
Distant Causation in C+

Robert Craven and Marek Sergot

Department of Computing,
Imperial College London,
180 Queen’s Gate,
London SW7 2BZ

{rac101,mjs}@doc.ic.ac.uk

21st September, 2004

Abstract

The action language C+ of Giunchiglia, Lee, Lifschitz, McCain and
Turner is a high-level, logical formalism for the representation of domains
involving action and change. However, one cannot directly express rela-
tionships which hold between states more than one time-step distant, or
even say that one action determines another at the next time. We present
C+timed, a generalization of C+ which removes these limitations. As for
C+, translations to the language of causal theories are given. We also
define a new kind of transition system called a ‘run system’ to provide a
graphical semantics. Finally, we show how domains involving prohibition
and permission can be modelled, by incorporating the ideas of another
extension of C+.

1 Introduction

The action language C+ of Giunchiglia, Lee, Lifschitz, McCain and Turner
[GLL+04] is a high-level formalism for describing how the properties of a system
change in response to actions performed in the system.1

However, a limitation of C+ as it currently stands is that when writing causal
laws one must refer only to states at most one time-step away from each other.
It is also impossible directly to say that the performance of an action causes
the performance of another action at the next time-step, or at some other time
in the future. Yet the fact that an action description of C+ can be viewed as
shorthand for an infinite sequence of causal theories (a sequence indexed by the
natural numbers), together with the fact that there is no limitation on the times
to which the rules of those causal theories refer, suggests that one may expand
C+, removing the restriction on temporal distance.

There will be benefits. Currently, encoding domains in C+ in which delays
and deadlines play an important role is awkward at best and computationally
expensive at worst. For example, suppose one wanted to say that 20 time-
steps after a set action, a switch turned to red. The signature would at least
contain the fluent constant switch, with dom(switch) = {green, red}, and an
action constant set, with a Boolean domain. But how are the causal laws to be

1The current paper is to be published in a special issue of Studia Logica devoted to ‘Rea-
soning about Action and Change’.

1

written? One might think of something along the following lines:

inertial switch, timer=1 if > after set,

exogenous set, timer=2 if > after timer=1,

default timer=none, timer=3 if > after timer=2,

...
timer=20 if > after timer=19,

switch=red if timer=20.

But this will not do. For what if one time-step after the set action, another
set action is performed? Let us suppose that the idea is, not to reset the timer
so that countdown begins anew, but rather to ensure that the switch is red
at another time. It seems obvious that one will need a whole series of timeri

constants, governed by a series of laws which decides when each of them is to
be started:

inertial switch,

exogenous a,

timer1=1 if > after set ∧ timer1=none,

timer1=2 if > after timer1=1,

...
timer1=20 if > after timer1=19,

switch=red if timer1=20,

default timer1=none,

timer2=1 if > after set ∧ ¬timer1=none ∧ timer2=none,

timer2=2 if > after timer2=1,

...
switch=red if timer2=20,

default timer2=none,

timer3=1 if > after set ∧ ¬timer1=none ∧ ¬timer2=none

∧ timer3=none,

...
timer21=1 if > after set ∧ ¬timer1=none ∧ · · · ∧ ¬timer20=none

∧ timer21=none,

...
default timer21=none.

That will now give the results we wanted. But it is hardly a perspicuous repre-
sentation of the behaviour of the system, and though one might invent macros
to generate such causal laws, there will clearly be a computational penalty to
pay in the implicit causal theories with which CCalc,2 for example, operates.

2http://www.cs.utexas.edu/users/tag/cc/ccalc.html.

2

In this paper we present a solution.

2 Preliminaries

2.1 Causal Theories

The language of causal theories [GLL+04] can be used to formalize reasoning
about action and change. It is mathematically simple, and can be seen as
underlying C+. Accordingly, a brief account is given here. The reader is referred
to the cited paper for further details and examples.

Begin with a multi-valued propositional signature, composed of a set σ of
constants, and for each constant c ∈ σ a non-empty, finite set dom(c), disjoint
from σ and known as the domain of c. An atom of the signature is an expression
c=v, where c ∈ σ and v ∈ dom(c). Formulas are constructed from the atoms
using propositional connectives and a familiar syntax, with a literal as an ex-
pression A or ¬A, for atomic A. The expressions > and ⊥ stand for A ∨ ¬A
and A ∧ ¬A respectively, with A being an arbitrary atom.

Further, Boolean constants are those whose domain is the set of truth values
{t, f}, and a Boolean signature is, by extension, one all of whose constants are
Boolean. If c is a Boolean constant, we often write c for c=t, so that where
our propositional signatures are restricted to be Boolean and we deal with no
formula containing f , we may reduce our syntax to that of standard propositional
logic.

A causal rule is an expression of the form

F ⇐ G,

where F and G are formulas of the underlying, multi-valued propositional sig-
nature. Such expressions are related to the (almost) natural language statement
“if G, then the fact that F is caused”. A causal theory is a set of causal rules.

An interpretation of a multi-valued propositional signature σ is a function
mapping every constant c to some v ∈ dom(c); an interpretation X is said to
satisfy an atom c=v if X(c) = v, and in this case one may write X |= c=v.
Standard structural recursions over the propositional connectives apply, and
where Γ is a set of formulas of our propositional signature, X |= Γ expresses
that X |= F , for every F in Γ.

Now let Γ be a causal theory, and take X to be an interpretation of its
underlying propositional signature. The reduct of Γ with respect to X is defined
as

ΓX =def {F | F ⇐ G ∈ Γ and X |= G}.

X is a model of the causal theory Γ, written X |=C Γ, if X is the unique model
of ΓX .

2.2 The action language C+

2.2.1 Syntax

Now, a brief summary of the action language C+; for fuller details and examples,
consult the original presentation [GLL+04].

3

As with the logic of causal theories, the language is based on a multi-valued
propositional signature σ, with σ partitioned into a set σf of fluent constants
and a set σa of action constants. Further, the fluent constants are partitioned
into those which are simple and those which are statically determined. A fluent
formula is a formula whose constants all belong to σf ; an action formula has at
least one action constant and no fluent constants.

A static law3 is an expression of the form

F if G,

where F and G are fluent formulas. An action dymanic law is an expression of
the same form in which F is an action formula and G is a formula. A fluent
dynamic law has the form

F if G after H,

where F and G are fluent formulæ and H is a formula, with the restriction that
F must not contain statically determined fluents. Causal laws are static laws
or dynamic laws, and an action description is a set of causal laws.

An action description D is said to be definite when

• the head of every causal law of D is either an atom or ⊥, and

• no atom is the head of infinitely many causal laws of D.

2.2.2 Semantics and causal theories

The language C+ can be viewed as a useful shorthand for the logic of causal
theories, for to every action description D of C+ and non-negative integer t,
there corresponds a causal theory ΓD

t . The signature of ΓD
t contains constants

c[i], such that

• i ∈ {0, . . . , t} and c is a fluent constant of the signature of D, or

• i ∈ {0, . . . , t− 1} and c is an action constant of the signature of D,

and the domains of such constants c[i] are kept identical to those of their con-
stituents c. The expression F [i], where F is a formula, denotes the result of
suffixing [i] to every occurrence of a constant in F . The causal rules of ΓD

t are:

F [i] ⇐ G[i],

for every static law in D and every i ∈ {0, . . . , t}, and for every action dynamic
law in D and every i ∈ {0, . . . , t− 1};

F [i + 1] ⇐ G[i + 1] ∧H[i],

for every fluent dynamic law in D and every i ∈ {0, . . . , t− 1}; and

c[0]=v ⇐ c[0]=v,

3The keyword caused, which in the original presentation of C+ appears at the beginning of
static and dynamic rules, is omitted; causal laws have no especial relationship with causation,
although they can be used to model causal connections. (This latter point justifies the title
of the paper.)

4

for every simple fluent constant c and v ∈ dom(c).
The semantics of action descriptions are defined in terms of labelled tran-

sition systems, using the translation into causal theories given above. Let us
suppose we have an action description D, with signature composed of σf ∪ σa.
We will identify interpretations of the underlying propositional signature of D
(which are defined in the same way as those for causal theories) with the sets
of atoms they satisfy. Thus, where i is a non-negative integer and s an inter-
pretation, we can write s[i] for the result of suffixing [i] to the constant in every
atom made true by the interpretation (in symbols, {c[i]=v | s |= c=v}).

The vertices of the transition system defined by D are states: interpretations
s of σf , such that s[0] is a model of ΓD

0 . The edges of the transition system are
triples (s, e, s′), where s and s′ are interpretations of σf and e is an interpretation
of σa, and such that s[0]∪ e[0]∪ s′[1] is a model of ΓD

1 . These triples are known
as transitions.

Let ΓD
t be the causal theory generated from the action description D and

non-negative integer t as described above. Let s0, . . . , st be interpretations of
σf and e0, . . . , et−1 be interpretations of σa. Then using the notation above, we
can represent interpretations of the signature of ΓD

t in the form

s0[0] ∪ e0[0] ∪ s1[1] ∪ e1[1] ∪ · · · ∪ et−1[t− 1] ∪ st[t]. (1)

The following result holds.

Theorem 2.1 An interpretation of the signature of ΓD
t is a model of ΓD

t iff
each triple (si, ei, si+1), for 0 6 i < t, is a transition.

Proof: Proposition 8 of [GLL+04].

Let D be an action description of C+. A run of length t through this transition
system is defined to be a sequence

(s0, e0, s1, e1, . . . , et−1, st) (2)

such that all triples (si, ei, si+1), for 0 6 i < t, are members of the transition
system.

Theorem 2.2 Let D be an action description and t any non-negative integer.
Then the sequence (2) is a run of the transition system iff the interpretation (1)
is a model of the causal theory ΓD

t .

Proof: First, assume we have a run of the transition system of length t. Then
every triple (si, ei, si+1), for 0 6 i < t, is a transition, and so by Theorem 2.1
the interpretation (1) is a model of ΓD

t .
Alternately, suppose that (1) is a model of the causal theory ΓD

t . Then clearly,
each triple (si, ei, si+1), for 0 6 i < t, is a transition, and so the sequence (2) is
a run of the transition system defined by D.

3 Times

One could change the syntax of C+ as it stands in the following way. Let λ
be conceived of as an operator which enables one to refer to the immediately
preceding time. Fluent dynamic laws can then be written as

F if G ∧ λ(H);

5

both action dynamic laws and static laws will be written in the form

F if G,

which is the same as for C+.
We will allow ourselves to nest the λ. In this extended language, signatures

are defined as before for C+, and causal laws have the form

F if G,

where F is as before a formula of the signature, and G is given by

G ::= c=v | > | ¬G | G1 ∧G2 | G1 ∨G2 | λ(G). (3)

We can write λλ(F) as λ2(F), and so on. We insist that if the left-hand side of a
causal law contains a fluent constant, then no action constant should appear on
the right-hand side outside the scope of any λ. Also, we stipulate that if there
is a λ with index greater than 0 on the right-hand side of a law, then that law’s
left-hand side must not contain statically defined fluents. These restrictions are
essentially inherited from C+.

It is easy to show that causal rules defined as above have the following
canonical form:

F if λn0(G0) ∧ · · · ∧ λnk(Gk), (4)

where G0, . . . , Gn are formulas of σf ∪ σa (i.e., formulas containing no λ), and

• k > 0;

• (n0, . . . , nk) is a strictly increasing sequence of non-negative integers;

• if F contains fluent constants and n0 = 0, then G0 contains no action
constants;

• if F contains statically determined fluent constants, then there is no λ-
index greater than 0 on the right-hand side.

We have been calling the n0, . . . , nk λ-indices; we say that a law (4) has a
greatest λ-index of nk. We also allow ourselves to drop any operator λ0, and to
write λ for λ1 An action description is a set of causal laws. This extension of
C+ is called C+timed.

To every action description D (signature σf ∪ σa) of C+timed and non-
negative integer t there corresponds a causal theory ΓD

t . The signature of ΓD
t

consists of constants c[i], where

• i ∈ {0, . . . , t} and c ∈ σf , or

• i ∈ {0, . . . , t− 1} and c ∈ σa,

and we keep the domains of such constants c[i] identical to those of their con-
stituents c. By F [i], where F is a formula, we denote the expression resulting
from suffixing [i] to every occurrence of a constant in F . The causal laws of ΓD

t

are:
F [i + nk] ⇐ G0[i + nk − n0] ∧ · · · ∧Gk[i + nk − nk],

(where the last conjunct is of course equal to Gk[i]) for every causal law in D
and every

6

• i ∈ {0, . . . , t− nk − 1}, if F contains an action constant,

• i ∈ {0, . . . , t− nk}, otherwise;

we also include
c[0]=v ⇐ c[0]=v,

for every simple fluent constant c and v ∈ dom(c). So much for the language
definition and translation into the language of causal theories.

For the purpose of illustration, consider the following simple domain DS,
with Boolean signature σf = {p} (p is simple) and σa = {a}. The causal laws
are:

inertial p,

exogenous a,

p if λ2(a),

where the following abbreviations hold, as in C+:

inertial c 7→ c=v if c=v ∧ λ(c=v), for all v ∈ dom(c), (c ∈ σf)
exogenous c 7→ c=v if c=v, for all v ∈ dom(c), (c ∈ σa)

For time-index 2, the causal theory determined by the action description DS
is:

a[0]=t ⇐ a[0]=t, p[1]=t ⇐ p[1]=t ∧ p[0]=t,

a[0]=f ⇐ a[0]=f , p[1]=f ⇐ p[1]=f ∧ p[0]=f ,

a[1]=t ⇐ a[1]=t, p[2]=t ⇐ p[2]=t ∧ p[1]=t,

a[1]=f ⇐ a[1]=f , p[2]=f ⇐ p[2]=f ∧ p[1]=f .

p[2]=t ⇐ a[0]=t,

p[0]=t ⇐ p[0]=t,

p[0]=f ⇐ p[0]=f ,

One may find the models of this theory using the ‘literal completion’ method
[GLL+04]; CCalc can do this for us. A sample model of ΓDS

2 is shown in Figure
1.

¬p ¬p pa a

Figure 1: A model of ΓDS
2

It is possible to imagine an add-on, or modification, to CCalc which com-
piles action descriptions of C+timed into causal theories, and then computes the
models; this would evidently not be a complex task.

4 Graphical Models

4.1 Run systems

It remains to decide what to do about the transition systems which were the
original semantics for C+. For whilst one could understand C+timed simply as a

7

means of writing in abbreviated form a family of causal theories, a very attrac-
tive feature of C+ is that action descriptions can be shown to define labelled
transition systems. These transition systems may afford a useful connection
between C+ and other formalisms for reasoning about actions, and of course
they are useful in their own right as aids to visualisation. If we look at the
transition systems defined by C+timed theories, however, we see that important
information is lacking.

Recall the means of calculating the transition system for an action descrip-
tion of C+ described in Section 2.2.2. If we apply the definitions given there
to action descriptions of C+timed, and calculate the transition system for the
domain DS, the result is as shown in Figure 2. However, that is clearly flawed,

¬pp

a

¬a

a

¬a

Figure 2: The (flawed) C+-style transition system for C+timed domain DS

for the run of the system depicted in Figure 1 cannot be traced in the diagram.
The reason for the failure is clear: the causal theory ΓD

1 used to find the tran-
sitions has not taken into account the law p if λ2(a) of our action description.
In general, the theorem correlating paths through the transition system with
models of causal theories (Theorem 2.2) does not hold for C+timed.

Accordingly, we broaden our conception and define a kind of transition sys-
tem called a run system. These have two differences with the subclass of tran-
sition systems defined by C+ action descriptions. First, states (understood as
models of ΓD

0) may be represented by more than one vertex. Secondly, out of
each set of vertices which represent the same state, a privileged initial vertex
will be marked. (In the following, we make use of the notation I(σf) to stand
for the set of interpretations of σf , and similarly for σa.)

Definition 4.1 A (labelled) run system of a signature σf ∪ σa is any graph G
with vertices V (G) and edges E(G), such that:

• V (G) ⊆ I(σf)× N,

• E(G) ⊆ V (G)× I(σa)× V (G).

Any (s, 0) ∈ V (G) is called an initial vertex.

In contrast with the transition systems defined by C+ action descriptions, ver-
tices are pairs of states and natural numbers (the use of N here is arbitrary, and
is simply a means of allowing more than one vertex to be associated with a given
state). Where (s, n) is a vertex of a run system, we call s the state component,
and if ((s, n), e, (s′, n′)) is an edge of a run system, then we call (s, e, s′) the
transition component.

8

We say that a run system G represents an action description D of C+timed

when, for all t > 0, paths of length t through G starting at an initial vertex corre-
spond to models of the causal theory ΓD

t . For any action description of C+timed

there clearly exists at least one run system representing it; the correspondence
is clearly not 1−1.

In diagrams, we will represent the initial states by circling them twice, and
we will not include the n component of our vertices (s, n). As an illustration
of what we are working towards, a run system for the domain DS is shown in
Figure 3. It can clearly be seen that paths through this run system beginning

¬pp

¬p

¬a ¬a

a

a
a

¬a

Figure 3: Run system for the simple action description DS

at one of the twice-circled vertices correspond to models of the causal theories
generated by DS.

We now introduce the notion of a ‘commitment’, which will be of central
importance in the generation of run systems from action descriptions of C+timed.

4.2 Commitments

The idea is that as a system makes runs, it may accrue commitments, which
express that something should be true in the future, if certain other things are
true. (Thus we use ‘commitment’ here as a technical term, unrelated to the
concept encountered in, for example, multi-agent systems.) Commitments have
the same syntax as causal rules, to which they have a very close relationship.

Figure 4 represents a model of the causal theory ΓDS
2 (the same model shown

in Figure 1). That model, as we know, can be partitioned into sets

s0[0] ∪ e0[0] ∪ · · · ∪ s2[2],

and in our diagram the vertices are the si, and the edges (si, ei, si+1). To the
right of each vertex, a set of commitments has been drawn. These commitments
stem from the law p if λ2(a) in the action description DS. The first thing
to notice is that vertices which encode the same interpretation of σf may be
labelled by different sets of commitments: this is true of the first and second
vertices in the diagram. From this flows the fact that in the run system depicted
in Figure 3, there are two vertices which are labelled with ¬p.

In commitments, the time-stamp is to be understood as relative to the cur-
rent state—i.e., relative to the one which is labelled by the commitment. Thus
the fact that the second vertex in our diagram is labelled by the commitment

9

¬p

¬p

p

a

a

{ p[2] ⇐ a[0] }

{ p[2] ⇐ a[0]
p[1] ⇐ > }

{ p[2] ⇐ a[0]
p[1] ⇐ > }

Figure 4: A model of ΓDS
2 , marked with commitments

p[2] ⇐ a[0] means that if a is performed at the outgoing edge, then 2 units into
the future, p must be true.

Starting at the top and moving down through the diagram, we see that if a is
performed on the outgoing edge of the first state, p must be true two time-steps
later. At the next state this is also true; further, since a was performed between
states one and two, p is now definitely constrained to be true at the third state.
The third state itself is labelled by the same commitments as the second. So it
goes.

In general, there are two ways in which a state in such a diagram may come
to be labelled by a commitment: because of the nature of the state itself, and
because a commitment has been inherited from a previous state.

Consider a model of some causal theory ΓD
t . If a state sj of that model is

labelled with the commitment

F [n] ⇐ G0[n0] ∧ · · · ∧Gk[nk]

(where here n > n0), then this should be taken to mean that if

sj+nk
∪ ej+nk

|= Gk,

...
sj+n0 ∪ ej+n0 |= G0,

then we must have sj+n ∪ ej+n |= F .
We define a function from commitments to sets of commitments, which will

be used in specifying how these commitments change from one state to another.
Let x be the commitment

F [n] ⇐ G0[n0] ∧ · · · ∧Gk[nk].

The value of cmt(x) will be

{ F [n− 1] ⇐ G0[n0 − 1] ∧ · · · ∧Gk[nk − 1] }

10

if n− 1 > 0, or if n− 1 = 0 and F is an action atom; in this case we omit any
conjuncts of the right-hand side which have time-stamps less than 0. Otherwise,
the value of cmt(x) is the empty set. Thus the function cmt has as its domain
the set of commitments of some signature, and has as its range the set containing
singletons of commitments, together with the empty set. As an example, we
refer back to the domain DS:

cmt(p[2] ⇐ a[0]) = {p[1] ⇐ >},
cmt(p[1] ⇐ >) = ∅,

By convention, if S is a set of commitments, we set

cmt(S) =
⋃
x∈S

cmt(x).

4.3 Generation of run systems

Let D be an action description of C+timed, with signature σf ∪ σa. Assume the
laws of D are in canonical form, and so have the structure

F if λn0(G0) ∧ · · · ∧ λnk(Gk) (5)

for some sequence of natural numbers (n0, . . . , nk). Let D ⊆ D be the set of
all those laws of D which have a maximum λ-index greater than 1, or else have
this index equal to 1 and an action atom as F . Thus D contains those laws of
D which could not be expressed in C+, and D−D is, despite its odd syntax, a
C+ action description (with the same signature).

Let init be the set
{s | s[0] |= ΓD

0 }.
init can be seen as being the set of states (a notion inherited from C+) of our
system. Let the set comD contain those commitments

F [nk] ⇐ G0[nk − n0] ∧ · · · ∧Gk[nk − nk]

such that there is a law of form (4) in D (the last conjunct here is of course
simply Gk[0]).

Run systems, it will be recalled, have as their vertices pairs consisting of
a state and a natural number. Before systems of this kind can be generated,
we use sets of commitments as the second components. So, we make a graph
GD, which has as its set of vertices those pairs (s, c), where s is as usual an
interpretation of σf , and where c ⊆

⋃
n>0 cmtn(comD) and comD ⊆ c. The set⋃

n>0 cmtn(comD) includes all commitments which could label any state.
For the edges, we need to introduce a function, which will model how com-

mitments change over time as a consequence of the preceding state of, and
actions performed in, a transition. We know that all commitments which can
label a state are contained in ⋃

n>0

cmtn(comD);

commitments in general have the form

F [n] ⇐ G0[n0] ∧ · · · ∧Gk[nk].

11

The function introduced is transcom, which has the domain I(σf) ∪ I(σa) ∪⋃
n>0 cmtn(comD), where, if x is a commitment:

transcom(s, e, x) =
{
∅ if nk = 0 and s ∪ e 6|= Gk

cmt(x) otherwise.

Clearly, we want commitments to persist—their time-stamps decremented—
through a transition, only when those formulas on the right-hand side of the
commitment which relate to the transition are satisfied. In our example we have
that

transcom({¬p}, {a}, p[2] ⇐ a[0]) = cmt(p[2] ⇐ a[0]),
= {p[1] ⇐ >}.

Thus we ensure the presence of the right commitments. By convention, where
c is a set of commitements, we let

transcom(s, e, c) =def

⋃
x∈c

transcom(s, e, x).

So, the edges of our graph GD will be those triples ((s, c), e, (s′, c′)), where

• s ∈ init,

• c ⊆
⋃

n>0 cmtn(comD),

• comD ⊆ c,

• s[0] ∪ e[0] ∪ s′[1] |=C ΓD
1 ∪ c,

• c′ = comD ∪ transcom(s, e, c).

Now we are engaged in a graph-theoretic problem: we must determine members
of V (GD) that can be reached along a path beginning at a vertex of GD of the
form (s, comD), for some s ∈ init. Remove from V (GD) those vertices which
cannot be so reached, and remove all edges of GD which are incident with a
vertex which has been removed. Call the result G∗

D.
All that remains is to rename the vertices of G∗

D, so that the sets of commit-
ments are replaced by natural numbers. Thus we rename (s, c) to (s, n), with
n ∈ N, in such a way that if (s, c) and (s, c′) are two distinct vertices of G∗

D,
and their replacements are (s, n), (s, n′), then n 6= n′. Where the commitment
part c of a vertex is comD, we rename that vertex to (s, 0).

The result is a run system for the C+timed domain D. Call it RunD.
A transition system T , of the type defined by a C+ action description, is

essentially a run system in which there are only initial states, so that V (T) =
{(s, 0) ∈ V (T)}.

It remains, of course, to prove that this method of generating run systems
works. The desired result states that given an action description D of C+timed,
paths through the system RunD of length t which begin at an initial vertex
(s, 0) correspond to models of the causal theory ΓD

t . In other words, we need
to show that RunD represents the domain D.

12

Theorem 4.2 Let D be an action description of C+timed with signature σf∪σa,
and t a non-negative integer. Then, where s0, . . . , st are interpretations of σf ,
and e0, . . . , et−1 interpretations of σa, we have that

s0[0] ∪ e0[0] ∪ · · · ∪ st[t]

is a model of ΓD
t if and only if

((s0, 0), e0, (s1, n1), . . . , et−1, (st, nt))

is a path through RunD, for some n1, . . . , nt ∈ N.

Proof: Follows closely the method above for the generation of G∗
D, and relies

on splitting the statement

s0[0] ∪ · · · ∪ st[t] |=C ΓD
t

into a series of statements

si[i] ∪ ei[i] ∪ si+1[i + 1] |=C ∆D
M,i,

for 0 6 i < t and relevant sets ∆D
M,i, where M is the model s0[0] ∪ · · · ∪ st[t].

Details omitted.

4.4 An example generation

Let us work through the simple action description DS of C+timed, in order to
illustrate the procedures described above. The domain is Boolean, has signature
σf ∪ σa, and contains the laws

inertial p,

exogenous a,

p if λ2(a).

Thus we have DS = {p if λ2(a)}.
The causal theory ΓDS

0 is evidently

p[0] ⇐ p[0],
¬p[0] ⇐ ¬p[0],

so that the set init contains the two states

{p} and {¬p}.

We also have comDS as the singleton containing the commitment p[2] ⇐ a[0].
As was noted previously, we have

cmt(p[2] ⇐ a[0]) = {p[1] ⇐ >},
cmt(p[1] ⇐ >) = ∅,

so that ⋃
n>0

cmtn(comDS) = {p[2] ⇐ a[0], p[1] ⇐ >}.

13

We now make the graph GDS . The vertices of GDS are the pairings of
members of init with those subsets of

⋃
n>0 cmtn(comDS) which also contain

comDS , namely:

({p},{p[2] ⇐ a[0])}),
({p},{p[2] ⇐ a[0], p[1] ⇐ >}),

({¬p},{p[2] ⇐ a[0]}),
({¬p},{p[2] ⇐ a[0], p[1] ⇐ >}),

To find the edges for our graph, we first need the causal theory ΓDS
1 . This has

the laws:

p[1] ⇐ p[1] ∧ p[0],
¬p[1] ⇐ ¬p[1] ∧ ¬p[0],
a[0] ⇐ a[0],
¬a[0] ⇐ ¬a[0],

p[0] ⇐ p[0],
¬p[0] ⇐ ¬p[0].

The triples ((s, c), e, (s′, c′)) which satsify the constraints (given in the previous
section) on edges of GDS will not be calculated explicitly; they are represented
in Figure 5, which shows GDS . In the diagram, the vertices (s, c) have been

¬p

p

p

¬p

a

¬a

¬a

a

a

¬a

¬a

a

{p[2] ⇐ a[0],
p[1] ⇐ >}

{p[2] ⇐ a[0]}

{p[2] ⇐ a[0],
p[1] ⇐ >}

{p[2] ⇐ a[0]}

Figure 5: The graph GDS , with states and associated commitments

depicted so that the components s are shown inside circles, with the commit-
ments c shown adjacently and outside. Vertices of the form (s, comDS) have
been circled twice, and the circles which are shaded are the ones which can be
reached from a path starting from the double-circled vertices. (In the current
case these are all the vertices in the graph, but in general that need not be so.)
Thus G∗

DS is the subgraph of the graph represented in Figure 5 which consists
of shaded vertices only, and whose edges are all those which are not incident to
an unshaded vertex. In our example we happen to have GDS = G∗

DS . After

14

replacing the commitments by natural numbers, we arrive at the run system
whose vertices are

({p}, 0), ({p}, 1), ({¬p}, 0), ({¬p}, 1),

and whose edges are

(({p}, 0),{a}, ({p}, 1)), (({¬p}, 0),{a}, ({¬p}, 1)),
(({p}, 0),{¬a}, ({p}, 0)), (({¬p}, 0),{¬a}, ({¬p}, 0)),
(({p}, 1),{a}, ({p}, 1)), (({¬p}, 1),{a}, ({p}, 1)),
(({p}, 1),{¬a}, ({p}, 0)), (({¬p}, 1),{¬a}, ({p}, 0)),

This is RunDS , and diagramatically it would be like Figure 5, but with the shad-
ing and commitments absent. It is clear that paths through this run system—
beginning at a double-circled vertex and of length t—correspond to models of
the causal theory ΓDS

t .

4.5 Reduction

There is an obvious structural difference between Figures 3 and 5. We gave
Figure 3 as an example of what we were aiming for in producing a run system
for the simple domain DS, but if that is correct than we have missed our target.
The graph which we actually generated is larger (more vertices, more edges)
than other graphs which are also run systems for the same domain. It is clear
that in general there will be many run systems representing each C+timed action
description (indeed, it is easy to see there will be infinitely many).

The question naturally arises, whether there is a way of reducing run sys-
tems to find a graph which is least or minimal according to some appropriate
measure, but which still represents the generating domain of C+timed. It seems
that cardinality of the sets of vertices and edges of a run system would be the
appropriate measure. Thus given two run systems GD and G′

D which both
represent the domain described by the action description D, we define

GD <r G′
D if

{
|V (GD)| < |V (G′

D)|, or
|V (GD)| = |V (G′

D)| ∧ |E(GD)| < |E(G′
D)|.

We proceed intuitively. Reduction might be thought to involve identifying
vertices which were previously different, ‘collapsing’ a set of vertices onto a
single representative of that set. Clearly, for any two vertices (s, n) and (s′, n′)
in a set which is reducible, we must have s = s′. Assume GD is a run system
for the C+timed domain D, and that there is S ⊆ V (GD), such that

• for all (s, n), (s′, n′) in S, we have s = s′;

• if (s0, n0) ∈ S and ((s0, n0), e, (s1, n1)) ∈ E(GD), then for all (s′0, n
′
0) ∈ S,

we have ((s′0, n
′
0), e, (s1, n1)) ∈ E(GD).

Then we might collapse the members of S onto a single representative, as fol-
lows. If (s, 0) ∈ S—an initial state—then we choose that vertex as the repre-
sentative, otherwise we choose any member of S. Let the chosen member of S
be (s∗, n∗). Then, we remove each edge ((s0, n0), e, (s, n)), for (s, n) ∈ S, from
GD, and replace it by the edge ((s0, n0), e, (s∗, n∗)). We also remove each edge

15

((s, n), e, (s0, n0)), where (s, n) ∈ S, and replace it by ((s∗, n∗), e, (s0, n0)). We
then remove the vertices S − {(s∗, n∗)} from GD. This procedure is continued
until there are no more sets S satisfying the properties given above.

A single reduction step clearly leaves the paths through the run system
unchanged.

This kind of reduction will cope with all of the run systems we have studied
so far, but we have as yet no proof of completeness: that is, that it always
reduces a run-system to an 6r-minimal counterpart.

4.6 Example—Reagan and Gorbachev

As a second illustration, consider the following version of a familiar example
from the field of deontic logic [Bel87]. (In deontic logic it is used in the study
of ‘contrary-to-duty’ reasoning; we exploit it for different purposes here.)

If Reagan is told crucial strategic information, then Gorbachev must also
be told, unless Gorbachev knows already; and vice versa. Once someone is
told, then they know. We model this in C+timed using a Boolean domain, with
σf = {kr, kg} and σa = {r, g}. kr represents that Reagan knows, and r is the
action of telling Reagan; similarly for g and Gorbachev. The causal laws for
this domain, Drg:

inertial kg, kg if λ(g),
inertial kr, kr if λ(r),
exogenous r, g if ¬kg ∧ λ(r),
exogenous g, r if ¬kr ∧ λ(g).

Notice that the two bottom-right laws above could not have been expressed
directly in C+. Noteworthy is the fact that we only insist that Gorbachev (for
example) should be told if an action of telling Reagan is performed; if the system
starts in a state where there is disparity of knowledge, no telling need take place.
A run system for this domain is shown in Figure 6.

5 Interaction with (C+)++

Say an agent promises to perform an action for another agent at some specified
time in the future. If the agent fails to perform the promised action, we may
wish to signal this as a breach of contract, regulation, or statement of assurance.
This can be achieved using (C+)++ [Ser04], an extended form of the language
C+, which allows us to specify which actions and states are not permitted, and
thus, implicitly, which actions and states are permitted.

However, the motivating example for C+timed surfaces here in much the same
form. For if the promise above is for an action to be performed 20 time-steps in
the future, a proliferation of agents and promises would make our logical model
complex and computationally inefficient. This argues in favour of a marriage of
(C+)++ and C+timed.

5.1 The language (C+)++

The language (C+)++ provides two main extensions to C+. The first is a means
of expressing ‘counts as’ relations [JS96] between actions, also referred to as

16

¬kr,
¬kg

kr,
kg

kr,
¬kg

¬kr,
kg

kr,
¬kg

¬kr,
kg

r, g

r,¬g

¬r, g

¬r,¬g

r, g ¬r, g

¬r,¬g
r,¬g

r, g
r,¬g

¬r,¬g
¬r, g

r, g

¬r, g

r, g

r,¬g

¬r,¬g

¬r, g

r, g

r,¬g

Figure 6: Reagan and Gorbachev

‘conventional generation’ of actions. This will not be the focus of attention in
this paper. The second is a way of specifying the permitted (acceptable, legal)
states of a transition system and its permitted (acceptable, legal) actions and
runs.

In the second extension, state permission laws and action permission laws
are introduced. The former have the form

not-permitted F,

where F is a fluent formula; an action permission law has the form

not-permitted F if G after H,

where F is an action formula, G is a fluent formula, and H is a formula. The
transition system defined by an action description D of (C+)++ is the transition
system defined as for C+, by ignoring the permission laws in D. Colours are
then added to this system: a state s is coloured red when s |= F for some state
permission law in D; all other states are coloured green. A transition (s, e, s′) is
coloured red if s∪e |= H, s′ |= G, and e |= F . All other transitions are coloured

17

green by default, except where this would contravene the ‘green-green-green’
constraint:

given a transition (s, e, s′), if s and e are green, then so is s′.

In these exceptions to the default, the transitions are coloured red.
Notice that the transition system here is defined using the pure C+ part of an

action description D, i.e. without reference to permission laws. The permission
laws don’t alter the ‘structure’ of the transition system, they just add colour.

5.2 The language (C+)++
timed

We supplement the language of C+timed with permission laws, which have the
form

not-permitted F if G.

Here, F is a formula, and G is a formula which can contain nested λ or >,
given as in (3). Further restrictions match those from Section 3: a permission
law is simply a law of C+timed with the prefix not-permitted. Where D is an
action description of (C+)++

timed, we say that the C+timed-component of D is that
subset of its laws which do not contain the keyword not-permitted. Laws of
(C+)++

timed can be given a canonical form just as for C+timed.
Consider the example Boolean action description DP , whose signature is

given by σf = {p} and σa = {a}, and whose causal laws are

inertial p,

exogenous a,

p if λ(a),

not-permitted p if λ2(a).

Translation to causal theories proceeds just as one would expect, given the
translation for (C+)++ described in [Ser04]. This is a matter of introducing
constants status and trans into the causal theories ΓD

t which correspond to
(C+)++

timed action descriptions D; the domain of each constant is {green, red}.
The purpose of status is to describe the deontic status of states, and trans that
of transitions. Appropriate causal rules then govern the colouring of states and
transitions in accordance with the default behaviour and ‘green-green-green’
constraint.

What of the run systems? The means of generating these using causal the-
ories and commitments, as described in Section 4, proceeds as before. This will
give us the run system shown in Figure 7, for DP . This surely corresponds to
what had been intended in the action description.

Notice however that the graph does not simply represent a colouring of
the run system defined by the C+timed-component of the action description
DP . Thus we cannot say of (C+)++

timed that adding permission laws simply adds
colour to the states and transitions—there may be a radical restructuring of the
original run system, and in a certain sense this makes our models deontically
non-local : the colour of states and transitions need not depend only on the
interpretations (ignoring the values of the constants status and trans) which

18

¬p¬a ¬a

a

¬a

a

a
a

¬a

¬a

a

p p

p

p ¬p

red

green

green

red

Figure 7: Run system for (C+)++
timed domain DP

constitute those states and transitions. We can spell this out. Where x is a set
of atoms, let pure(x) be

x− {c=v | (c = status ∨ c = trans) ∧ v ∈ dom(c)}.

Then, in our run system we may have vertices (s, n) and (s′, n′), where pure(s) =
pure(s′), but (s, n) and (s′, n′) are coloured differently. Similarly for transitions:
it is possible to have two edges ((s1, n1), e1, (s′1, n

′
1)) and ((s2, n2), e2, (s′2, n

′
2))

where pure(s1) = pure(s2), pure(e1) = pure(e2) and pure(s′1) = pure(s′2), but
where the edges have different colours. We have both kinds of non-locality in
the shown run-system for DP .

6 Conclusion

We have presented C+timed, a natural generalization of the action language C+
[GLL+04].

Syntactically, C+timed extends the laws of C+ by adding a λ-operator allow-
ing reference to past states and transitions: it thus removes the restriction to
the immediately preceding state and transition. Semantically, it generalizes the
transition systems defined by C+ action descriptions. We have called the new
kind of transition system a run system. The transition systems defined in C+ are
a special case where there is only one vertex for each state, and every vertex is
initial. We have also shown how action descriptions of C+timed are a shorthand
for causal theories; using C+timed we can make use of more of the language of
causal theories, whilst retaining the key property: models of the causal theories
are in correspondence with paths through the run system defined by the C+timed

action description. Computationally, action descriptions of C+timed are much
more efficient than attempted encodings of the same domains in C+. The task
of implementation is easy, through an adaptation of CCalc.

We have defined a means of generating a run system from a C+timed action
description. A further step of reduction is sometimes necessary to give the most
compact run systems. Though our reduction steps are sound, we do not yet know
whether they are complete, that is, whether they are guaranteed to result in run

19

systems which are minimal according to the order we introduced. Further work
will explore this question. We are also interested in seeing whether the original
generation of the run systems can be optimised so as to obviate reduction.

We concluded the paper with a brief review of (C+)++
timed, which merged the

extensions of C+timed with those of (C+)++ [Ser04], allowing us to represent
domains where permission and prohibition play a role.

We are also developing a run language, a temporal logic to describe prop-
erties of paths through transition systems or run systems defined by languages
such as C+, C+timed and (C+)++

timed. This will enable us to express properties
of runs which even C+timed cannot capture.

References

[Bel87] M. Belzer. Legal reasoning in 3-D. In Proceedings of the First Inter-
national Conference on Artificial Intelligence and Law, pages 155–163. ACM
Press, 1987.

[GLL+04] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Non-
monotonic causal theories. Artificial Intelligence, 153:49–104, 2004.

[JS96] Andrew Jones and Marek Sergot. A formal characterisation of institu-
tional power. Journal of the IGPL, 4(3):429–445, 1996.

[Ser04] M. Sergot. The language (C/C+)++. In J. Pitt, editor, The Open Agent
Society. Wiley, 2004. To appear.

20

	Introduction
	Preliminaries
	Causal Theories
	The action language C+
	Syntax
	Semantics and causal theories

	Times
	Graphical Models
	Run systems
	Commitments
	Generation of run systems
	An example generation
	Reduction
	Example---Reagan and Gorbachev

	Interaction with (C+)++
	The language (C+)++
	The language (C+)++timed

	Conclusion

