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Electronic markets, dispute resolution and negotiation protocols are three types of application

domains that can be viewed as open agent societies. Key characteristics of such societies are

agent heterogeneity, conflicting individual goals and unpredictable behaviour. Members of such
societies may fail to, or even choose not to, conform to the norms governing their interactions.

It has been argued that systems of this type should have a formal, declarative, verifiable, and

meaningful semantics. We present a theoretical and computational framework being developed
for the executable specification of open agent societies. We adopt an external perspective and view

societies as instances of normative systems. In this paper we demonstrate how the framework can

be applied to specifying and executing a contract-net protocol. The specification is formalised
in two action languages, the C+ language and the Event Calculus, and executed using respective

software implementations, the Causal Calculator and the Society Visualiser. We evaluate our
executable specification in the light of the presented case study, discussing the strengths and

weaknesses of the employed action languages for the specification of open agent societies.

Categories and Subject Descriptors: I.2.11 [Artificial Intelligence]: Distributed Artificial In-

telligence—Multiagent Systems; I.2.4 [Artificial Intelligence]: Knowledge Representation For-
malisms and Methods—Representation languages; F.4.1 [Mathematical Logic and Formal

Languages]: Mathematical Logic—Computational logic

General Terms: Theory

Additional Key Words and Phrases: Action Language, Agent, Contract-Net, Event Calculus,

Executable Specification, Norm, Policy

1. INTRODUCTION

A particular kind of Multi-Agent System (MAS) is one where the members are
developed by different parties and have conflicting goals. A key characteristic of
this kind of MAS, due to the globally inconsistent goals of its members, is the
high probability of non-conformance to the specifications that govern the mem-
bers’ interactions. A few examples of this type of MAS are negotiation protocols
[Smith and Davis 1978; Rosenschein and Zlotkin 1994], dispute resolution proto-
cols [Brewka 2001; Prakken 2005], rules of procedure [Prakken and Gordon 1999],
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electronic marketplaces [Sirbu 1997], Virtual Enterprises and Virtual Organisations
[Hardwick and Bolton 1997; Foster et al. 2001], and digital media rights manage-
ment [Bing 1998]. Multi-agent systems of this type are often classified as ‘open’.

It has been argued that many practical applications in the future will be realised
in terms of ‘open agent systems’ of this sort. Not surprisingly, there is growing
interest in the MAS community in such systems. Several researchers, for example,
view open agent systems as computational organisations and use organisational
abstractions to specify them. Esteva et al. [2000; 2001; 2002; 2002], Rodriguez-
Aguilar and Sierra [2002] have devised a specification language to specify open
agent systems as electronic institutions (or e-institutions). The basic components
of an e-institution include those of role (standardised pattern of behaviour), dialogic
framework (prescribing the agent interactions), scene (expressing sub-groupings cre-
ated in the context of a wider system), and normative rule (the ‘rules of the game’).
Normative rules specify the ‘obligations’ and ‘commitments’ of the members of an
e-institution.

Zambonelli et al. [2001a; 2001; 2001b; 2003] state that approaches like the
AALAADIN meta-model of multi-agent organisations [Ferber and Gutknecht 1998;
2000] and the Gaia methodology for agent-oriented analysis and design [Wooldridge
et al. 1999; 2000] view computational organisations simply as collections of roles
and do not incorporate the necessary notion of ‘organisational rule’. In their ex-
tension of Gaia, Zambonelli et al. [2001a; 2003] express organisational rules, that
is, global constraints prescribing the behaviour of the members of an organisation,
with the use of two alternative formalisms: (i) a subset of a first-order temporal
logic [Manna and Pnueli 1992; 1995], and (ii) regular expressions, a notation based
on the FUSION notation for operation schemata [Coleman et al. 1994]. Fox et al.
[1998] express organisational rules with the use of a dialect [Pinto and Reiter 1993]
of the Situation Calculus, placing emphasis on the concepts of ‘permission’, ‘right’,
‘authority’, and so on.

Closely related work in multi-agent systems includes the work of Moses and Ten-
nenholtz [1992; 1995], Shoham and Tennenholtz [1992; 1995], Tennenholtz [1995],
Fitoussi and Tennenholtz [2000], who focus on the specification of ‘social laws’ that
govern the behaviour of the members of ‘artificial social systems’. In brief, a so-
cial law is a set of prohibitions, that, if respected, enable agents to co-exist in a
shared environment and pursue their goals. Minsky and Ungureanu [2000] propose
a mechanism for coordination in open agent systems based on long-standing work
by Minsky on ‘law-governed interaction’ [Minsky 1991b; 1991a]. The main elements
are the following: (i) coordination policies need to be enforced, (ii) the enforcement
needs to be decentralised (in order to avoid a single point of failure), (iii) coordina-
tion policies need to be explicitly formulated rather than being implicitly described
in the agents’ internals, and (iv) a policy should be deployed without exacting a
cost from the agents not subject to it. Coordination policies specify, amongst other
things, the ‘enforced obligations’ of the agents, that is, obligations that are either
discharged by the agents or enforced by a dedicated regimentation device.

In another line of research on open agent systems, Singh [1998; 2000] argues
that the semantics for Agent Communication Languages (ACLs) in such systems
must be formal, declarative (the semantics should describe what rather than how),
ACM Transactions on Computational Logic, Vol. V, No. N, April 2007.
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verifiable (it should be possible to determine whether an agent is acting according
to the system specification) and meaningful (the semantics should be based on
some intuitive appreciation of the system under consideration). Moreover, he and
Colombetti [2000] argue that the notion of ‘social commitment’ is a sound basis for
the ACL semantics in open agent systems, as opposed to mentalistic notions such
as belief, desire and intention.

Within this general context, this paper is concerned with the presentation of
executable specifications of open agent systems. We here consider a multi-agent
system as open if it exhibits the following characteristics:

(1) The internal architectures of the members are not publicly known.
(2) Members do not necessarily share a notion of global utility [Rosenschein and

Zlotkin 1994].
(3) The behaviour and the interactions of the members cannot be predicted in

advance [Hewitt 1991].

The first of these characteristics implies that an open agent system may be com-
posed of agents with different internal architectures. Therefore, we will treat open
agent systems as heterogeneous ones. Moreover, there is no direct access to an
agent’s mental state and so we can only make inferences about that state. The
second characteristic implies that the members of an open agent system may fail
to, or even choose not to, conform to the specifications (of that system) in order to
achieve their individual goals (this is what Minsky and Ungureanu [2000] referred
to as inadvertent and malicious violations respectively). And further, open agent
systems are always subject to unanticipated outcomes in their interactions [Hewitt
1991].

We restrict attention to open agent systems in which the behaviour of the mem-
bers is governed by a set of social laws. Moreover, each member in these systems
occupies at least one social role. Drawing an analogy from human societies, we call
the multi-agent systems of this type open agent societies, and use the terms ‘open
agent society’ and ‘open, norm-governed computational society’ interchangeably.

In constructing executable specifications of open agent societies [Artikis et al.
2002; Artikis et al. 2003; 2006; Artikis 2003], we adopt a bird’s eye view of these
systems, as opposed to an agent’s own perspective whereby it reasons about how it
should act. Furthermore, we view agent systems as instances of normative systems
[Jones and Sergot 1993]. A feature of this type of system is that actuality, what is
the case, and ideality, what ought to be the case, do not necessarily coincide. There-
fore, it is essential to specify what is permitted, prohibited, and obligatory, and
perhaps other more complex normative relations (such as duty, right, privilege, au-
thority, . . . ) that may exist between the agents. Amongst these relations, we place
considerable emphasis on the representation of institutionalised power [Makinson
1986; Jones and Sergot 1996] — a standard feature of any norm-governed system
whereby designated agents, when acting in specified roles, are empowered by an
institution to create specific relations or states of affairs (such as when an agent is
empowered by an institution to award a contract and thereby create a bundle of
normative relations between the contracting parties).

We encode specifications of open agent societies in executable action languages.
In this paper we show how two such languages from the field of Artificial Intelligence
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(AI) may be used to express these specifications: the C+ language [Giunchiglia et al.
2001; Giunchiglia et al. 2004] and the Event Calculus (EC) [Kowalski and Sergot
1986; Shanahan 1999]. The C+ language, notably when used with its associated
software implementation, the Causal Calculator (CCALC), already supports a wide
range of computational tasks of the kind that we wish to perform on society spec-
ifications. A major attraction of C+ compared with other action languages in AI
is its explicit semantics in terms of labelled transition systems, a familiar structure
widely used in logic and computer science. EC, on the other hand, does not have
an explicit transition system semantics, but has the merits of being simple, flexible,
and very easily and efficiently implemented for an important class of computational
tasks, specifically those in which given a record of what events have occurred (a
‘narrative’) and a set of EC axioms, we compute the values of various facts at
specified time points/states. EC thus provides a practical means of implementing
an executable society specification. The Society Visualiser (SV), described later
in the paper, is a software implementation that supports computational tasks on
society specifications formulated in EC. The relative advantages and disadvantages
of these action formalisms are discussed in the concluding sections of the paper. A
third candidate formalism is the language n C+ presented in [Sergot 2004a]. See
also [Sergot and Craven 2006]. n C+ (formerly called (C+)++) is an extended form
of C+ specifically designed for modelling the normative and institutional aspects of
(human or computer) societies. However, since the development of n C+ took place
in parallel with the methods presented in this paper, we leave its presentation to a
separate paper.

This paper is structured as follows. First, we present a theoretical framework
for specifying open agent societies. More precisely, we present a specification of
the social laws (or social constraints) and social roles of an open agent society.
Second, we review the C+ language and the associated implementation, CCALC.
We illustrate the use of C+ and the theoretical framework by specifying a variation
of the Contract-Net Protocol (CNP) [Smith and Davis 1978; Smith 1980; Davis
and Smith 1983] and executing this specification with CCALC. Third, we present
the dialect of EC that we use and its implementation in SV, and then an EC
specification of the CNP, and its execution using SV. In [Artikis et al. 2002] we
specified and executed the CNP with the use of EC and SV whereas in [Artikis
et al. 2003] we specified and executed the CNP with the use of the C+ language
and CCALC. Here, we present an updated and more detailed account of both
specifications and the respective executions. Finally, we evaluate the executable
specification in the light of the presented case study, identifying strengths and
weaknesses of this type of specification, and discuss ways to overcome some of the
reported weaknesses.

2. THEORETICAL FRAMEWORK

An open agent society can be expressed in terms of a set of agents (the members of
a society), a set of constraints on a society (norms, and other constraints, such as
physical and logical constraints), a set of roles that members can play, the state of
the members and the environment in which they act, a communication language,
relationships between the members, including ownership and representation rela-
ACM Transactions on Computational Logic, Vol. V, No. N, April 2007.
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tions, and the structure of an open agent society.
There are several approaches in the literature that study these concepts. For

example, studies of social structure of MAS may be found in [Werner 1989; Ten-
nenholtz 1995; Esteva et al. 2001]. Some first attempts at formalising representation
relations may be found in [Gelati et al. 2002; Gelati et al. 2002; Governatori et al.
2002]. We focus on the specification of social constraints, social roles and social
states. These are specified at the design stage of an open agent society. Further-
more, we assume that the specification of social constraints does not change at
run-time, that is, during the execution of a society.

We view open agent societies from an external perspective (also referred to as
meta-perspective by Werner [1992, p.7]). Our specification is based only on exter-
nally observable states of affairs and not on the internals of the members. Fur-
thermore, the specification of social constraints refers to the externally observable
behaviour of the agents and not to the way agents reason about their behaviour.

Two additional assumptions are made:

—We anticipate applications in which agents are members of different societies.
However, the analysis that follows does not deal with the issue of multiple soci-
eties. We assume that only a single society exists.

—In our view, apart from its members, an open agent society may include other
groupings, which we call, following standard usage, institutions [Searle 1969;
Jones and Sergot 1996; Carley and Gasser 1999; Santos et al. 1997]. Such in-
stitutions have their own constraints, roles, communication language, and so on.
For simplicity, in this paper we assume that each open agent society includes
members of a single institution.

Due to the last two assumptions, in the following sections we do not relativise the
specification of social constraints to a particular society or institution within a soci-
ety. The relaxation of the single-institution and single-society assumptions, as well
as the assumption regarding the design-time specification of the social constraints,
raise a number of further complications and will be presented in a separate paper.

The following sections describe the specification of the social constraints and roles
of an open agent society. Our treatment of social states is discussed in Sections 4
and 8, including the way we execute the specification of an open agent society.

2.1 Social Constraints

We maintain the standard and long established distinction between physical ca-
pability, institutionalised power and permission (see, for instance, [Makinson 1986;
Jones and Sergot 1996] for illustrations of this distinction). Accordingly, we present
a four-level specification of the social constraints of an open agent society, that ex-
presses:

—the physical capabilities,
—institutionalised powers,
—permissions, prohibitions and obligations of the agents;
—the sanctions and enforcement policies that deal with the performance of forbid-

den actions and non-compliance with obligations.
ACM Transactions on Computational Logic, Vol. V, No. N, April 2007.
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The first level of specification concerns the externally observable physical capabili-
ties of a society’s members (in a virtual soccer field [Noda et al. 1998], for instance,
we may want to express the conditions in which an agent is capable of ‘kicking’ the
ball). The remaining three levels of specification are described next.

2.1.1 Institutionalised Power and Valid Actions. The term institutional (or ‘in-
stitutionalised’) power refers to the characteristic feature of an institution — legal
system, formal organisation, or informal grouping — whereby designated agents,
often when acting in specific roles, are empowered to create or modify facts of
special significance in that institution — institutional facts in the terminology of
[Searle 1969] — usually by performing a specified kind of act (such as when a priest
performs a marriage, or an agent signs a contract, or the chairperson of a formal
meeting declares the meeting closed). This concept has received considerable at-
tention within the jurisprudential literature, usually under the headings of ‘legal
power’, ‘legal capacity’ or ‘norms of competence’, but it is clear that it is not an
exclusively legal phenomenon but a standard feature of all organised interaction.

According to the account given by Jones and Sergot [1996], institutional power
can be seen as a special case of a more general phenomenon whereby an action, or
a state of affairs, A — because of the rules and conventions of an institution —
counts, in that institution, as an action or state of affairs B (see e.g. [Searle 1969])
— as when sending a letter with a particular form of words counts as making an
offer, or raising a hand counts as making a bid at an auction, or banging the table
with a wooden mallet counts as declaring a meeting closed.

For the specification of the effects of actions within institutions, it is important
— essential — to distinguish between, for example, the act of making an offer and
the act by means of which that offer is made (such as sending a letter). Banging
the table with a wooden mallet is not the same act as closing a meeting. Indeed, it
is only if the table is banged by a person with the institutional power to close the
meeting that the meeting is thereby declared closed; the same act performed by an
agent without this power has no effect on the status of the meeting (though it may
have other effects). In such examples we say that an agent ‘has the institutional
power’ (or just ‘power’), or ‘is empowered’, to close the meeting by means of banging
the table with a wooden mallet.

In some circumstances it is awkward or unnecessary to isolate and name all
instances of the acts by means of which agents exercise their institutional powers.
When describing an auction, for example, it is convenient to say ‘agent x made a bid’
and let context disambiguate whether we mean by this that the agent performed an
action, such as raising its hand, by means of which the making of a bid is signalled,
or whether agent x actually made a bid, in the sense that the current bidding price
of the item under auction was changed. We find it convenient to disambiguate in
these circumstances by attaching the label ‘valid’ to act descriptions. We say that
an action is valid at a point in time if and only if the agent that performed that
action had the institutional power to perform it at that point in time. So, when
we say that ‘agent x made a bid y’ we mean, by convention, merely that agent
x signalled its intention to make a bid y; this act was not necessarily effective in
changing the current bidding price. In order to say that the bidding price was
actually changed, we say that the action ‘agent x made a bid y’ was valid: not only
ACM Transactions on Computational Logic, Vol. V, No. N, April 2007.
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did x signal its intention to make bid y, but also x was empowered to make the bid
y at that time. Similarly, ‘invalid’ is used to indicate lack of institutional power:
when we say ‘agent x made a bid y but that was invalid’ we mean that x signalled
its intention to make bid y but did not have the institutional power to make that
bid at that time (and so the attempt to change the current bidding price was not
successful). Differentiating between valid (‘meaningful’) and invalid (‘meaningless’)
actions is of great importance in the analysis of MAS. In an auction, for example,
the auctioneer has to determine which bids are valid, and therefore which bids are
eligible for winning the auction.

We are conscious that this use of the term ‘valid’ is not ideal and indeed may be
inappropriate in some contexts. Terms such as ‘valid’, ‘in order’, ‘proper’ (and ‘in-
valid’, ‘out of order’, ‘improper’, ‘void’) have specific meanings in certain contexts.
However, these contexts are relatively few, and the same meaning is not always
given in each. It is difficult to find a suitably neutral term — we will stick to the
term ‘valid’ in this paper.

2.1.2 Permission. This level of specification of social constraints provides the
definitions of permitted, prohibited and obligatory actions. These definitions are
application-specific. In some cases, we might want to associate institutional powers
with permissions. In some societies, for example, an agent is permitted to perform
an action if that agent is empowered to perform that action. According to this
definition, an agent is always permitted to exercise its institutional powers. In other
societies the relationship is stronger: an agent is permitted to perform an action if
and only if it is empowered to perform that action. In general, however, there is
no standard, fixed relationship between powers and permissions. For example, it is
sometimes valuable to forbid an agent to perform an action even if it is empowered
to perform that action. Similarly, the specification of obligations is application-
specific. It is important, however, to maintain consistency of the specification of
permissions and obligations on the same society: an agent should not be forbidden
and obliged to perform the same action at the same time.

Determining what actions are permitted, prohibited or obligatory enables the
classification of the behaviour of individual agents and the society as a whole into
categories such as ‘social’ or ‘anti-social’, ‘acceptable’ or ‘unacceptable’, and so
on. For example, the behaviour of an agent might be considered ‘anti-social’ or
‘unacceptable’ if that agent performs certain forbidden actions or does not comply
with its obligations. Based on the behaviour of the individual agents, it is possible
to classify the behaviour of the society as a whole. For example, the state of a
society may be considered ‘unacceptable’ if the majority of its members have not
complied with their obligations.

2.1.3 Enforcement Policies. This level of specification of social constraints ex-
presses the sanctions and enforcement policies that deal with ‘anti-social’ or ‘un-
acceptable’ behaviour. We are concerned with the following issues: (i) when is
an agent sanctioned, and (ii) what is the penalty that the agent has to face (in
the case that it does get sanctioned). The specification of both of these issues is
also application-specific. As far as the first is concerned, agents may be sanctioned
for not complying with their obligations, or they may be sanctioned if they per-
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form forbidden actions. As regards the second issue, penalties can come in many
different forms. The house rules of an auction house, for example, may stipulate
that bidders who bid out of turn (and are therefore considered ‘sanctioned’) are no
longer empowered to enter other auctions. In different settings, the same type of
misbehaviour might create different sanctions. One common type of sanction may
be expressed in terms of a social concept such as bad reputation.

Sanctions are one means by which an open agent society may discourage ‘unac-
ceptable’ or ‘anti-social’ behaviour. Another mechanism is to try to devise addi-
tional controls (physical or institutional) that will force agents to comply with their
obligations or prevent them from performing forbidden actions. In an automated
auction, for example, forbidden (non-permitted) bids may be physically blocked, in
the sense that their transmission is disabled, or the specification of a valid bid may
be changed to render them ineffective. The general strategy of designing mecha-
nisms to force compliance and eliminate non-permitted behaviour is what Jones and
Sergot [1993] termed regimentation. Sanctioning mechanisms are required because
the opportunities for effective regimentation are usually very limited.

2.2 Social Roles

Following Jones [2001], Pörn [1977], we associate a social role with a set of precon-
ditions that agents must satisfy in order to be eligible to occupy that role, and a
set of constraints that govern the behaviour of the agents once they occupy that
role.

Agents usually participate in a role-assignment protocol before entering an open
agent society in order to acquire a set of roles that they will occupy while being
part of that society. In general, an agent may be assigned a role if the following
criteria are met:

—The agent satisfies the role preconditions. It should be possible to determine
whether or not an agent satisfies the preconditions of a role without having to
access its internals. Agents may acquire certificates, for example, that prove that
they satisfy the preconditions of a role.

—The assignment of the role to the agent does not violate the role-assignment
constraints. These constraints are defined in an application-specific manner —
the role-assignment constraints of an auction house, for instance, may require
that at most one agent may occupy the role of the auctioneer.

The role constraints, that is, the constraints prescribing the behaviour of an agent
occupying a role R, specify the powers, permissions, obligations and sanctions as-
sociated with R. The set of role constraints of a role R is a subset of the set of
social constraints.

We do not expand our analysis on the concept of social role here. A detailed
account of this concept including a specification and execution of an example role-
assignment protocol will be presented in a separate paper.

2.3 Formalisation: Action Languages

We provide two alternative accounts of the presented theoretical framework using
two different action formalisms. One account is formalised by means of the C+
ACM Transactions on Computational Logic, Vol. V, No. N, April 2007.
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language while the other is formalised using EC. The C+ language was chosen for
the following reasons:

—It is a formalism with explicit transition systems semantics and provides support
for the effects (direct and indirect) of actions and default persistence (‘inertia’)
of facts from state to state.

—There exists a software tool, the Causal Calculator (CCALC), that supports a
number of computational tasks regarding C+ formalisations.

EC was chosen because it is a formal, yet intuitive action language. Like the C+
language, it can represent the effects of actions, including actions with conditional
effects, and the inertia of facts. An evaluation of the utility of EC and the C+
language for the specification of open agent societies will be presented in a later
section.

In this paper we follow two different routes to execute a society specification:

(1) We employ CCALC in order to execute the specifications formalised in the C+
language.

(2) We develop the Society Visualiser (SV), a software tool that performs compu-
tational tasks on EC axiomatisations. SV executes the specifications formalised
in EC.

We refer to these software tools as our computational framework. (CCALC is not the
only means by which a C+ formalisation may be executed, nor is SV the only means
by which an EC axiomatisation may be executed.) Sections 3 and 4 review the C+
language and CCALC. Sections 5 and 6 present a specification and execution of a
variation of the Contract-Net Protocol (CNP) with the use of these technologies.
Sections 7 and 8 review EC and the SV implementation, respectively, and Sections
9 and 10 present an EC specification and a SV execution of the CNP.

3. THE C+ LANGUAGE

As already mentioned, C+ is an action language with an explicit transition systems
semantics. We describe here the version of C+ presented in [Giunchiglia et al. 2004].
A detailed presentation placing more emphasis on the transition system semantics
is given in [Sergot 2004a].

3.1 Basic Definitions

A multi-valued propositional signature is:

—a set σ of symbols called constants, and
—for each constant c ∈ σ, a non-empty finite set dom(c) of symbols, disjoint from

σ, called the domain of c.

For simplicity, in this presentation we will assume that every domain contains at
least two elements.

An atom of signature σ is an expression of the form c=u where c ∈ σ and
u ∈ dom(c). A Boolean constant is one whose domain is the set of truth values
{true, false}. When c is a Boolean constant we often write c for c= true and ¬c for
c= false. A formula ϕ of signature σ is any propositional combination of atoms
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of σ. An interpretation I of σ is a function that maps every constant in σ to an
element of its domain. An interpretation I satisfies an atom c=u if I(c) = u. The
satisfaction relation is extended from atoms to formulas according to the standard
truth tables for the propositional connectives. A model of a set X of formulas of
signature σ is an interpretation of σ that satisfies all formulas in X. If every model
of a set X of formulas satisfies a formula ϕ then X entails ϕ, written X |= ϕ.

3.2 Syntax

The representation of an action domain in C+ consists of fluent constants and
action constants.

—Fluent constants are symbols characterising a state. They are divided into two
categories: simple fluent constants and statically determined fluent constants.
Simple fluent constants are related to actions by dynamic laws (that is, laws
describing a transition from a state si to its successor state si+1). Statically
determined fluent constants are characterised by static laws (that is, laws de-
scribing an individual state) relating them to other fluent constants. Static laws
can also be used to express constraints between simple fluent constants. Static
and dynamic laws are defined below.

—Action constants are symbols characterising state transitions.

An action signature is a non-empty set σf of fluent constants and a non-empty set
σact of action constants. An action description D in C+ is a non-empty set of
causal laws that define a transition system of a particular type. A causal law can
be either a static law or a dynamic law. A static law is an expression

caused F if G (1)

where F and G are formulas of fluent constants. In a static law, constants in F
and G are evaluated on the same state. A dynamic law is an expression

caused F if G after H (2)

where F , G and H are formulas such that every constant occurring in F is a simple
fluent constant, every constant occurring in G is a fluent constant, and H is any
combination of fluent constants and action constants. In a transition from state si

to state si+1, constants in F and in G are evaluated on si+1, fluent constants in H
are evaluated on si and action constants in H are evaluated on the transition itself.
F is called the head of the static law (1) and the dynamic law (2).

The full C+ language also provides action dynamic laws, which are expressions
of the form

caused α if H

where α is a formula containing action constants only and H is a formula of action
and fluent constants. We will not use action dynamic laws in this paper and so
omit the details in the interests of brevity.

The C+ language provides various abbreviations for common forms of causal
laws. We will frequently use the following ones in this paper:

—An expression of the form

default F

ACM Transactions on Computational Logic, Vol. V, No. N, April 2007.
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expresses that the formula F of fluent constants is assumed to hold by default
in the absence of information to the contrary. It is an abbreviation for the static
law:

caused F if F

—A dynamic law of the form

caused ⊥ if > after α ∧H

where α is a formula containing only action constants and H is a formula con-
taining only fluent constants is abbreviated as:

nonexecutable α if H

In the case where H is > then the abbreviation can be written as follows:

nonexecutable α

—The inertia of a fluent constant c over time is represented as:

inertial c

This is an abbreviation for the set of dynamic laws of the form (for all values
u ∈ dom(c)):

caused c=u if c=u after c=u

As already mentioned, a C+ action description is a non-empty set of causal laws.
Of particular interest is the sub-class of definite action descriptions. A C+ action
description D is definite if:

—the head of every causal law of D is an atom or ⊥, and
—no atom is the head of infinitely many causal laws of D.

All the C+ action descriptions in this paper will be definite.

3.3 Semantics

It is not possible in the space available here to give a full account of the C+ language
and its semantics. We trust that the C+ language, and especially its abbreviations,
are sufficiently natural that readers can follow the presentation of the case study in
later sections. Interested readers are referred to [Giunchiglia et al. 2001; Giunchiglia
et al. 2004] and [Sergot 2004a] for further technical details. For completeness, we
summarise here the semantics of definite action descriptions as presented in [Sergot
2004a], ignoring (as we are) the presence of action dynamic laws (and assuming
that the domain of every constant contains at least two elements). We make use
of the semantics later in Section 5.4 where we prove some properties of an example
protocol formalised in C+.

Every action description D of C+ defines a labelled transition system, as follows:

—States of the transition system are interpretations of the fluent constants σf. It
is convenient to identify a state s with the set of fluent atoms satisfied by s (in
other words, s |= f = v iff f = v ∈ s for every fluent constant f).
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Let Tstatic(s) denote the heads of all static laws in D whose conditions are satisfied
by s:

Tstatic(s) =def {F | static law (1) is in D, s |= G}

For a definite action description D, an interpretation s of σf is a state of the
transition system defined by D (or simply, a state of D for short) when

s = Tstatic(s) ∪ Simple(s)

where Simple(s) denotes the set of simple fluent atoms satisfied by s. (So s −
Simple(s) is the set of statically determined fluent atoms satisfied by s.)

—Transition labels of the transition system defined by D (also referred to as events
or actions) are the interpretations of the action constants σact.
A transition is a triple (s, ε, s′) in which s is the initial state, s′ is the resulting
state, and ε is the transition label (or event). Since transition labels are interpre-
tations of σact, it is meaningful to say that a transition label ε satisfies a formula
α of σact: when ε |= α we sometimes say that the transition (s, ε, s′) is of type α.

—Let E(s, ε, s′) denote the heads of all dynamic laws of D whose conditions are
satisfied by the transition (s, ε, s′):

E(s, ε, s′) =def {F | dynamic law (2) is in D, s′ |= G, s ∪ ε |= H}

For a definite action description D, (s, ε, s′) is a transition of D (or in full, a
transition of the transition system defined by D) when s and s′ are interpretations
(set of atoms) of σf and ε is an interpretation of σact such that:
(1) s = Tstatic(s) ∪ Simple(s) (s is a state of D)
(2) s′ = Tstatic(s′) ∪ E(s, ε, s′)

For any non-negative integer m, a path or history of D of length m is a sequence

s0 ε0 s1 . . . sm−1 εm−1 sm

where (s0, ε0, s1), . . . , (sm−1, εm−1, sm) are transitions of D.

4. THE CAUSAL CALCULATOR

The Causal Calculator (CCALC) is a system designed and implemented by the
Action Group of the University of Texas for representing action and change in
the C+ language and performing a range of computational tasks on the resulting
formalisations. CCALC has been applied to several ‘challenge problems’ (see, for
example, [Akman et al. 2004; Lifschitz 2000; Lifschitz et al. 2000]).

CCALC has two inputs: a definite C+ action description D and a query concerning
D. We describe the functionality of CCALC, that is, the type of query that CCALC

may compute answers to, the operation of CCALC, that is, how the computation of
a query answer is performed, and the way we use CCALC to execute an open agent
society specification.

4.1 Functionality of the Causal Calculator

The functionality of CCALC includes computation of three kinds of tasks, each of
which can be represented as a query:
ACM Transactions on Computational Logic, Vol. V, No. N, April 2007.
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Fig. 1. The Operation of the Causal Calculator.

—Prediction. Given (partial or complete) information about an initial state and
a complete sequence of transitions, compute the information that holds in the
resulting state(s) (if any) of a given transition system (action description) D.

—Planning. Given (partial or complete) information about an initial state and
(partial or complete) information about a resulting state, compute the complete
sequence(s) of transitions (if any) that will lead from the initial state to the
resulting state of a given transition system (action description) D.

—Postdiction. Given, possibly, partial information about an initial state, (partial
or complete) information about a resulting state, and, possibly, a (partial or
complete) sequence of transitions that leads from the initial state to the resulting
one, compute some additional information that holds in the initial state (if one
exists) of a given transition system (action description) D.

In all of these computational tasks, information (partial or complete) about inter-
mediate states (if any) may be provided. Apart from the information mentioned
above, a query specifies the maximum number of transitions that a solution may
include.

4.2 Operation of the Causal Calculator

Action descriptions in C+ are translated by CCALC first into the language of causal
theories [Giunchiglia et al. 2004] and then into propositional logic. The (ordinary,
classical) models of the propositional theory correspond to paths in the transition
system described by the original action description in C+. In brief, CCALC performs
the following tasks in order to compute an answer to a query. First, it translates a
given definite action description D to a definite causal theory ΓD

m. m specifies the
length of paths to be considered. Second, it translates the definite causal theory
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COMPUTATIONAL
FRAMEWORK

SOCIAL CONSTRAINTS
the logical, causal and deontic

constraints that govern the
behaviour of the members

NARRATIVE
the externally

observable (time-
stamped) events

RESULTING SOCIAL STATE
the powers, permissions,

obligations and sanctions that
are associated with each

member at the current time

INITIAL SOCIAL STATE
the powers, permissions, obligations

and sanctions that are initially
associated with each member

Fig. 2. Executing the Specification of an Open Agent Society: Prediction Queries.

ΓD
m into a set of (ordinary, classical) propositional formulas comp(ΓD

m). Third, it
invokes a satisfiability (SAT) solver [Kautz and Selman 1992] to find models of the
propositional formulas comp(ΓD

m) which also satisfy the query. Figure 1 gives an
overview of CCALC’s operation.

We use CCALC in the following way: we specify the social constraints of an open
agent society as a definite C+ action description and use CCALC to evaluate queries
about that action description. For present purposes it is sufficient to view CCALC

as a ‘black box’ (see the dotted lines in Figure 1) without having to describe the
internal computations. The reader is referred to [Giunchiglia et al. 2004] for a more
detailed description of CCALC’s operation.

4.3 Executing Open Agent Societies with the Causal Calculator

This section describes the way we use prediction, planning and postdiction queries
to execute the specification of the social constraints of an open agent society. In each
type of query, CCALC has as input a definite C+ action description Dsoc expressing
the specification of social constraints. We refer to the states of the transition system
defined by Dsoc as social states. In other words, a social state is an interpretation
(with some further properties) of the fluent constants of Dsoc. These constants
represent, amongst other things, the powers, permissions, obligations and sanctions
of a society’s members.

—Prediction queries. The computation of an answer to this type of query involves
an initial social state, that is, a description of the powers, permissions, obligations
and sanctions that are initially associated with the members of a society, and a
narrative, that is, a description of temporally-sorted externally observable events
of the society (a narrative is expressed as a sequence of transitions). The outcome
of a prediction query (if any) is the current social state, that is, a description of
the powers, permissions, obligations and sanctions that are associated with the
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members of the society at the current time (see Figure 2).
—Planning queries. Agents may compute answers to planning queries: (i) at design-

time in order to generate plans that will facilitate them in avoiding run-time
conflicts (say), and (ii) at run-time in order to update their plans.

—Postdiction queries. New members of a society may seek to determine the past
states of that society. Similar information may be requested by agents that have
‘crashed’ and resumed their operation. Such information can be produced via
the computation of postdiction query answers.

The computation of answers to prediction, planning and postdiction queries may
be additionally used to prove properties of the social constraints’ specification; in
Section 6 we prove properties of a specification by computing answers to planning
queries.

5. SPECIFYING THE CNP IN THE C+ LANGUAGE

In order to illustrate the use of the C+ language and CCALC for specifying and
executing open agent societies we present a C+ specification and a CCALC execution
of a well-studied protocol in the MAS field, the Contract-Net Protocol (CNP)
[Smith and Davis 1978; Smith 1980; Davis and Smith 1983]. We focus on a variation
of the CNP that is rich enough to illustrate the main strengths and weaknesses of
the proposed executable specification of open agent societies.

5.1 The CNP

Our variation of the CNP is based on an abstract producer-consumer scenario [Pitt
et al. 2001] where explorer agents (producers) sell information to cartographers
(consumers). The information commodity in question is geophysical in nature,
with explorer agents mapping out the distribution of oil in their environment. The
geophysical data is of variable quality; it is in the explorers’ interests to find the
best possible oil ‘plots’, as these will fetch the best price on the market. It is in
the cartographers’ interests to get the best quality exploration data as these have
the greatest intrinsic value. Trading is, of course, competitive, with cartographers
initiating contract-net protocols for specific exploration.

Figure 3 shows a Unified Modelling Language (UML) state transition diagram
of our variation of the CNP. The filled circle denotes the initial protocol state. A
hollow circle containing a smaller filled circle indicates a final state. Rounded rect-
angles denote (intermediate) states whereas arrows denote transitions. The ‘name’
of a state is displayed inside the rounded rectangle; moreover, the name of the event
causing a transition labels the arrow. A brief description of our variation of the
CNP is the following: a cartographer (manager) issues a Call For Proposals (CFP)
for a particular task (region exploration) to a set of explorers (bidders). Explorers
submit their bids (if they are interested) to the cartographer. The cartographer then
has three choices: (i) award a particular bid (and reject the remaining bids), (ii)
reject all received bids, or (iii) issue a new CFP incrementing the protocol round1.

1The protocol round is a parameter of the description of the agents’ actions. It is represented as
an integer that, initially, is equal to one and is incremented by one at the performance of the first

valid CFP after a cTimeout (see Figure 3).
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[no. of messages]: speech act | timeout type
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1 manager,n bidders, m<=n,k<=n-1

[1]:inform

[1]:pay

iTimeout

aaTimeout

iiTimeout

Fig. 3. The UML State Transition Diagram of the CNP.

In the first case the awarded explorer should report the outcome of the awarded
task and, provided that it does so, the cartographer should pay the awarded ex-
plorer. In the second case the protocol ends. In the third case the protocol starts
again. Actions must be performed according to specified deadlines (timeouts).

5.2 Setting the Scene

This section presents an action description DCNP that expresses the specification
of the social constraints of the CNP. Table I shows a subset of the action signature
σf∪σact of DCNP . Variables are written with an upper-case first letter and constants
start with a lower-case letter. Due to restrictions in CCALC’s input language (our
C+ formalisation is translated to CCALC’s input language in order to perform
computational experiments), it is not possible to include nested constants of the
form pow(E , bid(E ,C ,Content ,Round)). We overcome this syntactical limitation
by expressing such constants as pow(E , bid ,C ,Content ,Round).

For simplicity in this example CNP specification, we assume that agents do not
change roles during the execution of the protocol. (We assume that agents have
already been awarded roles via the execution of a role-assignment protocol — see
Section 2.2.) Accordingly, the role of (Agent) fluent constants are declared to be
ACM Transactions on Computational Logic, Vol. V, No. N, April 2007.
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Table I. A Subset of the Action Signature of DCNP .

Notation:

Agent , Agent2 , C , E range over {c1 , e1 , . . . , en}
Perf ranges over {cfp, bid , award , reject , inform, pay}
Content , Content2 range over a finite set of task descriptions

Round ranges over Z+, the set of positive integers

Rigid constants (domain is {cartographer , explorer}):
role of (Agent)

Simple fluent constants (Boolean domain):

validActionHappened(Agent ,Perf ,Agent ,Content ,Round)

Statically determined fluent constants (Boolean domain):

pow(Agent ,Perf ,Agent ,Content ,Round),

per(Agent ,Perf ,Agent ,Content ,Round),

obl(Agent ,Perf ,Agent ,Content ,Round),

sanctioned(Agent)

Action constants (Boolean domain):

valid(Agent ,Perf ,Agent ,Content ,Round)

‘rigid’ by means of C+ causal laws:

rigid role of (Agent) (3)

For a fluent constant f , the expression ‘rigid f ’ is a standard C+ abbreviation for
the set of dynamic causal laws2:

⊥ if ¬(f = v) after f = v, for all v ∈ dom(f)

There are some computational advantages in declaring fluent constants to be ‘rigid’.
Alternatively, we could have used non-rigid fluent constants to represent the agents’
roles, thus allowing agents to occupy different roles during the execution of the pro-
tocol. Such a setting requires a further set of constraints governing the ways in
which agents may change roles as the protocol progresses. Although such con-
straints can be expressed in the C+ language, they would increase the number of
causal laws of DCNP and thereby compromise CCALC’s efficiency in computing
answers to queries on the DCNP action description.

Each (non-rigid) simple fluent constant of DCNP is inertial. We express this
constraint in C+ as follows (for every non-rigid simple fluent constant c):

inertial c (4)

We also add the following dynamic causal laws to specify that exactly one action
takes place at each state transition:

nonexecutable αi ∧ αj (5)

2For brevity, we will omit in the remaining of the paper the keyword caused which appears at the

beginning of static and dynamic laws in the original presentation of C+ [Giunchiglia et al. 2004].

ACM Transactions on Computational Logic, Vol. V, No. N, April 2007.



18 · Alexander Artikis et al.

for all (Boolean) αi, αj ∈ σact, αi 6= αj , and

nonexecutable ¬α1 ∧ ¬α2 ∧ . . . ∧ ¬αn (6)

where α1, α2, . . . , αn are the action constants of σact (all of which are Boolean in
this example). The restriction expressed by (5) and (6) is not essential for the CNP
specification but it is convenient when analysing runs (executions) of the protocol
in later sections.

We now present a number of causal laws of DCNP to specify, amongst other
things, the powers, permissions, obligations and sanctions of the CNP participants.

5.3 Social Constraints

5.3.1 Physical Capability. This specification of the CNP includes timeout events
(see Figure 3). These are system events, in the sense that they are performed by
a global clock. When the CNP commences (this happens when the cartographer
issues a valid CFP) a global clock starts ‘ticking’. The timeout events are repre-
sented by a number of action constants: cTimeout is a timeout that takes place
after a valid CFP, aTimeout is a timeout that takes place after a valid award, and
so on. We introduce simple fluent constants to record that a timeout has taken
place — for example, we use the cTimeoutHappened constants to record that a
cTimeout has taken place and the timeoutHappened constants to record that some
other timeout has taken place3. (Due to space limitations, several action and fluent
constants of the action signature of DCNP , including the ones mentioned above,
are not presented in Table I.) The effects of a timeout are expressed in terms of
the states of affairs it initiates and terminates. An aTimeout , for example, obliges
the awarded explorer to report the result of the awarded task.

The remaining actions of the CNP specification are those performed by the par-
ticipants of the protocol (that is, CFP, bid, award, reject, inform and pay). We
have chosen to specify that every agent is capable of performing any of these actions
at any time. For example, an agent is always capable of broadcasting a CFP. In
order to express the effects of this action, we need to distinguish between the act
of (‘successfully’) issuing a CFP and the act by means of which that CFP is issued.
(Similar distinctions need to be made for expressing the effects of the remaining
actions that agents may perform.) Communicating a CFP for a task t, by means of
broadcasting a message of a particular form via a TCP/IP socket connection, for
example, is not necessarily valid (‘successful’), in the sense that it empowers the
recipients to bid for t. It is only if the CFP is communicated by an agent with the
institutional power to issue the CFP that it will be valid (see Section 2.1.1). In
the example specification presented here, though not necessarily in more compli-
cated versions, the action of issuing a CFP that is not valid has no specified effects,
and is thus essentially ignored. In other more complicated versions, the issuing
of an invalid CFP may have specified effects, for instance subjecting the action to
possible objections. (See [Artikis 2003, Section 6.8] for an example protocol speci-
fication in which invalid actions have effects on the protocol state.) A specification
of institutional power and valid actions in the context of the CNP is presented next.

3We are aware that encoding fluent constants representing the history of the protocol in a state

description runs counter to the spirit of transition systems. We discuss this issue in Section 11.
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5.3.2 Institutionalised Power and Valid Actions. Institutional powers are rep-
resented with the use of the statically determined fluent constants pow . There
are several laws that define (‘statically determine’) the pow fluent constants. For
example, the power to bid is defined as follows:

pow(E , bid ,C ,RelatedContent ,Round) if
validActionHappened(C , cfp,E ,Content ,Round) ∧
matches(Content ,RelatedContent) ∧
¬cTimeoutHappened(Round) ∧
¬validBidIssued(E ,Round)

(7)

The above law specifies that an explorer E has the power to bid for a task in a
protocol round if the following conditions hold:

—The cartographer C has issued a valid CFP in that protocol round. (We record
valid actions with the use of the validActionHappened simple fluent constants.)

—The task that the explorer is empowered to bid for is ‘related’ (similar) to the
task described in the valid CFP. (The matches (rigid) constants specify whether
two tasks are ‘related’ or not and are defined in an application-specific manner.)

—A cTimeout has not taken place in that protocol round.
—E has not issued any valid bids in that protocol round. (A validBidIssued simple

fluent constant expresses whether an explorer has issued a valid bid in a protocol
round without indicating the task described in the bid.)

Only when these conditions hold will an explorer be empowered to bid. The ‘closed-
world assumption’ regarding the specification of powers is expressed as follows:

default ¬pow(Agent ,Perf ,Agent2 ,Content ,Round) (8)

In other words, in the absence of information to the contrary (for instance, con-
straint (7)), no agent is empowered to perform an action. The specification of
the power to issue a CFP, award, reject, inform and pay is expressed in a similar
manner.

Valid actions are determined in terms of institutional powers. In this example
CNP specification, we express valid actions as follows:

nonexecutable valid(Agent ,Perf ,Agent2 ,Content ,Round) if
¬pow(Agent ,Perf ,Agent2 ,Content ,Round) (9)

The above constraint specifies that it is not possible for an action to be valid if the
agent that performed it did not have the institutional power to do so. Constraint
(9) is but one of the possible formalisations of valid actions. (See, for example, how
powers and valid actions are formalised in [Sergot 2004a].)

It is now possible to express the effects of an action, given that we may determine
whether or not it is valid. An explorer E’s valid bid for a task t, for instance,
empowers the cartographer to award t to E (after the occurrence of a timeout). An
invalid bid does not have any effects on the cartographer’s powers. In this example
CNP specification, we have chosen to ignore all invalid actions (and, therefore, σact

does not include constants expressing such actions).
Every transition of the transition system defined by DCNP is labelled either with

a valid action or a timeout event, due to the fact that exactly one action takes
ACM Transactions on Computational Logic, Vol. V, No. N, April 2007.



20 · Alexander Artikis et al.

place at each transition (constraints (5) and (6)) and invalid actions are ignored.
The number of transitions l of the longest path of the transition system defined by
DCNP can be determined from the number of agents n occupying the role of the
explorer and the maximum number r of protocol rounds:

l = (
cfp︷︸︸︷
n +

bid︷︸︸︷
n +

cTimeout︷︸︸︷
1 )× r +

award︷︸︸︷
1 +

reject︷ ︸︸ ︷
n− 1

+

aTimeout︷︸︸︷
1 +

inform︷︸︸︷
1 +

iTimeout︷︸︸︷
1 +

pay︷︸︸︷
1 +

pTimeout︷︸︸︷
1

= (2× n× r) + r + n + 5

(10)

Intuitively, the longest path includes the following sequence of events: the cartog-
rapher issues CFPs to all explorers, all explorers bid and the first timeout takes
place. This sequence of events is repeated r times, that is, the maximum number
of protocol rounds. Then, the cartographer awards an explorer and rejects all re-
maining ones. The awarded explorer reports the result of the awarded task and the
cartographer pays the explorer. This sequence of actions includes all timeouts that
specify the interval during which the aforementioned actions may be performed.

(In Section 6 we use the number of transitions of the longest path of the transition
system defined by DCNP in the computation of answers to planning queries — in
this way it is possible to prove properties of the CNP specification.)

5.3.3 Permission. We now specify what actions, valid or invalid, are to be clas-
sified as permitted or obligatory. Like the pow fluent constants, we represent per-
mitted and obligatory actions with the use of statically determined fluent constants,
the per and obl constants. For this CNP specification, we have chosen to say that
an agent is permitted to perform an action if and only if it has the institutional
power to perform that action:

per(Agent ,Perf ,Agent2 ,Content ,Round) if
pow(Agent ,Perf ,Agent2 ,Content ,Round) (11)

default ¬per(Agent ,Perf ,Agent2 ,Content ,Round) (12)

According to constraints (11) and (12), a participant of the CNP is always per-
mitted to exercise its institutional powers. As already mentioned in Section 2.1.1,
however, there is no fixed relationship between permission and power. We could
have specified, for example, that the cartographer is never permitted to broadcast
more than one CFP, although sometimes empowered to do so, or an explorer is
always permitted to bid, although not always empowered to do so. In other words,
an action may be: (i) valid and permitted, (ii) valid and forbidden, (iii) invalid
and permitted, or (iv) invalid and forbidden. For simplicity, in this example an
action may be either valid and permitted or invalid and forbidden. (See [Artikis
2003, Section 6.8] for an example protocol specification in which permission does
not coincide with institutional power.)
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Obligations arise in three situations, one of which is expressed as follows:

obl(E , inform,C ,Result ,Round) if
validActionHappened(C , award ,E ,Content ,Round) ∧
result of (Content) =Result ∧
timeoutHappened(a) ∧
¬timeoutHappened(aa) ∧
¬validActionHappened(C , inform,E ,Result ,Round)

(13)

Constraint (13) states that issuing a valid award to an explorer obliges that explorer,
after an aTimeout occurs, to report the result of the awarded task. (The result of
constants, declared to be ‘rigid’, specify the outcome of the completion of the
awarded task and are defined in an application-specific manner.) The explorer
will discharge this obligation if it reports the result of the awarded task by the
specified deadline (aaTimeout). In more realistic scenarios, reporting the result of
the awarded task would not be enough to discharge this obligation; it should also
be externally observable that the awarded task has been completed. In order to
simplify our presentation we do not accommodate such complications.

As in the case of powers and permissions, the ‘closed-world assumption’ regarding
obligations is specified as follows:

default ¬obl(Agent ,Perf ,Agent2 ,Content ,Round) (14)

The above definitions of permitted and obligatory actions express that performing
actions when not empowered to do so, and not reporting the result of the awarded
task in the given interval, is considered ‘unacceptable’ behaviour.

5.3.4 Enforcement Policies. In the present example, sanctions deal with a par-
ticular type of ‘unacceptable’ behaviour, that which results from non-compliance
with obligations. For instance, the awarded contractor’s failure to report the result
of the awarded task by the specified time (aaTimeout) creates a sanction for that
contractor:

sanctioned(E ) if
timeoutHappened(aa) ∧
current round =Round ∧
validActionHappened(C , award ,E ,Content ,Round)

(15)

The simple fluent constant current round represents the current protocol round.
Similarly, the end-state that is reached when a timeout (that is, iTimeout) occurs

at the ‘manager informed’ state (see Figure 3) includes a sanction for the manager.
In this protocol specification, sanctions are just recorded, that is, it is just pointed
out that some agent has exhibited ‘unacceptable’ or ‘anti-social’ behaviour. There
is no explicit penalty associated with a sanction. There are many other possible
specifications of permitted and obligatory actions, and enforcement policies. The
one presented is chosen for the sake of providing a concrete illustration.

5.4 Social States

Figure 4 presents a fragment of the labelled transition system defined by DCNP

with two participants: cartographer c1 and explorer e1. Due to constraints (5) and
(6), each edge of the diagram is labelled with exactly one action constant. For

ACM Transactions on Computational Logic, Vol. V, No. N, April 2007.



22 · Alexander Artikis et al.

valid(c1,reject,e1,mapWales,1)

valid(c1,award,e1,mapWales,1)
valid(c1,cfp,e1,mapUK,1)

ccTimeout

...

...

......

validActionHappened(c1,cfp,e1,
mapUK,1),

validActionHappened(e1,bid,c1,
mapWales,1)

pow(e1,bid,c1,mapUK,1),
pow(e1,bid,c1,mapWales,1),

validActionHappened(c1,cfp,e1,
mapUK,1)

pow(c1,cfp,e1,mapUK,2),
pow(c1,award,e1,mapWales,1),
pow(c1,reject,e1,mapWales,1),

validActionHappened(c1,cfp,e1,mapUK,1),
validActionHappened(e1,bid,c1,mapWales,1)

pow(c1, cfp, e 1, mapUK, 1)

cTimeout

...

valid(c1,cfp,e1,mapUK,2)cTimeoutvalid(e1,bid,c1,mapWales,1)

Fig. 4. A Fragment of the Labelled Transition System Defined by DCNP (Two Participants).

clarity, Figure 4 shows only the pow and validActionHappened fluent constants at
each state. There are no loops in the transition system defined by DCNP because
we record the valid actions and timeouts that have taken place — therefore, each
state is cumulative with respect to the validActionHappened , timeoutHappened and
other fluent constants recording the history of the protocol.

In the initial state of the protocol, c1 is empowered to issue a CFP about a task,
say mapUK . Following the valid CFP of c1, e1 is empowered to bid for mapUK
as well as a ‘related’ task, described as mapWales. Similarly, the following states
express the powers of the CNP participants according to the DCNP laws. Note
that the transition system presented in Figure 4 is at a different level of abstraction
from the UML state transition diagram presented in Figure 3. Figure 4 presents
a detailed account of the transition system, for instance, showing a subset of an
interpretation of σf at each of its states whereas the UML diagram simply associates
an informal textual description with each of its states.

We may prove various properties of the transition system defined by DCNP (with
two or more participants). Consider the following examples.

Proposition 1. The transition system defined by DCNP does not include a state
in which an agent is empowered, but not permitted, to perform an action.

Proof. Assume that

s ⊇ {pow(Agent ,Perf ,Agent2 ,Content ,Round),
¬per(Agent ,Perf ,Agent2 ,Content ,Round)}

is a state of the transition system defined by DCNP . Since s is a state of DCNP ,
then it is an interpretation of σf that satisfies ‘G → F ’ for every static law of
the form ‘F if G’ in DCNP . (→ is material implication.) However, DCNP includes
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static law (11) and s does not satisfy

pow(Agent ,Perf ,Agent2 ,Content ,Round)→
per(Agent ,Perf ,Agent2 ,Content ,Round)

Therefore, s is not a state of DCNP .

Proposition 2. The transition system defined by DCNP does not include a state
in which an agent is obliged to report the result of a task in a protocol round without
already being awarded that task in that round.

Proof. Assume that

s ⊇ {¬validActionHappened(C , award ,E ,Content ,Round),
obl(E , inform,C , result of (Content),Round)}

is a state of DCNP . Given static law (14), the only law that makes true a con-
stant of the form obl(E , inform,C , result of (Content),Round) is static law (13).
This law requires, amongst other conditions, that the following fluent is satisfied:
validActionHappened(C , award ,E ,Content ,Round). However, this is not consis-
tent with our initial assumption, that is

s ⊇ {¬validActionHappened(C , award ,E ,Content ,Round)}

Therefore, s is not a state of DCNP .

6. EXECUTING THE CNP WITH THE CAUSAL CALCULATOR

In order to perform computational experiments, we expressed our C+ action de-
scription DCNP in CCALC’s input language [Lee et al. 2001; Akman et al. 2004].
We now present a number of queries submitted to CCALC and the results obtained.
The tested version of the CNP has four participants, c1 occupying the role of the
cartographer, and e1, e2 and e3 occupying the role of explorer. There is one task,
described as mapUK , and the protocol can have at most two rounds.

Query 1 (Prediction). We are in a state where the following events have taken
place: c1 has issued valid CFPs to the three explorers about mapUK in the first
protocol round. All of the explorers have issued valid bids about the same task.
Finally the first timeout has elapsed. In this state, may c1 issue a valid reject to
e1 regarding mapUK in the first protocol round? If yes, what are the new powers
associated with c1?

CCALC determines that the valid(c1 , reject , e1 ,mapUK , 1 ) action is ‘executable’
(see constraint (9)). Moreover, as a result of this action, c1 has the following powers:

pow(c1 , award , e2 ,mapUK , 1 ),
pow(c1 , award , e3 ,mapUK , 1 ),
pow(c1 , reject , e2 ,mapUK , 1 ),
pow(c1 , reject , e3 ,mapUK , 1 ).

Intuitively, in the resulting state the cartographer has no powers regarding e1 be-
cause it rejected e1’s bid. However, the cartographer is still empowered to award
or reject the remaining valid bids. Finally, the cartographer’s rejection terminated
its power to issue CFPs.
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Query 2 (Planning). Given the initial state of the CNP, that is, one in which
c1 is empowered to issue a CFP to the three explorers in the first protocol round,
is it possible to find a state, within twenty-two transitions, where some agent is
empowered, but not permitted, to perform an action?

CCALC finds no solution within twenty-two transitions. According to formula
(10), the longest path of the transition system defined by DCNP , with three explor-
ers and two protocol rounds, has twenty-two transitions:

l = (2× n× r) + r + n + 5 = (2× 3× 2) + 2 + 3 + 5 = 22

In other words, a solution to this query could not be found even in the longest
path of the transition system defined by DCNP . Therefore, there is no state in this
protocol where an agent is empowered, but not permitted, to perform an action.
The result of this query is consistent with Proposition 1.

Clearly, in other examples it may not be straightforward to compute the number
of transitions of the longest path of a transition system. In such cases we can
prove properties of a specification (in an automated way) by computing answers to
prediction queries — see, for example, [Artikis et al. 2006].

Query 3 (Planning). Given the initial state of the CNP, find all possible paths
(if any), within three transitions, that end in a state where c1 is permitted but not
obliged to reject an explorer’s bid.

CCALC finds three solutions. They are the following:

Solution 1:
ACTIONS: valid(c1 , cfp, e3 ,mapUK , 1 )
ACTIONS: valid(e3 , bid , c1 ,mapUK , 1 )
ACTIONS: cTimeout

Solution 2:
ACTIONS: valid(c1 , cfp, e1 ,mapUK , 1 )
ACTIONS: valid(e1 , bid , c1 ,mapUK , 1 )
ACTIONS: cTimeout

Solution 3:
ACTIONS: valid(c1 , cfp, e2 ,mapUK , 1 )
ACTIONS: valid(e2 , bid , c1 ,mapUK , 1 )
ACTIONS: cTimeout

According to DCNP , the cartographer would be empowered, and therefore permit-
ted, to reject a valid bid if it has not already rejected or awarded that bid. (Recall
that, due to constraints (11) and (12), in this CNP specification permission coin-
cides with power.) Moreover, the cartographer would be obliged to reject a valid
bid if it has not already rejected or awarded this bid, and has awarded some other
valid bid. Like every action, a rejection should be performed in a particular interval
(see Figure 3).

Query 4 (Planning). Given the initial state of the CNP, is it possible to find a
state, within twenty-two transitions, where an agent is obliged to report the result
of a task in a protocol round without already being awarded that task in that
round?
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CCALC finds no solution within twenty-two transitions. Given that the longest
path of the transition system defined by DCNP has twenty-two transitions, we infer
that there is no state in the CNP where an agent is obliged to report the result of
a task in a protocol round without already being awarded that task in that round.
The result of this query is consistent with Proposition 2.

Note that a failure to find a solution to Query 4 within eighteen transitions
(rather than twenty-two transitions) would be sufficient to conclude that the result
of this query is consistent with Proposition 2. The maximum number of transitions
that could lead to a state where an agent would be obliged to report the result of
the awarded task is eighteen:

l = (
cfp︷︸︸︷
n +

bid︷︸︸︷
n +

cT imeout︷︸︸︷
1 )× r +

award︷︸︸︷
1 +

reject︷ ︸︸ ︷
n− 1 +

aTimeout︷︸︸︷
1

= (2× n× r) + r + n + 1
= (2× 3× 2) + 2 + 3 + 1 = 18

Recall that n represents the number of explorers and r the maximum number of
protocol rounds.

Query 5 (Postdiction). Initially, c1 was permitted to issue a CFP to e3 regarding
mapUK in the first protocol round. After one transition c1 is empowered to award
e1 regarding mapUK in the first protocol round. What can we say about the powers
of c1 in the initial state?

CCALC finds several solutions. In all of them, the initial state includes the
following:

per(c1 , cfp, e3 ,mapUK , 1 ),
validActionHappened(e1 , bid , c1 ,mapUK , 1 ),
pow(c1 , cfp, e3 ,mapUK , 1 ).

At each solution, the action that emanates from the initial state is cTimeout , that
is, the timeout after a valid CFP. At the initial state of all solutions neither e1 nor e3

is empowered to bid. e1 has already issued a valid bid (therefore the last condition
of constraint (7) is not satisfied) whereas e3 has not received a valid CFP from
the cartographer (therefore the first condition of constraint (7) is not satisfied). In
some solutions e2 is initially empowered to bid while in other solutions it does not
have that power. At the final state in each solution no agent is empowered to bid
because a cTimeout has taken place (consequently the third condition of constraint
(7) is not satisfied).

7. THE EVENT CALCULUS

Now we discuss the use of an alternative action formalism, the Event Calculus
(EC), for expressing the specifications of social constraints. EC [Kowalski and
Sergot 1986] is a formalism for representing and reasoning about actions or events
and their effects in a logic programming framework. It is based on a many-sorted
first-order predicate calculus. For the version used here, the underlying time model
is linear and may include real numbers or integers. To make the account self-
contained, this section describes the dialect of EC that we employ.
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Table II. Main Predicates of the Event Calculus.

Predicate Meaning

happens(Act, T ) Action Act occurs at time T

initially(F = V ) The value of fluent F is V at time 0

holdsAt(F = V, T ) The value of fluent F is V at time T

initiates(Act, F = V, T ) The occurrence of action Act at time T

initiates a period of time for which

the value of fluent F is V

terminates(Act, F = V, T ) The occurrence of action Act at time T

terminates a period of time for which
the value of fluent F is V

Where F is a fluent (a property that is allowed to have different values at different
points in time) the term F =V denotes that fluent F has value V . Boolean fluents
are a special case in which the possible values are true and false. Informally, F =V
holds at a particular time-point if F =V has been initiated by an event at some
earlier time-point, and not terminated by another event in the meantime.

An action description in EC includes axioms that define, amongst other things,
the action occurrences (with the use of happens predicates), the effects of actions
(with the use of initiates and terminates predicates), and the values of the fluents
(with the use of initially and holdsAt predicates). Table II summarises the main
EC predicates. We maintain the convention of writing variables with an upper-
case first letter, and predicates and constants with a lower-case first letter. The
domain-independent definitions of the EC predicates are presented in the following
section.

8. THE SOCIETY VISUALISER

In order to execute EC specifications of social constraints, we have developed a
software tool, called the Society Visualiser (SV), that computes answers to predic-
tion queries regarding EC action descriptions. The computation of an answer to a
prediction query involves a narrative (expressed by means of happens predicates),
the specification of social constraints (expressed by means of initiates, terminates
and holdsAt predicates) and an initial social state (an interpretation of the fluents
of the action description in question expressed by means of initially or holdsAt pred-
icates). The outcome of the prediction query is the social state that is produced by
the events described in the narrative (see Figure 2).

The social state of an open agent society is available to the agent designers and
society designers via a Graphical User Interface (GUI). Figure 5 shows the GUI
of SV during the simulation of an open agent society executing a CNP. The GUI
displays the social roles, institutional powers, permissions, obligations, sanctions
and valid actions that are associated with each agent and each institution (if more
than one) that is part of a society. In addition, the interface displays information
about the environment. The state of the environment holds information that is
not presented in the display of the agents or the institutions — in the example of
a CNP, the environment may hold information such as the description of the task
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Agent (or environment) description

in the form of Prolog lists.

Agent
description in

terms of:
roles, powers,
permissions,
obligations,
sanctions,

valid actions. If
the environment
were selected at

the list of
agents then this

table would
show a

description of
the environment

List of the members of the
society and the environment.

Viewing
either the

social states
or the

narrative of
the current
time-point

Current time-
point of the
simulation.

The user may
scroll to any
time-point in

the simulation.

Starting/
stopping the
production of
social states

Fig. 5. The GUI of the Society Visualiser.

under negotiation (described as ‘content’ in Figure 5), the result of the completion
of the awarded task, and other protocol-specific information.

SV was not developed with planning and postdiction tasks in mind (see [Shana-
han 2000; Shanahan and Witkowski 2004; Mueller 2004] for a few EC planners).
Therefore, in the following sections we will not present planning or postdiction
queries with respect to the execution of the EC CNP specification.

SV expresses an EC action description as a logic program. The domain-independent
definition of the holdsAt predicate is as follows:

holdsAt(F =V, T )←
initially(F =V ),
not broken(F =V, 0, T )

(16)

holdsAt(F =V, T )←
happens(Act, T ′),
T ′ < T,
initiates(Act, F =V, T ′),
not broken(F =V, T ′, T )

(17)

According to axiom (16) a fluent holds at time T if it held initially (time 0) and
has not been ‘broken’ in the meantime, that is, terminated between times 0 and T .
Axiom (17) specifies that a fluent holds at a time T if it was initiated at some earlier
time T ′ and has not been terminated between T ′ and T . not represents negation
by failure [Clark 1978]. The domain-independent predicate broken is defined as
follows:

broken(F =V, T1, T3)←
happens(Act, T2),
T1 ≤ T2, T2 < T3,
terminates(Act, F = V, T2)

(18)

F =V is ‘broken’ between T1 and T3 if an event takes place in that interval that
terminates F =V . A fluent cannot have more than one value at any time. The
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Table III. A Subset of the Fluents and Actions of the EC CNP Specification.

Fluents (Boolean domain):

pow(Agent ,Act), per(Agent ,Act), obl(Agent ,Act), sanctioned(Agent)

Actions (Boolean domain):

cfp(Agent ,Agent2 ,Content ,Round), bid(Agent ,Agent2 ,Content ,Round),

award(Agent ,Agent2 ,Content ,Round), reject(Agent ,Agent2 ,Content ,Round),

inform(Agent ,Agent2 ,Result ,Round), pay(Agent ,Agent2 ,Result ,Round)

following domain-independent axiom captures this feature:

terminates(Act, F =V, T )←
initiates(Act, F =V ′, T ),
V 6= V ′

(19)

Axiom (19) states that if an action Act initiates F =V ′ then Act also terminates
F =V , for all other possible values V of the fluent F .

This version of EC is a variant of the ‘full Event Calculus’ of [Shanahan 1999],
without actions with duration, and with multi-valued as well as Boolean fluents; the
specific axioms for negative Boolean fluents of the ‘full Event Calculus’ are replaced
by general axioms for multi-valued fluents. Moreover, unlike Shanahan’s version,
in our version there is a difference between initiating a Boolean fluent F = false and
terminating F = true: the first implies, but is not implied by, the second. Just as for
the ‘full Event Calculus’, our version may be given a standard logic programming
semantics — for instance, all examples presented in this paper are ‘locally stratified’
and thus have a unique stable model (answer set). Unlike C+, however, EC does
not have an explicit semantics in terms of transition systems, except in some special
cases as discussed under current work in the concluding section of the paper.

9. SPECIFYING THE CNP IN THE EVENT CALCULUS

We demonstrate the use of EC and SV in specifying and executing open agent
societies by presenting an EC specification and a SV execution of the CNP. Table
III shows the main fluents and actions of the EC CNP specification. The syntax
of the fluents of the EC specification differs from the syntax of the fluent constants
of the C+ specification (of the CNP) in that it is possible to express nested fluents
in a logic program. (Recall that, due to restrictions in CCALC’s input language,
we had to modify the syntax of the nested fluent constants.) The style of the
EC specification is also different from that of the C+ specification in that the
EC specification treats pow , obl and sanctioned as simple fluent constants (in the
terminology adopted in the C+ language) rather than statically determined fluent
constants (as in the C+ specification of the CNP). We employed this alternative
treatment in order to illustrate the possible ways of specifying the constraints of an
open agent society.

The EC action description expressing the CNP specification includes axioms
(16)–(19). As a result, every fluent of this action description is inertial. The
following section focuses on the specification of social constraints — we discuss the
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social states of the CNP in Section 10 when animating a run of this protocol.

9.1 Social Constraints

All communicative actions of the CNP (that is, CFP, bid, award, reject, inform
and pay) may be performed at any time by any participant. The effects of a
communicative action depend on whether or not that action is valid. An account
of valid actions in the context of the EC CNP specification is presented next.

9.1.1 Institutionalised Power and Valid Actions. In the interests of brevity, for
the purposes of this example we have chosen not to include an action labelled
‘valid’ in the EC specification — valid actions are represented implicitly whereas
institutional powers are represented explicitly.

Issuing a valid CFP to a set of explorers empowers those explorers to bid:

initiates(Cfp, pow(E ,Bid) = true,T )←
Cfp = cfp(C ,E ,Content ,Round),
Bid = bid(E ,C ,RelContent ,Round),
holdsAt(pow(C ,Cfp) = true,T ),
matches(Content ,RelContent)

(20)

Note that matches is treated as an ordinary predicate and not as a time-varying
fluent. If the condition presented in the penultimate line of constraint (20) is not
satisfied, then the CFP will be invalid and it will have no effects on the recipients’
powers.

The power to bid is terminated by issuing a valid bid:

initiates(Bid , pow(E ,Bid)= false,T )←
Bid = bid(E ,C ,Content ,Round),
holdsAt(pow(E ,Bid)= true,T )

(21)

A valid bid may be performed by a particular deadline, that is, by the time a
cTimeout takes place (as in the C+ specification of CNP, timeouts are expressed
as actions):

initiates(cTimeout , pow(E ,Bid) = false,T )←
Bid = bid(E ,C ,Content ,Round),
holdsAt(pow(E ,Bid) = true,T )

(22)

All the powers in the CNP are propagated in the manner outlined above.

9.1.2 Permission. In this example, an agent is permitted to perform an action
if and only if it has the power to perform that action:

holdsAt(per(Agent ,Act) = true,T )←
holdsAt(pow(Agent ,Act)= true,T ) (23)

holdsAt(per(Agent ,Act) = false,T )←
not holdsAt(per(Agent ,Act) = true,T ) (24)
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Obligations arise in three situations. For example, a timeout after a valid award
(aTimeout) obliges the awarded explorer to report the result of the awarded task:

initiates(aTimeout , obl(E , Inform) = true, T )←
Inform = inform(E ,C ,Result ,Round),
Award = award(C ,E ,Content ,Round),
holdsAt(validActionHappened(Award) = true,T ),
result of (Content ,Result)

(25)

Here result of is an ordinary predicate and not a fluent of EC. The obligation
mentioned above must be fulfilled by a particular deadline, that is, by the time an
aaTimeout takes place:

initiates(aaTimeout , obl(E , Inform) = false,T )←
Inform = inform(E ,C ,Result ,Round),
holdsAt(obl(E , Inform) = true,T )

(26)

The two remaining obligations are specified in a similar manner.

9.1.3 Enforcement Policies. In this CNP specification, sanctions arise when
agents do not comply with their obligations. For example, we state the follow-
ing regarding the obligation to report the outcome of the awarded task:

initiates(aaTimeout , sanctioned(E ) = true,T )←
Inform = inform(E ,C ,Result ,Round),
holdsAt(obl(E , Inform)= true,T )

(27)

Recall that a fluent holds at the time that it was terminated, although it does not
hold at the time that it was initiated (see Section 8). Therefore, even though the
obligation to report the outcome of the task is terminated by the aaTimeout (see
constraint (26)), it still holds at time of the occurrence of this timeout. Thus, the
condition of constraint (27) will hold (if an obligation was earlier created) and a
sanction will be initiated. The two remaining sanctions are specified in a similar
manner.

10. EXECUTING THE CNP WITH THE SOCIETY VISUALISER

Given a set of temporally-ordered events, we may determine (by issuing prediction
queries to SV) the social states of the CNP. We present here an example run (exe-
cution) of the CNP by a group of four agents; three agents e1, e2 and e3 occupying
the role of the explorer, and an agent c1 occupying the role of the cartographer.
The run proceeds as follows (we assume that the model of time includes the set of
positive integers): c1 issues a CFP to the three explorers and then e2 submits a bid.
After the first timeout, e1 submits a bid and then the cartographer issues a new
CFP (having modified the task description and incremented the protocol round).
Following the second CFP, e2 submits its bid. The cartographer awards the bid
of e2. However, e2 fails to report the result of the awarded task by the specified
deadline.

We query SV in order to determine the social states of the CNP at each point
in time. Consider, for instance, the following query, similar to Query 1 (Section 6)
executed by CCALC on the C+ action description DCNP :
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Table IV. Execution of the Specification of the CNP (Narrative and Cartographer).

Time Narrative agent c1

0 pow(c1 , cfp(c1 , e1 ,Content , 1 )),

pow(c1 , cfp(c1 , e2 ,Content , 1 )),

pow(c1 , cfp(c1 , e3 ,Content , 1 ))

1 cfp(c1 , e1 ,map(x), 1 ), pow(c1 , cfp(c1 , e1 ,Content , 1 )),

cfp(c1 , e2 ,map(x), 1 ), pow(c1 , cfp(c1 , e2 ,Content , 1 )),

cfp(c1 , e3 ,map(x), 1 ) pow(c1 , cfp(c1 , e3 ,Content , 1 ))

2 bid(e2 , c1 ,map(w), 1 )

3 cTimeout

4 bid(e1 , c1 ,map(x), 2 ) pow(c1 , award(c1 , e2 ,map(w), 1 )),

pow(c1 , reject(c1 , e2 ,map(w), 1 )),

pow(c1 , cfp(c1 , e1 ,NewContent , 2 )),

pow(c1 , cfp(c1 , e2 ,NewContent , 2 )),

pow(c1 , cfp(c1 , e3 ,NewContent , 2 ))

5 cfp(c1 , e1 ,map(y), 2 ) pow(c1 , award(c1 , e2 ,map(w), 1 )),

cfp(c1 , e2 ,map(y), 2 ) pow(c1 , reject(c1 , e2 ,map(w), 1 )),

cfp(c1 , e3 ,map(y), 2 ) pow(c1 , cfp(c1 , e1 ,NewContent , 2 )),

pow(c1 , cfp(c1 , e2 ,NewContent , 2 )),

pow(c1 , cfp(c1 , e3 ,NewContent , 2 ))

6 bid(e2 , c1 ,map(z ), 2 )

7 cTimeout

8 award(c1 , e2 ,map(z ), 2 ) pow(c1 , award(c1 , e2 ,map(z ), 2 )),

pow(c1 , reject(c1 , e2 ,map(z ), 2 ))

9 aTimeout

10 aaTimeout

Query 6 (Prediction). We are in a state where the following events have taken
place: c1 has issued valid CFPs to the three explorers in the second protocol round.
e2 has issued a valid bid about a (‘related’) task in the same protocol round. Finally,
the second timeout has elapsed. In this state, is c1 empowered to award the task
to e2? If it is and c1 does award the task to e2, what are the new powers associated
with c1?

SV determines that c1 is empowered to award the task to e2. Moreover, after a
valid award, c1 has no institutional powers.

Tables IV and V present the results of a series of prediction queries submitted to
SV. Query 6, for example, corresponds to time-point T =8 of Table IV. Given a
description of a run of the CNP in terms of the happens predicates, the institutional
powers of each participant ag at each time-point t are generated by means of the
following query:

? – holdsAt(pow(ag ,Powers) = true, t)

In a similar manner we generate the permissions, obligations and sanctions of each
participant. Tables IV and V present a subset of the information associated with
each participant of the CNP. We have restricted attention to the powers, obliga-
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Table V. Execution of the Specification of the CNP (Explorers).

Time agent e1 agent e2

0

1

2 pow(e1 , bid(e1 , c1 ,RContent , 1 )) pow(e2 , bid(e2 , c1 ,RContent , 1 ))

3 pow(e1 , bid(e1 , c1 ,RContent , 1 ))

4

5

6 pow(e1 , bid(e1 , c1 ,RNContent , 2 )) pow(e2 , bid(e2 , c1 ,RNContent , 2 ))

7 pow(e1 , bid(e1 , c1 ,RNContent , 2 ))

8

9

10 pow(e2 , inform(e2 , c1 ,Result , 2 )),

obl(e2 , inform(e2 , c1 ,Result , 2 ))

11 sanctioned(e2 )

tions and sanctions of the agents. (Recall that, due to constraints (23) and (24),
permissions in this CNP specification are the same as powers). In the interests of
clarity and brevity, we have: (i) omitted the presentation of information related to
explorer e3 (in this run of the CNP, the powers, obligations and sanctions associated
with e3 are exactly the same as the powers, obligations and sanctions associated
with e1), and (ii) allowed the concurrent performance of CFPs.

At time-points T =0 and T =1, the three explorers do not have any powers
associated with them. At time-point T =2, each explorer is empowered to bid in
regard to the cartographer’s previous CFP (see constraint (20)). e2 issues a valid
bid at T =2 (tasks map(w) and map(x ) are ‘related’) and thus terminates its power
to issue another bid (see constraint (21)). Due to the occurrence of cTimeout at
T =3, neither e1 nor e3 is empowered to bid at T =4 (see constraint (22)).

At T =4, e1 issues a bid; however, this bid is not valid because e1 did not have
the power to bid at the time. As a result, this invalid bid has no effect on the powers
of the other participants of the CNP. At T =8, the cartographer is not empowered
to issue new CFPs because we have specified that the maximum protocol round is
two.

At T =10, explorer e2 is obliged (in addition to being empowered) to report the
result of map(z ), the awarded task. The obligation was created due to constraint
(25). If e2 had reported the result of map(z ) in the specified interval, then it would
have discharged its obligation. e2’s failure to report the outcome of map(z ) by time
T =10 resulted in termination of its obligation (see constraint (26)) and imposition
of a sanction at T =11 (constraint (27)).

11. DISCUSSION

In the introduction we presented several approaches that have similar objectives
to our work — for example, work on e-institutions, artificial social systems, law-
governed interaction, and so on (see the introduction for references to these lines of
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research). Two approaches that employ action languages to specify norm-governed
systems, like we do, are those of Fox et al. [1998], and Yolum and Singh [2002;
2004].

Fox and colleagues place considerable emphasis on the notion of ‘empowerment’.
However, the exact meaning of this notion is not clearly stated. Depending on the
context, ‘empowerment’ (as used in [Fox et al. 1998]) may refer to a permission
or it may refer to a particular instance of institutional power (as this term was
defined in Section 2.1.1). In general, there is no clear distinction between the terms
‘empowerment’, ‘permission’ and ‘right’.

Close to our work is Yolum and Singh’s [2002; 2004] work on ‘commitment pro-
tocols’. These researchers formalise, in Shanahan’s ‘full Event Calculus’ [Shanahan
1999], a set of operations on ‘commitments’ (a form of (directed) obligation be-
tween agents) such as create, discharge, cancel, release, and so on. Moreover, they
employ an Event Calculus planner [Shanahan 2000] to facilitate the planning of
commitment protocol participants. It is difficult to see how a CNP, or many other
interaction protocols for multi-agent systems (protocols for argumentation, voting,
performing transactions in electronic marketplaces, and so on), can be specified
simply in terms of commitments in this sense. At the very least, a specification of
the participants’ institutional powers is also required.

Generally, approaches on the specification of open agent societies, such as the
ones mentioned in this paper, do not explicitly represent the institutional powers
of the member agents. This is one key difference between our work and related
approaches in the literature: our specification of social constraints explicitly rep-
resents the institutional powers of the agents, differentiates between institutional
power, permission and physical capability, and employs formalisms with a declara-
tive semantics and clear routes to implementation to express these concepts.

Another difference between our work and a number of related approaches con-
cerns the fact that we do not exclusively rely on regimentation mechanisms, such as
interagents [Rodriguez-Aguilar et al. 1998], sentinels [Klein et al. 2003], controllers
[Minsky and Ungureanu 2000], guards and enforcers [Bradshaw et al. 2003], for the
enforcement of social constraints. We allow for sanctioning mechanisms because
regimentation is not always desirable or practical.

The theoretical framework for the specification of open agent societies is not
dependent on any particular action language or temporal structure. We have pre-
sented a specification of the CNP example both in terms of the C+ language and
in EC. Both have their relative merits.

The semantics of a C+ action description is given in terms of a labelled tran-
sition system, and this provides a link to a wide range of other formalisms based
on transition systems. This link may be exploited by combining C+ with other
software tools for the analysis of transition systems. In particular, we are currently
experimenting with the use of standard model checking techniques [Clarke et al.
2000] to prove general properties of a society specification expressed in C+. This
point is developed further in [Sergot 2004a]. See also [Sergot 2004b] for an example.

It can also be argued that transition systems are not ideal for specifying open
agent societies, for at least two reasons. First, transition systems have the property
that actions executable in a state s, and their effects, depend only on s and not on
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the path by which s was reached. Thus, in our CNP specification it was necessary
to record a part of the history in the states of the transition system, for instance
including a record of all past valid bids in every state in order to determine whether
a cartographer is empowered to award or reject bids. Second, transition systems
provide no direct support for metrics of time. For example, there is no direct
support for expressing statements of the form ‘agent ag is permitted to perform
action act (at the latest) by time t’. We implicitly specify this interval (both in
our C+ and EC specifications of the CNP) by stating the constraints that initiate
and terminate the permission. Overcoming these limitations is an area for current
research. (Craven and Sergot [2005] present a generalised form of C+ designed to
address, to different extents, these issues.)

The execution, as opposed to the specification, of social constraints may be per-
formed either at design-time or at run-time. At design-time, society designers may
wish to prove properties of a society specification in order to determine whether or
not this specification meets their requirements. Such properties may include, for ex-
ample, the consistency of a protocol specification (no agent is forbidden and obliged
to perform an action at the same time), that in all circumstances there is always
an obligation to report the outcome of an awarded task, that non-compliance with
this obligation always leads to a sanction and possibly other reparational actions,
and so on. Proving such properties can be performed, to some extent, via CCALC’s
computation of answers to planning queries, as illustrated by the computation of
answers to Queries 2 and 4 in earlier sections. It should be noted, however, that
the examples presented earlier contain a comparatively small number of agents; we
have not determined in any systematic fashion to what extent CCALC can cope
with planning queries on examples with very large numbers of agents.

In addition to the needs of society designers, agent designers (or agents them-
selves) may also wish to prove various properties of a society specification when
deciding whether to deploy their agents in (enter) that society.

At run-time, the execution of a society specification may provide, amongst other
things, information about the social state current at each time. Computation of
such information is a special case of a prediction query. A social state — the
powers, permissions, obligations and sanctions that are associated with each agent
at each time — may be publicised to (a subset of) the members of a society,
or their designers. (Such run-time services may be provided by a central server
or in various distributed configurations. Further discussion of these architectural
issues is outside the scope of this paper.) Both CCALC and SV compute answers
to prediction queries. Their efficiency in computing answers to (such) queries,
however, determines whether they are feasible for the provision of run-time services.
We discuss CCALC’s and SV’s efficiency next.

CCALC’s computation of an answer to a query has two phases:

—A compilation phase where the C+ action description is translated to formulas
of classical propositional logic.

—A model generation phase where a satisfiability (SAT) solver attempts to find
models of the propositional logic formulas produced by the compilation phase
that also satisfy the query.

In experiments on the action description DCNP , and other similar examples, the
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time required for the computation of answers to queries suggests that CCALC does
not provide a practical means for supporting run-time activities. This is mainly due
to the time required for compiling an action description. Details of execution times
can be found in [Artikis et al. 2003] and [Artikis 2003, Section 6.12.2]. Although
parts of an action description can be compiled in advance, other parts change as,
for instance, agents enter and leave a society, or (specifically in the CNP) new task
descriptions are introduced, and this necessitates repeated re-compilation. More-
over, the construction of a model of an action description will necessarily generate
a complete description of every social state at every point in time, which is obvi-
ously wasteful if we are interested only in determining (say) specific powers and
permissions in the current (latest) state. It is possible to identify several ways of
improving CCALC’s efficiency for this type of application, for instance by identify-
ing components of an action description that can be pre-compiled, or by attempting
to limit the model that is generated to a fragment relevant to the query. Further
development of these techniques is required. (Of course CCALC is not the only
means by which C+ action descriptions can be executed. Giunchiglia et al. [2004,
Section 7.2] and Lifschitz and Turner [1999] show how C+ action descriptions can
be translated into the formalism of (extended) logic programs.)

For the CNP specification in Event Calculus, the computation of answers to pre-
diction queries using SV’s implementation (in Prolog) was sufficiently fast for the
anticipated run-time activities. Furthermore, SV scaled better than CCALC, for
example, when increasing the number of participants or protocol rounds in the ex-
ample CNP specification. An indication of SV’s times of query answer computation
can be found in [Artikis 2003, Section 6.12.2]. The existing Prolog implementation
of EC in the SV system, moreover, does not include any optimisation techniques
that can be devised for EC computations of answers to prediction queries. Several
such are available (see, for instance, [Chittaro and Montanari 1996; Kesim and Ser-
got 1996]). Incorporating such techniques would further improve SV’s efficiency in
computing answers to prediction queries. Note, however, that unlike CCALC, SV
does not support planning and postdiction tasks.

The implementation of EC action descriptions in Prolog, or indeed any other
programming language4, enables the specification of an action domain (a society or
a protocol in this case) to employ features of the programming language to com-
plement the use of EC itself. Such a combination may: (i) result in a richer (more
expressive) society or protocol specification and (ii) improve the efficiency of execu-
tion. For example, the CNP specification requires a precise definition of when the
task described in a bid is sufficiently closely ‘related’ (similar) to that described in
the CFP for the bid to count as a response to the CFP. This specification of ‘related’
tasks is time-independent, and could be extremely complex. It is cumbersome and
unnatural to represent this specification by means of fluents and a complex web of
EC axioms — it is much more natural and efficient to formulate it by means of logic
rules, as we do in the SV version. The implementation of C+ action descriptions
in CCALC does not provide such facilities. Every aspect of a society or protocol
specification, therefore, must be represented in terms of C+ laws.

4See, for example, [Farrell et al. 2005] for an XML formalisation of EC, accompanied with a

Java-implemented EC reasoner.
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Future Work

There are several directions for current and future research. These include the
following:

Alternative formalisms. We presented a specification of the CNP by means of
both C+ laws and EC axioms. Intuitively, there is a close similarity between these
formalisms, but establishing a precise equivalence remains an area for current work.
One step in this direction is recent work by Craven [2006]. His EC+ implementation
provides an efficient EC style of computation for prediction queries on (a restricted
form of) C+ action descriptions, thereby providing a promising means of supporting
run-time activities. He has also exploited the transition system semantics to connect
C+ to model checking software (specifically NuSMV [Cimatti et al. 2002]). This
allows properties expressed in Linear Temporal Logic (LTL) and Computation Tree
Logic (CTL) to be verified by means of standard model checking techniques on
society specifications expressed in the C+ language. It has also been suggested
to us that some of the limitations of the CCALC implementation, such as those
mentioned at the end of the previous section, may be overcome without losing the
advantages of the C+ language by adopting A-Prolog (a.k.a. Answer Set Prolog)
[Gelfond 2002]. This is something we intend to look into in current work.

The language n C+. A parallel development to the work presented in this paper
has produced an extended form of the C+ language specifically designed for the
representation of norms and institutions [Sergot 2004a]. The intention is to extend
the transition system structures with features that represent a ‘counts as’ relation
between transition types (see Section 3.3), and, thereby, a treatment of institu-
tionalised power, and the distinction between permitted and non-permitted actions
and histories (see also [Sergot and Craven 2006]). Reformulation of the examples
in this paper in n C+ is straightforward, except that there are some outstanding is-
sues about the most effective way of employing the additional resources provided by
n C+. In particular, the relationship between obligations, non-compliant behaviour
and sanctions in society specifications, and the notion of permission built in to the
n C+ language needs to be explored more fully.

Functionality of the computational framework. Both CCALC and SV should pro-
vide explanatory facilities. A natural explanation of why, for instance, a given action
was or was not valid in some given circumstance would be an invaluable aid to the
agents and their designers. In the case of SV, there are standard logic program-
ming techniques for implementing explanatory facilities based on execution traces.
In the case of CCALC, where the mode of execution (model generation) is quite
different, it remains to investigate how explanatory facilities could be grafted on to
the operation of CCALC.

Formalisation of normative relations. It can be argued that our treatment of the
concepts of permission and obligation is too simple, and needs to be refined in
the light of existing studies of these concepts. Moreover, we aim to extend our
specification by considering more complex normative relations [Sergot 2001]. In
particular, concepts of entitlement seem to be deserving of special attention. (See
[Sadighi and Sergot 2002] for a preliminary discussion.)

Social structure. Social constraints should be relativised to a society. This would
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allow for the possibility that different societies (or institutions within the same
society) have incompatible constraints. A fruitful area for further research would
be to formalise the relationships between the social constraints of a ‘parent society’
and its sub-groupings (institutions).
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