
A Framework for Contractual Resource Sharing in Coalitions

Babak Sadighi Firozabadi∗

Policy Based Reasoning Group
Swedish Institute of Computer Science (SICS)

Box 1263, SE-16429 Kista, Sweden
babak@sics.se

Marek Sergot

Department of Computing
Imperial College London

180 Queen’s Gate, London SW7 2BZ, UK
mjs@doc.ic.ac.uk

Anna Squicciarini† Elisa Bertino

Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano

Via Comelico 39/41, 20135 Milano, Italy
{squicciarini,bertino}@dico.unimi.it

Abstract

We develop a framework for specifying and reason-
ing about policies for sharing resources in coalitions, fo-
cussing here on a particular, common type of contract in
which coalition members agree to make available some
total amount of specified resource over a given time pe-
riod. The main part of the framework is a policy language
with two basic elements: ‘obligations’ (of a member en-
terprise to provide a total amount of resource over a given
time period) express the coalition policy, and ‘entitlements’
(granted by an enterprise to other coalition members) ex-
press the local policies of the coalition members. We dis-
cuss the conditions under which a local policy can be said
to be in compliance with, or meet, the obligations of a coali-
tion policy, and the conditions under which an obligation,
and by extension a contract, can be said to be violated or
fulfilled.

1 Introduction

There is a growing interest in facilitating collaboration
between independent and heterogeneous enterprises, in the
form of coalitions. One of the reasons behind creating such
coalitions is to share different types of resources that are
owned and independently managed by the coalition mem-

∗The work by Sadighi Firozabadi was partly supported by the Policy
Based Management project funded by the Swedish Agency for Innovation
Systems.

†The work by Squicciarini was performed during her stay at the
Swedish Institute of Computer Science (SICS).

bers. The set of resources are made available by partici-
pating enterprises which agree on sharing them according
to a coalition policy expressed in terms of a contract be-
tween the coalition members. The coalition policy defines
the agreed rights of the coalition members to use others’ re-
sources and their obligations to provide their own resources
to other coalition members.

The aim of the paper is to develop a framework for spec-
ifying and reasoning about policies for sharing resources in
coalitions. We focus on a particular, common type of con-
tract in which coalition members agree to make available
some total amount of specified resource over a given time
period. The main part of the framework is a policy lan-
guage with two basic elements: ‘obligations’ (of a member
enterprise to provide a total amount of resource over a given
time period) express the coalition policy, and ‘entitlements’
(granted by an enterprise to other coalition members) ex-
press the local policies of the coalition members. We dis-
cuss the conditions under which a local policy can be said to
be in compliance with, or meet, the obligations of a coali-
tion policy, and the conditions under which an obligation,
and by extension a contract, can be said to be violated or
fulfilled.

2 Overview

In this section we give an overview of a framework for
contractual sharing of computational resources in a coali-
tion. The idea is that coalition members, which in our case
are enterprises, can share resources among each other ac-
cording to a coalition policy which can be seen as a con-
tract between the coalition members. We see one member’s



obligation to provide a resource to another as the second
member’s right to access/use that resource. As a coalition
member an enterprise will gain access to the resources of
others and at the same time will have to release its own re-
sources for use by the other members, according to the rules
of sharing stated in the contract.

Resources in a coalition are shared but are still managed
independently by their owners. Each member of a coalition
has its own local policy which specifies how it intends to
grant access to its resources. An enterprise may change the
terms of use of its resources, in its local policy, to optimize
the resource usage as time passes.

Each enterprise as a member of a coalition must publish
a local policy that complies with the contract of the coali-
tion. This local policy must be available for other coalition
members to examine, in order that they may be able to plan
how to make use of the shared resources available. It is a
separate question whether an enterprise will in fact comply
with its own local policies. An enterprise might promise to
provide a total amount of resource that exceeds what it can
actually deliver. An enterprise may also be a member of
several coalitions, and it might produce several local poli-
cies for its resources, each compliant with the contract of
one of the coalitions to which it belongs, but without being
able to comply with all the coalition policies at the same
time. This is similar to the way flight companies sell tickets
to more people than they have available seats.

Although a member publishes a local policy specifying
how it will make its resources available, it is still possible
in practice that it will deny access to its resource upon a
request. If a request to access a resource is not granted,
although specified as available in the local policy, then the
enterprise violates the corresponding obligation in the coali-
tion policy. As a consequence of the violation, the enter-
prise must usually accept another obligation to be fulfilled,
or in the absence of such an obligation, it will violate the en-
tire contract. The assumption is that members always have
an incentive to continue being members of coalitions, and
hence they will avoid, as far as they are able, any breach
of contract. In the case that a contract is violated, one can
expect that some kind of punitive actions may take place,
for instance, expulsion of the defaulter from the coalition.
These further considerations however will be outside the
framework presented in this paper.

It is important to note that all the member interactions are
carried out without centralized control. Thus, a key issue of
the proposed framework concerns monitoring systems. The
framework provides both monitoring systems and enforce-
ment mechanisms at different stages of the coalition life.
First, a mechanism for verifying that local policies satisfy
coalition policies is devised. Then, a level of monitoring is
performed for controlling the actual granting of access re-
quests. It is reasonable to assume that if a request is granted

then the resource is actually allocated for the requester to
use. To make this explicit, the granting of a request can be
in the form of a signed certificate stating that the request-
ing agent is entitled to access/use the resource, which in
our case is the same as allocating the resource for use by
the agent. In this way, we factor out of consideration the
possibility that a request is granted but the resource or the
promised level of quality is subsequently not provided. A
system to enforce this would be one which has a central ref-
erence monitor controlling access to the coalition resources,
even though these are owned by different coalition mem-
bers. Note that the resources are released by the reference
monitor, only if the user can show a valid certificate issued
by the resource owner stating its right to use the resource.
It is up to the resource owner to keep track of the use of
its resource and it cannot grant access to a resource that is
already in use. We do not consider the issue of blocking
granted requests in this paper, but of course one can think
of a system supporting this as a way of releasing resources
that are in use in order to fulfill certain obligations as a cost
of violating others.

As a running example, we consider an academic al-
liance (AA, in what follows) involving a number of
different systems cooperating on a common research
project. The entities involved are, let us say, three uni-
versities (Milano, Imperial ,KTH ), two research centres
(SICS ,CNR), and two business companies (ABCent, Mi-
cro) sharing resources and services. We will use this sce-
nario throughout the paper to show how the framework can
be applied.

3 Formal Framework

In this section we formalize the ideas described infor-
mally in the previous section. We start by defining what a
coalition consists of and its basic elements. We develop a
policy language for describing local and coalition policies.
We also define how a local policy conforms to an obligation
and how it conforms to a coalition policy.

Definition 3.1 (Coalition Elements) The basic elements
of a coalition are:

1. R denotes the set of resources shared among the coali-
tion.

2. Users denotes the set of users of the resources pooled in
the coalition. We assume only that each user is somehow
uniquely identified, for example by its public key.

3. E = {E1, . . . , En} denotes a finite set of enterprises, the
members of the coalition. Each enterprise has associated
with it a (possibly empty) set of users, as given by the
function users : E → ℘(Users). users(E) is the set of
users who belong to enterprise E. The same user can
belong to several different enterprises.

2



4. Pol denotes the set of policies regulating the sharing of
the resources available in the coalition. Pol conveys
the coalition policy Contract as well as the local pol-
icy LP

t

E of each member enterprise E ∈ E at each time
point t. For simplicity, in this paper we assume that the
coalition policy Contract does not vary over time.

5. Each member enterprise maintains an account-
ing/monitoring system which keeps track of all usage
of its resources and all requests for access submitted
to it by other coalition members. We assume that the
coalition also has access to this accounting information,
either by obtaining it from member enterprises, or
by maintaining its own independent monitoring and
accounting system where member enterprises cannot be
trusted to supply the information reliably. The minimum
requirements for the accounting system are described in
section 3.3.

Resources are provided to users as member of enter-
prises. Here, we do not assume anything about the internal
structure and behaviour of the users in a given enterprise,
and consider them only as agents executing actions.

3.1 Resources

A key element in characterizing a coalition is the set
of resources to be shared by coalition members. To be
correctly enforced, policies must be specified according
to the specific features of the resources to which they re-
fer. Resource descriptions therefore must be expressed in
terms of measurable parameters. For example, the resource
type bandwidth can be specified by the parameters amount,
duration-time, latency. We use a generic scalar metric to
specify parameters and allow them to be composed to model
resource features. Resource requirements can be expressed
either by exactly specifying resource capacity or by con-
straining the ranges of capacity. Resources may be speci-
fied by the following type of metrics, similar to those used
in [4]:

— Time Metrics where time points are expressed
as a combination of date and clock time, e.g.
(22-09-2003, 13:54:23). For the examples in this
paper, time points will be measured to the second,
though of course this is very easily changed to the needs
of an actual application.

— Scalar Metrics given as some suitable numerical value
depending on the type of resource, such as integers for
the amount of disc-space (50Gb).

— Max limit–Min limit specifying an exclusive or inclu-
sive upper/lower limit on the given metric.

We assume that each resource is specified by means of a
set of characterizing attributes, each expressed using one of

the above metrics. This way of specifying resources de-
fines an ontology for formally checking whether a resource
is properly released, meeting the parameters describing the
resource itself.

Definition 3.2 (Resource comparison) Let ResType be a
resource type, measured according to some suitable met-
ric m. Let R′ and R′′ be two instances of resource type
ResType . R′ vm R′′ denotes that the two instances R′ and
R′′ of resource type ResType are comparable and that R′ is
less than or equal to R′′, according to metric m.

In what follows the subscript m is often omitted where
context allows.

For instance, where bandwidth resource is characterized
by the attributes {amount, duration-time, latency} we can
write, e.g., {10Gb, 10h, 1.5ms} vbw {12Gb, 18h, 1.5ms}.
Some amounts are not comparable. {10Gb, 10h, 1.5ms} is
not comparable with, e.g. {8Gb, 18h, 1.5ms}.

3.2 Obligations and Entitlements

The two basic elements of our policy language are obli-
gation and entitlement. Here, we give formal definitions of
these two notions. In the next section we will define how
obligations can be fulfilled and violated.

Definition 3.3 (Obligation) An obligation for an enter-
prise P to provide a total amount R of a certain resource
over the time interval I to each of a set S of enterprises is
denoted as Obl(P, S,R, I) where:

— P ∈ E denotes the bearer of the obligation, also referred
to as the ‘providing enterprise’ or simply ‘the provider’;

— S ⊆ E is the set of enterprises to whom the obligation is
owed;

— R is a specified amount of a resource in R;

— I denotes the time period of the obligation, expressed as
a time interval I = [tstart, tend].

The idea is that there is a total amount R of resource
available over the time interval I . There is no restriction
on how R will be claimed: it can be claimed all at once,
or piecemeal. The policy language could be extended to
specify also minimum and maximum amounts of R that can
be claimed at any one time but we shall not do so here.

The intended reading is that obligation
Obl(P, {E1, . . . , Ek}, R, I) is equivalent to a collec-
tion of separate obligations Obl(P, {E1}, R, I), . . . ,
Obl(P, {Ek}, R, I). It is also possible to extend the
policy language by introducing another form of obligation
CollObl(P, S,R, I) to represent an obligation owed
by P to the set of enterprises S collectively, that is to
say, to represent that enterprises S share access to P ’s

3



resource R over interval I . The details for the CollObl

form of obligation are not difficult but are sufficiently
complicated that we omit them here for brevity. (There is
in any case no loss of expressivity, since if necessary we
can introduce another ‘artificial’ enterprise ES such that
users(ES) =

⋃

E∈S
users(E).)

Example 1
Obl(SICS , {Milano,KTH }, {10Gb, 600h, 1.5ms},

[(12-07-2003, 10:10:50), (02-12-2003, 10:23:30)] )
is an example of an obligation, stating that SICS is obliged
to provide at least 10Gb of network bandwidth for a total
of 600 hours over the specified time period to each one of
Milano and KTH universities.

Definition 3.4 (Entitlements) Entitlements are expres-
sions of the form EntP (E,R, I) where:

— P ∈ E is the granter of the entitlement;

— E ∈ E is the enterprise to which the entitlement is
granted;

— R is a specified amount of a resource in R;

— I denotes the time period of the entitlement, expressed
as a time interval I = [tstart, tend].

An entitlement can be regarded as a promise by an en-
terprise to grant access to its resource. By publishing the
entitlement EntP (E,R, I) in its local policy, the enterprise
P promises that over the time interval I a total amount R of
the resource will be released on request to any user belong-
ing to the entitled enterprise E.

As in the case of obligations, it is possible to introduce
another form of entitlement SharedEntP (S,R, I) to repre-
sent that the set of enterprises S together share an entitle-
ment to P ’s resource R throughout interval I . Again, we
omit the details for brevity.

The first step for an enterprise to fulfill an obligation is
to specify a local policy that is in compliance with the obli-
gation, or, as we shall also say, one that meets the obliga-
tion. This step is a necessary but not sufficient condition
for fulfillment of the obligation: it does not mean that the
resource is actually allocated, but merely that the provider
has published a plan specifying how it intends to fulfill its
obligation. This plan may change as time goes on.

We now define the conditions under which a set of enti-
tlements is in compliance with, or meets, an obligation. The
key point is that Obl(P, {Ei}, R, I) allows users in Ei to
take up to the full amount R of the resource from P over
the time period I , with no restriction on how much of the
resource is requested at any time, up to the limits of the obli-
gation. Users in Ei can take R at any time over I—all at the
same time, spread evenly across the interval, or in whatever
portions they choose. So in order to meet its obligation, P

must publish entitlements in its local policy in such a way

that all of Ei’s possible uses are accommodated. Clearly, an
entitlement EntP (Ei, R

′, I ′) meets this requirement when
I ′ = I and R v R′. But suppose that I ′ is a (proper) sub-
interval of I . Then EntP (Ei, R

′, I ′) would not, by itself,
meet the obligation since it restricts an entitled user to ac-
cess R only during the sub-interval I ′. A set of entitlements
could meet the obligation, however, if together they cover
the entire obligation interval I .

What if the entitlement interval I ′ extends beyond the
obligation interval I? In this case, an entitled user is able to
access the full amount R of obligated resource over the in-
terval I , as long as I ′ does not start earlier than I (because in
that case, some of the entitled resource may have been used
up already before the obligation interval I commences).

Finally, we do not want to allow separate entitlements to
be accumulated over the interval I in order to meet an obli-
gation. For example, if there is an obligation to provide
100Gb of disk storage over the interval [1, 10] (here and
later we sometimes use integers for time points to reduce
clutter), two separate entitlements of 50Gb each over [1, 5]
and [6, 10] would not meet the obligation. Even though the
sum total of entitled resource over the interval [1, 10] meets
the required 100Gb, two separate entitlements impose re-
strictions on how the entitled 100Gb can be accessed and
thus do not meet the obligation. The only way that two sep-
arate entitlements over the intervals [1, 5] and [6, 10] could
meet the obligation is if both granted at least 100Gb of disk
storage each. Anything less would impose a restriction on
how the 100Gb resource is accessed over [1, 10].

This may seem like a very strict requirement, but the
point is that if two separate entitlements of 50Gb each over
time intervals [1, 5] and [6, 10] are to be regarded as meet-
ing the agreed obligation, the provision that should have
been specified in the contract is an obligation to provide
50Gb over time interval [1, 5] and an obligation to provide
50Gb over time interval [6, 10], not one single obligation for
100Gb over [1, 10].

A case could be made for allowing entitlements for the
same resource type which span the obligation interval to
be summed up: one could say that an entitlement of, e.g.,
70Gb over [1, 10] combined with another entitlement of,
e.g., 30Gb over [1, 10] together would meet an obligation
to provide 100Gb over [1, 10]. However, this possibility
raises a number of further potential difficulties which still
remain to be resolved and we therefore do not support it in
this version of the framework.

The definition we use is as follows.

Definition 3.5 (l-cover) Let I = [ts, te] and I1, . . . Ik (k ≥
1) be (closed) time intervals. {I1, . . . Ik} is a l-cover for the
interval I iff

i) ts ≤ t′s ≤ te for every interval [t′s, t
′

e] in {I1, . . . Ik};
ii) for every time point t ∈ I there is an interval Ii in

{I1, . . . Ik} such that t ∈ Ii.

4



Condition (ii) requires that the collection of intervals
{I1, . . . Ik} together cover the entire interval I . Condition
(i) requires that none of the intervals in {I1, . . . Ik} start
earlier than the interval I .

Definition 3.6 (Obligation compliance) Let EP be a set
of entitlements granted by enterprise P . Let S ⊆ E be a set
of enterprises. The set of entitlements EP is in compliance
with an obligation Obl(P, S,R, I), denoted by

EP meets Obl(P, S,R, I)

iff, for every enterprise E ∈ S, there exists a set of enti-
tlements {EntP (E,R1, I1), . . . ,EntP (E,Rk, Ik)} ⊆ EP

such that {I1, . . . , Ik} is a l-cover for I and R v Ri for
every i ∈ 1..k.

Example 2
Consider the following set of entitlements granted by re-
search centre SICS :

1. EntSICS (Milano, {18Gb, 610h, 1.5ms},
[(12-07-03, 10:10:50), (20-10-2003, 08:43:30)] )

2. EntSICS (Milano, {12Gb, 650h, 1.5ms},
[(20-10-03, 08:43:31), (02-12-2003, 10:23:30)] )

3. EntSICS (KTH , {10Gb, 600h, 1.5ms},
[(12-07-03, 10:10:50), (02-12-2003, 10:23:30)] )

This set of entitlements is in compliance with the obliga-
tion of Example 1. Entitlements 1 and 2 together cover the
obligation interval and each provides (more than) enough
resources to meet the specified requirements for Milano.
Entitlement 3 covers the obligation interval and meets the
specified requirements for KTH .

The following restatement of Definition 3.6 is useful.

Proposition 1 Let EP be a set of entitlements granted by
enterprise P . Let Obl(P, S,R, I) be an obligation. Sup-
pose I = [ts, te]. Then EP meets Obl(P, S,R, I) iff,
for every enterprise E ∈ S and every t ∈ I , there ex-
ists an entitlement EntP (E,R′, [t′s, t

′

e]) ∈ EP such that
ts ≤ t′s ≤ t ≤ t′e and R v R′. �

3.3 Local policies and obligation fulfillment

Definition 3.7 (Local Policy) For every enterprise P ∈ E
and every time point t, the set of policies Pol conveys the
local policy LP

t

P of P at time t.
The local policy LP

t

P is a (finite) set of entitlements
{EntP (E1, R1, I1), . . . ,EntP (En, Rn, In)}.

Note that we do not insist that the time point t must be
within the validity interval of each entitlement in LP

t

P . A
local policy can thus specify future as well as past entitle-
ments. Note also that since LP

t

P is a set of entitlements, the

expression LP
t

P meets Obl(P, S,R, I) is well defined.
We can thus speak of a local policy at time t being in com-
pliance with, or meeting, an obligation.

We assume that there is an accounting system at each
enterprise P that keeps track, for each resource owned by
P , the amount of that resource granted by P to each enter-
prise E of the coalition over any given time interval. We
will also assume that the coalition itself has access to this
information, either by trusting P to supply this information
or by maintaining its own independent monitoring and ac-
counting system.

Definition 3.8 (Accounting function) Let P and E be en-
terprises in E , R a specified amount of a resource in R, and
ts and t time points. Consumed and Rest are the account-
ing functions for resource usage: Consumed(P,E,R, ts, t)
gives the amount of resource R that has been granted
by P to E from time ts up to but not including time t.
Rest(P,E,R, I, t) is the amount of P ’s resource R that
was available at time ts and remains available for the use
of E at time t.

Rest(P,E,R, ts, t) = R − Consumed(P,E,R, ts, t−1)

In what follows the key role is that of the accounting
function Rest . We will assume it has the following proper-
ties.

Rest(P,E,R, ts, t) =

{

0, if t < ts

R, if t = ts

0 v Rest(P,E,R, ts, t) v R

Rest(P,E,R, ts, t) v Rest(P,E,R, t′s, t) if ts ≤ t′s

Rest(P,E,R, ts, t
′) v Rest(P,E,R, ts, t) if t ≤ t′

Rest(P,E,R1, ts, t) v Rest(P,E,R2, ts, t) if R1 v R2

Having the accounting function, we are now able to de-
fine the conditions for a request to be supported by the coali-
tion policy and the local policy of a resource provider, as
follows.

Definition 3.9 (Supported request) Let Req(u, P,R, t)
represent a request submitted at time t from user u ∈ Users
to enterprise P ∈ E for access to an amount R of a resource
owned by P .

Req(u, P,R, t) is supported by an obligation
Obl(P, S,R′, I) if t ∈ I , u ∈ users(E) for some
E ∈ S, and R v Rest(P,E,R′, ts, t) where I = [ts, te].

Req(u, P,R, t) is a locally supported request if there
is an entitlement EntP (E,R′, I) in the local policy LP

t

P

of P such that t ∈ I , u ∈ users(E), and R v
Rest(P,E,R′, ts, t) where I = [ts, te].

A request Req(u, P,R, t) is trivial if R = 0.

5



The following result gives further support for the choice
of definitions above.

Proposition 2 Let LP
t

P be the local policy of an en-
terprise P at t. Let Obl(P, S,R, I) be an obligation.
Let I = [ts, te] and R be a resource of type ResType .
LP

t

P meets Obl(P, S,R, I) iff, whatever requests are
granted by P for resource of type ResType , every non-
trivial request supported by Obl(P, S,R, I) is locally sup-
ported by LP

t

P .

Proof. Left-to-right: suppose Req(u, P,Rx, tx) is sup-
ported by Obl(P, S,R, I). Then for some E ∈ S,
we have u ∈ users(E), ts ≤ tx ≤ te, and Rx v
Rest(P,E,R, ts, tx). Since LP

t

P meets Obl(P, S,R, I)
there is an entitlement EntP (E,R′, [t′s, t

′

e]) in LP
t

P such
that R v R′ and ts ≤ t′s ≤ tx ≤ t′e.
We need to show Rx v Rest(P,E,R′, t′s, tx). We
have Rx v Rest(P,E,R, ts, tx) v Rest(P,E,R, t′s, tx)
because ts ≤ t′s, and Rest(P,E,R, t′s, tx) v
Rest(P,E,R′, t′s, tx) because R v R′.

For the converse: suppose ts ≤ tx ≤ te, E ∈
S, and u ∈ users(E). Suppose further that the non-
trivial request Req(u, P,R, tx) is the only request for re-
source of type ResType granted by P during the interval
I . Then Rest(P,E,R, ts, tx) = R and Req(u, P,R, tx)
is supported by Obl(P, S,R, I). This request must
also be locally supported, so there is an entitlement
EntP (E,R′, [t′s, t

′

e]) in LP
t

P such that t′s ≤ tx ≤ t′e and
R v Rest(P,E,R′, t′s, tx).

By Proposition 1, it just remains to show that ts ≤
t′s. Suppose not: suppose t′s < ts. Suppose then that
there is a granted request Req(u, P,R′, ts−1). This is out-
side the interval I and so does not contradict the assump-
tion earlier. Rest(P,E,R′, t′s, ts) = 0, and hence also
Rest(P,E,R′, t′s, tx) = 0 (because ts ≤ tx). So R v 0,
and Req(u, P,R, tx) is a trivial request, which contradicts
the assumption. �

¿From the above one can see why condition (i) is essen-
tial in Definition 3.5.

As informally introduced, publishing a local policy in
compliance with an obligation does not imply the actual ful-
fillment of the obligation. Violation of an obligation occurs
whenever a supported request is not granted.

Definition 3.10 (Obligation violation) An obligation
Obl(P, S,R, I) is violated at any time t′ ≥ t where:

— t ∈ I and it is not the case that the local policy
LP

t

P meets Obl(P, S,R, I); or

— a request Req(u, P,Rx, t) supported by Obl(P, S,R, I)
is not granted by P before time t+δ, where δ is some
suitably chosen (application specific) value to allow for
the time delay between the submission of a request to P

and the time at which the request can be acted upon by
P .

Once an obligation is violated it remains violated at all
future times. Notice that an obligation Obl(P, S,R, I) can-
not be violated before the start of time interval I , and that
we have chosen to say it becomes violated at any time dur-
ing I at which the local policy fails to meet the obligation.

An obligation Obl(P, S,R, I) is fulfilled if the local pol-
icy meets Obl(P, S,R, I) at each time point in the interval I
and all supported requests during I are granted. We will say
that the obligation becomes fulfilled at the time the interval
I ends.

Definition 3.11 (Obligation fulfillment) An obligation
Obl(P, S,R, I) is fulfilled at any time t′ ≥ te iff I = [ts, te]
and:

— the local policy LP
t

P meets Obl(P, S,R, I) for all t ∈
I; and

— every request Req(u, P,Rx, t) supported by
Obl(P, S,R, I) (and hence during I) is granted by
P within time t+δ, where δ is the (application specific)
time delay between the submission of a request to P

and the time at which the request can be acted upon by
P .

Once an obligation is fulfilled it remains fulfilled for all
future times. Notice that before the time interval I , an obli-
gation Obl(P, S,R, I) is neither violated nor fulfilled, and
after time interval I it is either violated or fulfilled (but not
both).

We have chosen to say that an obligation Obl(P, S,R, I)
becomes fulfilled at the moment the time interval I ends.
We could have chosen to say that an obligation could be
fulfilled earlier than that, in the case where the resource R

is completely used up before I expires. This complicates
the presentation unduly however so we will not bother with
it here.

Notice that an obligation Obl(P, S,R, I) is fulfilled if no
supported request is submitted to P during the time interval
I , as long as local policy LP

t

P meets Obl(P, S,R, I) for
all times t ∈ I .

Of some special interest is the case where a resource pro-
viding enterprise P can be assumed to comply with its own
published local policy, in the sense that a request submitted
to P is granted by P if and only if that request is locally
supported by P ’s local policy. For that special case we have
the following.

Proposition 3 Let P be an enterprise in E . Suppose P

grants any (non-trivial) request submitted to it at time t by
time t+δ iff that request is locally supported by P ’s local
policy LP

t

P .

6



Then an obligation Obl(P, S,R, I) is fulfilled iff
LP

t

P meets Obl(P, S,R, I) for every time t ∈ I .

Proof. This follows immediately from Definition 3.11 and
Proposition 1. �

Notice that a provider P can over-comply with an obli-
gation in the sense that P grants in its local policy an en-
titlement that exceeds what it is required to provide by the
coalition policy. In that case, there can be locally supported
requests that are not supported by any obligation: P might
then fail to grant a locally supported request without violat-
ing any of its obligations under the coalition policy.

3.4 Contracts

Now we consider a special type of contract, which will
convey the coalition policy. We call it a contract because it
is a policy that all members of a coalition have to agree on.
A contract specifies the members’ obligations towards one
another. Contracts are constructed from two basic building
blocks: the obligation sequence and the contract block.

Definition 3.12 (Obligation sequence) An obligation se-
quence Obl(P, S,R1, I1; . . . ;Rk, Ik) (k ≥ 1) is a set of
obligations Obl(P, S,R1, I1), . . . , Obl(P, S,Rk, Ik) such
that R1, . . . , Rk are all instances of the same resource type
and I1, . . . , Ik is an ordered sequence of contiguous time
intervals.

We will also write obligation sequences in the form
Obl(P, S; Seq) where Seq stands for the sequence of
resource-interval pairs R1, I1; . . . ;Rk, Ik.

Obl(P, S,R1, I1; . . . ;Rk, Ik) is violated at time t if any
of its constituent obligations Obl(P, S,Ri, Ii) is violated at
time t.

Obl(P, S,R1, I1; . . . ;Rk, Ik) is fulfilled at time t if
all its constituent obligations Obl(P, S,Ri, Ii) are ful-
filled at time t. Clearly an obligation sequence
Obl(P, S,R1, I1; . . . ;Rk, Ik) is fulfilled when its last con-
stituent obligation Obl(P, S,Rk, Ik) is fulfilled.

A request Req(u, P,Rx, t) is supported by
Obl(P, S,R1, I1; . . . ;Rk, Ik) if it is supported by any
of the constituent obligations Obl(P, S,Ri, Ii).

We do not define the ‘meets’ relation between arbitrary
sets of entitlements and an obligation sequence, but we do
want to define when the local policy LP

t

P of enterprise P

meets (is in compliance with) an obligation sequence. In-
formally, LP

t

P meets Obl(P, S,R1, I1; . . . ;Rk, Ik) if the
obligation sequence is not violated before t and LP

t

P meets
any constituent obligation Obl(P, S,Ri, Ii) whose time in-
terval Ii has not yet expired at time t. The following is an
equivalent and more concise formulation.

Definition 3.13 (Obligation sequence compliance) A lo-
cal policy LP

t

P is in compliance with (‘meets’) an obliga-
tion sequence Obl(P, S,R1, I1; . . . ;Rk, Ik), denoted

LP
t

P meets Obl(P, S,R1, I1; . . . ;Rk, Ik)

if every constituent obligation Obl(P, S,Ri, Ii) is either
fulfilled at t or LP

t

P meets Obl(P, S,Ri, Ii).

This means that obligations fulfilled in the past can be
ignored by the local policy, which is clearly desirable. It
also means that once a constituent obligation is violated the
local policy can no longer be modified to meet the obliga-
tion sequence. In particular, if the local policy fails to meet
an obligation sequence that has started, the local policy can
never be modified later to meet the obligation sequence ret-
rospectively.

The following property confirms that the definitions of
obligation sequence compliance mirror the corresponding
definitions for obligation compliance.

Proposition 4 Let Obl(P, S; Seq) be an obligation se-
quence with Seq = R1, I1; . . . ;Rk, Ik. Let Ik = [ts, te].
Let LP

t

P be the local policy of enterprise P at time t.

Obl(P, S; Seq) is violated at any time t′ ≥ t iff:

— t ∈ I1 ∪ · · · ∪ Ik and it not the case that
LP

t

P meets Obl(P, S; Seq); or
— a request Req(u, P,Rx, t) supported by Obl(P, S; Seq)

is not granted by P before time t+δ, where δ is the (ap-
plication specific) time delay to allow a submitted re-
quest to be acted upon by P .

Obl(P, S; Seq) is fulfilled at any time t′ ≥ te iff:

— LP
t

P meets Obl(P, S; Seq) for all t ∈ I1 ∪ · · · ∪ Ik;
and

— every request Req(u, P,Rx, t) supported by
Obl(P, S; Seq) is granted by P within t+δ. �

The second building block for contracts is the contract
block.

Definition 3.14 (Contract Block) A contract block CBP

of a coalition policy is an expression of the form:

Obl(P, S1; Seq
1
) ‖ . . . ‖ Obl(P, Sk; Seqk)

where each component Obl(P, Si; Seq i) (i ∈ 1..k) is an
obligation sequence. P is the bearer of CBP .

The contract block CBP is fulfilled at time t if any of
CBP ’s components Obl(P, Si; Seq i) is fulfilled at time t.

The contract block CBP is violated at time t if all of
CBP ’s components Obl(P, Si; Seq i) are violated at time t.

A request Req(u, P,Rx, t) is supported by the contract
block CBP if it is supported by any of CBP ’s components
Obl(P, Si; Seq i).

7



A local policy LP
t

P is in compliance with (‘meets’)
the contract block CBP , denoted LP

t

P meets CBP ,
if LP

t

P meets Obl(P, Si; Seq i) for any component
Obl(P, Si; Seq i) of CBP .

The effect of the contract block is to give the bearer P

a complete free choice about which of the component obli-
gation sequences it wishes to fulfill. Although in princi-
ple these obligation sequences may differ in terms of the
amount of a resource, the type of the resource, the set of en-
terprises to whom the resource is to be granted, and/or the
time intervals over which the obligations hold, in practice
only certain special forms are useful.

In particular, the contract block can be used to capture
the common pattern of contractual obligations in which vi-
olation of one obligation can result in new obligations that
then must be fulfilled. Often these new obligations will im-
pose more stringent requirements, providing both an incen-
tive to fulfil the original, easier obligation and a means of
compensating for any violations that occur. By arranging
the components of a contract block appropriately, violation
of one component leaves only the choice of more stringent
obligations if the contract block is to be fulfilled.

Example 3
Suppose SICS agrees to provide KTH with 100Gb of disk
storage over the time interval [1, 10] with 50Gb to be pro-
vided over the interval [1, 5] and a further 50Gb to be pro-
vided over [6, 10]. (Here we employ integers for time points
rather than the day-time notation simply to reduce clutter.)
If, however, SICS fails (for whatever reason) to provide
KTH with 50Gb over the interval [1, 5], but manages to
provide at least 30Gb over that period, then it must provide
KTH with 90Gb over the interval [6, 10] to compensate.

This coalition policy can be represented by a contract
block with the following two components:

1. Obl(SICS , {KTH }; 50Gb, [1, 5]; 50Gb, [6, 10])
2. Obl(SICS , {KTH }; 30Gb, [1, 5]; 90Gb, [6, 10])

Suppose first that SICS violates its obligation to provide
at least 30Gb of storage at some time t during [1, 5], either
by failing to include an appropriate entitlement in its local
policy at time t or by denying a supported request at time t

from a user at KTH . In that case, the obligations in com-
ponent 1 are also violated at time t, and the whole contract
block is violated.

Suppose that SICS fulfills its obligation to provide 50Gb
of storage over [1, 5]. It therefore also fulfills its obligations
for [1, 5] in component 2. It can fulfill the contract block as
a whole by providing 50Gb over [6, 10]. It can also fulfill it
by providing more than 50Gb over [6, 10] but that would be
surplus to requirements.

Suppose now that SICS violates its obligation to provide
at least 50Gb of storage (component 1) at some time t dur-
ing [1, 5] though it does not violate the obligation to provide

30Gb (component 2), for example, by including an entitle-
ment for KTH to 40Gb in its local policy at time t. Since
the first obligation of component 1 is now violated, the only
way that SICS can fulfill the contract block as a whole is by
fulfilling component 2. Effectively SICS now has an obli-
gation to provide 90Gb of storage over [6, 10], since that is
the only available means of fulfilling the contract block. No-
tice that once component 1 is violated it remains violated.
Having violated component 1 with its local policy at time
t, SICS cannot undo the violation, for example, by altering
its local policy later.

It should be clear that the example can be extended with
further layers in similar fashion. Suppose that if SICS fails
to provide 30Gb over the period [1, 5] but manages to pro-
vide 10Gb, then it must provide 100Gb over the interval
[6, 10]. This is represented by adding a third component to
the contract block:

3. Obl(SICS , {KTH }; 10Gb, [1, 5]; 100Gb, [6, 10])

The reader may care to check how new obligations are ef-
fectively triggered by various kinds of violations in this ex-
tended example.

It is worth observing that the obligations in a contract
block such as the one in the previous example are similar
but not exactly the same as obligations of the ‘contrary to
duty’ type [9]. In a ‘contrary to duty’ structure there is a pri-
mary obligation, and a secondary obligation which comes
into force if the primary obligation is violated. To that ex-
tent the contract block is similar. The difference is that in
a contract block there is no ‘primary’ obligation that gets
special status: as long as at least one of the components of
the contract block is fulfilled, there is no violation of the
contract block as a whole.

We are now ready to define a contract. A contract is
simply a set of contract blocks, with one important ad-
ditional proviso. With the definitions constructed above,
we must ensure that there are never two (or more) sepa-
rate and independent obligations requiring one enterprise
P to provide several instances of the same resource to
the same enterprise E at the same time. In such circum-
stances (to be stated more precisely below), P can fulfill
several obligations at once with just one single entitlement.
Suppose, for example, there are two separate obligations
Obl(P, {E}, R1, I) and Obl(P, {E}, R2, I). One might as-
sume that E is thereby granted a total allowance of R1 +R2

over interval I . The treatment of obligation compliance de-
veloped above, however, gives a different effect: that of a
single obligation Obl(P, {E}, R, I) where R is the larger
of R1 and R2. When formulating contracts care must be
taken to ensure that this is the intended effect. The alter-
native would be to name all obligations and associate enti-
tlements explicitly with named obligations. Fortunately, the

8



conditions under which problems can arise, and which need
to be eliminated, are comparatively obscure.

Definition 3.15 (Contract) A contract is a (finite) set
of contract blocks {CB1, . . . ,CBn} (n ≥ 1) such
that, for any pair of obligations Obl(P, S,R, [ts, te]) and
Obl(P, S′, R′, [t′s, t

′

e]) in different contract blocks with R

and R′ both instances of the same resource type and S ∩
S′ 6= ∅, we have ts 6= t′s.

Given any set of contract blocks, the required conditions
for a contract are easily and mechanically checked.

Definition 3.16 (Contract compliance) A contract Con-
tract is violated at time t if any contract block in Contract
is violated at time t .

Contract is fulfilled at time t if every contract block in
Contract is fulfilled at time t .

A local policy LP
t

P complies with Contract iff
LP

t

P meets CB for every contract block CB in Contract
for which P is the bearer of CB .

4 Future work

The work presented in this paper is ongoing research,
originally started with [5, 2], for designing and implement-
ing a formal and sound framework for contractually regu-
lated coalitions.

We are currently working on integrating the idea of wit-
ness and associated protocols, introduced in [2], as a trusted
third party for monitoring the resource sharing between
coalition members. We are also extending the framework
with the delegation mechanism and the privilege calculus,
given in [6], for decentralised management of privileges in
coalitions. We will extend the privilege calculus for support
of entitlements and obligations as presented in this paper.

For future work we are following three complementary
directions. The first direction is to extend the policy lan-
guage. The combination of obligation sequence and con-
tract block presented here is still rather restrictive; we have
not yet explored how restrictive it will prove to be in prac-
tice. We also plan to provide means of specifying polices
about policies, that is to say, policies specifying what other
(coalition) policies can be created and under what circum-
stances. In this paper, we have allowed local policies to vary
over time but the coalition policy Contract is fixed. Finally,
the focus in this paper is on obligations and entitlements to
a specified amount of consumable resource over a specified
period of time. We also need to speak of obligations and
entitlements to non-consumable resources where there is no
sense of measure, such as access to a file, which is either
granted or not. There is no difficulty in extending the defini-
tions to support non-consumable resources as well; indeed,
the corresponding definitions are very much simpler than

those for consumable resources. We have concentrated on
consumable resources in this paper precisely because they
are more involved.

The second direction is to investigate the relationships
between our framework and various methods for optimiza-
tion and dynamic scheduling of resource allocations. We
believe that there are interdependencies between coalition
and local policies and the way planning of resource usage
can be done. This is of course related to the idea that an en-
terprise can be a member of several coalitions offering the
same resources. Hence, we need mechanisms for deciding
which obligations to fulfill in order to minimize sanctions
resulting from non-compliance whilst at the same time op-
timizing resource usage.

Thirdly, we plan to develop mechanisms and architecture
to monitor contractual performance and enforce contractual
agreements, enabling secure detection of contractual vio-
lations and triggering recovery mechanisms that apply to
those violations.

5 Related work

Bettini and colleagues [3] formalize a rule-based policy
framework that includes ‘provisions’ and ‘obligations’, and
investigates a reasoning mechanism within this framework.
They distinguish between actions (provisions) that have to
be performed before a decision is taken and actions (obliga-
tions) that will be taken after the decision. These actions are
represented as two disjoint sets of predicates. The system
implementing the policy rules must deduce what actions (if
any) may be performed to gain access, and what promises
(if any) must be made after gaining the access. The system
also monitors the progress of obligation fulfillment and, in
case of failure, takes compensatory actions. Provisions are
structured and have an associated weight, allowing the se-
lection of the weakest obligation thus considering seman-
tic relations between them. The main distinction between
this work and ours is that Bettini’s focuses on enhancement
of policy rules with provisions and obligations to be ac-
counted by systems implementing these rules, whereas we
mainly focus on modeling policies for distributed communi-
ties sharing resources. Furthermore, Bettini’s system is not
integrated with any temporal reasoning technique, though
the authors have indicated that this is a topic to be explored.

Xuhui Ao and Naftaly Minsky [1] have developed a fully
implemented regulatory mechanism for coalitions, based on
a very general view of the governance of coalitions. Simi-
larly to our work, the coalition is governed by a global pol-
icy PC , and each coalition member Ei is governed by a
local policy, which must conform to Pc. Their definition
of both coalition and local policy is provided using the LGI
language [8], a general message-exchange mechanism that
allows an open group of distributed agents to engage in a

9



mode of interaction governed by a policy. Our concept of
coalition policy is different. We see it as a contract, and
provide formal definitions of coalition and local policy and
relationships between them. Furthermore in [1] local poli-
cies are obtained using a top-down approach, as refinements
of coalition policies, whereas we consider local policy as a
plan for enterprises to allocate resources under their own
control while complying with coalition policy as expressed
in the contract. Moreover in [1] no punitive mechanism is
considered, since in that framework every obligation is nec-
essarily fulfilled unless it is repealed.

In [7] there is proposed a contract monitoring system in-
tended to provide automated checking of business to busi-
ness contracts. It introduces a novel modelling approach to
obligations, unifying the treatment of both permissions and
obligations by reifying both and describing permit and bur-
den passing in a way analogous to the established treatment
of capabilities.

[4] deals with the problem of negotiating access to re-
sources that exist within different administrative domains,
presenting protocols for managing the process of negoti-
ating access to resources in a distributed system. The ap-
proach taken is to define a general resource management
model within which reservation, acquisition, task submis-
sion, and binding of tasks to resources can be expressed in
a uniform fashion.

6 Conclusion

We have presented a framework for specifying and rea-
soning about policies for sharing resources in coalitions,
focussing on the common case where coalition members
agree to make available some total amount of consumable
resource over a specified period of time. The simpler case
of access to non-consumable resources, which can either be
granted or not, can be treated in similar (simpler) fashion.

The framework provides a policy language with two ba-
sic elements: ‘obligations’, which are used to express the
coalition policy (contract), and ‘entitlements’ which are
used to express the local policies of the coalition members.
Local policies may vary from time to time; for simplicity
in this paper we have assumed that the coalition policy is
fixed.

Each member of a coalition must publish its local pol-
icy so that other members can plan how to make use of the
resources provided. A local policy must comply with, or
‘meet’, the obligations specified by the coalition policy. A
member enterprise violates an obligation either by failing to
publish a local policy that meets the obligation or by deny-
ing the resource in contravention of its own local policy. An
accounting mechanism keeps track of which resources are
granted over time. We have investigated the conditions un-
der which violation of an obligation in the coalition policy

(contract) coincides with contravention of a local policy.
We have presented two basic building blocks for con-

structing coalition policies (contracts) from ‘obligations’.
An ‘obligation sequence’ collects a set of related obliga-
tions over an ordered sequence of contiguous time intervals.
A ‘contract block’ specifies a set of alternative obligations
with a free choice about which of them must be fulfilled. By
combining these structures in various ways, one can repre-
sent common patterns of contractual provisions, such as the
common case where violation of one obligation results in
new, usually more stringent, obligations intended to com-
pensate for the violation.

Our current work includes development of the mech-
anisms and infrastructure required to monitor contractual
performance and enforce contractual performance.

References

[1] X. Ao and N. H. Minsky. Flexible regulations of distributed
coalitions. In Proceedings of the 8th European Symposium on
Research in Computer Security (ESORICS), volume 2808 of
LNCS, Gjøvik, Norway, October 2003. Springer Verlag.

[2] E. Bertino, E. Ferrari, and A. Squicciarini. A decentralized
framework for controlled sharing of resources in virtual com-
munities. In Proceedings of the 17th IFIP Conference On
Database and Applications Security, Estes Park, CO, August
2003.

[3] C. Bettini, S.Jajodia, X. S. Wang, and D. Wijesekera. Provi-
sions and obligations in policy management and security ap-
plications. In Proceedings of the 28th International Confer-
ence on Very Large Data Bases (VLDB), Hong Kong, China,
August 2002.

[4] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and
S. Tuecke. Snap: A protocol for negotiating service level
agreements and coordinating resource management in dis-
tribuited systems. In Proceedings of the 8th Workshop on Job
Scheduling Strategies for Parallel Processing, volume 2537
of LNCS, pages 153–183, Edinburgh, Scotland, July 2002.

[5] B. S. Firozabadi and M. J. Sergot. Contractual access con-
trol. In Proceedings of Security Protocols, the 10th Interna-
tional Workshop, volume 2845 of LNCS, pages 96–102, Cam-
bridge,UK, April 2002. Springer Verlag.

[6] B. S. Firozabadi, M. J. Sergot, and O. Bandmann. Using
Authority Certificates to Create Management Structures. In
Proceeding of Security Protocols, the 9th International Work-
shop, volume 2467 of LNCS, pages 134–145, Cambridge,
UK, April 2001. Springer Verlag.

[7] P. Linington and S. Neal. Using policies in the checking of
business to business contracts. In Proceedings of the 4th IEEE
Workshop on Policies for Distributed Systems and Networks,
pages 207–218, Como, Italy, June 2003.

[8] N. H. Minsky and V. Ungureanu. Law-governed interaction:
a coordination and control mechanism for heterogeneous dis-
tributed systems. ACM Transactions on Software Engineering
and Methodology (TOSEM), 9(3):273–305, july 2002.

[9] H. Prakken and M. Sergot. Contrary-to-duty obligations. Stu-
dia Logica, 57(1):91–115, 1996.

10


