
Performance Monitoring of Service-Level Agreements for Utility Computing
Using the Event Calculus

Andrew D H Farrell, Marek J Sergot,
Department of Computing,
Imperial College London,

United Kingdom.
{adf02, mjs}@doc.ic.ac.uk

Mathias Salle, Claudio Bartolini,
HP Labs,

Palo Alto, California, USA.
{mathias.salle, claudio.bartolini}@hp.com

Abstract

Utility Computing (UC) is concerned with the
provisioning of computational resources (compute-power,
storage, network bandwidth), on a per-need basis, to
corporate businesses. Service-level Agreements (SLAs) -
contracts between a provider and a customer - are a sine
qua non in the deployment of UC. A crucial stage in the
life-cycle of contracts (such as SLAs) is their automated
performance monitoring while active; a significant aspect
of which concerns the tracking of contract state.

In this work, we define an ontology to capture aspects
of SLAs that are pertinent to the tracking of state for
performance monitoring, and generalise these aspects so
that the ontology may be applicable to other contract
domains. The ontology is formalised as an XML-based
language, called CTXML (contract tracking XML). The
semantics for CTXML are presented in terms of a
computational model based on the Event Calculus.

1. Introduction

Utility Computing (UC) [10] offers an opportunity to
corporate businesses to maximise the efficiency and
efficacy of their IT service provision (both in-house and to
customers). It will allow them to out-source large areas of
their IT service provision to UC-data centres, which will
agree to provide computational resources, packaged as
services to them.

The levels of service that are agreed between a UC
service-provider and customer are mandated by Quality-
of-Service (QoS) guarantees, written as service-level
objectives within Service-Level Agreements (SLAs).
SLAs are essential for formalising the objectives of a UC
service, and to manage expectations [12].

The work that has been realised here has been
concerned with one particular aspect of the life cycle of a

contract (such as an SLA), namely, automated run-time
performance monitoring [6]. In our view, performance
monitoring is concerned with (at least) two functional
aspects: (i) Tracking the effect of events (pertinent to a
contract) on contract state – the contractual (or,
normative) relations that hold between contract parties –
and informing interested parties of past, present and
(possible) future contract states; and, (ii) Assessing the
current state of the contract, in terms of its utility (that is,
worth), and other metrics related to business intelligence
[14]. The work presented in this paper is primarily
concerned with the first of these, which is known as
automated contract (state) tracking to distinguish it.

Notably, approaches to automated tracking of contract
state, thus far, can be largely characterised in one of two
ways [7]: (i) As general-purpose reasoning frameworks
that (mainly) have not been applied in actual, deployed
systems; or (ii) In the case of SLAs, as being fairly limited
in capability. The work presented here is considered to be
distinguished from such approaches in that: (i) It has
been developed in the context of a ‘real-world’
deployment scenario (namely, SLAs for UC), while being
generalised so to be applicable to other domains; and (ii)
It represents an advance (over many approaches) in what
can be realised regarding performance monitoring for
contracts.

This paper is structured as follows. Firstly, (in section
2), the conceptualisation of contracts that has been used in
this work is presented; followed (in section 3) by an
example contract (namely, an SLA for a UC scenario),
used to ground our discussions. Then, (in sections 4 and
5), a description of the contract tracking ontology,
developed in this work, and its semantics are given. The
paper proceeds to describe implementation and related
work (in sections 6 and 7), and concludes (in section 8).

2. Contracts conceptualised

It is a useful abstraction to consider that contracts
(such as SLAs) are comprised of norms. A norm may be
defined as: “a principle of right action binding upon the
members of a group and serving to guide, control, or
regulate proper and acceptable behaviour” [1].

In our work, we consider norms to be templates, which
can be instantiated to yield (normative) relations that hold
between contract parties. An example might be the norm:
‘a service consumer is obliged to pay for service
provision’. When instantiated, it yields a relation that
now holds between a service consumer and provider –
that is, that the consumer is obliged to pay for service
provision. In time, the norm may be instantiated again,
creating a further relation. In fact, it may be that the first
relation persists (i.e., the consumer is yet to fulfil their
original obligation to pay), meaning that there is now
more than one relation pertaining to the same norm.

In this presentation, it will be assumed that at most
one relation pertaining to a norm may exist at any time.
This is for convenience; the general case is treated in [7].
For simplicity, the existence of a relation pertaining to a
norm will be described as the norm being active, and the
lack of an extant relation will be described as the norm
being inactive.

Crucially, it is considered here that: (i) a contract
expresses norms between contract parties, whereby the
actual state of the contract at any time is determined by
which norms are active; (ii) norms within a contract will
define the effects on the contract state of events that are
presented to the contract (contract events).

3. Example contract

In this paper, we use the following Mail Service UC
SLA in order to ground our discussions:
• The Service Provider (SP) will provide a mail service

to the Service Consumer (SC), which includes a
mailbox with a quota of s GBytes. SC will be charged
a fixed monthly fee of s x c0 for the service.

• Whenever u>s, where u is the mailbox utilisation in
GBytes, SP will charge SC c1 for each GByte over s,
calculated daily, until u≤ s

• Whenever u>s+e, where e is a level of tolerance in
GBytes, SC will not be able to receive emails.

• In the case that the mail service is unavailable, SP is
obliged to restore it within t minutes. SP will pay $p
for every t minutes that it is unavailable. SP is
obliged to pay any penalties to SC within a month of
their accruement.

• All billing of SC occurs monthly, and SC is given a
month thereafter to pay. If SC fails to pay within the

given time, SP may terminate the mailbox service
without notice.

Figure 1: Contract Tracking Ontology

4. Contract tracking ontology

Figure 1 presents the contract tracking ontology that
has been devised in this work. The ontology has also been
formalised as an XML-based contract language, called
CTXML (contract tracking XML).

With reference to Figure 1, a contract is conceived as
consisting of one or more contract norms, as well as zero
or more contract parameters – which allow for the
customisation of a contract for a particular instantiation
context – and zero or more contract variables – which are
used to maintain live, numerical contract state (their use
is normative in that it is agreed by all parties when the
contract is signed).

A contract norm may be considered as corresponding
to one of many (Holfeldian-inspired) normative concepts,
including (non-exhaustively): obligation, privilege,
entitlement or power (see [7]). A contract norm will
usually specify one or more of the following:
• One or more contractual statements, which define the

effect of contract events (pertaining to the norm) on
the contract. It is considered that a norm is triggered
by a contract event that pertains to it.

• A timer for the norm, which is possibly recurrent.
• One or more parameters. That is, a contract norm

may be parameterised. Whenever a parameterised
norm is triggered by a contract event, the event will
be used as the source of data for these parameters.
Contractual statements contained within the norm
may make use of such data.

In our work, we have considered the following
conceptualisations of contract norms to be useful for the
representation of contracts:

• Contract management norms, of which we define two
types: Periodic and Event

• Obligation norms
• Privilege norms

In turn, contract management norms (CMNs)
represent the principal means of defining the effects of
contract events on contract state. They contain a single
contractual statement, which is executed when the norm
is triggered. Note that a CMN will either be
conceptualised as an event CMN, or a periodic CMN. An
event CMN is triggered by an external event.
Contrastingly, a periodic CMN describes a (possibly
recurring) timer, which triggers the norm.

An obligation norm is concerned with an obligation
that bears on a party to perform one or more (non-
contractual) actions. It will typically contain a
contractual statement that specifies the effects on the
contract in case of violation of the obligation norm, and a
contractual statement that specifies the effects on the
contract in case of fulfilment of the norm. It is considered
that such a norm is triggered by violation and fulfilment
events. An obligation norm will also specify a timer for
the actions associated with the obligation to be performed
by the pertinent party. Like a CMN, an obligation norm
may be parameterised.

A privilege norm is concerned with (non-contractual)
actions that a party is permitted to perform. It is
considered illegal behaviour for a party to carry out a
(non-contractual) action for which it does not have the
privilege. (As a consequence, there does not exist a need
for explicit prohibition norms). Furthermore, a privilege
norm is considered to be a vested privilege in that other
parties undertake that they will not attempt to prevent the
bearer of the privilege from exercising it.

Note that, in CTXML, events – which are input to the
contract – take the form:
<event id=“(norm,qualification)”>

<para name=”…”>…</para>…
<para name=”…”>…</para>

</event>
where norm is the unique pertaining norm, and

qualification is a qualification for the event – which
names the contractual statement in the norm to be
executed. An event may also contain associated
parameters representing event data, which is passed to the
contractual statements contained within any norm that the
event triggers. In the sequel, the syntax for an event is
abbreviated to: (norm, qualification, parameters)
for simplicity, where parameters is elaborated simply as
a list of parameter names.

Examples of these norms represented in CTXML for
the Mail Service SLA (introduced in section 3) are now
presented.

• A periodic CMN, pcmn3, defining its (recurrent) timer
as being specified by the pcnm3timer timer clause; and
specifying its (single) contractual statement to be:
pcmn3timeout, which is executed whenever (pcmn3,
timeout, []) contract events occur. These events are
generated internally according to pcnm3timer.

<contractnorm id=“pcmn3” timer=“pcnm3timer”>
<csref name=“timeout” id=“pcmn3timeout”/>

</contractnorm>
This norm in part facilitates: “SP will pay $p for

every t minutes that it is unavailable” in the example
SLA.

• An event CMN, ecmn1, specifying a single contractual
statement: ecmn1trigger which is executed whenever
(ecmn1, trigger, [Charge]) contract events occur;
and denoting that it is parameterised with a single
parameter: Charge.
<contractnorm id=“ecmn1”>

<csref name=“trigger” id=“ecmn1trigger”/>
<para name=“Charge”/>

</contractnorm>
This norm in part facilitates: “SP will charge SC

$c1 for each GByte over s, calculated daily, until u• s”
in the example SLA.

• An obligation norm, o2, defining its (one-off) timer as
being specified by the o2timer timer clause;
contractual statements for non-fulfilment (violation)
and fulfilment of the obligation within the time
specified by o2timer as being specified by the
o2violation and o2fulfilment contractual
statements, respectively – executed in response to (o2,
violation, [Charge]) and (o2, fulfilment,
[Charge]) contract events; and denoting that it is
parameterised with a single parameter: Charge.
<contractnorm id=“o2” timer=“o2timer”>

<csref name=“violation” id=“o2violation”/>
<csref name=“fulfilment”

id=“o2fulfilment”/>
<para name =“Charge”/>

</contractnorm>
This norm in part facilitates: “SP is obliged to pay

any penalties to SC within a month of their
accruement” in the example SLA.

• A privilege norm, p1.
<contractnorm id=“p1”/>

This norm in part facilitates: “If SC fails to pay
within the given time, SP may terminate the mailbox
service without notice” in the example SLA.

A timer clause is used to specify (a recurrent, or one-
off) timer for periodic CMNs and obligation norms. Such
a clause consists of one or more run clauses, which each
specify a certain number of iterations of a particular timer
duration. If the number of iterations is not explicitly
specified (as in the example below), the run is considered
to be indefinitely recurring according to the specified

timer duration. An example of such a clause is now given,
from the CTXML representation of the Mail Service SLA,
for the timer used for contract norm: pcmn2. Here, the
clause simply says that the timer will be indefinitely
recurring with a period of 1 month.

<timer id=“pcmn2timer”>
<run><dur val=“P1M”/></run>

</timer>
This clause in part facilitates: “All billing of SC

occurs monthly…” in the example SLA.
A contractual statement clause comprises a list of

contract actions, which are actions to be performed on the
contract, in response to contract events. A contract action
may be one of the following clauses (where the first three
are considered to be atomic contract actions):
• <activate id=“norm”> activation parameters

</activate> – activates norm with given activation
parameters.

• <deactivate id=“norm”/> – deactivates contract
norm.

• <assign id=“cvar”> expr </assign> – assigns a
numerical value, given by expr, to contract variable
cvar.

• <ifcond then=“…” else=“…”/> – specifies a
conditional contract action.

An example of a contractual statement, with
associated contract actions, represented in CTXML for the
Mail Service SLA is now presented.
<contractualstmt id=“pcmn1timeout”>

<ifcond then=“ifcond1then”><gt>
<value id=“vPenalty”/>
<num val=“0”/></gt></ifcond>

</contractualstmt>
<contractualstmt id=“ifcond1then”>

<activate id=“o2”>
<apara name=“Charge”>

<value id=“vPenalty”/>
</apara></activate>

<assign id=“vPenalty”>
<num val=“0”/></assign>

</contractualstmt>
Here, the pcnm1timeout contractual statement consists

of a single contract action – an ifcond. The ifcond action
specifies a contractual statement, ifcond1then, to be
performed if the condition of the ifcond holds. (It is
possible for ifcond actions to also specify a contractual
statement to be performed if the condition does not hold).
The condition of the ifcond, in the example, stipulates
contract variable vPenalty be greater than 0. The
ifcond1then contractual statement consists of a couple of
contract actions – an activate action (for activating
parameterised obligation norm o2 with activation
parameter Charge assigned to the current value of
contract variable vPenalty), and an assign action (for
resetting the value of the contract variable).

Finally, a contract may specify a list of initialising
operations (itself a contractual statement – constrained to
contain just activate operations), which are carried out
on the contract when it is instantiated. Note that all
contract norms are inactive, by default. As such, any
norm that is required to be initially active should have a
corresponding activate operation specified in this list.

4.1. Specialisation to SLA context

It useful to explicate an additional concept, which has
been utilised within this work, that is specific to the
context of representing SLAs. The concept is a service-
level norm (SLN), which is a variation of an event CMN.
An SLN encapsulates a ‘service-level objective’ (SLO),
which defines a level of service that must be upheld
throughout the lifetime of the SLA. An SLN also defines
up to two contractual statements. One that specifies
contract actions that are to be performed in case of
violation of the (service level objective pertaining to the)
SLN, and another that specifies contract actions that are
to be performed in case of restoration of the SLN. An
example of an SLN represented in the Mail Service SLA
is now presented, where it is triggered by (sln1,
violation,_) and (sln1, restoration, _) contract
events.
<contractnorm id=“sln1”>

<csref name=“violation” id=“sln1viol”/>
<csref name=“restoration” id=“sln1rest”/>

</contractnorm>
This clause in part facilitates: “The Service

Provider…a mail-storage facility of up to s GBytes” and
“In the case of unavailability of the mail service…” in the
example SLA.

For the whole example SLA, written in CTXML, see
[16].

5. Semantics

The semantics attributed to the contract tracking
ontology are presented in terms of how the execution of
contractual statements, in response to contract events,
changes the state of the contract. This is achieved by
describing the computational model for determining the
state of norms, in the context of a narrative of contract
events, according to the contractual statements contained
within a contract. The computational model that is
described here is inspired by the Event Calculus (EC)
[11].

5.1. Event Calculus overview

There are many variations on the Event Calculus
(EC). In the sequel, we define an XML formalisation of a
simplified form of the version described in [15], called
ecXML.

A contract in ecXML is a conjunction of:
• A finite set of initially clauses of the form:

<initially>
<fluent id=”F”>…</fluent>

</initially>
meaning that (boolean) fluent F holds initially. (A

fluent is a property of a domain which can be
attributed a value, where the value of the fluent is able
to change over time). Multi-valued fluents are
assigned an initial value using similar clauses.

• A finite set of happens clauses of the form:
<happens time=“T”>

<event …>…</event>
</happens>

meaning that the given event happened at time T
• A finite set of initiates clauses of the form:

<initiates>
<event …>…</event>
<fluent id=“F”>…</fluent>

 condition
</initiates>

meaning that the given event initiates fluent F
(makes true) if condition holds. Similar clauses can
be written giving how multi-valued fluents are
initiated.

• A finite set of terminates clauses of the form:
<terminates>

<event …>…</event>
<fluent id=“F”>…</fluent>

 condition
</terminates>

meaning that the given event terminates fluent F
(makes false) if condition holds. Similar clauses can
be written giving how multi-valued fluents are
terminated.

Additionally the following axioms (for which a full
XML formalisation is neither necessary nor appropriate)
are defined for ecXML:
• holds(F,T) if initiated(F,T1,T) and not

terminated(F,T1,T)
meaning that fluent F holds at time T if fluent F is

initiated at time T1 before, or at, time T and it is not
terminated at a time later than T1 but before, or at,
time T. A similar axiom exists for multi-valued
fluents. Note that it is the holds axiom, which provides
the means for querying the state of a contract at any
time, and thus which realises the primary purpose of
applying an EC-based semantics.

• initiated(F,0,_) if
<initially>

<fluent id=“F”>…</fluent>
</initially>
meaning that fluent F is initiated at time 0 if

fluent F holds initially (as determined by any extant

ecXML <initially> clause for F in the contract). A
similar axiom exists for multi-valued fluents.

• initiated(F,T1,T) if happens(E,T1) and T≥T1>0
and
<initiates>

<event …>…</event>
<fluent id=“F”>…</fluent>
…

</initiates>
meaning that fluent F is initiated at time T1 before,

or at, time T, and greater than 0, if an event E happens
at T1 and E initiates F (as determined by any extant
ecXML <initiates> clauses for F in the contract). A
similar axiom exists for multi-valued fluents.

• terminated(F,T1,T) if happens(E,T2) and
T≥T2>T1 and
<terminates>

<event …>…</event>
<fluent id=“F”>…</fluent>
…

</terminates>
meaning that fluent F is terminated at time T2 later

than T1 and before, or at, time T if an event E happens
at T2 and E terminates F (as determined by any extant
ecXML <terminates> clauses for F in the contract). A
similar axiom exists for multi-valued fluents.

5.2. Event Calculus based semantics

As stated, the Event Calculus (EC) is used to provide a
computational model for CTXML contractual statements.
This is achieved by defining a mapping between
contractual statements and expressions in EC. Note that,
a contractual statement will have a distinct mapping for
each contract norm to which it pertains.

Recall from section 4 that a contractual statement
consists of the following types of contract actions:
activate, deactivate, assign and ifcond. The
mapping for the first three contract actions – the atomic
actions – is now presented.
• <activate id=“norm”> activation parameters

</activate> is mapped to:
<initiates>

<event id=“(pnorm,qualification)”>
parameters </event>

<fluent id=“norm”> activation parameters
</fluent>

</initiates>
where(pnorm,qualification) is the event id that

triggers the contractual statement with name:
qualification within contract norm: pnorm; and norm
is the norm activated with the given activation
parameters.

• <deactivate id=“norm”/> is mapped to:
<terminates>

<event id=“(pnorm,qualification)”>
parameters </event>

<fluent id=“norm”/>
</terminates>

where norm is the norm deactivated.
• <assign id=“cvar”>expr</assign> is mapped to:

<initiates>
<event id=“(pnorm,qualification)”>

parameters </event>
<mvfluent id=“cvar”> expr </mvfluent>

</initiates>
where cvar is the contract variable assigned to

expr.

Ifcond actions conceptually take the form:∆→θthen;θelse.
∆ is a boolean condition on the state of norms (inactive or
active) in the contract and contract events. θthen is a
contractual statement that is executed should the
condition hold when the ifcond is executed. θelse is a
contractual statement that is executed if the condition fails
to hold. In mapping ifcond actions to EC, ∆ becomes an
additional condition placed on each contract action in θthen;
and not ∆ becomes an additional condition placed on each
contract action in θelse. Generally speaking, there may be
an arbitrary nesting to an ifcond action meaning that any
atomic activate, deactivate, or assign actions specified
within may be subject to a number of boolean conditions:
Π1,…, Πn, where for any boolean condition ∆i within an
ifcond, Πi represents either ∆i or not ∆i.

An <activate id=“norm”> activation parameters
</activate> contract action specified within an ifcond is
mapped to:
<initiates>

<event id=“(pnorm,qualification)”>
parameters </event>

<fluent id=“norm”> activation parameters
</fluent>
condition

</initiates>
Here an additional condition clause specifies that the

contract action will only be applied if Π1,…, Πn all hold.
Other atomic actions similarly have an additional

condition clause when mapped.
Examples of such mappings for the Mail Service SLA

are now presented.
• A violation event for sln1 initiates (or activates)

pcmn3, and terminates (or deactivates) sln1_ok.
<initiates>

<event id=“(sln1,violation)”/>
<fluent id=“pcmn3”/>

</initiates>
<terminates>

<event id=“(sln1,violation)”/>
<fluent id=“sln1_ok”/>

</terminates>
• A timeout event for pcnm1 initiates the assignment of

(contract variable) vPenalty to 0 if the condition
vPenalty greater than 0 holds.
<initiates>

<event id=“(pcnm1,timeout)”/>
<mvfluent id=“vPenalty”>

<num val=“0”/>
</mvfluent>
<gt><value id=“vPenalty”/>

<num val=“0”/></gt>
</initiates>

The mapping of the (possibly extant) contractual
statement containing initialising operations for the
contract (which is constrained to contain only
activate actions) is now given (where norm is the
norm activated). <activate id=“norm”> activation
parameters </activate> is mapped to:
<initially>

<fluent id=“norm”> activation parameters
</fluent>

</initially>
Also, there is a mapping associated with the

initialisation of contract variables in CTXML (where cvar
is the contract variable assigned). <contractvar
id=“cvar”> expr </contractvar> is mapped to:

<initially>
<mvfluent id=“cvar”>expr</mvfluent>

</initially>

For the full mapping to ecXML of the example SLA,
see [16].

6. Implementation

The Event Calculus-based computational model has
been comprehensively implemented in Java. The
implementation provides a query-interpreter for
determining, at run-time, the state of contracts, written in
either ecXML or the higher-level CTXML. External
components are able to post contract events via the query-
interpreter, and be informed of (and be able to query the
contract for) information relating to contract state. Part of
the API supported by this implementation is now
presented.
• void get_output_events(Es,T)– gets, Es, the

output events that the contract generates at time T
• void get_states(S) – gets, S, the possible states of

the contract
• void get_state_history(H,T) – gets, H, a history of

states that the contract has been in, up to and
including time T

• boolean active_at(N,T) – gives whether a norm, N,
holds at a time T

• double value_at(V,T)– gives the value of a contract
variable, V, at time T

• void add_events(Es) – used to add an event
narrative, Es, specified in ecXML, to the contract

• void add_future_events(Es, T) – used to add a
future event narrative, Es, to the contract

• void delete_future_asserted_events() – used to
remove all future events

Additionally, there is a means, provided for by the
contract tracking ontology of defining equivalence classes

for collections of contract states. It is the names of these
equivalence classes that procedures such as
get_state_history/2 return for names of states. An
example of an equivalence class for the Mail Service UC
SLA is: Customer Payment Outstanding, which describes
all states for which there is an active obligation on the
customer to pay.

A GUI called SLA Visualiser has also been
implemented which manages the deployment lifecycle of
UC SLAs. A snapshot of SLA Visualiser is shown
in Figure 2. Here, SLA 4 is an instantiation of the Mail
Service UC SLA presented in section 3. Figure 3
shows the history of SLA 4 in terms of the states it has
been in, input and output events to and from the SLA and
in other terms.

Figure 2: SLA Visualiser snapshot

Figure 3: History of SLA

7. Related work

There have been many diverse research contributions
that have utilised the Event Calculus (EC) for the purpose
of reasoning over the effects of events on a logic theory.
Those closest to the topics of this paper include [3,4,8].

There has been a good deal of research concerning the
representation of contracts for performance monitoring.
In [6] Daskalopulu discusses the use of Petri-nets for
contract monitoring, and assessing contract performance.
Her approach is best suited for contracts which can
naturally be expressed as protocols. One particular
desirability of using Petri-nets is that they naturally
facilitate analysis. In the context of contract
representation, an example would be to show that a
contract will always terminate in a favourable state for
one, or more, contract parties. It is possible, however, to

carry out analysis of this nature using the formalism
described here. Moreover, our representation has many
advantages over Petri-nets (some of which are as a result
of a rule-based approach).

In [13] Milosevic and colleagues attempt to identify
the scope for automated management of e-contracts;
including: contract drafting, negotiation and monitoring.
In [2], Abrahams defines the EDEE architecture (E-
commerce application Development and Execution
Environment). Abrahams proposes Event-Condition
Obligation rules for handling occurrences. Prima facie
obligations are derived from the rules, where subsequent
obligation choice decides which of these apply, and action
choice decides which of those that apply will be fulfilled.
In [9], Grosof and colleagues have sought to address the
representation of business rules for e-commerce contracts.
For this purpose, they have developed the SWEET

(Semantic WEb Enabling Technology) toolkit, which
enables communication of, and inference for, e-business
rules written in RuleML. These approaches demonstrate
many common themes with our approach.

8. Conclusions

In this work, we have proposed an ontology,
formalised as an XML-based language, CTXML, to
facilitate the automated tracking of contract state for
performance monitoring. We have used the Event
Calculus, defining a formalisation in XML called ecXML,
to provide a computational model for CTXML. Through
using EC, we are able to extract information regarding
the state of contract norms – whether they are active or
not – and variables – what value they have – for arbitrary
times (in the past, or present), according to a supplied
event narrative. It is also possible to simulate – using
add_future_events/2 – the effects on contract state of a
hypothetical event narrative, which we have found useful
for carrying out prediction.

An inherent desirability of using EC is that the
computation of tracking contract state – in the context of
an event narrative – is externalised as a separate
component, rather than buried within an implementation
for contract monitoring. This promotes better
modularisation and makes for simplified code
maintenance. Also, as a consequence, it means that the
state tracking component may be re-used for a range of
automated reasoning tasks for which it is appropriate to
track state.

A comprehensive Java-based implementation of a
generic EC reasoning component, along with query-
interpreters for CTXML and ecXML, has been developed.
ecXML can be seen as the ‘language of the machine’, and
the implementation is capable of supporting any contract
ontology that might be defined, so long as it has a
tractable mapping to ecXML. All that is required to
support a new ontology is the writing of a translator
component for the ontology, which outputs ecXML. The
ability to support multiple ontologies is an example of the
re-use of the ecXML state tracking component.

The implementation and CTXML ontology have been
evaluated against tens of SLAs, which are considered to
be representative for UC. We have found the ontology to
be sufficient for facilitating contract tracking (as defined
in this paper) for these SLAs. We have also designed our
implementation to be capable of supporting a high
number of contracts simultaneously and to support event
narratives with a very large number of events. We have
optimised the implementation for querying, and have
found it to work extremely efficiently. In the future, it is
our intention to evaluate the sufficiency of CTXML at

facilitating contract tracking for other sorts of SLAs, and
for contracts from other domains.

The work described herein represents a small part of a
larger effort considering a unifying approach to the
management and utilisation of contracts, policies and
business rules at all levels of a business enterprise,
including: management of IT infrastructure and
hardware, management of business processes using
business rules authored by business managers and
analysts, and management of agreements between trading
partners. For more information concerning this work, see
[16].

9. References

[1] Merriam-Webster On-line Dictionary (www.m-
w.com/cgi-bin/dictionary).

[2] A. S. Abrahams. Developing And Executing Electronic
Commerce Applications with Occurrences. PhD thesis,
Cambridge University, 2002.

[3] A. Artikis. Executable Specification of Open Norm-
Governed Computational Systems. PhD thesis, Imperial
College, London, U.K., 2003.

[4] A. K. Bandara, E. C. Lupu, and A. Russo. Using Event
Calculus to Formalise Policy Specification and Analysis. In
Proceedings of 4th IEEE Workshop on Policies for Distributed
Systems and Networks (Policy 2003), Lake Como, Italy, June
2003.

[5] R. Boreham and M. Morciniec. Contract Monitoring. HP
Labs Technical Report: HPL-2002-265.

[6] A. Daskalopulu. Modelling Legal Contracts as
Processes. 11th International Conference and Workshop on
Database and Expert Systems Applications, IEEE C. S. Press,
pages 1074–1079, 2000.

[7] A. D. H. Farrell. Logic-based formalisms for the
representation of Service Level Agreements for Utility
Computing. Master’s thesis, Imperial College, London, U.K.,
2003.

[8] B. S. Firozabadi, M. Sergot, and O. Bandmann. Using
Authority Certificates to Create Management Structures. In
Proceedings of Security Protocols, 9th International Workshop,
UK, April 2001.

[9] B. N. Grosof, Y. Labrou, and H. Y. Chan. A Declarative
Approach to Business Rules in Contracts: Courteous Logic
Programs in XML. In M. P. Wellman, editor, Proceedings of 1st
ACM Conf. on Electronic Commerce (EC-99), Denver, CO,
USA, November 1999. ACM Press, New York, NY, USA.

[10] Hewlett-Packard (www.hp.com). HP Utility Data
Centre - Technical White Paper. October 2001.

[11] R. Kowalski and M. Sergot. A Logic-Based Calculus of
Events. New Generation Computing, 4:67–95, 1986.

[12] J. J. Lee and R. Ben-Natan. Integrating Service Level
Agreements: Optimising Your OSS for SLA Delivery. Wiley,
New York, 2002.

[13] O. Marjanovic and Z. Milosevic. Towards Formal
Modelling of e-Contracts. In Fifth IEEE International
Enterprise Distributed Object Computing Conference, Seattle,
USA, September 2001.

[14] M. Salle and C. Bartolini. Management by Contract.
HP Labs Technical Report: HPL-2003-186.

[15] M. Shanahan. Solving the Frame Problem: A
Mathematical Investigation of the Common Sense Law of
Inertia, ISBN: 0262193841. MIT Press, 1997.

[16] http://www.doc.ic.ac.uk/~adf02/phd

