
An Executable Specification of an Argumentation Protocol

Alexander Artikis1, Marek Sergot2 and Jeremy Pitt1
1Imperial College London, Electrical and Electronic Engineering Department, London SW7 2BT, UK

2Imperial College London, Department of Computing, London SW7 2BZ, UK

a.artikis@ic.ac.uk, mjs@doc.ic.ac.uk, j.pitt@ic.ac.uk

ABSTRACT
Open multi-agent computational systems are composed of
heterogeneous and possibly antagonistic software entities.
Characteristic features are limited trust and unpredictable
behaviour. Members of such systems may fail to, or even
choose not to, conform to the norms governing their in-
teractions. It has been argued that systems of this type
should have a formal, declarative, verifiable, and meaning-
ful semantics. We present a theoretical and computational
framework being developed for the executable specification
of such systems. We adopt an external perspective and view
open computational systems as instances of normative sys-
tems. In this paper we demonstrate how the framework can
be applied to specifying and executing an argumentation
protocol based on Brewka’s reconstruction of Rescher’s the-
ory of formal disputation. The specification is formalised
in the action language C+ and executed using the ‘Causal
Calculator’ (Ccalc) implementation.

1. INTRODUCTION
A particular kind of Multi-Agent System (MAS) is one where
members are developed by different vendors and do not nec-
essarily have a notion of global utility—indeed they may
well be in direct competition with one another. MAS of
this type are often classified as ‘open’ [9, 5, 18]. Examples
include electronic marketplaces [1], automated negotiation
and dispute resolution services, and generally any applica-
tion where agents are programmed by different parties with
competing interests. Characteristic features of such systems
are limited trust, agent heterogeneity and unpredictable be-
haviour. The agents in these systems, although required to
make decisions and act locally, operate in the context of well-
defined protocols and procedures for interacting with other
agents, and agreed norms of behaviour that govern these in-
teractions. Another characteristic of open agent systems is
the high probability of non-conformance to these standards.
It has been argued that a specification of systems of this type
should satisfy at least the following two requirements: first,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAIL’03 June 24-28, 2003, Edinburgh, UK
Copyright 2003 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

the interactions of the members should be governed by a for-
mal, declarative, verifiable and meaningful semantics [18].
Second, to cater for the possibility that agent behaviour
may deviate from what is prescribed, agent interactions can
usefully be described in terms of permissions, obligations
and other more complex normative relations that may exist
between them [10].

We have been developing a theoretical framework for the
executable specification of open agent systems that addresses
the aforementioned requirements [1, 2]. We adopt the per-
spective of an external observer and view agent systems as
instances of normative systems [10]. We thus represent the
institutional powers [11], permissions and obligations of the
agents in such systems. In particular, we employ an ac-
tion formalism to specify the constraints that govern the be-
haviour of the members and then use a computational frame-
work to animate the specification and investigate its proper-
ties. For the action formalism, we have employed both the
Event Calculus and the language C+ [8, 7, 6], a language
with explicit transition system semantics. We have also been
developing an extended form of C+ specifically designed for
modelling the institutional aspects of agent systems [16]. In
this paper we will use the language C+. An example of our
use of the Event Calculus may be found in [1].

We demonstrate how the theoretical and computational
frameworks can be applied to specifying and executing an
argumentation protocol based on Brewka’s reconstruction
[3], in the Situation Calculus [14], of a theory of formal dis-
putation originally proposed by Rescher [15]. This protocol
is typical of the kind of protocols that are encountered in
MAS, and in providing a procedure for the conduct of debate
and dispute resolution, it addresses a number of questions
of relevance to the field of artificial intelligence and law.

The paper is structured as follows. First, we briefly de-
scribe the C+ language. Second, we present a theoretical
framework for specifying open agent systems, and a compu-
tational framework for executing these specifications. Third,
we summarise Brewka’s reconstruction of Rescher’s theory
of formal disputation. Fourth, we specify and execute (a
slightly modified form of) Brewka’s argumentation protocol
with the use of the theoretical and computational frame-
works. Finally, we discuss related work, summarise, and
point out directions for future research.

2. THE C+ LANGUAGE
The action language C+ [8, 7, 6] enables the representation
of the effects (direct and indirect) of actions and default per-
sistence (‘inertia’) of fluents from state to state. An action

description in C+ is a set of C+ laws that define a tran-
sition system of a particular kind. The representation of
an action domain in C+ consists of rigid constants, fluent
constants and action constants1. Rigid constants are sym-
bols that represent the features of the system whose value
is fixed and does not depend on a state. Fluent constants
are symbols characterising a state. They are divided into
two categories: simple fluent constants and statically deter-
mined fluent constants. Simple fluent constants are related
to actions by dynamic laws (that is, rules describing a tran-
sition from a state si to its successor state si+1). Statically
determined fluent constants are characterised by static laws
(that is, rules describing an individual state) relating them
to other fluent constants. Static and dynamic laws are de-
fined below. Action constants are symbols characterising
state transitions.

An action signature is a non-empty set σrf of rigid and flu-
ent constants and a non-empty set σact of action constants.
An action description D in C+ is a set of causal laws. A
causal law can be either a static law or a dynamic law. A
static law is an expression:

caused F if G (1)

where F and G are formulas (that is, truth-functional com-
pounds) of rigid and fluent constants. In a static law con-
stants in F and G are evaluated on the same state. A dy-
namic law is an expression:

caused F if G after H (2)

where F , G and H are formulas such that every constant
occurring in F is a simple fluent constant, every constant
occurring in G is rigid or fluent, and H is any combination
of rigid constants, fluent constants and action constants. In
a transition from state si to state si+1 constants in F and
in G are evaluated on si+1 , fluent and rigid constants in H
are evaluated on si and action constants in H are evaluated
on the transition itself. F is called the head of the static law
(1) and the dynamic law (2).

The C+ language provides various abbreviations for causal
laws. These will be used extensively in this paper. For ex-
ample, the closed-world assumption regarding a fluent F ,
whereby F is assumed to hold in the absence of information
to the contrary, is represented as:

default F

The above expression is an abbreviation for the static law:

caused F if F

A dynamic law of the form:

caused F if > after H ∧ a

is often abbreviated as (here we separated the action con-
stant a from H):

a causes F if H

In the case where H is > the above abbreviation is expressed
as follows:

a causes F

1We are describing here the version of C+ presented in [8,
7]. A very recent presentation [6] contains some extensions
to the form of rules in C+, but nothing that materially
affects what we are describing in this paper.

The persistence (‘inertia’) of a fluent constant c over time is
represented as:

inertial c

This is an abbreviation for the set of dynamic laws of the
form (for all values u of the c fluent constant):

caused c = u if c = u after c = u

It is not possible in the space available here to give a
full account of the C+ language and its semantics, and to
explain in detail how this provides a treatment of defaults
and persistence (‘inertia’). We trust that the C+ language,
and especially its abbreviations, are sufficiently natural that
readers can follow the presentation of the example in later
sections. Interested readers are referred to [7, 6] for technical
details. For completeness, we give here a (rather concise)
statement of the semantics.

Given an action description D, a state is an interpreta-
tion of σrf that satisfies G → F (G materially implies F)
for every static law (1). An action is a propositional in-
terpretation of σact . A transition is a triple (s, a, s ′) where
s is the initial state, s′ is the resulting state and a is an
action. A formula F is caused in a transition (s, a, s ′) if
F ∈ Tstatic(s

′) ∪ E(s, a, s ′), where:
1. Tstatic(s) = {F | static law (1) is in D , s |= G}
2. E(s, a, s ′) = {F | dynamic law (2) is in D , s ′ |= G,

s ∪ a |= H }.
A transition (s, a, s ′) is causally explained by D iff:

1. s ′ |= Tstatic(s
′) and s ′ |= E(s, a, s ′).

2. There is no other s′′ such that s ′′ |= Tstatic(s
′) and

s ′′ |= E(s, a, s ′).
The transition system described by a C+ action description
D is a directed graph where: the vertices are the states of D,
and an edge from state s to state s′ is labelled with action
a if the transition (s, a, s ′) is causally explained by D.

3. A THEORETICAL FRAMEWORK
In previous work we presented a theoretical framework for
specifying open agent systems [1, 2]. We classify an agent
system as ‘open’ if it satisfies the following properties. First,
there is no direct access to an agent’s internal (‘mental’)
state. Second, the members of the system do not neces-
sarily have a notion of global utility. Members may fail
to, or even choose not to, conform to the norms governing
their behaviour in order to achieve their individual goals.
In addition to these properties, in open agent systems the
behaviour of the members cannot be predicted in advance
[9]. Next, we briefly describe the theoretical framework for
the specification of open agent systems.

We have employed both the Event Calculus and the C+
language to formalise open agent systems; each has its ad-
vantages and disadvantages. In this paper we will use C+.
We focus on the specification of the social constraints, social
roles and social states of open agent systems. The social
constraints dictate the behaviour of the members of open
agent systems by specifying their institutional powers [11],
normative positions (permissions and obligations), and sanc-
tions. These constraints are expressed by means of a C+
action description, say Dsoc . The social roles are associated
with a set of preconditions that agents must satisfy in or-
der to be eligible to occupy these roles, and with a set of
(role) constraints that govern the behaviour of the agents
that occupy particular roles within the system. The role

constraints and the constraints that describe the precondi-
tions of the roles are a subset of the set of social constraints.
The C+ action description Dsoc defines a transition sys-
tem whose states we refer to as ‘social states’. They are
interpretations of the set of constants σrf of Dsoc , which in-
cludes fluent constants representing the powers, normative
positions and sanctions associated with each member.

Our specification is based on four assumptions. First, we
specify the constraints at the design stage of the systems.
Furthermore, we assume that the specification of the social
constraints does not change during the execution of the sys-
tems; or if it does change, that these changes can be localised
to changes in values of various parameters. Second, our
specification is based only on externally observable states of
affairs and actions and not on the internal architecture of the
individual agents. Furthermore, the specification of the so-
cial constraints refers to the externally observable behaviour
of the agents and not to the way agents reason about their
behaviour. (This is in contrast to some other approaches
in MAS where the semantics of agent communication is ex-
pressed is terms of the agents’ internal, mentalistic states,
such as their beliefs, desires, and intentions.) Third, we limit
attention to a single computational system, even though we
anticipate applications where agents are members of sev-
eral different systems simultaneously. Fourth, apart from its
members, an open agent system may include other group-
ings, which we call, following standard usage, institutions
[11, 5]. Such institutions have their own constraints, roles,
communication language, and so on. However, for simplic-
ity we again restrict attention to open agent systems that
can be modelled as single institutions. Due to the last two
assumptions, in the following sections we do not relativise
the specification of social constraints to a particular system
or institution. The relaxation of these single-institution as-
sumptions raises a number of further complications and will
be presented elsewhere.

3.1 Social Constraints
Social constraints are represented as a set of C+ static and
dynamic laws. The social constraints define, amongst other
things, the semantics of the agents’ actions, expressed by
means of dynamic laws which specify what states of affairs
(combinations of fluent constants) each action initiates and
terminates. In different systems, or in different institutions
within the same system, the same action might have dif-
ferent semantics, in that it initiates or terminates different
states of affairs (combinations of fluent constants).

We maintain the standard and long established distinction
between permission, physical capability and institutionalised
power [11]. Accordingly, we have three levels of specification
of the social constraints of open agent systems. We describe
these three levels next.

3.1.1 Institutionalised power and valid actions
The term institutional (or ‘institutionalised’) power refers
to the characteristic feature of organisations—legal, formal,
or informal—whereby designated agents, often when acting
in specific roles, are empowered to create or modify states
of affairs of special significance in that organisation, usually
by performing a specified kind of act (such as when a priest
performs a marriage, or an agent signs a contract, or the
chairperson of a formal meeting declares the meeting closed).
This concept has received considerable attention within the

jurisprudential literature, usually under the headings of ‘le-
gal power’, ‘legal capacity’ or ‘norms of competence’, but it
is clear that it is not an exclusively legal phenomenon—it
is a standard feature of all organised interaction. The term
‘institution’ has been coined as a suitably neutral term, to
encompass legal systems, formal organisations, and informal
groupings.

According to the account given in [11], institutional power
can be seen as a special case of a more general phenomenon
whereby an action, or a state of affairs, A—because of the
rules and conventions of an institution—counts, in that in-
stitution, as an action or state of affairs B (as when sending
a letter with a particular form of words counts as making
an offer, or raising a hand counts as making a bid at an
auction, or banging the table with a wooden mallet counts
as declaring a meeting closed).

For the specification of the effects of actions within insti-
tutions, it is important—essential—to distinguish between,
for example, the act of making an offer and the act by means
of which that offer is made (such as sending a letter). Bang-
ing the table with a wooden mallet is not the same act as
closing a meeting. Indeed, it is only if the table is banged
by a person with the institutional power to close the meet-
ing that the meeting is thereby declared closed; the same
act performed by an agent without this power has no effect
on the status of the meeting (though it may have other ef-
fects). In such examples we say that an agent ‘has the insti-
tutional power’ (or just ‘power’), or ‘is empowered’, to close
the meeting by means of banging the table with a wooden
mallet.

In some circumstances it is awkward or unnecessary to
isolate and name all instances of the acts by means of which
agents exercise their institutional powers. When describing
an auction, for example, it is convenient to say ‘agent x
made a bid’ and let context disambiguate whether we mean
by this that the agent performed an action, such as raising
its hand, by means of which the making of a bid is signalled,
or whether agent x actually made a bid, in the sense that the
current bidding price of the item under auction was changed.
We find it convenient to disambiguate in these circumstances
by attaching the label ‘valid’ to act descriptions. We say
that an action is valid at a point in time if and only if the
agent that performed that action had the institutional power
to perform it at that point in time. So, when we say that
‘agent x made a bid y’ we mean, by convention, merely that
agent x signalled its intention to make a bid y; this act
was not necessarily effective in changing the current bidding
price. In order to say that the bidding price was actually
changed, we say that the action ‘agent x made a bid y’ was
valid: not only did x signal its intention to make bid y,
but also x was empowered to make the bid y at that time.
Similarly, ‘invalid’ is used to indicate lack of institutional
power: when we say ‘agent x made a bid y’ is invalid we
mean that x signalled its intention to make bid y but did not
have the institutional power to make that bid at that time
(and so the attempt to change the current bidding price was
not successful). Differentiating between valid (‘meaningful’)
and invalid (‘meaningless’) actions is of great importance in
the analysis of agent systems. In an auction, for example,
the auctioneer has to determine which bids are valid, and
therefore which bids are eligible for winning the auction.

We are conscious that this use of the term ‘valid’ is not
ideal and indeed may be inappropriate in some contexts.

Terms such as ‘valid’, ‘in order’, ‘proper’ (and ‘invalid’, ‘out
of order’, ‘improper’, ‘void’) have specific meanings in cer-
tain contexts. However, these contexts are relatively few,
and the same meaning is not always given in each. It is
difficult to find a suitably neutral term—we will stick to the
term ‘valid’ in this paper.

In the specification of social constraints in open agent sys-
tems, the definition of institutional powers is application-
specific. In this paper, the definitions of powers and valid
actions are formulated as static and dynamic laws of a C+
action description.

3.1.2 Permitted Actions
The second level of specification of the social constraints
provides the definition of permitted, prohibited and obliga-
tory actions. These definitions are application-specific. In
some cases, we might want to associate powers with permis-
sions. For example, in some systems, an agent is permitted
to perform an action if that agent is empowered to perform
that action. In other systems the relationship is stronger:
an agent is permitted to perform an action if and only if it
is empowered to perform that action. In general, however,
there is no standard, fixed relationship between powers and
permissions. For example, it is sometimes valuable to forbid
an agent to perform an action even if it is empowered to per-
form that action. Similarly, the specification of obligations
is application-specific. However, it is important to maintain
consistency of the specification of permissions and obliga-
tions on the same system: an agent cannot be forbidden
and obliged to perform the same action at the same time.

Determining what actions are permitted, prohibited or
obligatory enables the classification of the behaviour of indi-
vidual agents and the system as a whole into categories such
as ‘social’ or ‘anti-social’, ‘acceptable’ or ‘unacceptable’, and
so on. For example, the behaviour of an agent might be con-
sidered ‘anti-social’ or ‘unacceptable’ if that agent performs
certain forbidden actions or does not comply with its obliga-
tions. Based on the behaviour of the individual agents, it is
possible to classify the behaviour of the system as a whole.
For example, the state of a system may be considered ‘unac-
ceptable’ if the majority of its members have not complied
with their obligations.

3.1.3 Enforcement Policies
At the third level of specification of the social constraints
there is the definition of sanctions and enforcement poli-
cies. Sanctions are a means of dealing with ‘anti-social’ or
‘unacceptable’ behaviour. This level of specification has two
aspects: (i) when is an agent sanctioned, and (ii) what is the
penalty that the agent has to face (in the case that it does
get sanctioned). The specification of both of these aspects
is also application-specific. As far as the first is concerned,
agents may be sanctioned for not complying with their obli-
gations, or they may be sanctioned if they perform forbidden
actions. As regards the second aspect, penalties can come in
many different forms. The house rules of an auction house,
for example, may stipulate that bidders who bid out of turn
(and are therefore considered ‘sanctioned’) are no longer em-
powered to enter other auctions. In different settings, the
same type of misbehaviour might create different sanctions.
One common type of sanction may be expressed in terms of
a social concept such as bad reputation.

Sanctions are one means by which an open agent system

may discourage ‘unacceptable’ or ‘anti-social’ behaviour. An-
other mechanism is to try to devise additional controls (phys-
ical or institutional) that will force agents to comply with
their obligations or prevent them from performing forbid-
den actions. In an automated auction, for example, forbid-
den (non-permitted) bids may be physically blocked, in the
sense that their transmission is disabled, or the specifica-
tion of a valid bid may be changed to render them ineffec-
tive. The general strategy of designing mechanisms to force
compliance and eliminate non-permitted behaviour is what
Jones and Sergot [10] referred to as regimentation. Sanc-
tioning mechanisms are required because the opportunities
for effective regimentation are usually very limited.

4. A COMPUTATIONAL FRAMEWORK
This section describes a computational framework for exe-
cuting the specifications of open agent systems. The compu-
tational framework makes use of a software implementation,
the Causal Calculator (Ccalc), a system designed and im-
plemented by the Action Group of the University of Texas
for performing computational tasks on C+ action descrip-
tions [6, 7]. Ccalc has two inputs: a C+ action description
D and a query concerning D.

Ccalc supports the computation of prediction, planning,
and ‘postdiction’ queries. We use Ccalc as follows: in the
computation of each query, Ccalc has as input the speci-
fication of the social constraints expressed as a C+ action
description. Given as additional input a narrative, a descrip-
tion of temporally-ordered externally observable events, the
computation of prediction queries produces the social state
of an agent system, that is, a representation of the powers,
normative positions, sanctions, and roles associated with
each member of the computational system at each time-
point. The computation of planning queries produces se-
quences of actions that lead from a given initial state to a
given final state. The computation of this type of query
helps to validate (prove properties of) the specification of
the social constraints. In [2], for example, we validated the
specification of a contract-net protocol [17] using Ccalc’s
computation of planning queries. The computation of ‘post-
diction’ queries—in which the task is to explain how a (par-
tially described) social state could have arisen—can also be
useful in validating the specification of the social constraints.

These tasks (queries) are intended to be performed both
at design time, or ‘off-line’, and at run-time, or ‘on-line’ (in
the terminology of [12]). The on-line services can be pro-
vided by a central server or in various distributed configura-
tions. The off-line and on-line services as well as the on-line
configurations, including the adequacy of the Ccalc imple-
mentation for supporting on-line services, will be discussed
in a forthcoming paper.

5. A THEORY OF FORMAL DISPUTATION
In order to illustrate the utility of the theoretical and com-
putational frameworks, in this section we describe, specify
and animate an argumentation (disputation) protocol based
on Brewka’s reconstruction [3] of Rescher’s Theory of For-
mal Disputation (RTFD) [15]. We have picked this example
because (a) in defining a set repertoire of possible moves for
each participant, and their effects, it is typical of the kind
of protocols that are encountered in MAS, (b) in providing
a procedure for the resolution of a (simple kind of) dispute,

it addresses a number of other questions of potential rele-
vance to the field of artificial intelligence and law, and (c)
Brewka’s formalisation provides a natural starting point.

According to RTFD, an argumentation process may be
viewed as a three-player game: the proponent claims a par-
ticular thesis and the opponent may question this thesis.
The determiner decides whether the proponent’s thesis was
successfully defended or not. Due to space limitations we
do not describe Rescher’s original theory of disputation but
only elements of Brewka’s reconstruction and our variation
of it.

An argumentation system, according to Brewka’s defini-
tion (see [3, Definition 4.9]), includes as core components
a logic of disputation and an argumentation context. In
Brewka’s reconstruction, the logic of disputation is prefer-
ential default logic [4] and the argumentation context is for-
malised with the use of (a dialect of) the Situation Calculus
[14]. The main actions of the protocol are the following:
claiming, conceding to, retracting, and denying propositions
and default rules, declaring the winner of the argumentation,
and objecting to actions performed by the other participants.

The semantics of the protocol actions are given in terms
of the premises held by the proponent and opponent. The
fluent premise(ag , q , s) expresses that “in situation s agent
ag is committed to accepting q, where q is a formula in the
logic of disputation” [3, pp.266–267]. The premises of agent
ag are the formulas that ag holds explicitly. The related
fluent accepts(ag , q , s) is used to represent the formulas that
ag holds implicitly: accepts(ag , q , s) expresses that q follows
in the logic of disputation L from the premises explicitly held
by agent ag in argumentation record s:

accepts(ag , q , s) iff {p | premise(ag , p, s)} `L q (3)

An argumentation record is a situation (in the terminology
of the Situation Calculus) and so includes the history of the
protocol.

The semantics of a claim action, for example, of a propo-
sition or a default rule, are given by the following Situation
Calculus effect axiom:

premise(ag , q , do(claim(ag , q), s)) (4)

Expression (4) states that the successor situation following
the performance of a claim action by ag includes a premise
about the claimed proposition (or default). In expression (4)
q represents either a proposition or a default rule of the form
n :: a : b/c where n is a label associated with the default
rule, a is the prerequisite, b is the justification and c is the
consequent of the rule [3].

Brewka distinguishes between ‘possible’ and ‘legal’ ac-
tions. Possible actions are specified by means of Situation
Calculus possibility axioms. Consider the following possibil-
ity axiom of the retract action:

poss(retract(ag , q), s) ↔ premise(ag , q , s) (5)

The above axiom states that it is ‘possible’ for an agent to
retract a proposition (or a default) q if and only if that agent
has accepted that proposition (or default) as a premise.
The conditions that determine whether an action is possible
or not are specified in a protocol-independent manner—as
usual in Situation Calculus, possibility axioms are used to
specify the well-formed actions of the formalisation.

‘Legal’ actions, in contrast to possible actions, are speci-
fied in a protocol-dependent manner. Consider the following

example of a legal action:

legal(declare(det , pro), s) → accepts(pro, topic, s) (6)

The above expression states that declaring the proponent
‘pro’ as the winner is legal only if the proponent accepts
the topic of the argumentation. Legal actions, in the termi-
nology adopted in this paper, may be viewed in the first in-
stance as ‘valid’ actions, though it may be that what Brewka
calls ‘legal’ is intended to cover also what we would call ‘per-
mitted’. Elaboration of this point is one of the main aims
of the formalisation presented in later sections.

A point of departure of Brewka’s reconstruction from the
original theory is the introduction of the ‘object’ action. The
participants of argumentation protocols may perform invalid
actions; the effects of an invalid action are the same as if the
action were a valid one—provided that no other participant
objects to the invalid action. If some participant objects
immediately (that is, no other action takes place between
the invalid action and the objection), then the effects of the
invalid action are ‘cancelled’.

The ‘object’ mechanism is not a new idea in the field of
argumentation protocols. Prakken [13] points out that an
‘object’ mechanism of this type is part of Robert’s Rules
of Order (RRO): “[t]he general rule is that anything goes
until any member objects, after which RRO must be strictly
applied” [13, p.10]. One can find similar mechanisms in most
procedures for the conduct of formal debates and disputes.

Enabling agents to object to invalid actions can lead to a
more flexible argumentation protocol. In Brewka’s modifi-
cation of RTFD, for example, the proponent might choose
not to object to an invalid action performed by the deter-
miner because it (the proponent) calculates that the invalid
action will serve its benefit better than having the invalid
action ruled out. However, it can be argued that Brewka’s
object mechanism is too simplistic, if it is a model of how
argumentation processes are actually conducted, and too
rigid, if it is a model of how argumentation processes ought
to be conducted. Consider for example the case where an
agent, say the determiner, repeatedly performs invalid ac-
tions. The proponent and opponent have to object to every
invalid action performed by the determiner because if they
do not object, they implicitly accept the invalid actions as
valid ones. Moreover, according to Brewka’s treatment, an
objection will ‘undo’ the effects of an invalid action if and
only if the objection takes place immediately after the in-
valid action. If for some reason an agent is not (physically)
capable of immediately objecting to an invalid action then
it will be considered that this agent does not object and so
implicitly agrees to the treatment of the invalid action as a
valid one. Prakken [13], in his formalisation of RRO, dis-
cusses the possibility of ‘undoing’ the effects of an invalid
action by appealing later to an adjudicating authority, in
the case where it was not physically possible to object im-
mediately to the invalid action.

Finally, Brewka’s reconstruction formalises Rescher’s ‘si-
lence implies consent’ principle. This principle may be sum-
marised as follows: an agent, say the proponent, is assumed
to accept a proposition as a premise, if the opponent ac-
cepts this proposition as a premise, and as long as it (the
proponent) does not deny or retract that proposition.

5.1 A Variation of Brewka’s RTFD
Although it is our general aim in this paper to present a

reconstruction of Brewka’s account of RTFD we make two
adjustments to his (Brewka’s) version. First, we further re-
fine the distinction between ‘possible’ and ‘legal’ actions.
Brewka does not discuss the setting within which his for-
malisation will be employed. We have in mind a setting
where autonomous software agents in a MAS engage in the
argumentation as part of a negotiation or dispute resolu-
tion process. We therefore have to consider not only what
kinds of actions are well-formed (one possible interpretation
of the Situation Calculus predicate poss—see, for example,
axiom (5)) but also which of these actions each agent will
be practically able to perform at each stage of a given im-
plementation.

Second, although Brewka states that the argumentation
regarding a proposition may terminate due to a deadline, he
provides no further details about how this would work and
how such deadlines would affect the argumentation process.
There is also the question of the ‘silence implies consent’
principle and how that would fit in the practical setting.

Here then is our variant of Brewka’s reconstruction of
RTFD. We will refer to it as RTFD*. Initially, only the
proponent has the institutional power to claim a proposi-
tion. This proposition is the topic of the argumentation.
The argumentation commences when the proponent makes
its claim—any other action does not count as the commence-
ment of the protocol. The proponent and opponent then
take it in turn to perform actions—in the setting we have in
mind, these actions would be transmissions of messages to
the other participants, to claim, deny, retract or concede to
a proposition (or a default rule), or to object to an action by
one of the other participants. During the process, the pro-
ponent and opponent must perform their chosen actions by
specified deadlines (timeouts). Without this feature there is
no practical way of controlling the exchanges, of determin-
ing whether a participant has ‘spoken’, because otherwise
one might have to wait indefinitely for messages to arrive
over the communication channels. For similar reasons, it is
also necessary to impose a limit on the number of exchanges,
or on the total elapsed time for the argumentation process.
The determiner is empowered to declare the winner only at
the end of the argumentation, that is, when the specified
time period for the argumentation elapses. If at that time
both the proponent and opponent have accepted the topic
of the argumentation, then the determiner is only empow-
ered to declare the proponent as the winner. If, however,
the proponent does not accept the topic at that time then
the determiner is only empowered to declare the opponent
as the winner. Finally, if the proponent accepts the topic
and the opponent does not, the determiner is empowered
to declare either the proponent or the opponent as the win-
ner. In this case, we say that the determiner has discretion
to declare either of them as the winner. We will comment
separately on the ‘silence implies consent’ principle.

The fact that we depart in some respects from Brewka’s
reconstruction means of course that we cannot provide a for-
mal comparison between Brewka’s formalisation in the Situ-
ation Calculus and our formalisation in the C+ language—
for example, to prove an equivalence of some sort between
them. Informally, our formalisation differs in the following
respects. First, the proponent, opponent and determiner
are empowered to perform actions in specified time peri-
ods. Such a specification is closer to ‘realistic’ argumenta-
tion protocols to be executed by software entities (or human

Table 1: A Partial C+ Description of RTFD*.
Notation:
roleName ranges over {Proponent ,Opponent ,Determiner}
protag , protag ′ ranges over {Pro,Opp}
ag , ag ′ range over {Pro,Opp,Det}
p, q range over a finite set of propositions
act ranges over {Claim(q),Concede(q),Retract(q),
Deny(q),Object(ag :act),Declare(protag)}
Rigid constants:
Role of (ag)=roleName,
Topic=p, Implies(p, q) (both boolean)

Simple fluent constants:
Turn=roleName,
Premise(protag , q),Sanctioned(ag) (both boolean),

Statically determined fluent constants (boolean):
Pow(ag , act),Permitted(ag , act),
Obliged(ag , act),Accepts(protag , q)

Causal laws:
inertial c for every simple fluent constant c

agents communicating remotely over a communication chan-
nel). Second, in addition to distinguishing between (practi-
cally) possible actions and institutional powers, we specify
the permissions, obligations and sanctions associated with
the participants of the argumentation protocols. Finally,
even though we depart from Brewka’s reconstruction in the
aforementioned points, our version maintains the feature of
(immediately) objecting to invalid actions.

5.2 Specification of RTFD* inC+

We present an action description DRTFD∗
that expresses the

specification of the social constraints of an argumentation
protocol RTFD*. Table 1 shows a subset of the causal laws
and a subset of the action signature of DRTFD∗

. We will
call ‘pro’ the agent that occupies the role of the proponent,
‘opp’ the agent that occupies the role of the opponent and
‘det’ the agent that occupies the role of the determiner.

In C+ predicates and constants start with an upper-case
letter and variables start with a lower-case letter. Variables
are assumed to be universally quantified unless otherwise
indicated. In the following analysis, terms of the form ag :act
are used as action symbols representing the performance of
action act by agent ag . This is valid C+ syntax but, because
of restrictions in the input language of Ccalc we have to
modify this representation slightly for input to the Ccalc
implementation. This is a minor point of detail and does
not affect the semantics of DRTFD∗

.

5.3 Social Constraints

5.3.1 Institutionalised power and valid actions
According to our specification of RTFD*, the proponent and
opponent are empowered to perform actions in turn, and the
determiner is empowered to declare the winner, in specified
circumstances, when the exchange is complete. Timeout
events initiate and terminate the powers of the participants
of the argumentation; we will discuss their representation
presently.

The actions that the participants may perform are clas-
sified as ‘valid’ as described in section 3.1.1—that is, an

action is valid if and only if the agent that performs the ac-
tion has the institutional power to do so. We have chosen
not to include a constant ‘valid’ in the action signature of
DRTFD∗

, however. Valid actions are represented implicitly;
institutional powers are represented explicitly.

We represent the institutional powers with the use of stat-
ically determined fluents of the form Pow(ag , act) defined by
means of static laws. For example, the power of an agent to
retract a proposition (or a default rule) is defined as follows:

caused Pow(protag ,Retract(q)) if Active ∧
(Turn=Role of (protag)) ∧ Premise(protag , q)

(7)

Here protag is a variable that ranges over the two protag-
onists, proponent and opponent, and q is a variable that
ranges over the formulas (propositions and default rules)
that the two protagonists may claim, retract, deny, and so
on. We assume that a finite number of such formulas can be
identified and specified at the outset. This is necessary for
implementation in C+ and the Ccalc system, though not
necessary in other formalisms.

Constraint (7) states that an agent protag is empowered to
retract a proposition (or a default rule) q when: (i) the pro-
tocol is currently active, (ii) it is the agent protag ’s turn to
‘speak’ (values of the Turn fluent constant are role names—
see Table 1), and (iii) the agent protag currently accepts q
as one of its (explicit) premises. The Active simple fluent
constant is initially false and becomes true when the pro-
ponent performs the first valid claim about the topic of the
argumentation, that is, when the protocol commences.

The closed-world statement that institutional powers do
not hold unless defined by a suitable static law is expressed
by a constraint of the following form:

default ¬Pow(ag , act) (8)

Here ag is a variable that ranges over all three participants,
proponent, opponent, and determiner, and act is a variable
that ranges over all the acts that can be performed by any
of the participant agents during the argumentation.

The question of whether an agent is permitted to ‘speak’
when it is not currently empowered to speak, or whether the
implementation makes it practically possible for the agent
to speak when it is not empowered to speak are separate
elements of the system specification. They will be considered
in separate sub-sections later.

It is a feature of Brewka’s reconstruction of RTFD that
agents may object to other agents’ actions. So suppose that
agent (proponent or opponent) ag has retracted q and now it
is the turn of agent ag′ to ‘speak’. One of the moves available
to ag′ is to object to ag’s retraction of q. This move is always
available but the objection is only effective in undoing the
effects of the retraction when ag′ is empowered to object.
Again, the question of whether ag′ is permitted to object or
practically able to object when not empowered to do so is
a separate question to be considered at other levels of the
specification.

When is agent ag′ empowered to object to an action act
performed by an agent ag? When the last action in the pro-
tocol was ag’s performance of act but ag was not empowered
to perform act at that time. There are several ways to ex-
press this in C+, of which the simplest is as follows:

ag :act causes Pow(ag ′,Object(ag :act)) if

Active ∧ (ag 6= ag ′) ∧ ¬Pow(ag , act)
(9)

Here ag and ag′ are variables ranging over the three partici-
pants. Notice that the formulation (9) allows for objections,
objections to objections, objections to objections to objec-
tions, and so on. There is no particular difficulty in accom-
modating nested objections of this kind if we wish but we
can also follow Brewka and eliminate them by replacing the
general rule schema (9) by the relevant instances.

Strictly speaking, formulation (9) does not conform to the
syntax of the C+ language because a statically determined
fluent constant, Pow(. . .), appears in the head of a dynamic
law, that is, law (9). In the actual implementation of the
protocol (see Section 5.5) we use inertial simple fluent con-
stants to represent the power to object and statically deter-
mined fluent constants to represent the power to perform
any other action. This is another minor point of detail that
does not affect the semantics of DRTFD∗

.
In the formulation presented so far, an agent ag′ is em-

powered to object to a retraction of q by ag either if ag has
just spoken out of turn or if ag has retracted a formula q
that does not hold as a premise. We can represent various
other alternatives. For example:

ag :Retract(q) causes Pow(ag ′,Object(ag :Retract(q))) if

Active ∧ (ag 6= ag ′) ∧
Premise(ag , q) ∧ ¬Pow(ag ,Retract(q))

(10)

In more complicated examples it may be useful to break
down the classification of ‘valid’ actions into smaller compo-
nents, distinguishing for example between well-formed (or
‘proper’) actions and not well-formed (or ‘improper’) ac-
tions. For instance, the retraction of a premise q by an
agent ag could be said to be well-formed if and only if q is
one of the premises of agent q. We are currently trying to
devise a more refined classification along these lines.

An interesting feature of the protocol is that the retraction
of a premise q by an agent can be effective even if that agent
is not empowered to retract q. So we have (for protag either
proponent or opponent):

protag :Retract(q) causes ¬Premise(protag , q) (11)

In other words, a retraction by either of the protagonists
always has an effect. It is just that a subsequent objection
by another participant may undo the effect of the retraction.
It will undo the retraction if the objection is made by an
agent empowered to object, but not otherwise.

Objecting to an invalid action (whilst having the power to
do so) ‘cancels’ the effects of the invalid action. In the ex-
ample, a valid objection re-instates the previously retracted
premise:

ag :Object(protag :Retract(q)) causes Premise(protag , q) if

Pow(ag ,Object(protag :Retract(q)))

(12)

This is one possible formulation. There are other ways of
looking at it—for instance, one may prefer to say that all
agents have the power to retract (at least, to make well-
formed retractions) whether it is their turn to speak or not,
but in certain circumstances, including speaking out of turn,
that retraction will create a power of the opposing agent to
object, and thereby to undo the retraction.

Which is the better formulation? Both can be expressed in
the framework, and to a large extent it is a matter of taste.

Premise(Pro,Topic), Premise(Opp,Topic),
Accepts(Pro,Topic), Accepts(Opp,Topic),

Pow(Pro,Claim(p)), Pow(Pro,Concede(Topic)),
Pow(Pro,Retract(Topic)),

Pow(Pro,Deny(Topic))

Opp:
Retract(Topic)

Premise(Pro, Topic),
Accepts(Pro,Topic),
Pow(Pro, Claim(p)),

Pow(Pro, Retract(Topic)),
Pow(Pro, Object(Opp:Retract(Topic)))

Pro:Object(Opp:Retract(Topic))

Timeout

Premise(Pro, Topic), Premise(Opp,Topic),
Accepts(Pro,Topic), Accepts(Opp,Topic),

Pow(Det, Declare(Pro))

Timeout

Premise(Pro, Topic),
Accepts(Pro,Topic),

Pow(Det, Declare(Pro)),
Pow(Det, Declare(Opp)),

Pow(Pro, Object(Opp:Retract(Topic)))

Pro:Object(Opp:
Retract(Topic))

Figure 1: Objecting to an Invalid Retraction.

In this example, we might guess that the alternatives are
equivalent, in the sense that they produce protocols that al-
ways have the same outcome. This is a hypothesis that can
be tested. One aim of the work presented here is to pro-
vide computational tools to support the automated testing
of such hypotheses.

The other actions of the protocol—claiming, conceding
and denying propositions and default rules, and declaring
the winner—can be formulated in similar fashion. Deadlines
can be treated by means of Timeout action constants which
simply switch the value of the Turn fluent.

Figure 1 shows a fragment of the transition system de-
fined by DRTFD∗

. It is worth noting, in this example, the
difference between objecting and not objecting to an invalid
retraction. In the first case, the sequences of actions Retract ,
Object ,Timeout and Retract ,Timeout ,Object lead to a state
where the determiner is only empowered to declare the pro-
ponent as the winner (because both protagonists accept the
topic of the argumentation) whereas in the second case, the
sequence of actions Retract ,Timeout leads to a state where
the determiner is empowered to declare either the proponent
or the opponent as the winner (because only the proponent
accepts the topic of the argumentation). In this example,
the timeout event signals the end of the disputation and
empowers the determiner to declare the winner.

5.3.2 Permitted Actions
For the sake of a simple example for illustrative purposes,
let us suppose that an argumentation protocol forbids the
proponent and opponent from retracting a proposition (or
a default) even when they are empowered to do so. Apart
from this, each agent is permitted to perform any action it
is empowered to perform:

caused Permitted(ag , act) if

Pow(ag , act) ∧ (act 6= Retract(q))
(13)

default ¬Permitted(ag , act) (14)

Constraint (13) states that retracting propositions (or de-
faults) is considered ‘unacceptable’ according to this speci-
fication of RTFD*.

Obligations can also be associated with any of the agents,
though in this simple example we associate them only with
the determiner. At the end of the disputation (as signalled
by a timeout), if both protagonists have accepted the topic
of the argumentation, the determiner is only empowered to

declare the proponent as the winner, and is obliged to do so:

caused Obliged(Det ,Declare(Pro)) if

¬FinalState ∧Accepts(Pro,Topic) ∧
Accepts(Opp,Topic) ∧ (Turn=Determiner)

(15)

The FinalState simple fluent constant becomes true either
when the determiner declares the winner of the argumenta-
tion (having the power to do so) or when the last timeout
takes place thus signalling the end of the protocol.

Should it happen that at the end of the argumentation the
proponent no longer accepts the topic of the argumentation,
the determiner is only empowered to declare the opponent
as the winner, and moreover is obliged to do so:

caused Obliged(Det ,Declare(Opp)) if

¬FinalState ∧ ¬Accepts(Pro,Topic) ∧
(Turn=Determiner)

(16)

The closed-world statement about obligations is expressed
by a constraint of the following form:

default ¬Obliged(ag , act) (17)

There are a number of additional cases where the deter-
miner is empowered to declare the winner either way, though
there may be an obligation on it to declare one way rather
than the other. We describe these next.

5.3.3 Enforcement Policies
Since (for the sake of an example) we are supposing that re-
tractions, valid or not, are never permitted, a protagonist is
sanctioned whenever it retracts a proposition (or a default):

protag :Retract(q) causes Sanctioned(protag) if

¬Permitted(protag ,Retract(q))
(18)

The penalty that a sanctioned proponent or opponent has
to face (for the sake of the example) is given in terms of the
determiner’s obligations. If at the close of the disputation
the proponent still accepts the topic but the opponent does
not, the determiner is obliged to declare as the winner the
proponent, provided that the proponent did not perform
any non-permitted actions (and the opponent did perform
non-permitted actions). In other words, the penalty the op-
ponent pays for its non-permitted actions is that it will not
win an unresolved dispute if the proponent does not per-
form forbidden actions (and the determiner complies with
its obligations):

caused Obliged(Det ,Declare(Pro)) if

¬FinalState ∧ (Turn=Determiner) ∧
Accepts(Pro,Topic) ∧ ¬Accepts(Opp,Topic) ∧
¬Sanctioned(Pro) ∧ Sanctioned(Opp)

(19)

A similar obligation can be imposed on the determiner to
deal with the case where the proponent is sanctioned and
the opponent is not. In the case where both proponent and
opponent are sanctioned, the determiner is empowered to
declare either of them as the winner but is not obliged to
declare one way rather than the other.

What if the determiner fails to fulfil its obligations? What
sanctions are then enforced? There are a number of possi-
bilities. For example, we might specify that in such a case
the determiner is disqualified from acting as a determiner in
future argumentations, for a specified time period perhaps.

5.3.4 Additional Considerations
This section briefly describes our formalisation of the accep-
tance of a proposition and of the ‘silence implies consent’
principle. Fluent constants of the form Premise(ag , q) rep-
resent that q is one of agent ag’s explicitly held premises,
while fluent constants of the form Accepts(ag , q) are used
to represent that q follows, in the logic of disputation, from
the explicit premises held by agent ag. For the purposes of
the simple experiments we describe in later sections, it is
easy to code up the relevant fragments of the logic of dis-
putation as C+ rules that statically determine the Accepts
constants. For example, the following constraint states that
an agent accepts all (classical) logical implications of each
of its premises.

caused Accepts(protag , q) if

Premise(protag , p) ∧ Implies(p, q)
(20)

The Implies here are simply suitably chosen rigid constants.
In a similar manner, we specify the acceptance of proposi-
tions as a result of the conjunctions of an agent’s premises
and of premises regarding default rules.

Clearly, this method works only for simple examples and
is not a general solution to the incorporation of a logic of
disputation in the specification of argumentation protocols.
Is there a general solution? We take it that the choice of pri-
oritised default logic is not an essential feature of Brewka’s
reconstruction, and could just as well be replaced by an-
other formalism with similar properties. The C+ language
is based on a general nonmonotonic reasoning formalism
(‘nonmonotonic causal theories’ [6]). So one general solu-
tion is to replace default rules expressed as formulas of (pri-
oritised) default logic by default rules expressed as formulas
of ‘nonmonotonic causal theories’. These in turn can triv-
ially be coded as static rules of the language C+. But what
if a specific default reasoning mechanism is required to be
used as the logic of disputation in an argumentation proto-
col? We do not know of any method by which this could be
incorporated in C+, or in the Ccalc implementation.

In order to incorporate the ‘silence implies consent’ prin-
ciple in our specification of RTFD*, we need to keep track
of the actions of the agents. More precisely, it is neces-
sary to record all the retract and deny actions performed by
the proponent and opponent. This can be done by intro-
ducing new fluent constants: ActionHappened , that record
the retract and deny actions and S Premise, that express
a premise that has been created due to the ‘silence implies
consent’ principle. The S Premise constants are statically
determined as follows:

caused S Premise(protag , q) if

Premise(protag ′, q) ∧ (protag 6= protag ′) ∧
¬ActionHappened(protag ,Deny(q)) ∧
¬ActionHappened(protag ,Retract(q))

(21)

The definition of the Accepts constants (see, for example,
constraint (20)) needs to be (trivially) modified in order to
take into account the premises created due to the ‘silence
implies consent’ principle.

Notice that using fluent constants to represent even a par-
tial history of a system’s execution and incorporating this as
part of a state description runs counter to the spirit of tran-
sition systems (and it increases the computational complex-
ity of queries on this transition system very considerably).

Generally, there are limits on what can be formulated us-
ing transition systems alone, without reference to execution
paths (histories). However, further discussion of alternative
representation schemes is beyond the scope of this paper.

5.4 Social States
The C+ action description DRTFD∗

defines a transition sys-
tem. We may prove various properties of this transition
system. For example:

Proposition 1. The transition system that is defined by
the presented specification of RTFD* has no state in which
the determiner is obliged to declare the proponent as the
winner while the proponent does not accept the topic of the
argumentation.

Proof. Assume that s ⊇ {Obliged(Det ,Declare(Pro)),
¬Accepts(Pro,Topic)} is a state of the transition system de-

fined by DRTFD∗
. Since s is a state of the transition system

defined by DRTFD∗
, s is an interpretation of σrf that satis-

fies G → F for every static law of the form ‘caused F if G’
in DRTFD∗

. Given the static law (17), the only laws that
make true the Obliged(Det ,Declare(Pro)) fluent constant
are static laws (15) and (19). Both of these laws require,
amongst other conditions, that the Accepts(Pro,Topic) flu-
ent constant is true. However, according to our initial as-
sumption s ⊇{¬Accepts(Pro,Topic)}. Therefore, s is not a

state of the transition system defined by DRTFD∗
.

5.5 Execution of RTFD*
In order to perform computational experiments with Ccalc,
we have to choose a concrete version of RTFD* with specific
values for parameters such as deadlines, number of turns for
each participant, and so on. We chose the following. (Other
choices could of course have been made, and the experiments
repeated for those.) First, we suppose that at most two ac-
tions are physically possible between two consecutive time-
out events. Assume, for example, that only two messages
can be exchanged in the given communication channel in the
interval defined by any two consecutive timeout events. Sec-
ond, to impose a limit on the length of each argumentation,
we suppose that each agent has three turns to ‘speak’—the
disputation commences with the proponent’s turn and fin-
ishes with the opponent’s turn. Then it is the determiner’s
turn to declare the winner. Third, we assume that exactly
one action takes place at each state transition (for example,
it is not possible to perform concurrent actions). These extra
constraints on the argumentation protocol allow us to deter-
mine the maximum number of transitions in any complete
path of the transition system defined by DRTFD∗

. This is
necessary for the submission of planning queries to Ccalc.
With the assumptions identified above the maximum num-
ber of transitions in a complete ‘run’ of this version of the
argumentation protocol is twenty-one.

To test our formalisation of RTFD* we performed a num-
ber of queries with Ccalc. The C+ specification of the
chosen version of the argumentation protocol is translated
into the input language of Ccalc2. The computational ex-
periments were based on the scenario used by Brewka [3,

2See [6] for details on the syntax of the input language of
Ccalc. For consistency reasons, we express the results of
the queries in the notation that was employed (in this paper)
to represent the social constraints of RTFD*.

pp.274–275] to illustrate his reconstruction of RTFD. This
scenario concerns a legal dispute taken from US law: the
proponent claims that its security interest in a particular
ship is ‘perfected’ and the opponent denies this. Brewka’s
scenario includes argumentation about the priority of (the
employed) default rules. Since our formalisation does not
accommodate the prioritisation of default rules, this feature
of the example was taken out. The formalisation that we
tested includes five propositions and a default rule, and the
topic of the argumentation is the Perfected proposition.

Query 1. We are in a state where the determiner is obliged
to declare the proponent as the winner of the argumentation.
In this state, may the determiner declare the opponent as
the winner of the argumentation?

Ccalc determines that the Det :Declare(Opp) action is
executable. Moreover, the resulting state holds the following
information:

Winner(Opp); Obliged(Det, Declare(Pro));

Pow(Pro, Object(Det:Declare(Opp))

In the resulting state the winner of the argumentation is
the opponent (see the Winner fluent constant). The obli-
gation to declare the proponent as the winner of the dis-
putation is due to either constraint (15) or constraint (19).
This obligation is not discharged at the resulting state of the
solution of this query because the determiner’s declaration
was invalid. Recall that a condition of both constraints (15)
and (19) is the negation of the FinalState fluent constant.
This constant becomes true when either the determiner per-
forms a valid declaration or the final timeout takes place. If
the determiner performed a valid declaration, then it would
have made the FinalState constant true and, therefore, it
would have discharged its obligation (the value of the re-
maining conditions of laws (15) and (19) is the same in the
initial and resulting states of the query). In the resulting
state the proponent is empowered to object to the invalid
declaration—if it does so, the winner will no longer be the
opponent.

Query 2. Given the initial state of the argumentation
protocol, find the shortest path (if any) that ends in a state
where some agent is empowered to object to a retracted
proposition (or default).

Ccalc finds the following solution (sequence of transi-
tions):

Pro:Claim(Perfected); Timeout ; Pro:Retract(Perfected)

The proponent’s retraction is invalid because after the
first timeout only the opponent is empowered to act. In
other words, the value of Pow(Pro,Retract(Perfected)) is
false at the penultimate state of the solution of the query
because Turn= Opponent (see constraint (7)). Notice that,
although invalid, the proponent’s retraction terminates its
premise about Perfected that was earlier created by the ac-
tion Pro:Claim(Perfected). The premise was terminated be-
cause of constraint (11).

Query 3. Given the initial state of the argumentation
protocol, is it possible to reach a state, within twenty-one
transitions, where the determiner is obliged to declare the
proponent as the winner while the proponent does not accept
the topic of the argumentation?

Ccalc finds no solution within twenty-one transitions.
Since there is no solution within the maximum number of
transitions, the determiner will never be obliged to declare

the proponent as the winner while it (the proponent) does
not accept the topic of the argumentation. The result of
this query is consistent with Proposition 1.

6. DISCUSSION
Our specification of open agent systems was influenced by
the work on artificial social systems [12]. The definition
of normative systems [12, Definition 4.2] is similar to our
definition of open agent systems. The definition of permit-
ted actions in the artificial social systems approach requires
that: (i) every agent knows what actions it is allowed to
perform, and (ii) every allowed action is physically possi-
ble for each agent. Our definition of institutional powers,
permissions and obligations does not require any of the two
aforementioned properties.

The work on commitment protocols in MAS [18] bears
many similarities to our work. Yolum and Singh formalise a
set of operations on ‘commitments’ in the Event Calculus,
employing an Event Calculus planner to facilitate the plan-
ning of agents that execute commitment protocols. We have
also used versions of the Event Calculus for similar purposes
(see, for example, [1]) though in this paper we have chosen
to present our use of the C+ formalism.

Normative rules in e-institutions [5], like our specification
of social constraints, provide an account of the obligations
and sanctions of the members of open agent systems. Unlike
social constraints, however, normative rules in [5] deal only
with the communicative actions of the agents, and not with
their physical actions.

Generally, work on the specification of open agent systems
does not explicitly represent the institutional powers of the
member agents. This point is the key difference of our work
from related work in the literature: our specification of the
social constraints explicitly represents the institutional pow-
ers of the agents, differentiates between institutional power,
permission, physical capability and sanction, and employs
formalisms with clear routes to implementation to provide
a declarative representation of these concepts.

In principle, the kind of specifications presented in this pa-
per could also be expressed in other temporal reasoning for-
malisms. The C+ language, however, has a number of im-
portant features that have led us to choose it as the basis for
further developments. First, it is a comparatively expressive
formalism with fine control (using ‘inertial’ and other decla-
rations) for specifying default persistence of fluent constants.
The availability of static laws moreover means, amongst
other things, that complex specifications can be given struc-
ture. For example, most of the rules defining Pow(. . .) con-
stants in this paper can be expressed as static laws with
simple conjunctions as their conditions. In larger examples,
as the conditions of such rules become increasingly complex,
additional structure can be provided by introducing suitably
chosen intermediate concepts, themselves defined by means
of static laws. This is important if large specifications are to
be undertaken. Second, besides its semantics through trans-
lation to a nonmonotonic ‘causal theory’ [6], a C+ action
description has an explicit semantics in terms of transition
systems. This is important because it provides a link to a
wide range of other formalisms based on transition systems.
This link is being exploited, for example, in an extended
form of C+ that we have under development: the (C+)++

language [16] includes direct support for (a version of) the
‘counts as’ relation for actions [11] and a treatment of per-

mitted/forbidden states, transitions and paths. We have not
employed the (C+)++ language in this paper partly because
space prevents the presentation of its additional features and
partly because the RTFD* protocol is too simple to make
much use of them.

The language C+ (and its derivative (C+)++) also has
some important limitations. Most obviously, from a repre-
sentational point of view, the language inherits the limita-
tions of transition systems, in particular that the executable
actions (transitions) in any given state s of the system, and
their effects, can depend only on the state s and not on the
path or history by which state s was reached. (Unless of
course we encode the entire history in every state s—which
can always be done but which does not produce a transition
system representation as properly understood.) As noted in
the text, in the case of the RTFD* protocol we were able
to overcome this limitation by recording a small fragment
of the history using the ActionHappened fluent constants
to record past events. In other protocols where the moves
available to a participant might depend on the entire his-
tory of the protocol so far (a participant can object to any
of the actions of his opponent, for example, not just the im-
mediately preceding one), the limitations of the transition
systems model would be much more awkward to overcome.
From the point of view of implementation, the Ccalc en-
vironment provides an immediate and convenient means of
implementing C+ action descriptions. The execution of the
RTFD* specification, however, confirmed our previous expe-
rience regarding Ccalc’s efficiency, and in particular that it
does not provide a practical means for supporting run-time
(‘on-line’) activities3. It is possible to identify several ways
to optimise its computation (see [2]), and of course Ccalc is
not the only means by which C+ action descriptions could
be executed. The Ccalc environment moreover does not
provide any tracing or explanatory facilities. Clearly a nat-
ural explanation of why, for example, a given action was
or was not valid in some given circumstance would be an
invaluable feature for the kinds of applications we have in
mind. These are directions for future research.

Finally, we outline two additional directions for further
work. First, we need to extend our specification in order to
cater for more complex normative relations such as duties
and rights. Second, we are seeking to develop a more refined
classification of ‘valid’ actions using a standardised vocabu-
lary of terms such as ‘proper’, ‘in order’ and ‘void’. Some
suggestions along these lines can be found in [13].

7. ACKNOWLEDGEMENTS
This work has been undertaken in the context of the EU-
funded ALFEBIITE Project (IST-1999-10298). We would
also like to thank Joohyung Lee for his suggestions regarding
the C+ language and Ccalc.

8. REFERENCES
[1] A. Artikis, J. Pitt, and M. Sergot. Animated

specifications of computational societies. In
C. Castelfranchi and L. Johnson, editors, Proceedings
of Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 1053–1062. ACM, 2002.

3Queries were computed in 40 seconds on a Pentium IV
2GHz, 1GB RAM computer running Ccalc v.2.0b8.3.

[2] A. Artikis, M. Sergot, and J. Pitt. Specifying
electronic societies with the Causal Calculator. In
Proceedings of Workshop on Agent-Oriented Software
Engineering III (AOSE), LNCS 2585. Springer, 2003.

[3] G. Brewka. Dynamic argument systems: A formal
model of argumentation processes based on situation
calculus. Journal of Logic and Computation,
11(2):257–282, 2001.

[4] G. Brewka and T. Eiter. Prioritizing default logic. In
Festschrift 60th Anniversary of W. Bibel. Kluwer,
1998.

[5] M. Esteva, J. Rodriguez-Aguilar, C. Sierra, P. Garcia,
and J. Arcos. On the formal specifications of
electronic institutions. In Agent Mediated Electronic
Commerce, LNAI 1991. Springer, 2001.

[6] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and
H. Turner. Nonmonotonic causal theories. Artificial
Intelligence, to appear in 2003.
http://www.cs.utexas.edu/users/vl/papers/nmct.ps.

[7] E. Giunchiglia, J. Lee, V. Lifschitz, and H. Turner.
Causal laws and multi-valued fluents. In Proceedings
of the Workshop on Nonmonotonic Reasoning, Action,
and Change, 2001.

[8] E. Giunchiglia and V. Lifschitz. An action language
based on causal explanation: Preliminary report. In
Proceedings of AAAI Conference, pages 623–630.
AAAI Press/The MIT Press, 1998.

[9] C. Hewitt. Open information systems semantics for
distributed artificial intelligence. Artificial
Intelligence, 47:79–106, 1991.

[10] A. Jones and M. Sergot. On the characterisation of
law and computer systems: The normative systems
perspective. In Deontic Logic in Computer Science:
Normative System Specification, pages 275–307. J.
Wiley and Sons, 1993.

[11] A. Jones and M. Sergot. A formal characterisation of
institutionalised power. Journal of the IGPL,
4(3):429–445, 1996.

[12] Y. Moses and M. Tennenholtz. Artificial social
systems. Computers and Artificial Intelligence,
14(6):533–562, 1995.

[13] H. Prakken. Formalising Robert’s rules of order.
Technical Report 12, GMD – German National
Research Center for Information Technology, 1998.

[14] R. Reiter. Knowledge in Action: Logical Foundations
for Describing and Implementing Dynamical Systems.
The MIT Press, 2001.

[15] N. Rescher. Dialectics: A Controversy-Oriented
Approach to the Theory of Knowledge. State
University of New York Press, 1977.

[16] M. Sergot. The language (C/C+)++. In J. Pitt,
editor, Deliverable D6(2) of ALFEBIITE EU-Project
(IST-1999-10298), pages 55–84, 2002.

[17] R. Smith and R. Davis. Distributed problem solving:
The contract-net approach. In Proceedings of
Conference of Canadian Society for Computational
Studies of Intelligence, pages 217–236, 1978.

[18] P. Yolum and M. Singh. Flexible protocol specification
and execution: Applying event calculus planning using
commitments. In C. Castelfranchi and L. Johnson,
editors, Proceedings of AAMAS. ACM, 2002.

