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Abstract. We describe an application of Abductive Logic Programming
(ALP) to the analysis of an important class of DNA microarray exper-
iments. We develop an ALP theory that provides a simple and general
model of how gene interactions can cause changes in observable expres-
sion levels of genes. Input to the procedure are the observed microar-
ray results; output are hypotheses about possible gene interactions that
explain the observed effects. We apply and evaluate our approach on
microarray experiments on M.tuberculosis and S.cerevisiae.

1 Introduction

The focus in bioinformatics has shifted from the analysis of genome sequences
to functional genomics, which seeks to ascribe biological function to genes and
understand gene interactions. An important tool in these studies is DNA mi-
croarray technology, which enables simultaneous measurement of expression lev-
els of thousands of genes. A common form of experiment aims at identifying
genes whose expression is affected by environmental conditions or by changes in
expression of other genes. This information will give clues about gene interac-
tions and unraveling pathways that define the cell’s responses to various stimuli.
Datasets are too large and complex for manual analysis. Raw data are analysed
using statistical techniques to define significantly differentially expressed genes.
Methods for further interpretation of the results, in terms of gene interactions,
remain largely undeveloped, however, though Bayesian Networks have recently
attracted attention (e.g. [1]).

We formulate the analysis of this type of microarray data as a problem of
abduction, that is, inference from observable effects, i.e. the microarray data,
to possible causes, hypotheses about possible gene interactions. We construct
an Abductive Logic Program (ALP) theory which provides a simple, general
model of how gene interactions can cause changes in observable expression levels
of genes—essentially a formalisation of the (usually implicit) reasoning used by
biologists designing microarray experiments. Adjustable parameters allow us to
constrain the search for hypotheses and apply the methods to large data sets.
A novel feature of our method is the ability to deal with observations in many
separate experiments together.
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The model is validated by comparing the inferred hypotheses against known
gene interactions and by assessing the biological plausibility of the hypotheses
where detailed information is lacking. We use microarray data sets on M.tuberculosis
and S.cerevisiae (yeast). Section 3 presents an example of inferences that re-
discover part of the M. tuberculosis heat shock response pathway.

There are many issues and other experimental methods in the search for
gene regulation mechanisms. To our knowledge, inference of gene networks from
microarray data has not previously been formulated as a problem of abduction,
though abduction has been used in [4] to construct a genetic network from
classical genetics experiments. The nature of the data, the hypotheses and the
model itself, differ from what is addressed here.

2 The Model

Input to the procedure is a set of observations expressed as logic assertions of
the form increases expression(Expt, Gene) and reduces expression(Expt, Gene).
They are obtained by statistical analysis of the raw microarray data to determine
the significance of measured differences of expression levels of each gene [3].

The output is a set of abducible relations of two different types: induces(Gene1,Gene2)
and inhibits(Gene1,Gene2) for the hypothesis that Gene1 induces the expression
of Gene2, or inhibits it, respectively. Each individual experiment provides partial
clues about possible induces/inhibits relations between genes.

The ALP Framework

The modelling framework we employ is Abductive Logic Programming (ALP) [5],
an extension of logic programming that allows declarative logical representations
of the problem domain and supports abductive reasoning. A theory is represented
by a triple (P, A, IC ), where P is a logic program, A a set of abducible predicates
and IC a set of classical logic formulae, the integrity constraints.

An abductive explanation for a query Q is a set ∆ of ground abducible atoms
on the predicates A such that: P ∪∆ |=LP Q, P ∪∆ is consistent, P ∪∆ |=LP IC ,
where |=LP denotes a standard entailment relation of logic programming.

The integrity constraints IC impose additional validity requirements on the
hypotheses ∆. They are modularly stated in the theory, in addition to the basic
model in P . They augment any partial information on the abducible predicates
or impose other constraints on the abductively generated explanations. We form
integrity constraints (IC) of three different types:
(1) self-consistency: For example, a gene cannot both inhibit and induce the
same gene at the same time (under the same conditions).
(2) consistency with background information: Background knowledge, such as
known inhibitor genes can also be expressed in the form of IC.
(3) experimental consistency: When analysing the results of an experiment E in
which a gene G is mutated, we may want to consider as ‘intermediary genes’ (ex-
plained in section 2) only genes whose expression is also observed to be affected
in experiment E.

Gene interactions



Top-level Rules The program P of the ALP theory represents how gene in-
teractions can increase or reduce the expression of genes, as observed in the
experiments. An assumption is that such observed variations in gene expression
should be attributed directly or indirectly to the variations (gene mutations or
environmental stress), carried out in the experiment(s) investigated.

For example: if an experiment E knocks out a gene G, and G inhibits gene
X, then E will show an increased expression of X — subject to some possible
exceptions. This rule is expressed in logic programming notation as follows:

increases expression(E, X) ← (1)
knocks out(E, G), inhibits(G, X),
not incr affected by other gene(E,G,X),
not incr affected by EnvFact(E, X).

E is a variable that ranges over names of experiments and G, X are variables
that represent genes. increases expression(E,X) is observational data from the
experiment E, inhibits(G,X) is part of the unknown information to be abduced,
and knocks out(E,G) provides background knowledge about the experiment E.

The last two conditions express possible exceptions that deal with the possi-
bility that the difference in gene expression can be attributed to a factor other
than the mutated gene: e.g. (a) a gene other than G, or (b) an environmental
factor. Here, not is the logic programming construct ‘negation as failure’, used
to express that (1) is a default general rule subject to the stated exceptions.

Similarly, there is a rule that deals with the cases of reduced expression
of G in experiment E. Similar rules cover the cases of over-expressing G and
further rules deal with the various combinations of gene mutation and changes
in environmental conditions according to our classification of experiment types.

Rule (1) only accounts for direct relationships between the mutated gene and
the differentially expressed one. These relationships could be indirect: Inference
of intermediate steps of interaction is achieved by further recursive rules:

increases expression(E, X) ← (2)
mutates(E, G), intermediary gene(E, Gx, G),
reduces expression(E, Gx), inhibits(Gx, X),
not incr affected by other gene(E,Gx,X),
not incr affected by EnvFact(E, X).

If gene Gx inhibits gene X, and the expression of gene Gx is reduced (directly
or indirectly) by the mutation of gene G in experiment E, then the expression
of X is increased in the experiment E. The relation mutates(E,G) covers both
knock-out and over-expression of gene G in the experiment E.

The Parameters are relations that control the genes taken into account
when searching for hypotheses. In the general case, where every gene is possibly
related to other genes, there may be an exponential number of possible hypothe-
ses. With the parameters we constrain the problem by reducing the search space.
By varying their definition, we can test different possibilities of the model. There
are two parametric relations including intermediary gene/3 in rule (2), as well



as the integrity constraints, which provide another means of constraining the
search space.

3 Application: Heat Shock Response of M. tuberculosis

M. tuberculosis data sets were obtained from our collaborators at the Centre for
Microbiology and Infection, Imperial College London [3] and publicly available
tables from the Schoolnik lab, Stanford University. Observations and inferred
hypotheses are presented as directed graphs using our visualisation tool [2].

Observations from 5 experiments were selected according to a conservatively
chosen significance threshold in the 1st phase statistical analysis. Each experi-
ment knocks out or over-expresses a gene believed to be involved in heat shock
response and known to function as a transcriptional regulator (regulator of ex-
pression of other genes). The two parameters of the model were defined to restrict
attention to possible interactions between 16 genes of known regulatory func-
tion. Analysis of the observations in all experiments together generated a single
hypothesis, shown in graphical form in figure 1, that explained all observations.

Fig. 1. The nodes represent
genes, colour coded accord-
ing to a standard functional
classification. The edges show
the inferred relations between
genes, red for inhibits and
green for induces. Cyclical
edges represent the auto-
regulation relationships ab-
duced.

The resulting hypothesis is in agreement with previous knowledge [3]. The
DnaK operon1 (genes Rv0350–353, on the right of the figure) is controlled by
the positive regulator sigH (Rv3223c) and the negative regulator hspR (Rv0353).
The acr2 operon (genes Rv0249c–251c, at the top left of the figure) is controlled
by the positive regulator sigE (Rv1221) and negative regulator hspR (Rv0353).
The groES/EL genes (Rv3417c–Rv3418c) are under dual negative control by

1 group of genes that reside next to each other on the DNA and are expressed together



hspR (Rv0353) and hrcA (Rv2374c). Known feedback loops are also discovered:
the DnaK operon (Rv0350–353) is negatively regulated via its member Rv0353.

Finally, there is a group of genes whose function in heat shock response is
not clear but are linked in the explanatory hypothesis. Rv0249c and Rv0250c
are both unknown genes, repressed (inhibited) by hspR, both next to Rv0251c
in the chromosome. This could be a real effect, suggesting they are in an operon,
or it could be some artefact due to their place on the chromosome and the way
data is collected. Similarly, Rv0990c and Rv0991c could also be members of an
operon, but isolated with no obvious function in heat shock. Our collaborators
are planning to investigate these hypotheses in a new set of experiments. Further
discussion of our methods and their applications is available in [6].

4 Conclusions
We develop a general method to support the analysis of an important class
of microarray experiments. The novel feature is a simple, general model of how
gene interactions can cause changes in observable expression levels of genes under
differing conditions, and the use of abduction to infer explanatory hypotheses.
This method allows us to infer regulation relations across several experiments.

The declarative and modular nature of this gene interaction model allows
us to experiment easily with variations and new general rules suggested by our
biological collaborators, and to add biological knowledge as it becomes available.
The parameters in the model allow us to constrain the search space of possible
hypotheses and thereby apply the methods to realistically large data sets.

Tests on M. tuberculosis rediscovered part of the heat shock response mech-
anism and suggested further experiments. We are presently engaged in a sys-
tematic exploration of the various possibilities afforded by the model and an
extensive validation against known gene regulation processes in yeast.

We have been able to apply these methods in practice to the analysis of large
data sets. Whatever the biological significance of this technique turns out to be
in the long-term, the model provides a valuable test case for those concerned
with the development of abductive reasoning technology.
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