�� 5�7 � 8 0 �A2 ��J �

by extending the definition to cover also the faulty local states
�/- �&$ "

and
� 8 �&$ " :

3 �4 � �/- �&$ " " 
 3 �4 � � 8 �&$ " " 
�� 5�7 �98 0 �A2 ��J �

If the receiver enters one of its faulty states, it can nevertheless
recover to a non-faulty state [11], by sending an acknowledgement
this time round.

For this version of the problem, we want the system evolution
function ( � to be the same as in the basic version for actions con-
forming to protocols in non-faulty states. For the other cases, ( �
needs to cover the conditions under which we move to a faulty lo-
cal state for agent

�
, and then the outcome of transitions originating

from faulty local states for agent
�

. For example, the definition of ( �
contains, for all ( � � ����� � , unless stated otherwise (the definitions

For example ��������� is true at a global state of the model if the local state
of the sender is either � , or

� ���5�+� �!� .

for
���� 
)�

are analogous):

( � � �/- � - � � � ��� " " � �65�7 � 8;:�$<� �/- " �1J � ( ��" " 
�/- � �/- �&$ " � �65�7 �98;:�$<� �/- " ��J " "
( � � � �/- ��0 �A2 " � - � � � ��� " " � � J ��J � ( � " " 
 � �/- ��0 �32 " � �/- �&$ " � � J �1J " "
( � � �/- � �/- �&$ " � � � ��� " " � �65�7 �98;:�$<� �/- " ��J � ( �#" " 
�/- � �/- �&$ " � �65�7 �98;:�$<� �/- " ��J " "
( � � �/- � �/- �&$ " � � � ��� " " � �65�7 �98;:�$<� �/- " � 5�7 �98 0 �32 � ( ��" " 
� �/- �10 �32 " � - � �65.7 �98;:�$<� �/- " � 5�7 �98 0 �A2 " " � ( � � � ��� � � � � � "
( � � �/- � �/- �&$ " � � � ��� " " � �65�7 �98;:�$<� �/- " � 5�7 �98 0 �32 � ( � " " 
�/- � - � �65.7 �98;:�$<� �/- " � 5�7 �98 0 �A2 " " � ( � � � �#- � � � "

Note that in the last two cases we have chosen to say that sending an
acknowledgement in a faulty local state puts

�
back into a fault-free

local state—the record of the protocol-violating fault is wiped out.
Others cases for the definition of ( � are similarly expressed (cf. the
NuSMV code in Figure 5).

4.2.2 Implementation

The NuSMV implementation of this version of the bit transmission
problem is shown in Figure 5. It is a straightforward extension of the
code for the basic version presented above. We need to introduce a
fairness constraint besides the one used in the basic version. Decla-
ration of local states and actions, and initial values, are exactly as for
the basic case and so are omitted. See Figure 2.

4.2.3 Verification

As in the previous case, we use (the modified version of) NuSMV
to generate the reachable global states, and then parse the output to
build a representation of the global states and epistemic relations for
input to Akka. Akka’s depiction of the model %'& � � obtained is shown
in Figure 6.

It is easy to check that the epistemic properties that held in the
basic version also hold in this case3. Namely:

%'& � � � 
����������� -*� 4 4 ������ 
�� "�� 4 4 ������ 
)� "��
%'& � � � 
����������
	 - 4 * � 4 4 ������ 
�� "�� 4 4 ������ 
�� " �
%'& � � � 
����������
	 - 4 * � 4 4 � ������ 
�� "�� ������ 
�� " "
%'& � � � 
����������
	+! ������ 
�� " - 4 * 4 4 ������ 
�� "

4.3 Faulty Receiver —2

We now consider a slightly more complicated scenario. We assume
that the receiver

�
may send acknowledgements even when it is not

supposed to.

4.3.1 Deontic Interpreted Systems Analysis

For this version of the problem we introduce a new local state for the
receiver

�
, namely

� ) �%$ " . This is the local state in which
�

did not
receive a bit but nevertheless

�
sent an acknowledgement.

For the analysis of this scenario we use the deontic machinery
presented in Section 3.2, as well as the epistemic approach of the
previous section. For � , since we are not admitting (for the purposes,

The interpretation of the variables is similar and not repeated here.
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-- MODULE main continued (receiver may fail to ack)

-- Here we implement the protocol functions

next(ActE) := {s->,<-r,s-r,x-x};

next(ActS) := case
( LS = LS0 ) : sb0;
( LS = LS1 ) : sb1;
( LS = LS2 ) | ( LS = LS3) : snull;
1 : ActS;

esac;

next(ActR) := case
( LR = LR0 ) | ( LR = LR1 ) | ( LR = LR3 )

| ( LR = LR4 ) : {sendack, rnull};
( LR = LR2 ) : {rnull};

esac;

-- Here we compute the next local state, as a
-- function of actions and local states

next(LS) := case
( LS = LS0 ) & ( ActR = sendack ) &

( ActE = <-r ) : LS2;
( LS = LS1 ) & ( ActR = sendack ) &

( ActE = <-r ) : LS3;
1 : LS;

esac;

next(LR) := case
( ActS = sb0 ) & ( LR = LR2 ) & ( ActR = sendack )

& ( ActE = s-> | ActE = s-r ) : LR0;
( ActS = sb1 ) & ( LR = LR2 ) & ( ActR = sendack )

& ( ActE = s-> | ActE = s-r ) : LR1;
( ActS = sb0 ) & ( LR = LR2 ) & ( ActR = rnull )

& ( ActE = s-> | ActE = s-r ) : LR3;
( ActS = sb1 ) & ( LR = LR2 ) & ( ActR = rnull )

& ( ActE = s-> | ActE = s-r ) : LR4;
( LR = LR0 ) & ( ActR = rnull ) : LR3;
( LR = LR1 ) & ( ActR = rnull ) : LR4;
( LR = LR3 ) & ( ActR = sendack ) : LR0;
( LR = LR4 ) & ( ActR = sendack ) : LR1;
1 : LR;

esac;

next(LE) := case
( ActS = sb0 | ActS = sb1 ) & ( ActR = rnull ) : LE1;
( ActS = sb0 | ActS = sb1 ) &

( ActR = sendack ) : LE3;
( ActS = snull ) & ( ActR = sendack ) : LE2;
1 : LE;

esac;

FAIRNESS
AF(ActE != x-x ) &
(((LR=LR0)|(LR=LR1))->AF(ActR=sendack)) &
running

Figure 5. NuSMV code for the case where the receiver may fail to send
acknowledgements.

 z a b 

 z a b z a b z a b 
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 z  z

 o a b

 z a b z a b

Figure 6. Screenshot in Akka of the model �
� � � of the bit transmission
problem where receiver may fail to send acknowledgements.
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of the example) the possibility of faults, its local states are all green.
We thus have:

� � �* 
 : � �* 
��!- � 8 � �/- ��0 �A2 " � � 8 �10 �32 " � � � � �* 
�� �
For the case of the environment, we have admitted the possibility of
faulty, or unreliable, behaviour but these ‘faults’ are not violations of
the protocol under examination. Accordingly, all local states of the
environment are also green;

� � �� 
��
,
� � �� 
 : � �� , and we have:

: � �� 
�� � � ��� " � �65�7 �98;:�$<� ��� " � � � � 5�7 �98 0 �A2 " � �65�7 �98;:�$/� � 5�7 � 8 0 �A2 " � �
For

�
, we define the local states as follows:

: � �4 
��.- � 8 � )�� ��� � �4 
�� �/- �'$ " � � 8 �%$ " � � ) �%$ " � � � � �4 
 : � �4�� � � �4 �
Now we define the protocol functions of this deontic interpreted

system. Given that the two sets of local states for � and � have not
changed we can keep the functions 3 * and 3 � as for the basic ver-
sion. We need to extend 3 4 so that it is defined also on the red local
states of

�
.

3 � �4 � ) " 
 3 4 � ) " 
 J �
3 � �4 �/- " 
 3 � �4 � 8 " 
 3 4 �/- " 
 3 4 � 8 " 
>?A@�B#C KEL�M

For the red local states
� � �4 
�� �/- �&$ " � � 8 �&$ " � � ) �&$ " � we shall define

3 � �4 � �/- �&$ " " 
 3 � �4 � � 8 �&$ " " 
 3 � �4 � � ) �&$ " " 
 ����� 4 
,�E?A@�B#CEKEL�M ��J �
For the computation of reachable global states for this version, it

remains to define the evolution function ( � � . Essentially we want to
extend the definition of ( by insisting that

�
’s local states will be red

if
�

has sent an acknowledgement, either in the current round or in
the past, without having received the bit first, and otherwise copy

�
’s

transitions in ( , i.e.,
�

will correctly store the bit if it has received
it and remain in the state ) otherwise. First, we specify the effects of
protocol-violating actions in green

�
states. For the case where the

bit is 0 (the other can be done similarly) we shall impose:

( � � � �/- � ) � � � ��� " " � �65�7 �98;:�$<� �/- " � 5�7 � 8 0 �A2 � ��� � " " 
� �/- �10 �32 " � �/- �'$ " � �65�7 �98;:�$/� �/- " � 5�7 �98 0 �32 " "
( � � � �/- � ) � � � ��� " " � �65�7 �98;:�$<� �/- " � 5�7 � 8 0 �A2 � �#- " " 
� - � �/- �'$ " � �65�7 �98;:�$/� �/- " � 5�7 �98 0 �32 " "
( � � � �/- � ) � � � ��� " " � �65�7 �98;:�$<� �/- " � 5�7 � 8 0 �A2 � � � " " 


� �/- �10 �32 " � � ) �&$ " � �65�7 �98;:�$<� �/- " � 5�7 � 8 0 �A2 " "
( � � � �/- � ) � � � ��� " " � �65�7 �98;:�$<� �/- " � 5�7 � 8 0 �A2 � � " " 
� - � � ) �&$ " � �65�7 �98;:�$<� �/- " � 5�7 � 8 0 �A2 " "

Note that in the first case above the result state is a faulty (red) state
even though communication has taken place, and that in the second
and fourth cases the result state is a faulty (red) state even though the
erroneous acknowledgement was not received by � .

Now we extend the definition of ( so that ( � � is defined also on
red local states for

�
. Once

�
is in a red state we will impose that it

will remain in a red state, although it will correctly store messages,
if received.

( � � � �/- � � ) �%$ " " � � � ��� " " � �65.7 �98;:�$<� �/- " � 5�7 �98 0 �A2 � ��� � " " 
� �/- �10 �A2 " � �/- �'$ " � �65�7 � 8;:�$<� �/- " � 5.7 �98 0 �32 " "
( � � � �/- � � ) �%$ " " � � � ��� " " � �65.7 �98;:�$<� �/- " � 5�7 �98 0 �A2 � �#- " " 
� - � �/- �&$ " � �65�7 � 8;:�$<� �/- " � 5.7 �98 0 �32 " "
( � � � �/- � � ) �%$ " " � � � ��� " " � �65.7 �98;:�$<� �/- " � 5�7 �98 0 �A2 � � � " " 


� �/- �10 �A2 " � � ) �'$ " � �65�7 �98;:�$<� �/- " � 5�7 � 8 0 �A2 " "
( � � � �/- � � ) �%$ " " � � � ��� " " � �65.7 �98;:�$<� �/- " � 5�7 �98 0 �A2 � � " " 
� - � � ) �&$ " � �65�7 �98;:�$<� �/- " � 5�7 � 8 0 �A2 " "

We omit the other cases. They are straightforwardly expressed and
can be reconstructed from the NuSMV code shown for this variant
of the example in Figure 5.

4.3.2 Implementation

The NuSMV implementation of this version is shown in Figure 7. It
is an extension of the basic code of Figure 3; the transition function
for the receiver is a bit more complicated, to cover all possible cases
of faulty behaviour.

-- MODULE main continued (receiver may incor-
rectly ack)

-- Here we implement the protocol functions

next(ActE) := {s->,<-r,s-r,x-x};

next(ActS) := case
( LS = LS0 ) : sb0;
( LS = LS1 ) : sb1;
( LS = LS2 ) | ( LS = LS3) : snull;
1 : ActS;

esac;

next(ActR) := case
( LR = LR0 ) | ( LR = LR1 ) : {sendack};
( LR = LR2 ) | ( LR = LR3 ) |

( LR = LR4 ) | ( LR = LR5 ) : {sendack,rnull};
esac;

-- Here we compute the next local state, as a
-- function of actions and local states

next(LS) := case
( LS = LS0 ) & ( ActR = sendack ) &

( ActE = <-r ) : LS2;
( LS = LS1 ) & ( ActR = sendack ) &

( ActE = <-r ) : LS3;
1 : LS;

esac;

next(LR) := case
( ActS = sb0 ) & ( LR = LR2 ) &

( ActE = s-> | ActE = s-r ) : LR0;
( ActS = sb1 ) & ( LR = LR2 ) &

( ActE = s-> | ActE = s-r ) : LR1;
( LR = LR2 ) & ( ActR = sendack ) &

( ActE != s-> & ActE != s-r) : LR5;
( LR = LR2 ) & ( ActR = sendack ) &

( ActE = s-> | ActE = s-r ) & ( ActS = sb0 ): LR3;
( LR = LR2 ) & ( ActR = sendack ) &

(ActE = s-> | ActE = s-r) & ( ActS = sb1 ) : LR4;
( LR = LR5 ) & ( ActS = sb0 ) &

(ActE = s-> | ActE = s-r) : LR3;
( LR = LR5 ) & ( ActS = sb1 ) &

(ActE = s-> | ActE = s-r) : LR4;
1 : LR;

esac;

next(LE) := case
( ActS = sb0 | ActS = sb1 ) & ( ActR = rnull ) : LE1;
( ActS = sb0 | ActS = sb1 ) & ( ActR = sendack ): LE3;
( ActS = snull ) & ( ActR = sendack ) : LE2;
1 : LE;

esac;

FAIRNESS
AF(ActE != x-x ) & running

Figure 7. NuSMV code for the case where receiver may send incorrect
acknowledgements.

4.3.3 Verification

As in the previous cases, NuSMV outputs the reachable global states
and, using these states, we can create a model with epistemic rela-
tions for 4 * and 4 4 . If we consider red and green states for

�
we

can parse the global states and create a model that includes also “de-
ontic” relations for �4

4*
, the operator introduced in section 3.2. This

all-inclusive model, %'& � �� , is shown in Figure 8.
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First of all, it is possible to check that none of the epistemic formu-
las presented above hold in this version. However, a particular form
of knowledge still holds. Intuitively if � could make the assumption
of
�

’s correct functioning behaviour, then, upon receipt of an ac-
knowledgement, it would then make sense for it to assume that

�
does know the value of the bit; this is exactly the meaning of �4

4*
.

And indeed, using Akka we are able to check the validity4 of the
following formulas in the model:

%'& � �� � 
����������
	 - �4
4* � 4 4 ������ 
�� "�� 4 4 ������ 
�� " �

%'& � �� � 
����������
	 ! ������ 
�� " - �4
4* 4 4 ������ 
�� "

We refer to [12] for more details, but note that unlike the usual
epistemic operators associated with interpreted systems, �4

�� is not an
S5 operator, and in particular the axiom T does not hold for it, i.e.,
knowledge under assumptions of correct functioning behaviour does
not imply truth. This operator is of particular interest in this circum-
stance because it captures precisely our intuition about the example.
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Figure 8. Screenshot in Akka of the model �
� � �� for the bit transmission
problem where receiver may send incorrect acknowledgements.

5 CONCLUSIONS

In this paper we have made a first attempt at combining an estab-
lished model checking tool such as NuSMV with Akka, a traditional
tool used for testing validity of modal formulas.

�

The interpretation for the atoms is a straightforward extension of what re-
ported previously and not repeated here.

We see the contribution of this paper as being twofold. Firstly, we
provide a simple methodology for checking static epistemic proper-
ties in interpreted systems. Although much research has gone into
developing epistemic logic in AI, both at proof-theoretical and at se-
mantical level, comparatively less attention has been given to veri-
fying automatically that particular functioning protocols exhibit par-
ticular epistemic properties. In other words no method had been de-
veloped in which one can implement a functioning protocol and test
properties of the resulting execution. We believe that the time is ripe
for further combinations of model checking tools with well-explored
formalisms in AI.

Secondly, we find the technical results on the violations of the
bit-transmission problem interesting on their own merits. The bit-
transmission problem is well-studied in the literature and is one of
the key examples that show the capabilities of the interpreted systems
paradigm. Indeed an in-depth analysis of this scenario was carried
out in [7] by means of the Spin model checker. We differ from that
paper in two respects. First our methodology of pairings Akka with
NuSMV is different from what advocated there. Second, by means
of deontic interpreted systems, we analyse variations of the scenario
in which violations occur.

We have tried to show that in some examples verifying static epis-
temic and deontic properties is sufficient to establish basic properties
of the system. Still, we would like to extend the methodology above
to deal with the full dynamic case, i.e., to move to a system in which
we can check temporal deontic and epistemic formulas. A promis-
ing avenue seems to be to implement the Andersonian reductions
explored in [10].
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