
DISCRETIONARY OVERRIDING OF ACCESS CONTROL
IN THE PRIVILEGE CALCULUS

Erik Rissanen
SICS
Box 1263
164 29 KISTA
SWEDEN

mirty@sics.se

Babak Sadighi Firozabadi
SICS
Box 1263
164 29 KISTA
SWEDEN

babak@sics.se

Marek Sergot
Department of Computing
Imperial College London
180 Queen’s Gate
London SW7 2BZ
UK

mjs@doc.ic.ac.uk

Abstract We extend a particular access control framework, the Privilege Calculus, with a
possibility to override denied access for increased flexibility in hard to define or
unanticipated situations. We require the overrides to be audited and approved by
appropriate managers. In order to automatically find the authorities who are able
to approve an override, we present an algorithm for authority resolution. We are
able to calculate from the access control policy who can approve an override
without the need for any additional information.

1. Introduction

Traditional access control models either permit access or deny it completely.
There is an implicit assumption that all access needs are known in advance and



that the conditions of those needs can be expressed in machine readable form.
There are many reasons why it is difficult to specify the policy completely in
advance, and therefore the policy will be incomplete. That will cause a conflict
between needs for legitimate access and needs to protect against unauthorised
access. We have in a previous position paper Rissanen et al., 2004 categorised
access needs as follows:

1 Anticipated, allowed and machine encodable: Access situations for which
we can say ahead of time that access should be allowed and for which
we can express the conditions in machine readable form. Ex. “All em-
ployees can read the company newsletter.”

2 Anticipated, denied and machine encodable: Access situations for which
we can say ahead of time that access should be denied and for which we
can express the conditions in machine readable form. Ex. “Non-medical
personnel may not read patient records.”

3 Anticipated, allowed and not machine encodable: Access situations for
which we can say ahead of time that access should be permitted but we
cannot express the conditions in machine readable form. Ex. “In case of
an emergency, any doctor may read the patient’s records.” (We cannot
formally define “an emergency”.)

4 Anticipated, denied and not machine encodable: Access situations for
which we can say ahead of time that access should be denied but we
cannot express the conditions in machine readable form.

5 Unanticipated: Situations that we have forgotten to consider or cannot
predict.

What is needed is some kind of flexibility, which will allow for granting
of access rights retroactively. We suggest as a solution to distinguish between
what a principal can do, what it is permitted to do, and what it is forbidden to
do. The intersection of can and not permitted is what we refer to as possibility-
with-override or (sometimes) ability to override. In our framework which we
present here, the presence of a permission for an access means that the ac-
cess may be performed. The presence of an possibility-with-override, but no
permission for an access means the access may not be performed, but can be
performed if the user explicitly overrides the denial. If there is neither a per-
mission or a possibility-with-override, the access is not permitted and cannot
be done.

In addition to the possibility to override we introduce the notion of authority
resolution, which is an automatic procedure that will, given information about
an override and an access control policy, find who is in a position to audit and
approve the override.



1.1 Related Work

The idea of being able to override denied access is by no means new. Lee
Badger Badger, 1990 describes a formalism for integrity constraints that can
be recovered after an override. Many commercial applications, for instance for
health care, have emergency override in them. There is also more recent work,
which is presented below.

Povey, 2000; Povey, 1999 focus is on guaranteeing system integrity by
means of transactions that can be rolled back.

Gunnar Stevens and Volker Wolf Stevens and Wulf, 2002 have performed
a case study at a steel mill and found practices to grant access rights either
before, during or after an access is performed, which is in line with our ideas.

Jaeger et. al. Jaeger et al., 2002 introduce a concept called access control
spaces. This concept is used primarily for analysing conflicts in access con-
trol policy or to analyse whether a set of assigned permissions and constraints
on possible assignments completely cover all possible assignments. The re-
lation to our work is that access control spaces, which present a partition of
permissions similar to which we use, can be used to eliminate any ‘forgotten’
access possibilities. However, there is nothing access control spaces can do for
those cases where the desired policy cannot be expressed in the given policy
language. Jaeger et. al. in fact suggest the use of access override and audit in
some cases.

Provisional access control Kudo and Hada, 2000, which is included in XACML
OASIS, 2004 in the form of the obligation concept, can be used for instance to
specify different access levels and that an access should be logged.

Our main contribution in this paper is the concept of automatic authority
resolution, which we have not been able to find any previous work on.

2. Extending the Privilege Calculus

Here we present a framework for decentralised management of authorisa-
tions. It is a modified version of the framework presented in Bandmann et al.,
2002; Firozabadi et al., 2001, extended to include possibility-with-override.
We have chosen this particular framework since it provides information about
the source of authorisations.

We want possibility-with-override to be a part of the access control policy,
in contrast to a mechanism outside the policy, since for efficiency of implemen-
tation and administration it should be manageable in similar ways as regular
permissions.

The goals of the original Privilege Calculus were to decentralise access
control management and to differentiate between administrative and access
level authorisations. All authorisations are expressed in the form of delega-
tion certificates and removals are done by revoking certificates. Administrative



rights contained in the certificates dictate which other certificates are consid-
ered valid, as explained below.

The Privilege Calculus is based on the concept of “constrained delegation”,
which means that an administrative right contains constraints on what it applies
to and how it may be delegated further. With these constraints it is possible to
divide up the management of access control at a central level in the organisa-
tion, without the need to micromanage the details. When we developed the
override mechanism, our goal was to use this existing division in the access
control policy to automatically send notifications of overrides to the right peo-
ple in the organisation without the need of any central planning specifically for
handling of the override audits.

The following presents the semantics of the calculus in a very brief manner.
Due to space constraints, for a more thorough understanding, we refer to the
original papers.

2.1 Semantics of the Privilege Calculus

Definition 1.. Let PRIN be the set of principals in the system. Further let
� denote a subsumes relation over PRIN as follows:

p � p if p is an atomic principal and p ∈ PRIN .

p ≺ P if p ∈ P and P ⊆ PRIN ;

P1 � P2 if P2 ⊆ PRIN , and P1 ⊆ P2.

Informally the relation � is used for comparing group membership of prin-
cipals. We assume the existence of the relation, but leave its definition and
management outside the scope of this paper. We have chosen to not include
groups of objects and actions in order to be brief.

Definition 2.. Let I denote a time interval of type [t1, t2], where t1, t2 ∈ R.
We define a subsumes relation between two time intervals as follows:

ti � [t1, t2] if t1 ≤ ti and ti ≤ t2;

[t1, t2] � [t3, t4] if t3 ≤ t1 and t2 ≤ t4.

Definition 3.. Let PRIN , ACT , and OBJ be (disjoint, non-empty) sets
of agents, actions, and objects, respectively. We define the set of privileges Φ
inductively as follows:

perm(s, a, o) :I ∈ Φ, if s � PRIN , a ∈ ACT , and o ∈ OBJ ;

can(s, a, o) :I ∈ Φ, if s � PRIN , a ∈ ACT , and o ∈ OBJ ;



auth(s, φ) :I ∈ Φ, if s � PRIN , and φ ∈ Φ;

auth∗(s, φ) :I ∈ Φ, if s � PRIN , and φ ∈ Φ.

I represents the time interval for which a privilege is valid. Privileges of the
form perm(s, a, o) :I denote access-level permissions. Privileges of the form
can(s, a, o) :I denote access-level possibilities-with-override. Privileges of the
form auth(s, φ) :I and auth∗(s, φ) :I denote management-level authorities, that
is, the right to create the privilege φ. The difference between auth and auth∗ is
explained below.

We call s in the above expressions the subject of the privilege.
Please note that the privilege expressions themselves do not grant any access

rights. Instead they are placed inside authorisation certificates and the validity
of the certificates are calculated based on what management-level authorisa-
tions are present. Thus, the semantics of these expressions are defined by the
following definitions in combination.

Definition 4.. We define the set of declaration certificates Σ+ and the set of
revocation certificates Σ− as:

declares(s, φ, t, id) ∈ Σ+, if s ∈ PRIN , φ ∈ Φ, t ∈ R, and id ∈ N,
where R denotes the real numbers, and N denotes the natural numbers;

revokes(s, id, t) ∈ Σ−, if s ∈ PRIN , id ∈ N, and t ∈ R.

Note that declarations and revocations can only be performed by atomic prin-
cipals and not by groups of principals.

Informally an element declares(s, φ, t, id) ∈ Σ+ means that s claims at
time t that φ is true. The definitions below define when such a declaration is
considered to be valid.

Definition 5.. We define a comparison relation denoted by v between two
privileges as follows:

φ v ψ if:

1 φ = perm(s1, a, o) :I1, ψ = perm(s2, a, o) :I2, s1 � s2 and I1 � I2;

2 φ = can(s1, a, o) :I1, ψ = perm(s2, a, o) :I2, s1 � s2 and I1 � I2;

3 φ = can(s1, a, o) :I1, ψ = can(s2, a, o) :I2, s1 � s2 and I1 � I2;

4 φ = auth(s1, α) :I1, ψ = auth(s2, β) :I2, α v β, s1 � s2 and I1 � I2;

5 φ = auth(s1, α) :I1, ψ = auth∗(s2, β) :I2, α v β, s1 � s2 and I1 � I2;



6 φ = auth∗(s1, α) :I1, ψ = auth∗(s2, β) :I2, α v β, s1 � s2 and I1 �
I2;

7 ψ = auth∗(s1, β) :I2, φ v β

8 φ = auth(s1, α) :I1, ψ = auth∗(s2, β) :I2 if s1 � s2, α v auth∗(s2, β) :I2,
and I1 � I2;

9 φ = auth∗(s1, α) :I1, ψ = auth∗(s2, β) :I2, if s1 � s2, α v auth∗(s2, β) :I2,
and I1 � I2.

These comparisons are used below to make sure that administrators do not
exceed their authorisations when delegating. We can see in 2 that a permis-
sion implies a possibility-with-override, that is, if an administrator can create
a permission, he will also be able to create the weaker privilege of possibility-
with-override for the same object and action.

The auth∗() construct needs some explanation. It is used to give flexibility
for administrators. The authorisation
auth(p, auth(G, perm(G, o, a) :I1) :I2) :I3 means that we permit p to appoint
an administrator from within the group G, who then in turn can create access
permissions for object o and action a for principals within group G. Let us call
this administrator g. p will be limited in that he must appoint an administrator
from G and will not be able to issue the access level permission himself. Also,
p cannot create more than one immediate administrator, that is p will hand the
right to g, who in turn will create the permission to access o. If we instead cre-
ate the authorisation auth(p, auth∗(G, perm(G, o, a) :I1) :I2) :I3, we will give
additional possibilities to p. p will be able to create the access level permission
directly if he chooses to do so, as given by rule 7. He can appoint an adminis-
trator g as previously, as given by rule 8. He can also permit g to delegate the
authority in several steps by appointing intermediary managers chosen fromG.
This allows p to let subordinates organise their own sub-organisations within
G. For instance we could have p delegate to g who will delegate to g ′ who will
in turn create the access level permission. The use of the auth∗() construct is
explained in more detail in Bandmann et al., 2002.

Definition 6.. We define a certificate database to be a tupleD = (SoA,D+,D−),
where SoA ⊂ Φ is a finite set of Source of Authority privileges, D+ ⊂ Σ+ is
a finite set of declaration certificates and D

− ⊂ Σ− is a finite set of revocation
certificates. It is the combined contents of this certificate database that will
decide which accesses are permitted.

We adopt the following constraints on a certificate database.

1 If declares(s1, φ1, t1, id) ∈ D
+, and declares(s2, φ2, t2, id) ∈ D

+,
then s1 = s2, φ1 = φ2, and t1 = t2. This says that D

+ cannot contain
two different certificates with the same id.



2 If declares(s1, φ, t1, id) ∈ D
+ and revokes(s2, id, t2) ∈ D

−, then
s1 = s2 and t1 ≤ t2. This says that a certificate can be revoked only
by its issuer and not before it is declared. In fact, the first restriction can
be relaxed but this introduces the need for extra components which are
omitted here for simplicity.

3 If revokes(s1, id, t1) ∈ D
− and revokes(s2, id, t2) ∈ D

−, then s1 =
s2 and t1 = t2. This says that there cannot be two revocations of the
same declaration certificate in the same database. We adopt this restric-
tion to simplify the database in order to streamline the theory.

Definition 7.. Let ` be the validates relation between a privilege and a
declaration certificate, where

auth(s2, φ2) :I ` declares(s1, φ1, t, id), if s1 � s2, φ1 v φ2 and t � I;

and,

Γ ` d, if Γ ⊆ Φ, and ∃ q ∈ Γ such that q ` d.

Informally this defines the semantics of the administrative permission auth(),
that is, it makes us consider certain declarations to be valid. Also notice that
the auth∗() form does not validate a declaration. auth∗() is only used inside
an auth() expression. We will use the validates relation below to recursively
define which permissions are valid.

Definition 8.. We define the set of effective declaration certificates ED(t) ⊆
D

+ of a database D at a certain time t, as:

ED(t) = {declares(s, p :I, t1, id) ∈ D
+| t � I ∧

revokes(s, id, t2) ∈ D
− → t2 > t}.

Informally, we define that the interval I defines when the authorisation is us-
able.

Definition 9.. Let d1, d2 ∈ D
+, where d1 = declares(s1, φ1, t1, id1) and d2 =

declares(s2, φ2, t2, id2). We define the supports relation SD as follows:

d1 SD d2 if d1 ∈ ED(t2), φ1 ` d2 and t1 < t2.

Informally, we define that a declaration depends on another previous declara-
tion to be valid.

We have modified this definition compared with the presentation in Firoz-
abadi et al., 2001 in that we have added the condition t1 < t2 to prevent cycles



in the support relation. Cycles are not possible in Firozabadi et al., 2001, but
together with the auth∗ form from Bandmann et al., 2002 cycles become pos-
sible unless prevented with this extra constraint. Although cycles are not a
problem in principle, the authority resolution algorithm later on becomes more
complicated to explain for a cyclic graph, so we make this simplification.

Definition 10.. The set of certificate chains CD in a certificate database D
is the transitive closure of SD.

Definition 11.. We define the set of true privilege statements at a time-point
t, in our calculus, by defining function hD : R→ 2Φ as:

hD(t) = {p | p :I ∈ Φ ∧

(p :I ∈ SoA∨

(d1, declares(s, p :I, t2, id)) ∈ CD ∧ declares(s, p :I, t2, id) ∈ ED(t) ∧

SoA ` d1)}.

We also say that a privilege p holds at time-point t when p ∈ hD(t).
Informally, this means that although anybody can make a privilege state-

ment in the form of a declaration certificate, we will not accept the statements
as true unless they can be traced back to the SoA.

2.2 Access Requests

When we receive an access request, which is a tuple in the form of (u, o, a, t),
where u is a principal, o an object, a an action and t is the time of access, we
search among hD(t) for a perm(s, o, a) :I such that u � s and t � I . If there
is such a permission, then the response is “yes”. In case there is no permission,
we search for a can(s, o, a) :I such that u � s and t � I . If there is such an
ability then the response is ‘requires override’. In that case the user would be
presented with the option to override the denied access and the application will
log the access if the users chooses to override. If there is neither a matching
permission nor a possibility-with-override, the response is ‘access denied’.

3. Approval mechanism and authority resolution

When a user performs an override to make an access, the override is logged,
and a message is sent to an appropriate authority for approval. In a large organ-
isation it may not be possible to have a single person or unit which is able to
comprehend or have authority over the whole organisation. We therefore need
to decentralise the responsibility of audit and approval of overrides. We call the
search for an appropriate authority for a given override authority resolution.



3.1 Approval Mechanism Properties

In our earlier paper we identified two properties for an authority resolution
mechanism. The mechanism should be:

Safe: Only legitimate authorities should be notified.

Unobtrusive: Among the legitimate authorities, we should notify those
who are most likely to understand the override and least likely to be
bothered unnecessarily.

The first property is critical, but it is easily defined, as we will show below.
The second property is not critical if we define the approval mechanism appro-
priately and all legitimate authorities are potentially consulted. In that case the
ordering is thus somewhat arbitrary.

Since an approval of an override is in effect a retroactive granting of a per-
mission, the authorities who should be able to approve an override are precisely
those who can create a permission for the access that was overridden. In this
framework they correspond to the subjects of effective certificates who have a
valid support chain from the SoA such that their certificates support the cre-
ation of a permission for the access at the time of the override. So, for an access
override (u, o, a, t) that is approved at time t′, they are all authorisations from
hD(t′)∩ED(t′) of the form auth(s1, perm(s2, o, a) :I2) :I1) such that u � s2,
t � I2 and t′ � I1. In this case s1 would be a legitimate authority.

Since it is possible that there are multiple legitimate authorities for approv-
ing a given override, we would like to contact them in such an order that we
are least likely to bother many authorities.

We note that the access control framework we are using does not contain
negative permissions. We do not wish to introduce negative permissions just
because of the override approval mechanism. Since we view an approval as a
retroactive granting of a permission, in case some authorities approve and some
disapprove, the approvals should have precedence. If all of them disapprove
(or do not care), we view the override as disapproved. With these semantics
we can define an approval mechanism in which the order of authorities notified
does not affect the result.

For ordering the authorities we note that the person who created the possibility-
with-override that made an override possible is a prime candidate to be notified
first, as long as he is a legitimate authority. The rationale is that whoever made
the override possible is best placed to judge whether to approve the override.
The source of authority of a resource is always a legitimate authority, but we
want to keep him last in the notification list since he is the highest authority.
For authorities between the SoA and the lowest level administrators, we can
use the order of their appearance in the chain as a heuristic. In case of parallel
chains we can use an arbitrary ordering or notification in parallel.



3.2 An Algorithm for Authority Resolution

Here we present a simple algorithm that is based on the above discussion.
Input to the algorithm is a performed override and a certificate database.

The algorithm consists of two parts. In the first part we create a reduced
graph from the delegation database. Let Gd be the graph that describes the
delegation database by letting there be a node in Gd for each certificate and
an edge between nodes that correspond to certificates between which there is a
direct support relation. Gd is directed and acyclic. It is acyclic because of the
condition on the time stamps in definition 9 of the access control framework.

Now form the reduced graph Gr by letting there be a node in Gr for each
certificate from hD(t)∩ED(t) which authorises approval of the given override
(as explained earlier). Let there be an edge in Gr between two nodes if there is
a path between the corresponding nodes in Gd. The motivation behind this is
that we want to remove all certificates that do not empower approval (to satisfy
the safety property of the authority resolution), but still keep as much of the
structure of decentralisation as possible (to be able to satisfy the unobtrusive-
ness property).
Gr can be calculated by performing a depth first search on Gd starting only

from the nodes that will be in Gr. When doing the search we need to keep in
each node, n, a lists of nodes, which will be filled with a list of all nodes of
Gr which can be reached from n. Once the search is complete, these lists will
give the edges of Gr.

In the second part of the algorithm we order the authorities by means of a
modified breadth first search on Gr from the bottom going up.

1 R← empty list of sets of principal names
2 for each node n of Gr

3 n.counter ← number of children of n
4 S ← the set nodes for which counter = 0
5 do while S is not empty
6 add the set of subjects of all nodes in S to R
7 Q← S

8 S ← ∅
9 for each q in Q
10 for each parent p of q
11 reduce p.counter with one
12 if p.counter is zero
13 add p to S

Table 1 lists some sample certificates. Figure 1 shows the support relations
among those certificates and illustrates the first part of the algorithm.



Id Issuer Authorisation

1 r auth(b, auth∗(G, perm(G, o, a)))
2 b auth(c, auth(G, perm(G, o, a)))
3 c auth(d, perm(G, o, a))
4 d can(e, o, a)
5 b auth(f, auth∗(G, perm(G, o, a)))
6 f auth(g, auth∗(G, perm(G, o, a)))
7 g auth(h, auth∗(G, perm(G, o, a)))
8 f auth(h, auth∗(G, perm(G, o, a)))
9 h auth(i, perm(G, o, a))
10 i can(e, o, a)

Table 1 Example delegation
certificates. For brevity we
have not included the time in-
tervals. The validity intervals
of all the authorisations are
[1,100] and all of the certifi-
cates are issued at the time
point equal to the id of the cer-
tificate.

Figure 1. Example of the graph reduction step in the authority resolution algorithm. The
graph on the left shows the support relations between the certificates in table 1. Circles represent
certificates that grant administrative authorisations. The rectangles represent certificates that
grant abilities. Thick circles are certificates that grant authority to issue a permission. The
graph to the right shows the reduced graph. Certificate 2 does not support direct granting of
access rights. Certificates 4 and 10 do not represent administrative permissions. The remaining
certificates all permit the granting of access permissions, thus approval.



Figure 2. Example of the authority resolution algorithm. The algorithm works on the reduced
graph from figure 2. Each figure presents the state of the algorithm at each iteration of line 5.
The asterisks represent the set S. The numbers after the colons inside the nodes are the counters.
The lists below the graphs are the accumulated result lists of the algorithm. The final list is the
output of the algorithm. In this case we should notify the users d and i first, and if neither
approve, notify h, g, f, and b in that order. If none of them approves, the override is considered
unauthorised.



Figure 2 illustrates the second part of the algorithm.
The result is an ordered list of sets of authorities to notify. We would send

the notification to all authorities in the first set. As a special case we could
divide this set into those who have issued a relevant possibility-with-override,
and notify them before the others.

In case someone approves the override we do not notify anyone else and the
override is considered to be approved. In case all notified authorities either dis-
approve or take no action, we would notify the next set of authorities from the
list, and so on. If anyone approves, the override is considered to be approved.
If in the end no one has approved the override, we view the override as disap-
proved, and the relevant authorities can take some kind of sanctioning action.
We leave the coordination of the sanctioning outside the scope of this paper.
We can see that the order in which authorities are notified does not affect the
end result.

Properties of the Algorithm. To see that the algorithm terminates, we note
that because a counter is reduced just before it is tested at line 12, a node can be
included in S only once. Because of line 8, S will be cleared in every iteration
of the loop. Since the number of nodes is finite, eventually there will be no
more nodes which can be included in S at line 13, and the loop at line 5 will
terminate.

Define the upper height of a node N as the length of the longest path origi-
nating from N . We can prove by induction on the upper height that every node
of the graph will be included in S.

Theorem:. A node with upper length n will be included in S.
Proof: Any node with upper height 0 will be included in S in lines 1-4. Thus
the theorem is true for n = 0.
Now, assume that the theorem is true for n = k. If a node N has upper height
k + 1, then all its children must have upper height k or less. By our assump-
tion, all those children will be included in S before the algorithm terminates.
Then, because of lines 9-13, the counter of N will reach zero and N will be
included as well. Thus we have proved that a node with upper height k+1 will
be included in S, and by induction it follows that any node with upper height
of 0 or more will be included in S. �

Since every subject of the nodes of the graph will be included in the result, all
possible authorities will be included in the result.

We choose to not formalise the order in which the notifications are gener-
ated, but just note that since we start from the bottom, lower level managers
will be notified before higher level managers.



4. Conclusion and Further Work

In many cases it is not possible to define the security policy completely in
a machine readable form and we may not anticipate all needs. The incom-
pleteness of the policy will lead to a conflict between need to protect against
unauthorised access and the need for legitimate access. In case availability is
important, a solution may be to allow users to override access denials and then
have managers audit the override. Authority resolution is a mechanism for im-
proving the efficiency of this audit. We have shown that it is possible to use
only existing information in the Privilege Calculus framework to implement
authority resolution.

What we present is early work and many issues remain. Of main interest is
to perform a study of the usefulness of the approach.

Another area is to improve on the work-flow of the mechanism, which right
now is not as good as we wish in the case of disapproval of override. By using
an access control framework with negative permissions or additional informa-
tion, different mechanisms for propagation of notifications may be possible.

We are also interested in applying our ideas to other access control frame-
works such as XACML.

References
Badger, Lee (1990). Providing a flexible security override for trusted systems. In Computer

Security Foundations Workshop III, 1990. Proceedings, pages 115–121.
Bandmann, Olav, Dam, Mads, and Firozabadi, B. Sadighi (2002). Constrained Delegations. In

proceedings of 2002 IEEE Symposium on Security and Privacy.
Firozabadi, B. Sadighi, Sergot, M., and Bandmann, O. (2001). Using Authority Certificates

to Create Management Structures. In Proceedings of Security Protocols, 9th International
Workshop, Cambridge, UK, pages 134–145. Springer Verlag.

Jaeger, Trent, Edwards, Antony, and Zhang, Xiaolan (2002). Managing access control policies
using access control spaces. In Proceedings of the seventh ACM symposium on Access con-
trol models and technologies, pages 3–12. ACM Press.

Kudo, Michiharu and Hada, Satoshi (2000). Xml document security based on provisional au-
thorization. In Proceedings of the 7th ACM conference on Computer and communications
security, pages 87–96. ACM Press.

OASIS (2004). http://www.oasis-open.org/committees/tc home.php?wg abbrev=xacml.
Povey, Dean (1999). Enforcing well-formed and partially formed transactions for UNIX. In

Proceedings of the 8th USENIX Security Symposium, pages 47–62.
Povey, Dean (2000). Optimistic security: a new access control paradigm. In Proceedings of the

1999 workshop on New security paradigms, pages 40–45. ACM Press.
Rissanen, Erik, Firozabadi, Babak Sadighi, and Sergot, Marek (2004). Towards a mechanism for

discretionary overriding of access control, position paper. Presented at Security Protocols,
12th International Workshop, Cambridge, UK.

Stevens, Gunnar and Wulf, Volker (2002). A new dimension in access control: studying mainte-
nance engineering across organizational boundaries. In Proceedings of the 2002 ACM con-
ference on Computer supported cooperative work, pages 196–205. ACM Press.


