
Specifying Electronic Societies
with the Causal Calculator

Alexander Artikis1, Marek Sergot2 and Jeremy Pitt1

Imperial College of Science, Technology and Medicine, London, UK
1Electrical Engineering Department, SW7 2BT, +44 (0)20 75946221

2Department of Computing, SW7 2BZ, +44 (0)20 75948218
a.artikis@ic.ac.uk, mjs@doc.ic.ac.uk, j.pitt@ic.ac.uk

Abstract. In previous work [1] we presented a framework for the speci-
fication of open computational societies i.e. societies where the behaviour
of the members and their interactions cannot be predicted in advance.
We viewed computational systems from an external perspective, with a
focus on the institutional and the social aspects of these systems. The
social constraints and roles of the open societies were specified with
the use of the Event Calculus. In this paper, we formalise our frame-
work with the use of the C+ language, a formalism with explicit state
transition semantics. We use the implementation of the C+ language,
the Causal Calculator, a software tool for representing commonsense
knowledge about action and change, to animate and validate the spec-
ifications of computational societies. We demonstrate the utility of the
Causal Calculator (by specifying and executing a Contract-Net Pro-
tocol) and comment on its functionality regarding the specification of
computational societies.

1 Introduction

Negotiation protocols [2,11] and Virtual Enterprises [6] are two examples of ap-
plication domains where software agents form computational societies in order
to achieve their possibly competing goals. Key characteristics of such societies
are agent heterogeneity, unpredictable behaviour [7], conflicting individual goals,
limited trust and a high probability of non-conformance to specifications. Con-
sequently, it is important that the activity of such societies is governed by a
framework with formal and meaningful semantics [16]. In order to address such
a requirement we presented in [1] a framework for specifying, animating, and
ultimately reasoning about and verifying the properties of open electronic so-
cieties, i.e. computational systems where the behaviour of the (heterogeneous
and possibly competing) members and their interactions cannot be predicted in
advance.

The framework for the specification of e-societies was formalised with the use
of the Event Calculus [14]. In this paper we formalise the framework with the
use of the C+ language [5], a formalism with explicit state transition semantics.

2

We use the Causal Calculator (CCALC), a software tool that implements C+,
to execute and, prove properties of, the specifications of open societies.

This paper is structured as follows. First, we briefly describe the C+ language
and the Causal Calculator. Second, we present the framework for the specifi-
cation of open e-societies. Third, we specify a Contract-Net Protocol (CNP) [17]
with the use of the framework for the specification of e-societies and the C+ lan-
guage. Fourth, we demonstrate the utility of CCALC by executing and ‘validating’
the specifications of the CNP. Finally, we discuss related work, summarise and
comment on the functionality of CCALC regarding the specifications of computa-
tional societies.

2 The C+ language

The action language C+ [5] enables the representation of properties of actions,
including actions with conditional and indirect effects and concurrently executed
actions. An action description in C+ is a set of C+ rules that define a transition
system of a particular kind. In this section we briefly present C+1.

The representation of an action domain in C+ consists of rigid constants,
fluent constants and action constants:

– Rigid constants are symbols that represent the features of the system whose
value is fixed and does not depend on the state.

– Fluent constants are symbols characterising a state. They are divided in
two categories: Simple fluent constants and statically determined fluent con-
stants. Simple fluent constants are related to actions by dynamic rules (i.e.
rules describing a transition from a state si to its successor state si+1). Stati-
cally determined fluents are characterised by static rules (i.e. rules describing
an individual state) relating them to other fluents (static and dynamic rules
are defined below).

– Action constants are symbols characterising state transitions. Intuitively,
they represent the actions of the agents and the environment.

An action signature is a non-empty set σrf of rigid and fluent constants and
a non-empty set σact of action constants. An action description D in C+ is a
set of causal laws. A causal law can be either a static law or a dynamic law.
A static law is an expression of the form

caused F if G (1)

– Every constant occurring in F or G is rigid or fluent. In other words, F and
G are formulas of signature σrf .

– If F contains a rigid constant then every constant occurring in F , G is rigid.

In a static law fluents F and G are evaluated on the same state of the transition
system. A dynamic law is an expression of the form

caused F if G after H (2)
1 We follow the formal and more detailed analysis of C+ provided in [5].

3

– Every constant occurring in F is a simple fluent constant (i.e. F is a formula
of signature σrf).

– Every constant occurring in G is rigid or fluent (i.e. G is a formula of signa-
ture σrf).

– H is any combination of rigid constants, fluent constants and action con-
stants (i.e. H is a formula of signature σrf ∪ σact).

In a transition from state si to state si+1 simple fluent constants in F and rigid
and fluent constants in G are evaluated on si+1 and rigid, fluent and action
constants in H are evaluated on si. F is called the head of the static law (1) and
the dynamic law (2).

The C+ language provides various abbreviations of the causal laws. The
abbreviations that will be used in this paper are the following:

– We specify that fluent F is inertial as: inertial F . This is an abbreviation
for a dynamic law of the form: caused F if F after F .

– The fact that action α cannot be executed if G holds is represented as:
nonexecutable α if G which is an abbreviation of caused ⊥ after α∧G.

– The closed-world assumption regarding a formula F is represented as: de-
fault F which is an abbreviation of: caused F if F .

Any action description in C+ defines a transition system, a directed graph
whose vertices are states and whose edges are labelled by actions. Given an
action description D we can define the following:

– A state is an interpretation of σrf that satisfies F ⊂ G for every static law
(1).

– An action is a propositional interpretation of σact .
– A transition is a triple (s, a, s ′) where s is the initial state, s′ is the resulting

state and a is an action.
– A formula F is caused in a transition (s, a, s ′) if F ∈ Tstatic(s ′) ∪ E (s, a, s ′),

where:
1. Tstatic(s) = {F | static law (1) is in D, s |= G}.
2. E(s, a, s′) = {F | dynamic law (2) is in D, s′ |= G, s ∪ a |= H}.

– A transition (s, a, s ′) is causally explained by D if and only if:
1. s ′ |= Tstatic(s ′).
2. s ′ |= E (s, a, s ′).
3. There is no other s′′ such that s ′′ |= Tstatic(s ′) and s ′′ |= E (s, a, s ′).

The transition system described by D is the following directed graph:

– The vertices are the states of D.
– An edge from state s to state s′ is labelled with action a if the transition

(s, a, s ′) is causally explained by D.

4

3 The Causal Calculator

The Causal Calculator (CCALC), a software system designed and implemented
at the University of Texas2, enables the representation of commonsense knowl-
edge about action and change, and implements the C+ language that was de-
scribed in the previous section [5]. CCALC has been applied to several challenge
problems, e.g. [9]. Action descriptions in C+ are translated by CCALC first into
the language of causal theories and then into propositional logic (via the process
of completion of the definite causal theories) [5]. The models of the propositional
theory correspond to paths in the transition system described by the original ac-
tion description in C+. The input files of CCALC consist of comments, declarations
and C+ causal laws regarding some action domain. These files are written in
the input language of CCALC. The functionality of CCALC includes, among other
things, computation of three kinds of tasks that can be represented as CCALC
queries:

– Prediction. Given (partial or complete) information about an initial state
and a complete sequence of actions, compute the information that holds in
the resulting state (if there exists one) of a given transition system (action
description) D.

– Postdiction. Given partial information about an initial state, (partial or com-
plete) information about a resulting state, and, possibly, a (partial or com-
plete) sequence of actions that leads from the initial state to the resulting
one, compute some additional information that holds in the initial state (if
there exists one) of a given transition system (action description) D.

– Planning. Given (partial or complete) information about an initial state
and (partial or complete) information about a resulting state, compute the
complete sequence of actions (if there exists one) that will lead from the
initial state to the resulting one of a given transition system D.

In all of these computational tasks information (partial or complete) about in-
termediate states may be provided.

4 Specification of Open Electronic Societies

Artikis et al. [1] present a theoretical framework for providing executable speci-
fications of open computational societies. A computational society is considered
open (in [1]) if the following properties hold: First, the internal architecture of
the agents is not publicly known. An open society can have members with differ-
ent internal architectures. Therefore, open societies are treated as heterogeneous
ones. Moreover, there is no direct access to an agent’s mental state and so we
can only infer things about it. Second, the members of the society do not neces-
sarily have a notion of global utility [11]. Members may fail to, or choose not to,
conform to specifications in order to achieve their individual goals. In addition

2 http://www.cs.utexas.edu/users/tag/cc/

5

to these properties, in open societies ‘the behaviour of the members and their
interactions cannot be predicted in advance’ [7].

In this framework the computational systems are viewed from an external
perspective, that is to say, we are not concerned with the internal architecture
of the agents. Three key components of computational systems are specified,
namely the social constraints, social roles and social states. The specification
of these concepts is based on and motivated by the formal study of legal and
social systems (a theory of institutionalised power [8] and a theory of normative
positions [12]) and traditional distributed computing techniques (state transition
systems [4]). In [1] the social constraints and roles are specified by means of a
subset of the ‘full version’ of the Event Calculus [14]. In this paper, we mainly
focus on the social constraints and specify them with the use of the C+ language;
a formalism with explicit state transition semantics. We illustrate the use of C+
by specifying a Contract-Net Protocol.

4.1 Social Constraints

We maintain, as in [1], the standard, in the study of social and legal systems,
long established distinction between permission, physical capability and institu-
tionalised power (see e.g. [8]). In other words, there is no standard (built-in)
relationship between the actions that an agent is physically capable of perform-
ing, the actions that an agent is permitted to perform and the actions that an
agent is empowered (by the institution/society) to perform. Accordingly, the
social constraints specify the following:

– What kind of actions ‘count as’ [8] valid (‘effective’, ‘meaningful’) actions.
Distinguishing between valid and invalid actions enables the separation of
meaningful from meaningless activities.

– What kind of actions (valid, invalid) are permitted. Determining the per-
mitted, prohibited, obligatory actions enables the classification of the agent
behaviour as ‘legal’ or ‘illegal’, ‘social’ or ‘anti-social’, etc.

– What are the sanctions and enforcement policies that deal with ‘illegal’,
‘anti-social’ behaviour.

Valid actions are specified as follows: An action counts as a valid action at a
point in time if and only if the agent that performed that action had the institu-
tionalised power [8] to perform it at that point in time. Differentiating between
valid (‘meaningful’) and invalid (‘meaningless’) actions is of great importance in
the analysis of agent systems. For example, in an auction, the auctioneer has to
determine which bids are valid and therefore, which bids are eligible for winning
the auction.

On the second level of specification, the definition of permitted, prohibited
or obligatory actions is application-specific. In other words, there is no standard
definition of permitted actions — permitted actions may be defined in different
ways in various computational societies. The same holds for the specification of
sanctions; that is, the definition of sanctions may vary from one computational
society to the other.

6

cfps submitted

award submitted

bids submitted

inform submitted

bids considered

[n]:cfp

cTimeout

[m]:bid

[n]:cfp

cTimeout

contractor awarded

[m]:rejectreject submitted

manager informed pay submitted pTimeout

aTime
out

[1]:award and/or
[k]:reject

ccTime
out

rTime
out

[1]:inform

aaTimeout

[1]:pay

speech act syntax=
cfp(sender,receiver,content,round)
bid(sender,receiver,content,round)

award(sender,receiver,content,round)
reject(sender,receiver,content,round)
inform(sender,receiver,content,round)

pay(sender,receiver,content,round)
transition syntax=

[no. of recipients]:speech act
protocol constraints=
1 manager,n bidders,

m<=n,k<=n-1

iiTimeout

iTimeout

Fig. 1. The UML State Transition Diagram of the CNP [1].

5 A Contract-Net Protocol

In [10] we describe an abstract producer/consumer (APC) scenario where pro-
ducers sell information to consumers. In this scenario the producers are explorer
agents that map out the distribution of oil in their environment and consumers
are cartographer agents that initiate Contract-Net Protocols to acquire the maps
from the explorers. The main roles of the society that executes the Contract-Net
Protocol (CNP) are that of the cartographer and that of the explorer . A brief
description of the CNP (Figure 1) is the following: a manager issues a call for
proposals (Cfp) for a particular task to a set of bidders. Bidders submit their
bids (if they are interested) to the manager. The manager then has three choices:
(i) award a particular bid, (ii) reject the received bids, or (iii) issue a new Cfp
incrementing the protocol round3. In the first two cases the protocol ends. In
the third case the protocol starts again. Actions must be performed according
to specified deadlines/timeouts.

Table 1 demonstrates a number of rigid, fluent and action constants and a
causal law of the C+ representation of the CNP. Each of the constants will be
described in the following sections. Two causal laws define when a state transition
takes place. The first one states that in order to change state at least one action
should take place (we employ an abbreviation provided by the input language
of CCALC to represent this law):

caused ⊥ after ¬d1 ∧ ¬d2 ∧ . . . ∧ ¬dn for every action constant di (3)

3 The protocol round is a parameter of the description of the actions that agents
perform (i.e. action constant). It is represented by an integer that, initially, is equal
to 1 and is incremented by 1 each time a cartographer performs a valid Cfp.

7

Table 1. A partial C+ description of the CNP.

Notation:
roleName ranges over {Cartographer ,Explorer}
agent ,agent2 ,e,c range over {Cartographer1 ,Explorer1 , . . . ,Explorern}
perf ranges over {Cfp,Bid ,Award ,Reject , Inform,Pay}
content ,content2 range over a finite set of task descriptions
round ranges over N+, the set of positive integers

Rigid constant (domain is {Cartographer ,Explorer}):
Role of (agent)

Simple fluent constant (boolean domain):
ValidActionHappened(agent , perf , agent , content , round)

Statically determined fluent constants (boolean domain):
Pow(agent , perf , agent , content , round),
Permitted(agent , perf , agent , content , round),
Obliged(agent , perf , agent , content , round),
Sanction(agent)

Action constant (boolean domain):
Valid(agent , perf , agent , content , round)

Causal laws:
inertial c for every simple fluent constant c

The second one states that at most one action can take place at each time:

noconcurrency (4)

The result of these two laws is that in order to change state exactly one action
should take place. Such a restriction can be lifted in different specifications of the
CNP. We introduce this restriction just to simplify our presentation. A number
of the remaining causal laws of the formalisation of the CNP are described in
the following sections.

5.1 Social Constraints

Valid Actions The actions that the agents perform can be classified as valid
or invalid. An action will count as [8] a valid one if and only if the agent that
performed that action had the institutional power to perform that action. For
example, the specification of valid actions could be represented by a static law

8

of the form:

caused Valid(agent , perf , agent2 , content , round) if

Pow(agent , perf , agent2 , content , round)∧
Action(agent , perf , agent2 , content , round)

(5)

In (5) Valid is an action constant representing valid actions, Action is an action
constant representing the agents’ actions and Pow is a fluent constant repre-
senting the institutional powers of the agents. Constraint (5) states that if an
agent performs an action (represented by Action) and he has the institution-
alised power to perform that action (represented by Pow) then this action is
considered valid. However, we cannot represent such a constraint in the C+ lan-
guage, since it is not possible to have an action constant both in the head and
the body of a causal law4. Since it is not possible to specify such a constraint in
C+, we have defined the following constraint (in order to approximate constraint
(5)):

nonexecutable Valid(agent , perf , agent2 , content , round) if

¬Pow(agent , perf , agent2 , content , round)
(6)

According to constraint (6) a Valid action is nonexecutable if the agent that
performs it does not have the institutionalised power to do so. In other words,
an agent can perform a valid action only if he has the power to do so.

In the applications we have in mind we want to keep track of the valid
actions as they occur. Therefore, we use ValidActionHappened , a simple fluent
constant to record the fact that a valid action has happened. We are aware that
encoding fluents (that represent the history) in a state description in this manner
runs counter to the spirit of transition systems. We are currently examining
alternative formalisations that avoid this issue.

Since valid actions are determined in terms of institutional powers, it is im-
portant to specify these powers. We represent the institutional powers with the
use of a statically determined fluent. There are several rules that define (‘stat-
ically determine’) the Pow fluents. For example, the power to Bid is defined
as:

caused Pow(e,Bid , c, content , round) if

ValidActionHappened(c,Cfp, e, content , round)∧
¬CTimeoutHappened(round)∧
∀content2 :¬ValidActionHappened(e,Bid , c, content2 , round)

(7)

The above law specifies that an explorer (represented by the e variable) has the
power to Bid if the following conditions hold:

– A cartographer (represented by the c variable) has performed a Valid Cfp.
– A CTimeout has not taken place.

4 Such a constraint can be represented in the extended C+ [13] (see Section 8).

9

– The explorer has not performed a Valid Bid .

Only when these conditions hold, will an explorer be empowered to perform
a Bid . Such a closed-world assumption regarding the specification of powers is
defined as follows:

default ¬Pow(agent , perf , agent2 , content , round) (8)

In other words, in the absence of information to the contrary (e.g. constraint
(7)), no agent is empowered to perform an action.

Apart from the actions that agents perform, the specification of the CNP
includes a number of additional actions/events, the timeout events. These events
are system events, in the sense that they are performed by a global clock, and
are considered valid. The timeout events are represented by a number of action
constants. Due to space limitations, we have omitted the representation of these
constants and the laws that are associated with them from the presented analysis.

Permitted Actions We now specify what actions are permitted during the
execution of the CNP. As for the Pow fluent, we represent permitted actions
with the use of a statically determined fluent, the Permitted fluent. For this
variation of the CNP we have specified that an agent is permitted to perform
an action if and only if he has the power to perform that action:

default ¬Permitted(agent , perf , agent2 , content , round) (9)

caused Permitted(agent , perf , agent2 , content , round) if

Pow(agent , perf , agent2 , content , round)
(10)

The specification of the permitted actions is application-specific. In different
settings we might specify permissions in a different manner. For example, we
might forbid agents in certain circumstances to perform actions even if they are
empowered to do so.

Apart from the valid and permitted actions, the specification of the CNP
includes definitions of obligations, sanctions and social roles. We represent obli-
gations and sanctions with the use of statically determined fluent constants (as
in the case of powers and permissions). We represent social roles [1] with rigid
constants (see Table 1) on the assumption that the agents do not change their
roles (i.e. Cartographer , Explorer) during the execution of the CNP. Of course,
such a restriction can be lifted in different specifications of the CNP. Due to space
limitations, we omit the presentation of the causal laws that are associated with
obligatory actions, sanctions and social roles.

5.2 Social States

The action signature of the formalisation of the CNP can be specified as:

– σrf ⊇ {ValidActionHappened ,Pow ,Permitted}. σrf is the set of rigid and
fluent constants.

10

– σact ⊇ {Valid}. σact is the set of action constants5.

The action description D of the CNP is a set of causal laws, some of which
were presented in the previous sections of this paper. This action description
defines a transition system where:

– The vertices are states of D, i.e. interpretations of σrf .
– The edges (s, a, s ′) are causally explained by D.

Consider a CNP with only two agents, cartographer C and explorer E, and
the transition (s, a, s ′) where:

– s ⊇ {Pow(C ,Cfp,E ,MapUK , 1),Permitted(C ,Cfp,E ,MapUK , 1)}.
– a = {Valid(C ,Cfp,E ,MapUK , 1)}.
– s ′ ⊇ {Pow(E ,Bid ,C ,MapUK , 1),¬Permitted(E ,Bid ,C ,MapUK , 1),

ValidActionHappened(C ,Cfp,E ,MapUK , 1)}.

In order to determine whether this transition is an edge of the transition
system defined by D we need to determine if this transition is causally ex-
plained by D (see Section 2). Intuitively, constraints (9) and (10) specify (in
this example) that we cannot have a state where an agent is empowered, but
not permitted, to perform an action. Because of constraint (10), Tstatic(s ′) ⊇
{Permitted(E ,Bid ,C ,MapUK , 1)}. Consequently, s ′ 2 Tstatic(s ′) and (s, a, s ′)
is not causally explained by D. (s, a, s ′) is not an edge of the transition system
defined by D. Similarly, we can determine which state transitions are edges of
the transition system defined by D.

6 Executing the Specifications

We used the C+ language to declare the constants (Table 1) and specify the
laws of the formalisation of the CNP. The C+ formalisation is translated to the
input language of the Causal Calculator (CCALC) in order perform a number
of computational experiments with our formalisation of the CNP. For example,
constraint (6) is written in the following way in the input language of CCALC6:

nonexecutable valid(Agent, Perf, Agent2, Content, Round) if
-pow(Agent, Perf, Agent2, Content, Round).

To test our formalisation of the CNP we performed a number of queries to CCALC.
The tested formalisation includes four agents; cartographer1 occupies the role
of the cartographer and explorer1, explorer2, explorer3 occupy the role of
explorer. The task description is mapUK and the protocol can have at most two
rounds (1..2).

(Prediction) Query 1. We are in the bids considered state (see Figure 1). The
following events have taken place: all of the explorers have performed valid

5 For clarity reasons we omit the parameters of the constants.
6 See [5, 9] for details about the syntax of the input language of CCALC.

11

bids about mapUK (the protocol round is 1) and the first timeout (i.e. cTimeout)
has elapsed. cartographer1 is empowered to perform a new cfp or to award or
reject the three bids he has received. In this state, can cartographer1 perform
a valid reject to explorer1 regarding mapUK at the first protocol round? If
yes, what are the new powers associated with cartographer1?
CCALC determines that the valid(cartographer1,reject,explorer1,mapUK,1)
action is executable. The resulting state includes the following powers:

1: pow(cartographer1, award, explorer2, mapUK, 1);
pow(cartographer1, award, explorer3, mapUK, 1);
pow(cartographer1, reject, explorer2, mapUK, 1);
pow(cartographer1, reject, explorer3, mapUK, 1).

(Planning) Query 2. Given the initial state of the CNP, i.e. cartographer1
is empowered to issue a cfp to the three explorers, is it possible to find a
state (within 16 steps7) where some explorer has been awarded some task
and cartographer1 is permitted to award some other explorer? This question
can be represented by the following CCALC query:

:- query
maxstep :: 1..16;
0: pow(cartographer1, cfp, explorer1, mapUK, 1),

pow(cartographer1, cfp ,explorer2, mapUK, 1),
pow(cartographer1, cfp, explorer3, mapUK, 1);

maxstep:
[\/Content \/Agent \/Round |

validActionHappened(cartographer1,award,Agent,Content,Round)] &
[\/Content2 \/Agent2 \/Round2|

permitted(cartographer1,award,Agent2,Content2,Round2)].

CCALC finds no solution within 16 steps. Due to constraints (3) and (4), the
maximum number of steps in this CNP is 16. Since there is no solution within
16 steps (starting from the initial state), the following statement holds: In this
specification of the CNP it is not possible to reach a state where the agent
occupying the role of the cartographer has awarded an agent and is permitted
to award another agent.

(Postdiction) Query 3. Initially, cartographer1 was permitted to issue a
cfp to explorer3 regarding mapUK at the first protocol round. After one step
cartographer1 is empowered to award explorer1 regarding mapUK at the first
protocol round. What can we say initially about the powers of cartographer1?

CCALC finds several solutions. The action (that leads from the initial state to
the resulting one) at each solution was cTimeout, i.e. the timeout after a valid
cfp. In all of these solutions, the initial state included the following:

0: permitted(cartographer1, cfp, explorer3, mapUK, 1);

7 A step is a transition from one state to the next. Due to constraints (3), (4), in this
specification of the CNP a step takes place when exactly one action takes place.

12

validActionHappened(explorer1, bid, cartographer1, mapUK, 1);
pow(cartographer1, cfp, explorer3, mapUK, 1).

6.1 Evaluation

In our experiments (four agents, two task descriptions, two protocol rounds)
CCALC generated big theories: over 2000 atoms, over 20000 rules and over 30000
clauses. Prediction queries were computed in 45 seconds on a Pentium IV 2GHz,
1GB RAM computer. Increasing the number of agents, task descriptions or pro-
tocol rounds (scalability of the formalisation) leads to larger theories that make
CCALC compute queries in a less timely fashion.

Based on our formalisation of the CNP and its execution in CCALC, we have
reached the conclusion that CCALC does not seem suitable for on-line activities,
that is, activities during the actual execution of the societies. On-line activities
include, among other things, the compilation of the social states (i.e. what pow-
ers, permissions, obligations and sanctions are associated with each member of
the society at each time point) during the simulations of electronic societies. The
compilation of the social states is performed with the use of prediction queries.
The computation of prediction queries, as shown above, is not performed suffi-
ciently fast for on-line activities.

As already mentioned, in previous work [1] we formalised the CNP with the
use of a sub-set of the ‘full version’ of the Event Calculus [14] and implemented
this formalisation in the Prolog programming language. This implementation, a
software tool called the Society Visualiser (SV), can compute prediction queries
regarding the Event Calculus specification of the CNP. Given the same experi-
mental settings, the Society Visualiser computed prediction queries sufficiently
fast for on-line activities.

Unlike CCALC, the Society Visualiser cannot compute planning and postdic-
tion queries. This limitation of the SV can be lifted by employing an Event
Calculus planner [14] (see Section 7 for a use of such a planner in the context
of specification of interaction protocols). This is an issue that we have not yet
addressed.

CCALC can be used in various settings/configurations with respect to the sim-
ulation/actual execution of computational societies. One possible setting is the
following: CCALC acting as a central entity in a computational society, monitoring
(or even auditing) the execution of the members of the society and producing
the social states of the society. In this setting, members of the computational
systems can query CCALC in order to determine the powers and normative posi-
tions relevant to them and their peers. In a different setting, the functionality
of CCALC may be distributed. For example, each member of the computational
system may have a module with similar computational capabilitites as CCALC.
This module will produce the powers and normative positions of the agent that
it belongs to.

13

7 Related Work

There are several approaches in the DAI literature that come close to the objec-
tives of our work. A few notable examples are work on e-institutions [3], work
on commitment protocols [19] and work on negotiation protocols [2].

Yolum and Singh [19] present a formalisation of the commitment protocols
[16] in terms of the Event Calculus. Moreover, they employ an abductive Event
Calculus planner [14] in order facilitate the planning of the agents that execute
these protocols. Our work is very similar to [19]. We employ CCALC to perform
planning as well as prediction and postdiction queries regarding the specifications
of computational systems that are formalised in C+.

Bartolini and colleagues [2] focus on the specification of negotiation mecha-
nisms (rather than negotiation strategies) and argue that the negotiation rules
should be made explicit at the design stage of a multi-agent system rather than
being implicitly specified in the minds of the participants of the negotiation
protocols. Furthermore, they propose a software framework for automated nego-
tiation that provides several functionalities to the participants of the negotiation
protocols. For example, agents can access the negotiation rules at any time in
order to determine/modify their strategies.

Our work has similaritites with the work of Bartolini et al. [2]. Negotiation
protocols can be viewed as types of ‘open computational societies’ (as these have
been defined in this paper). There is no access to the internals of the participants
of the negotiation protocols. Moreover, the participants are negotiating in order
to achieve their antagonistic goals. Like [2], our motivation is that the rules
(i.e. social constraints) of such computational systems should be explicitly (and
formally) defined at the design stage of the computational systems. The software
framework for automated negotiation of [2] bears some similarities with the way
we use CCALC for the execution of the specifications of the computational systems.
In particular, negotiation hosts [2] provide similar functionalities to the ones that
CCALC provides (especially when CCALC is used as a central entity — see Section
6.1).

A key difference between our work and the work reviewed here is that we
explicitly represent the institutional powers of the members of the computa-
tional systems and differentiate between institutional power, physical capability
and permission. Jones and Sergot [8] pointed out that “ ‘empowering’ is not an
exclusively legal phenomenon, but is a standard feature of any norm-governed
organisation where selected agents are assigned to specific roles (in which they
are empowered to conduct the business of that organisation)”. The concept of
institutionalised power, although being a standard feature of any norm-governed
institution/society, is not explicitly represented in the reviewed approaches.
Singh [15] provides an implicit representation of the concept of institutional
power in his work on commitment protocols. Moreover, the reviewed approaches
do not differentiate between institutional power, permission and physical power.

14

8 Summary and Current Work

The functionality of the Causal Calculator (CCALC) regarding the specification
of open electronic societies can be summarised as follows:

– CCALC implements C+, a language with explicit state transition semantics,
support for effects (direct and indirect) of actions and default (‘inertia’)
persistence of fluents from state to state. As shown in Sections 2 and 5.2 an
action description in C+ defines a transition system of a particular kind.

– CCALC provides a tool that enables the society designers and the agent design-
ers to ‘validate’ the specifications of the social laws after the design stage.
The validation is mainly performed with planning and postdiction queries.
These type of queries enable the designers to prove various properties of the
protocols/society specifications (e.g. see Query 2 in Section 6). In this way,
agent designers can perform planning queries in an off-line phase (i.e. be-
fore the commencement of the actual execution of the societies) in order to
determine whether it is desirable or not to deploy their agents in societies.

– CCALC does not seem suitable for on-line activities (i.e. activities during the
actual execution of the societies) such as the compilation of the social states
(i.e. what powers, permissions, obligations, sanctions, roles are associated
with each member of the society at each time point) during the simulations
of electronic societies.

Current work includes two main directions. Sergot [13] presents an extension of
the C+ language that includes direct support for specification of (a version of)
the ‘counts as’ relation for action [8] and a treatment of permitted/forbidden
states, actions and paths (in the spirit of [18]). We are currently formalising our
framework using extended C+ in order to directly use laws of the form (5) and
not approximate them with laws of the form (6).

Furthermore, we are investigating ways of improving the computation of
CCALC rules resulting from the society specification shown. More specifically,
we aim to improve the way CCALC computes prediction queries. In order to do
that, we aim to identify and discard the C+ laws that are not relevant to the
(prediction) query in question. In this way, CCALC will have as input a smaller
number of C+ laws and will therefore generate a smaller number of rules and
clauses (via the process of completion of the definite causal theories [5]).

It is important to note that CCALC is a tool under development and, therefore,
some of these issues (large number of atoms and scalability) may be addressed
in future versions8.

9 Acknowledgements

This work has been undertaken in the context of the EU-funded ALFEBIITE
Project (IST-1999-10298). We would also like to thank Vladimir Lifschitz and
Joohyung Lee from the Action Group at the University of Texas for their sug-
gestions regarding the C+ language and CCALC.
8 We used ccalc 2.04b for the computational experiments.

15

References

1. A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computational so-
cieties. In C. Castelfranchi and L. Johnson, editors, Proceedings of Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), pages 1053–1062, 2002.

2. C. Bartolini, C. Priest, and N. Jennings. Architecting for reuse: A software frame-
work for automated negotiation. In Proceedings of Workshop on Agent-Oriented
Software Engineering (AOSE), pages 87–98, 2002.

3. M. Esteva, J. Rodriguez-Aguilar, C. Sierra, P. Garcia, and J. Arcos. On the formal
specifications of electronic institutions. In F. Dignum and C. Sierra, editors, Agent
Mediated Electronic Commerce, LNAI 1991, pages 126–147. Springer, 2001.

4. R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning About Knowledge. The
MIT Press, 1995.

5. E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic
causal theories. 2001.

6. M. Hardwick and R. Bolton. The industrial virtual enterprise. Communications
of the ACM, 40(9):59–60, 1997.

7. C. Hewitt. Open information systems semantics for distributed artificial intelli-
gence. Artificial Intelligence, 47:76–106, 1991.

8. A. Jones and M. Sergot. A formal characterisation of institutionalised power.
Journal of the IGPL, 4(3), 1996.

9. J. Lee, V. Lifschitz, and H. Turner. A representation of the zoo world in the
language of the causal calculator. In Proceedings of Fifth Symposium on Formal-
izations of Commonsense Knowledge, 2001.

10. J. Pitt, L. Kamara, and A. Artikis. Interaction patterns and observable commit-
ments in a multi-agent trading scenario. In Proceedings of Conference on Au-
tonomous Agents (AA), pages 481–489. ACM Press, 2001.

11. J. Rosenschein and G. Zlotkin. Rules of Encounter: Designing Conventions for
Automated Negotiation among Computers. The MIT Press, 1998.

12. M. Sergot. A computational theory of normative positions. ACM Transactions on
Computational Logic, 2(4):522–581, 2001.

13. M. Sergot. The language (C/C+)++. ALFEBIITE Deliverable D6(2), 2002.
14. M. Shanahan. The event calculus explained. Artificial Intelligence Today, pages

409–430, 1999.
15. M. Singh. An ontology for commitments in multiagent systems: Towards a unifi-

cation of normative concepts. Artificial Intelligence and Law, 7:97–113, 1999.
16. M. Singh. A social semantics for agent communication languages. In Issues in

Agent Communication, LNCS 1916, pages 31–45. Springer, 2000.
17. R. Smith and R. Davis. Distributed problem solving: The contract-net approach.

In Proceedings of Conference of Canadian Society for Computational Studies of
Intelligence, pages 217–236, 1978.

18. R. van der Meyden. The dynamic logic of permission. Journal of Logic and Com-
putation, 6:465–479, 1996.

19. P. Yolum and M. Singh. Flexible protocol specification and execution: Applying
event calculus planning using commitments. In C. Castelfranchi and L. Johnson,
editors, Proceedings of Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 527–535, 2002.

