
The deontic component of action language n C+

Marek Sergot and Robert Craven

Department of Computing, Imperial College London
{mjs,rac101}@doc.ic.ac.uk

Abstract. The action language C+ of Giunchiglia, Lee, Lifschitz, Mc-
Cain, and Turner is a formalism for specifying and reasoning about the
effects of actions and the persistence (‘inertia’) of facts over time. An
‘action description’ in C+ defines a labelled transition system of a cer-
tain kind. nC+ (formerly known as (C+)++) is an extended form of C+
designed for representing normative and institutional aspects of (human
or computer) societies. The deontic component of n C+ provides a means
of specifying the permitted (acceptable, legal) states of a transition sys-
tem and its permitted (acceptable, legal) transitions. We present this
component of n C+, motivating its details with reference to some small
illustrative examples.

1 Introduction

The action language C+ [1] is a formalism for specifying and reasoning about
the effects of actions and the persistence (‘inertia’) of facts over time, build-
ing on a general purpose non-monotonic representation formalism called ‘causal
theories’. An ‘action description’ in C+ is a set of C+ rules which define a la-
belled transition system of a certain kind. Implementations supporting a wide
range of querying and planning tasks are available, notably in the form of the
‘Causal Calculator’ CCalc [2]. C+ and CCalc have been applied successfully
to a number of benchmark examples in the knowledge representation literature
(see e.g. [3] and the CCalc website [2]). We have used it in our own work to
construct executable specifications of agent societies (see e.g. [4, 5]).

n C+ [6, 7] is an extended form of C+ designed for representing normative
and institutional aspects of (human or computer) societies. There are two main
extensions. The first is a means of expressing ‘counts as’ relations between ac-
tions, also referred to as ‘conventional generation’ of actions. This feature will
not be discussed in this paper. The second extension is a way of specifying the
permitted (acceptable, legal) states of a transition system and its permitted (ac-
ceptable, legal) transitions. The aim of the paper is to present this component of
n C+ and some simple illustrative examples. n C+ was called (C+)++ in earlier
presentations.

n C+ is intended for modelling system behaviour from an external ‘bird’s
eye’ perspective, that is to say, from the system designer’s point of view. It may
then be verified whether properties hold or not of the system specified (a process
analogous to that described in [8, 9], which concentrates on epistemic properties

and communicative acts). n C+ is not intended for representing norms from an
individual agent’s perspective. We have a separate development, agent-centric
n C+, for specifying system norms as directives that constrain an individual
agent’s behaviour, in a form that can be used by a (computer) agent in its internal
decision-making procedures. That development will be presented elsewhere.

We have three existing implementations of the n C+ language. The first em-
ploys the ‘Causal Calculator’ CCalc. As explained later in the paper, the re-
quired modifications to CCalc are minor and very easily implemented. The sec-
ond implementation provides an ‘event calculus’ style of computation with C+
and n C+ action descriptions. Given an action description and a ‘narrative’—a
record of what events have occurred—this implementation allows all past states,
including what was permitted and obligatory at each past state, to be queried
and computed. The third implementation connects C+ and n C+ to model check-
ing software. System properties expressed in temporal logics such as CTL can
then be verified by means of standard model checking techniques (specifically the
model checker NuSMV) on transition systems defined using the n C+ language.
A small example is presented in [7]. We do not discuss the implementations
further for lack of space, except to explain how the CCalc method works.

Related work Some readers may see a resemblance between n C+ and John-
Jules Meyer’s Dynamic Deontic Logic [10], and other well known works based
on ‘modal action logics’ generally (e.g. [11, 12]). There are three fundamental
differences. (1) C+ and n C+ are not variants of dynamic logic or modal action
logic. They are languages for defining specific instances of labelled transitions
systems. Other languages—we refer to them as ‘query languages’—can then
be interpreted on these structures. Dynamic logic is one candidate, the query
language in CCalc is another, but there are many other possibilities: each C+ or
n C+ action description defines a Kripke-structure, on which a variety of (modal)
query languages, including a wide range of deontic and temporal operators, can
be evaluated. We do not have space to discuss any of these possibilities in detail.
(2) The representation of action is quite different from that in dynamic logic and
modal action logic. (3) There are important differences of detail, in particular
concerning the interactions between permitted states and permitted transitions
between states.

The semantical devices employed in n C+—classification of states and tran-
sitions into green/red (good/bad, ideal/sub-ideal), violation constants, explicit
names for norms, and orderings of states according to how well they comply with
these norms—are all frequently encountered in the deontic logic literature. The
novelty here lies, first, in the details of how they are incorporated into labelled
transition systems, and second, in the way the n C+ language is used to define
these structures.

Finally, C+ is a (recent) member of a family of formalisms called ‘causal
action languages’ in the AI literature. Several groups have suggested encoding
normative concepts in such formalisms. We have done so ourselves in other work
(see e.g. [13, 4, 5]) where we have used both C+ and the ‘event calculus’ for
this purpose. Leon van der Torre [14] has made a suggestion along similar lines,

though using a different causal action language and a different approach. See also
the discussion in [12]. One feature that distinguishes C+ from other AI action
languages is that it has an explicit semantics in terms of transition systems. It
thereby proves a bridge between AI formalisms and standard methods in other
areas of computer science and logic. It is this feature that n C+ seeks to exploit.

2 The language C+

We begin with a concise, and necessarily rather dense, summary of the C+
language. Some features (notably ‘statically determined fluents’ and ‘exogenous
actions’) are omitted for simplicity. There are also some minor syntactic and
terminological differences from the version presented in [1]. See [6] for details.

A multi-valued propositional signature σ is a set of symbols called constants.
For each constant c in σ there is a non-empty set dom(c) of values called the
domain of c. For simplicity, in this paper we will assume that each dom(c) is
finite and has at least two elements. An atom of a signature σ is an expression
of the form c= v where c is a constant in σ and v ∈ dom(c). A formula ϕ of
signature σ is any propositional compound of atoms of σ. The expressions ⊤ and
⊥ are 0-ary connectives, with the usual interpretation.

A Boolean constant is one whose domain is the set of truth values {t, f}. If
p is a Boolean constant, p is shorthand for the atom p= t and ¬p for the atom
p= f. Notice that, as defined here, ¬p is an atom when p is a Boolean constant.

In C+, the signature σ is partitioned into a set σf of fluent constants (also
known as ‘state variables’ in other areas of Computer Science) and a set σa of
action constants. A fluent formula is a formula whose constants all belong to σf;
an action formula is a formula containing at least one action constant and no
fluent constants.

An interpretation of a multi-valued signature σ is a function that maps every
constant c in σ to some value v in dom(c); an interpretation I satisfies an atom
c= v, written I |= c= v, if I(c) = v. The satisfaction relation |= is extended
from atoms to formulas in accordance with the standard truth tables for the
propositional connectives. We write I(σ) for the set of interpretations of σ.

Transition systems Every C+ action description D of signature (σf, σa) defines
a labelled transition system 〈S,A, R〉 where

– S is a (non-empty) set of states, each of which is an interpretation of the
fluent constants σf of D; S ⊆ I(σf);

– A is a set of transition labels, also called events ; A is the set of interpretations
of the action constants σa, A = I(σa);

– R is a set of transitions, R ⊆ S × A× S.

A path of length m of the labelled transition system 〈S,A, R〉 is a sequence
s0 ε0 s1 · · · sm−1 εm−1 sm (m ≥ 0) such that (si−1, εi−1, si) ∈ R for i ∈ 1..m.

It is convenient in what follows to represent a state by the set of fluent atoms
that it satisfies, i.e., s = {f = v | s |= f = v}. A state is then a (complete, and

consistent) set of fluent atoms. We sometimes say a formula ϕ ‘holds in’ state s
or ‘is true in’ state s as alternative ways of saying that s satisfies ϕ.

Action constants in C+ are used to name actions, attributes of actions, or
properties of a transition as a whole. Since a transition label/event ε is an in-
terpretation of the action constants σa, it is meaningful to say that ε satisfies
an action formula α (ε |= α). When ε |= α we say that the transition (s, ε, s′) is
a transition of type α. Moreover, since a transition label is an interpretation of
the action constants σa, it can also be represented by the set of atoms that it
satisfies.

An action description D in C+ is a set of causal laws, which are expressions
of the following three forms. A static law is an expression:

F if G (1)

where F and G are fluent formulas. Static laws express constraints on states. A
state s satisfies a static law (1) if s |= (G → F). A fluent dynamic law is an
expression:

F if G after ψ (2)

where F and G are fluent formulas and ψ is any formula of signature σf ∪ σa.
Informally, (2) states that fluent formula F is satisfied by the resulting state s′

of any transition (s, ε, s′) with s ∪ ε |= ψ, as long as fluent formula G is also
satisfied by s′. Some examples follow. An action dynamic law is an expression:

α if ψ (3)

where α is an action formula and ψ is any formula of signature σf ∪ σa. Action
dynamic laws are used to express, among other things, that any transition of
type α must also be of type α′ (written α′ if α), or that any transition from a
state satisfying fluent formula G must be of type β (written β if G).

The C+ language provides various abbreviations for common forms of causal
laws. We will employ the following in this paper.

α causes F if G expresses that fluent formula F is satisfied by any state fol-
lowing the occurrence of a transition of type α from a state satisfying fluent
formula G. It is shorthand for the dynamic law F if ⊤ after G∧α. α causes F
is shorthand for F if ⊤ after α.

nonexecutable α if G expresses that there is no transition of type α from a
state satisfying fluent formula G. It is shorthand for the fluent dynamic
law ⊥ if ⊤ after G ∧ α, or α causes ⊥ if G.

inertial f states that values of the fluent constant f persist by default (by ‘in-
ertia’) from one state to the next. It is shorthand for the collection of fluent
dynamic laws f = v if f = v after f = v for every v ∈ dom(f).

Of most interest are definite action descriptions, which are action descriptions
in which the head of every law (static, fluent dynamic, or action dynamic) is
either an atom or the symbol ⊥, and in which no atom is the head of infinitely
many laws of D. We will restrict attention to definite action descriptions in this
paper.

Causal theories The language C+ is presented in [1] as a higher-level notation
for defining particular classes of theories in a general-purpose non-monotonic
formalism called ‘causal theories’. For present purposes the important points are
these: for every (definite) action description D and non-negative integer m there
is a natural translation from D to a causal theory ΓD

m which encodes the paths
of length m in the transition system defined by D; moreoever, for every definite
causal theory ΓD

m there is a formula comp(ΓD
m) of (classical) propositional logic

whose (classical) models are in 1-1 correspondence with the paths of length m
in the transition system defined by D. Thus, one method of computation for
C+ action descriptions is to construct the formula comp(ΓD

m) from the action
description D and then employ a (standard, classical) satisfaction solver to de-
termine the models of comp(ΓD

m). This is the method employed in the ‘Causal
Calculator’ CCalc.

A causal theory of signature σ is a set of expressions (‘causal rules’) of the
form

F ⇐ G

where F and G are formulas of signature σ. F is the head of the rule and G is
the body. A rule F ⇐ G is to be read as saying that there is a cause for F when
G is true (which is not the same as saying that G is the cause of F).

Let Γ be a causal theory and let X be an interpretation of its signature.
The reduct ΓX is the set of all rules of Γ whose bodies are satified by the
interpretationX : ΓX =def {F | F ⇐ G is a rule in Γ and X |= G}.X is a model
of Γ iff X is the unique model (in the sense of multi-valued signatures) of ΓX .

Given a definite action description D in C+, and any non-negative integer
m, translation to the corresponding causal theory ΓD

m proceeds as follows. The
signature of ΓD

m is obtained by time-stamping every fluent constant of D with
non-negative integers between 0 and m and every action constant with integers
between 0 and m−1: the (new) atom f [i] = v represents that fluent f = v holds
at integer time i, or more precisely, that f = v is satisfied by the state si of a
path s0 ε0 · · · εm−1 sm of the transition system defined by D; the atom a[i] = v
represents that action atom a= v is satisfied by the transition εi of such a path.
The domain of each timestamped constant c[i] is the domain of c. In what follows,
ψ[i] is shorthand for the formula obtained by replacing every atom c= v in ψ by
the timestamped atom c[i] = v.

Now, for every static law F if G in D and every i ∈ 0 ..m, include in ΓD
m a

causal rule of the form
F [i] ⇐ G[i]

For every fluent dynamic law F if G after ψ in D and every i ∈ 0 ..m−1, include
a causal rule of the form

F [i+1] ⇐ G[i+1] ∧ ψ[i]

And for every action dynamic law α if ψ in D and every i ∈ 0 ..m−1, include a
causal rule of the form

α[i] ⇐ ψ[i]

We also require the following ‘exogeneity laws’. For every fluent constant f and
every v ∈ dom(f), include a causal rule:

f [0] = v ⇐ f [0] = v

And for every action constant a, every v ∈ dom(a), and every i ∈ 0 ..m−1,
include a causal rule:

a[i] = v ⇐ a[i] = v

It is straightforward to check [1] that the models of causal theory ΓD
m , and

hence the (classical) models of the propositional logic formula comp(ΓD
m), corre-

spond 1-1 to the paths of length m of the transition system defined by the C+
action description D. In particular, models of comp(ΓD

1) encode the transitions
defined by D and models of comp(ΓD

0) the states defined by D.

3 n C+: Coloured transition systems

An action description of n C+ defines a coloured transition system, which is a
structure of the form 〈S,A, R, Sg, Rg〉 where 〈S,A, R〉 is a labelled transition
system of the kind defined by C+ action descriptions, and where the two new
components are

– Sg ⊆ S, the set of ‘permitted’ (‘acceptable’, ‘ideal’, ‘legal’) states—we call
Sg the ‘green’ states of the system;

– Rg ⊆ R, the set of ‘permitted’ (‘acceptable’, ‘ideal’, ‘legal’) transitions—we
call Rg the ‘green’ transitions of the system.

We refer to the complements Sred = S−Sg and Rred = R−Rg as the ‘red states’
and ‘red transitions’, respectively. Semantical devices which partition states (and
here, transitions) into two categories are familiar in the field of deontic logic. For
example, Carmo and Jones [15] employ a structure which has both ideal/sub-
ideal states and ideal/sub-ideal transitions (unlabelled). van der Meyden’s ‘Dy-
namic logic of permission’ [16] employs a structure in which transitions, but not
states, are classified as ‘permitted/non-permitted’. van der Meyden’s version was
constructed as a response to problems of Meyer’s ‘Dynamic deontic logic’ [10]
which classifies transitions as ‘permitted/non-permitted’ by reference only to the
state resulting from a transition. ‘Deontic interpreted systems’ [8] classify states
as ‘green’/‘red’, where these states have further internal structure to model the
local states of agents in a multi-agent context. In all of these examples (and oth-
ers) the task has been to find axiomatisations of such structures in one form of
deontic logic or another. Here we are concerned with a different task, that of de-
vising a language for defining coloured transition systems of the form described
above.

A coloured transition system 〈S,A, R, Sg, Rg〉 must further satisfy the fol-
lowing constraint, for all states s and s′ in S and all transitions (s, ε, s′) in R:

if (s, ε, s′) ∈ Rg and s ∈ Sg then s′ ∈ Sg (4)

We refer to this as the green-green-green constraint, or ggg for short. (It is
difficult to find a suitable mnemonic.) The ggg constraint (4) expresses a kind
of well-formedness principle: a green (permitted, acceptable, legal) transition in
a green (permitted, acceptable, legal) state always leads to a green (acceptable,
legal, permitted) state. What is the rationale? Since we are here classifying
both states and transitions into green/red, it is natural to ask whether there
are any relationships between the classification of states and the classification
of transitions between them. As observed previously by Carmo and Jones [15]
any such relationships are necessarily quite weak. In particular, and contra the
assumptions underpinning John-Jules Meyer’s construction of Dynamic Deontic
Logic [10], a red (unacceptable, non-permitted) transition can result in a green
(acceptable, permitted) state. Indeed such cases are frequent: suppose that there
are two different transitions, (s, ε1, s

′) and (s, ε2, s
′), between a green or red state

s and a green state s′. It is entirely reasonable that the transition (s, ε1, s
′) is

classified as green whereas (s, ε2, s
′) is classified as red. (s, ε1, s

′) might represent
an action by one agent, for example, and (s, ε2, s

′) an action by another. This
situation cannot arise if the transition system has a tree-like structure in which
there is at most one transition between any pair of states, but we do not want
to restrict attention to transition systems of this form. Similarly, it is easy to
encounter cases in which a green (acceptable, permitted) transition can lead
sensibly to a red (unacceptable, non-permitted) state: not all green (acceptable,
permitted) transitions from a red state must be such that they restore the system
to a green state. Some illustrations will arise in the examples later. The only
plausible relationship between the classification of states and the classification
of transitions, as also noted by Carmo and Jones [15], is what we called the
ggg constraint above, if we regard it (as we do) as a required property of any
well-formed system specification. Since the ggg constraint is so useful for the
applications we have in mind, we choose to adopt it as a feature of every coloured
transition system.

Note that the ggg constraint (4) may be written equivalently as:

if (s, ε, s′) ∈ R and s ∈ Sg and s′ ∈ Sred then (s, ε, s′) ∈ Rred (5)

Any transition from a green (acceptable, permitted) state to a red (unacceptable,
non-permitted) state must itself be red, in a well-formed system specification.

One can consider a range of other properties that we might require of a
coloured transition system: that the transition relation must be serial, for ex-
ample, or that there must be at least one green state, or that from every green
state there must be at least one green transition, or that from every green state
reachable from some specified initial state(s) there must be at least one green
transition, and so on. The investigation of these, and other, properties is worth-
while but not something we undertake here. We place no restrictions on coloured
transition systems, beyond the ggg constraint.

The language n C+ To avoid having to specify separately which states and tran-
sitions are green and which are red, an n C+ action description specifies those

that are red and leaves the remainder to be classified as green by default. This is
for convenience, and also to ensure that all states and transitions are classified
completely and consistently. (One might ask why the defaults are not chosen to
operate the other way round. It is very much more awkward to specify concisely
what is green and allow the remainder to be red by default.)

Accordingly, the language n C+ extends C+ with two new forms of rules. A
state permission law is an expression of the form

n : not-permitted F if G (6)

where n is an (optional) identifier for the rule and F and G are fluent formulas.
not-permitted F is a shorthand for not-permitted F if ⊤. An action permission
law is an expression of the form

n : not-permitted α if ψ (7)

where n is an (optional) identifier for the rule, α is an action formula and ψ is any
formula of signature σf∪σa. not-permitted α is shorthand for not-permitted α if ⊤.
We also allow oblig F as an abbreviation for not-permitted ¬F and oblig α as an
abbreviation for not-permitted ¬α.1

Informally, in the transition system defined by an action description D, a
state s is red whenever s |= F ∧G for a state permission law not-permitted F if G.
All other states are green by default. A transition (s, ε, s′) is red whenever s∪ε |=
ψ and ε |= α for any action permission law not-permitted α if ψ. All other
transitions are green, subject to the ggg constraint which may impose further
conditions on the colouring of a given transition.

Let D be an action description of n C+. Dbasic refers to the subset of laws
of D that are also laws of C+. The coloured transition system defined by D has
the states S and transitions R that are defined by its C+ component, Dbasic,
and green states Sg and green transitions Rg given by Sg =def S−Sred, Rg =def

R−Rred where

Sred =def {s | s |= F ∧G for some law of the form (6) in D}

Rred =def {(s, ε, s
′) | s ∪ ε |= ψ, ε |= α for some law of the form (7) in D}

∪ {(s, ε, s′) | s ∈ Sg and s′ ∈ Sred}

The second component of the Rred definition ensures that the ggg constraint is
satisfied. (The state permission laws not-permitted F if G and not-permitted (F ∧
G) are thus equivalent in n C+; we allow both forms for convenience.) It can be
shown easily [6] that the coloured transition system defined in this way is unique
and satisfies the ggg constraint. The definition of course does not guarantee
that the coloured transition system satisfies any of the other possible properties
that we mentioned earlier. If they are felt to be desirable in some particular

1 This does not raise the issue of ‘action negation’ as encountered in modal action
logics. (See e.g. [12].) In C+ and n C+, α is not the name of an action but a formula
expressing a property of transitions.

application, they must be checked separately as part of the specification process.
(These checks are easily implemented.)

The overall effect is thus:

– a state is green unless coloured red by some static permission law;
– a transition is red if it is coloured red by some action permission law, or by

the ggg constraint; otherwise it is green.

That the colouring of transitions is dependent on the colouring of states should
not be interpreted as a commitment to any philosophical position about the
priority of the ought-to-be and the ought-to-do, and the derivability of one from
the other. It is merely a consequence of, first, adopting the ggg constraint as
an expression of the well-formedness of a system specification, and second, of
choosing to specify explicitly what is red and letting green be determined by
default.

Causal theories Any (definite) action description of n C+ can be translated to the
language of (definite) causal theories, as follows. Let D be an action description
and m a non-negative integer. The translation of the C+ component Dbasic of D
proceeds as usual. For the permission laws, introduce two new fluent and action
constants, status and trans respectively, both with possible values green and red.
They will be used to represent the colour of a state and the colour of a transition,
respectively.

For every state permission law n : not-permitted F if G and time index i ∈
0 ..m, include in ΓD

m a causal rule of the form

status[i] = red ⇐ F [i] ∧G[i] (8)

and for every i ∈ 0 ..m, a causal rule of the form

status[i] = green ⇐ status[i] = green (9)

to specify the default colour of a state. A state permission rule of the form
n : oblig F if G produces causal rules of the form status[i] = red ⇐ ¬F [i] ∧G[i].

For every action permission law n : not-permitted α if ψ and time index i ∈
0 ..m−1, include in ΓD

m a causal rule of the form

trans[i] = red ⇐ α[i] ∧ ψ[i] (10)

and for every i ∈ 0 ..m−1, a causal rule of the form

trans[i] = green ⇐ trans[i] =green (11)

to specify the default colour of a transition. An action permission law of the form
n : oblig α if ψ produces causal rules of the form trans[i] = red ⇐ ¬α[i] ∧ ψ[i].

Finally, to capture the ggg constraint, include for every i ∈ 0 ..m−1 a causal
rule of the form

trans[i] = red ⇐ status[i] = green ∧ status[i+1] = red (12)

It is straightforward to show [6] that models of the causal theory ΓD
m correspond

to all paths of length m through the coloured transition system defined by D,
where the fluent constant status and the action constant trans encode the colours
of the states and transitions, respectively.

The translation of n C+ into causal theories effectively treats status= red and
trans = red as ‘violation constants’. Notice that, although action descriptions in
n C+ can be translated to causal theories, they cannot be translated to action
descriptions of C+: there is no form of causal law in C+ which translates to the
ggg constraint (12). However, implementation in CCalc requires only that the
causal laws (8)–(12) are included in the translation to causal theories, which is
a very simple modification.

4 Examples

The examples in this section are deliberately chosen to be as simple as possible,
so that in each case we can show the transition system defined in its entirety.
Other examples may be found in [6, 7]. The first example illustrates the use
of n C+ in a typical (but very simple) system specification. The second is to
motivate the more complicated account to come in Section 5.

Example (File system) I is some piece of (confidential) information. I, or mate-
rial from which I can be derived, is stored in a file. Let x range over some set
of agent names. Boolean fluent constants Kx represent that agent x has access
to information I, that x ‘knows’ I. Boolean fluent constants Fx represent that
x has read access to the file containing I. If x has read access to the file (Fx)
then x knows I (Kx). Fx is inertial: both Fx and ¬Fx persist by default. ¬Kx
persists by default but once Kx holds, it holds for ever.

Suppose, for simplicity, that there are two agents, a and b. Suppose moreover
that the file is the only source of information I, in the sense that if Kx holds for
any x then either Fa or Fb. This does not change the essence of the example
but it reduces the number of states and simplifies the diagrams.

There are two types of acts: Boolean action constants read(x) represent that
x is given read access to the file containing I. Boolean action constant a tells b
represents that a communicates to b the information I (whether or not b knows it
already), and b tells a that b communicates it to a. In this simple example there
are no actions by which read access to the file is removed once it is granted.

We can represent the above as a definite action description as follows, for x
ranging over a and b.

inertial Fx read(x) causes Fx

¬Kx if ¬Kx after ¬Kx a tells b causes Kb

Kx if ⊤ after Kx b tells a causes Ka

nonexecutable a tells b if ¬Ka

Kx if Fx nonexecutable b tells a if ¬Kb

⊥ if Kx ∧ ¬Fa ∧ ¬Fb nonexecutable read(x) if Fx

Now suppose that a is permitted to know I, and b is not. We add the following
law to the action description. (Ka is permitted by default.)

p(b) : not-permitted Kb

The transition system defined by this action description is shown below.
The labels read(a), read(b), a tells b, b tells a stand for the transition labels
{read(a),¬read(b),¬a tells b,¬b tells a}, {¬read(a), read(b),¬a tells b,¬b tells a}
and so on, respectively. The label read(a), read(b) is shorthand for the tran-
sition label {read(a), read(b),¬a tells b,¬b tells a}. Reflexive arcs, correspond-
ing to the ‘null event’ or to transitions of type a tells b and b tells a from
state {Fa,Ka,¬Fb,Kb} to itself, are omitted from the diagram to reduce clut-
ter. Also omitted from the diagram are transitions of type read(a) ∧ a tells b,
a tells b ∧ b tells a, etc. Again, this is just to reduce clutter.

„

¬Fa ¬Fb

¬Ka¬Kb

«

green

„

Fa ¬Fb

Ka¬Kb

«

green

„

Fa ¬Fb

Ka Kb

«

red

„

¬Fa Fb

KaKb

«

red

„

¬Fa Fb

¬KaKb

«

red

„

Fa Fb

Ka Kb

«

red

read(a)

gr
ee

n

read(b)
red

read(b)

red

read(a)
gr

ee
n

read(b)
green

read(a)

gre
en

a tells bred

b tells agreen

read(a), read(b)
red

Notice that transitions of type read(b) are red because of the ggg constraint,
except that read(b) transitions come out to be green in states where Kb already
holds. If the latter is felt to be undesirable, one could add another action per-
mission law not-permitted read(b), or a state permission law not-permitted Fb.
We will discuss some of these options in more detail later.

In a computerised system, b’s access to information I would be controlled by
the file access system. Naturally the file access system cannot determine whether
b knows I: in practice, a specification of the computer system would simply say
that read(b) actions are nonexecutable, or simply that Fb is false. The latter can
be expressed by adding the following static law to the action description:

⊥ if Fb

This eliminates all states in which Fb holds from the transition system. The
transition system defined by this extended action description is the following:

„

¬Fa ¬Fb

¬Ka¬Kb

«

green

„

Fa ¬Fb

Ka¬Kb

«

green

„

Fa ¬Fb

Ka Kb

«

red

read(a)
green

a tells b

red

As usual, reflexive arcs are omitted from the diagram for clarity. Here, the ac-
tion read(a) is under the control of the file access system, and a tells b is an

action that can be performed by agent a. This difference is not explicit in the
semantics of C+ nor of n C+. The agent-centric version of n C+, alluded to in
the introduction, allows such distinctions to be made.

Example (Secrets) Suppose we have agents a, b, and c, Boolean fluent constants
Ka, Kb, and Kc as in the previous example, and Boolean action constants
a tells b and a tells c. We ignore the file system and read access to it from now
on since they play no role in this example, and we leave out other possible actions
such as b tells a, c tells a, etc, to simplify the diagrams. The persistence of Ka,
Kb, and Kc, and the effects of a tells b and a tells c actions are represented using
C+ laws as shown earlier.

Suppose now that b is not permitted to know I. The coloured transition
system contains the following fragment:

0

@

Ka

¬Kb

¬Kc

1

A

green

0

@

Ka

Kb

¬Kc

1

A

red

0

@

Ka

Kb

Kc

1

A

red

a tells b

red

a tells c

green

¬a tells c
green

The states {Ka,Kb,¬Kc} and {Ka,Kb,Kc} are red because Kb is not per-
mitted. The transition labelled a tells b is red because of the ggg constraint. The
transition labelled a tells c is not forced to be red by the ggg constraint and so
becomes green by default. The (reflexive) transition labelled ¬a tells c is also
green for the same reason.

But suppose now that we change the example, by adding that c is also not
permitted to know I. The fragment of the transition system shown above remains
unchanged (because the state {Ka,Kb,Kc} was already red). The transition
labelled a tells c is green even though a tells c results in Kc, and Kc is not
permitted. We have here an instance of a general phenomenon: once a state is
red, all transitions from it (including actions by all other agents) become green
by default unless explicitly coloured red by action permission laws.

One possibility is to leave some transitions uncoloured, or what comes to the
same thing, remove the default colouring of transitions and allow an n C+ action
description to define multiple transition systems differing in the colours assigned
to some transitions. This is easy to encode, and easy to implement, but it is too
weak for what we want: we would then never be able to conclude that there are
(necessarily) green transitions from any red state.

Our diagnosis is that the classification of states into red/green is too crude.
Why should we think that a tells c transitions should be inferred red even after
a tells b has occurred and Kb holds? Because a tells c would lead to violation of
another norm which says that Kc is not permitted. So we will introduce names
for (instances of) norms and then classify states according to how well, or how
badly, they comply with these norms.

5 n C+: Graded transition systems

A graded transition system is a structure of the form: 〈S,A, R,Rg,≺〉 where
〈S,A, R〉 is a labelled transition system of the kind defined by C+ action de-
scriptions, and where

– Rg ⊆ R is the set of ‘green’ transitions;
– ≺ is a (strict, partial) ordering on S: s ≺ s′ represents that state s′ is worse

than state s.

We refer to Rred = R −Rg as the ‘red transitions’ as usual.
Notice that we have chosen to grade/rank states but not transitions: transi-

tions are still either green or red. There may be good reasons to rank transitions
as well, but we will not do so here.

As in the case of coloured transition systems, we further impose a well-
formedness constraint, analogous to the ggg constraint. The natural generaliza-
tion of ggg is to require that in any green transition (s, ε, s′) from state s to
state s′, the resulting state s′ must be no worse than the state s: (s, ε, s′) ∈ Rg

implies s 6≺ s′. This constraint may be written equivalently as:

if (s, ε, s′) ∈ R and s ≺ s′ then (s, ε, s′) ∈ Rred (13)

We refer to (13) as the BRW constraint (short for ‘better-red-worse’), again
apologising for the ugliness of the label.

A coloured transition system is thus a special case of a graded transition sys-
tem in which s ≺ s′ iff s ∈ Sg and s′ ∈ Sred. In that case the BRW constraint (13)
takes the form: if (s, ε, s′) ∈ R and s ∈ Sg and s′ ∈ Sred then (s, ε, s′) ∈ Rred,
which is equivalent to the formulation of the ggg constraint given earlier (4).

Note that according to the BRW constraint, a transition (s, ε, s′) is not forced
to be red if s 6≺ s′. In particular, when s and s′ are not comparable in ≺, the BRW
constraint does not apply. This is deliberate. One could look for stronger well-
formedness constraints than BRW. The requirement that (s, ε, s′) ∈ Rg implies
s′ ≺ s is clearly much too strong, but there are several candidates stronger than
BRW for which a plausible case can be made. We are inclined, however, not to
adopt any of these stronger constraints as a fixed feature of graded transition
systems.

Violation orderings Of particular interest is the special case of graded transition
systems where the ordering on states is determined by how well, or how badly,
each state complies with a set of explicitly named norms.

A normative code N is a finite set of pairs 〈n, o(F/G)〉 where n is an identifier
for a norm, and F and G are fluent formulas. Note that we do not require that
norm labels are unique in N .

The violation set VN (s) of a state s in S is the set of norm identifiers in N
that are violated in s.

VN (s) =def {n | 〈n, o(F/G)〉 ∈ N and s |= G ∧ ¬F} (14)

Now we can define an ordering on states by comparing their violation sets.
A state s is better than a state s′ if the violation set of s is a proper subset of
the violation set of s′:

s ≺N s′ iff VN (s) ⊂ VN (s′) (15)

It would be easy to add weights or priorities on norms, and adjust the definition
of ≺N to take these weights into account. The details are straightforward and
we omit them.

Let D be an action description of n C+. The graded transition system de-
fined by D is 〈S,A, R,Rg,≺N 〉 where the states S, transition labels/events A,
and transitions R are exactly as in the coloured transition system described in
Section 3; Rg = R−Rred where the red transitions Rred are determined by the
action permission laws and the BRW constraint; and where the ordering ≺N

on states is the ordering defined in (15) by the normative code N consisting of
elements 〈n, o(¬F/G)〉 where n : not-permitted F if G is a law in D and elements
〈n, o(F/G)〉 where n : oblig F if G is a law in D.

Encoding in causal theories Let the Boolean fluent constant viol(n) represent that
norm n in N is violated. For every state permission law n : not-permitted F if G
and time index i ∈ 0 ..m, include in the causal theory ΓD

m the causal rules:

¬viol(n)[i] ⇐ ¬viol(n)[i] (16)

viol(n)[i] ⇐ F [i] ∧G[i] (17)

A state permission rule of the form n : oblig F if G produces causal rules of the
form viol(n)[i] ⇐ ¬F [i] ∧G[i].

(In place of the Boolean violation constants viol(n)[i] we could have used
fluent constants status(n)[i] with possible values green and red.)

In order to encode the BRW constraint, it is not necessary to compute and
compare violation sets for each state. Instead, we can encode the BRW constraint
as follows. Include in ΓD

m , for every i ∈ 0 ..m−1 and every norm identifier n in
N , the causal rules:

trans[i] = green ⇐ trans[i] = green (18)

trans[i] = red ⇐ viol(n)[i+1] ∧ ¬viol(n)[i] ∧ ¬q[i] (19)

¬q[i] ⇐ ¬q[i] (20)

q[i] ⇐ viol(n)[i] ∧ ¬viol(n)[i+1] (21)

Causal rules (18) and (19) generalise the causal rules (11) and (12) used to encode
the ggg constraint in causal theories. They make use of auxiliary constants q[i]
defined in (20)–(21). One can easily check that in the case where the action
description contains a single state permission law, causal rules (18)–(21) collapse
to a form equivalent to the causal rules (11) and (12) encoding the ggg constraint.
In the case where the action description contains no state permission law, these
two sets of causal laws are trivially equivalent, since both are empty.

Example (Secrets, contd) Suppose we formulate the example of Section 4 using
two state permission laws as follows:

p(b) : not-permitted Kb (22)

p(c) : not-permitted Kc (23)

The graded transition system defined is as follows, where the annotations on the
states show the respective violation sets.

0

@

Ka

Kb

¬Kc

1

A

{p(b)}

0

@

¬Ka

¬Kb

¬Kc

1

A

{}

0

@

Ka

¬Kb

¬Kc

1

A

{}

0

@

Ka

Kb

Kc

1

A

{p(b), p(c)}

0

@

Ka

¬Kb

Kc

1

A

{p(c)}

a tells b

red

a tells c

red

¬a tells c
green

a tells c

red

a tells b

red

¬a tells b
green

a tells b, a tells c

red

‘Null events’ and other reflexive arcs are omitted from the diagram for clarity.
Contrast this with a different version of the example. Suppose that instead

of permission laws (22) and (23) with two explicit norms labelled p(b) and p(c)
we specify just one explicit norm with a single label p, either in the form

p : not-permitted Kb (24)

p : not-permitted Kc (25)

or equivalently as a single state permission law: p : not-permitted (Kb ∨Kc).
In this version of the action description, the three states {Ka,Kb,¬Kc},

{Ka,¬Kb,Kc}, and {Ka,¬Kb,¬Kc} all have the same violation set, {p}. Since
they are now not strictly worse than each other, the BRW constraint does not
colour transitions between them red: they are all green by default. This transition
system corresponds to the example in Section 4, but now with states annotated
by violation sets {} and {p} rather than colours ‘green’ and ‘red’.

6 Conclusion

n C+ adds a simple deontic component to C+, intended to support system speci-
fications where there is a need to distinguish between acceptable/permitted and
unacceptable/non-permitted system states and behaviours.

It was our intention to continue the discussion of the examples to show how
n C+ copes with (temporal) ‘contrary-to-duty’ structures. For instance, a natural
extension of the examples would take the form ‘a must not tell b and a must not
tell c; but if a tells b it must tell c, and if a tells c it must tell b’, as in Belzer’s
Reykjavik scenario [17]. Another interesting variant is ‘b is not permitted to
know I and c is not permitted to know I; but if a tells b it must tell c, and if a
tells c it must tell b’. We leave that discussion for a separate paper.

Besides investigating variants of the BRW well-formedness constraint and
other desirable properties of coloured/graded transition systems, we are devel-
oping a refined version of n C+ to make explicit the distinction between actions
and transitions, and an agent-centric n C+ for specifying system norms as direc-
tives that constrain an individual agent’s behaviour.

References

1. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic
causal theories. Artificial Intelligence 153 (2004) 49–104

2. CCalc: http://www.cs.utexas.edu/users/tag/cc.
3. Akman, V., Erdoğan, S.T., Lee, J., Lifschitz, V., Turner, H.: Representing the Zoo

World and the Traffic World in the language of the Causal Calculator. Artificial
Intelligence 153 (2004) 105–140

4. Artikis, A., Sergot, M.J., Pitt, J.: Specifying electronic societies with the Causal
Calculator. In Giunchiglia, F., Odell, J., Weiss, G., eds.: Agent-Oriented Software
Engineering III. LNCS 2585, Springer (2003) 1–15

5. Artikis, A., Sergot, M.J., Pitt, J.: An executable specification of an argumentation
protocol. In: Proc. 9th International Conference on Artificial Intelligence and Law
(ICAIL’03), Edinburgh, ACM Press (2003) 1–11

6. Sergot, M.: (C+)++: An action language for modelling norms and institutions.
Technical Report 2004/8, Dept. of Computing, Imperial College London (2004)

7. Sergot, M.J.: Modelling unreliable and untrustworthy agent behaviour. In Dunin-
Keplicz, B., Jankowski, A., Skowron, A., Szczuka, M., eds.: Monitoring, Secu-
rity, and Rescue Techniques in Multiagent Systems. Advances in Soft Computing.
Springer-Verlag (2005) 161–178

8. Lomuscio, A., Sergot, M.J.: Deontic interpreted systems. Studia Logica 75(1)
(2003) 63–92

9. Lomuscio, A., Sergot, M.J.: A formalisation of violation, error recovery, and en-
forcement in the bit transmission problem. J. of Applied Logic 2 (2004) 93–116

10. Meyer, J.J.C.: A different approach to deontic logic: Deontic logic viewed as a
variant of dynamic logic. Notre Dame J. of Formal Logic 29(1) (1988) 109–136

11. Maibaum, T.: Temporal Reasoning over Deontic Specifications. In Meyer, J.J.C.,
Wieringa, R.J., eds.: Deontic Logic in Computer Science: Normative System Spec-
ification. John Wiley & Sons, Chichester, England (1993) 141–202

12. Broersen, J.: Modal Action Logics for Reasoning about Reactive Systems. PhD
thesis, Vrije Universiteit Amsterdam (2003)

13. Artikis, A., Pitt, J., Sergot, M.J.: Animated specification of computational soci-
eties. In Castelfranchi, C., Johnson, W.L., eds.: Proc. 1st International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS’02), Bologna,
ACM Press (2002) 1053–1062

14. van der Torre, L.: Causal deontic logic. In: Proceedings of the Fifth Workshop on
Deontic Logic in Computer Science (Deon2000). (2000) 351–367

15. Carmo, J., Jones, A.J.I.: Deontic database constraints, violation and recovery.
Studia Logica 57(1) (1996) 139–165

16. Meyden, R.: The dynamic logic of permission. Journal of Logic and Computation
6(3) (1996) 465–479

17. Belzer, M.: Legal reasoning in 3-D. In: Proc. 1st International Conf. on Artificial
Intelligence and Law, Boston, ACM Press (1987) 155–163

