
491 Knowledge Representation

The Action Language C+
Translation to logic program (ASP)

Marek Sergot

Department of Computing

Imperial College, London

November 2017 v1.1

Recap: Causal theories as logic programs

Every definite causal theory Γ can be written equivalently as a set of causal rules of the
form

L⇐ L1 ∧ . . . ∧ Lk ∧ ¬Lk+1 ∧ . . .¬Ln (k ≥ 0, n ≥ k) (1)

or

⊥ ⇐ L1 ∧ . . . ∧ Lk ∧ ¬Lk+1 ∧ . . .¬Ln (k ≥ 0, n ≥ k) (2)

where L and every Li is an atom (not necessarily Boolean).

Translate each such causal rule to the following logic program clauses, resp., constraints:

L← not ¬L1, . . . , not ¬Lk, not Lk+1, . . . , not Ln

← not ¬L1, . . . , not ¬Lk, not Lk+1, . . . , not Ln

Call this program lp(Γ).

Identify an interpretation I with the set of atoms satisfied by I (as usual). An interpretation
I is a model of Γ iff I is an answer set of lp(Γ).

The above holds only for interpretations I—complete and consistent set of atoms—not for
answer sets in general. (An answer set of lp(Γ) might not be an interpretation. We have
to arrange that it is.)

And it holds for multi-valued signatures as well as Boolean ones — except that for multi-
valued signatures we have to add rules to deal with more general form of atom. (For
Boolean signatures this extra detail is not necessary.)

1

Multi-valued signatures For multi-valued signatures it is still the case that every def-
inite causal theory can be written equivalently as a set of causal rules of the forms (1) and
(2). Now these rules will take the form

c= v ⇐ c1 = v1 ∧ . . . ∧ ck = vk ∧ ¬(ck+1 = vk+1) ∧ . . . ∧ ¬(cn = vn) (k ≥ 0, n ≥ k)

or

⊥ ⇐ c1 = v1 ∧ . . . ∧ ck = vk ∧ ¬(ck+1 = vk+1) ∧ . . . ∧ ¬(cn = vn) (k ≥ 0, n ≥ k)

These causal rules are translated, respectively, to the following logic program clauses

c= v ← not ¬(c1 = v1), . . . , not ¬(ck = vk), not ck+1 = vk+1, . . . , not cn = vn

and constraints

⊥ ← not ¬(c1 = v1), . . . , not ¬(ck = vk), not ck+1 = vk+1, . . . , not cn = vn

We need to add rules to define negated atoms of the form ¬(c1 = v1), and rules to ensure
that a constant c can only have at most one value in dom(c). Effectively these rules will
express the additional constraints described under ‘Reduction to Boolean signature’ earlier.

There are several ways to do this. Some are more convenient than others in the context
of translating C+ to logic programs. The method is routine but rather long-winded. It is
easiest to explain by means of an example. It should be obvious how to generalise.

Example Consider a constant c with dom(c) = {1, 2, 3}.

To define the three ¬(c= v) literals, v ∈ dom(c), we need 6 rules (n(n− 1) rules when the
constant has n possible values):

¬(c= 1)← c= 2 ¬(c= 2)← c= 1 ¬(c= 3)← c= 1
¬(c= 1)← c= 3 ¬(c= 2)← c= 3 ¬(c= 3)← c= 2

Assuming we have the usual (built-in) constraint that an answer set does not contain
complementary literals, these six rules effectively capture half of the ‘Reduction to Boolean
signature’, that c cannot have more than one value at a time:

¬(c= 1 ∧ c= 2) ∧ ¬(c= 1 ∧ c= 3) ∧ ¬(c= 2 ∧ c= 3)

It remains to capture that c must have at least one of its possible three values:

c= 1 ∨ c= 2 ∨ c= 3

Since the three values are mutually exclusive, we can do this by ‘shifting’:

c= 1← not c= 2, not c= 3

c= 2← not c= 1, not c= 3

c= 3← not c= 1, not c= 2

2

Equivalently (easier) we can write the above rules using the negated atoms just defined:

c= 1← not ¬(c= 1)

c= 2← not ¬(c= 2)

c= 3← not ¬(c= 3)

Or we can do it with an ASP ‘choice rule’ and a cardinality constraint:

1 { c= 1, c= 2, c= 3 } 1←

For application to C+, the last part, whether by ‘shifting’ or choice rule, will be done by
exogeneity laws.

Application to C+

I will use the variable T in the logic program to range over time indices. In the clingo

program, the length m of paths will be represented by the clingo constant maxT whose
value is specified when clingo is invoked.

I am going to keep the [] notation for time-stamped formulas. Obviously this is not
valid clingo syntax but it is much easier to read. I will leave details of how to represent
time-stamped atoms in clingo syntax for the moment.

Static laws

caused F if G1 ∧ . . . ∧ Gn

F [i]⇐ G1[i] ∧ . . . ∧ Gn[i] (i ∈ 0 ..m)

F [T]← not G1[T], . . . , not Gn[T] (T ∈ 0 ..m)

Constraints:

caused ⊥ if G1 ∧ . . . ∧ Gn

⊥ ⇐ G1[i] ∧ . . . ∧ Gn[i] (i ∈ 0 ..m)

← not G1[T], . . . , not Gn[T] (T ∈ 0 ..m)

Action dynamic laws

caused α if G1 ∧ . . . ∧ Gn

α[i]⇐ G1[i] ∧ . . . ∧ Gn[i] (i ∈ 0 ..m−1)

α[T]← not G1[T], . . . , not Gn[T] (T ∈ 0 ..m−1)

3

Fluent dynamic laws

caused F if G1 ∧ . . . ∧ Gk after H1 ∧ . . . ∧ Hn

F [i+1]⇐ G1[i+1] ∧ . . . ∧ Gk[i+1] ∧ H1[i] ∧ . . . ∧ Hn[i] (i ∈ 0 ..m−1)

F (T+1)← not G1(T+1), . . . , not Gk(T+1), not H1[T], . . . , not Hn[T] (T ∈ 0 ..m−1)

By splitting sets, and assuming that answer sets do indeed represent interpretations, that
is equivalent to:

F (T+1)← not G1(T+1), . . . , not Gk(T+1), H1[T], . . . , Hn[T] (T ∈ 0 ..m−1)

(This syntactically simpler version does not perform more efficiently, in general.)

Constraints:

caused ⊥ if G1 ∧ . . . ∧ Gk after H1 ∧ . . . ∧ Hn

⊥ ⇐ G1[i+1] ∧ . . . ∧ Gk[i+1] ∧ H1[i] ∧ . . . ∧ Hn[i] (i ∈ 0 ..m−1)

← not G1(T+1), . . . , not Gk(T+1), not H1[T], . . . , not Hn[T] (T ∈ 0 ..m−1)

or (simpler, but no more efficient version):

← not G1(T+1), . . . , not Gk(T+1), H1[T], . . . , Hn[T] (T ∈ 0 ..m−1)

Exogeneity laws

For every simple (as opposed to ‘statically determined’) fluent constant f and every v ∈
dom(f):

f [0] = v ⇐ f [0] = v

For every action constant a, every v ∈ dom(a):

a[i] = v ⇐ a[i] = v (i ∈ 0 ..m−1)

Example: Suppose fluent f has domain {a, b, c}. First we must deal with the multivalued
signature. We need to define the ¬(f [T] = v) literals at all time stamps T :

¬(f [T] = a) ← f [T] = b (T ∈ 0..m)

¬(f [T] = a) ← f [T] = c (T ∈ 0..m)

¬(f [T] = b) ← f [T] = a (T ∈ 0..m)

¬(f [T] = b) ← f [T] = c (T ∈ 0..m)

¬(f [T] = c) ← f [T] = a (T ∈ 0..m)

¬(f [T] = c) ← f [T] = b (T ∈ 0..m)

4

Now the exogeneity laws for f in the initial state:

f [0] = a ← not ¬(f [0] = a)

f [0] = b ← not ¬(f [0] = b)

f [0] = c ← not ¬(f [0] = c)

Alternatively, using a choice rule and cardinality constraint:

1 { f [0] = a, f [0] = a, f [0] = a } 1 ←

Apparently the choice rule method is much more efficient.

Obviously for a Boolean constant everything is much simpler. (Examples later.)

Example For an action constant a with domain {1, 2, 3} (say) the exogeneity laws would
be expressed either by ‘shifting’:

a[T] = 1 ← not ¬(a[T] = 1) (T ∈ 0..m− 1)

a[T] = 2 ← not ¬(a[T] = 2) (T ∈ 0..m− 1)

a[T] = 3 ← not ¬(a[T] = 3) (T ∈ 0..m− 1)

or by means of a choice rule and cardinality constraint:

1 { a[T] = 1, a[T] = 2, a[T] = 3 } 1 ← (T ∈ 0..m− 1)

Obviously we still need the usual rules to deal with the multi-valued signature:

¬(a[T] = 1) ← a[T] = 2 (T ∈ 0..m− 1)

¬(a[T] = 1) ← a[T] = 3 (T ∈ 0..m− 1)

¬(a[T] = 2) ← a[T] = 1 (T ∈ 0..m− 1)

¬(a[T] = 2) ← a[T] = 3 (T ∈ 0..m− 1)

¬(a[T] = 3) ← a[T] = 1 (T ∈ 0..m− 1)

¬(a[T] = 3) ← a[T] = 2 (T ∈ 0..m− 1)

5

Example

Here is the example used earlier to illustrate construction of a literal completion. All fluent
constants and action constants are Boolean in this example.

toggle causes on if ¬on

toggle causes ¬on if on

load causes loaded

inertial on

inertial loaded

Without abbreviations:

caused on after toggle ∧ ¬on

caused ¬on after toggle ∧ on

caused loaded after load

caused on if on after on

caused ¬on if ¬on after ¬on

caused loaded if loaded after loaded

caused ¬loaded if ¬loaded after ¬loaded

Causal theory:

on[i+1]⇐ toggle[i] ∧ ¬on[i]

¬on[i+1]⇐ toggle[i] ∧ on[i]

loaded[i+1]⇐ load[i]

on[i+1]⇐ on[i+1] ∧ on[i]

¬on[i+1]⇐ ¬on[i+1] ∧ ¬on[i]

loaded[i+1]⇐ loaded[i+1] ∧ loaded[i]

¬loaded[i+1]⇐ ¬loaded[i+1] ∧ ¬loaded[i]

Together with exogeneity laws (not shown, but shown in the logic program.)

I will show the logic program in clingo syntax. Since all constants in the example are
Boolean, we don’t need all the extra rules to deal with multivalued constants.

For a concrete representation, I will write on[T] as on(T), and similarly for the other
time-stamped constants in the example.

The clingo constant maxT represents the maximum time stamp (length of paths to be
constructed).

6

Logic program:

on(T+1) :- not -toggle(T), not on(T), T=0..maxT-1.

-on(T+1) :- not -toggle(T), not -on(T], T=0..maxT-1.

loaded(T+1) :- not -load(T), T=0..maxT-1.

% inertial on

on(T+1) :- not -on(T+1), not -on[T], T=0..maxT-1.

-on(T+1) :- not on(T+1), not on[T], T=0..maxT-1.

% inertial loaded

loaded(T+1) :- not -loaded(T+1), not -loaded(T), T=0..maxT-1.

-loaded(T+1) :- not loaded(T+1), not loaded(T), T=0..maxT-1.

% exogeneity

1 { on(0), -on(0) } 1.

1 { loaded(0), -loaded(0) } 1.

1 { toggle(T), -toggle(T) } 1 :- T=0..maxT-1.

1 { load(T), -load(T) } 1 :- T=0..maxT-1.

More examples to follow.

Correctness check

The correspondence between the answer sets of a logic program lp(ΓD
m) and the models of

the causal theory ΓD
m (and hence the paths of length m in the transition system defined by

action description D) holds only when the answer set is an interpretation — a consistent
and complete evaluation of all fluent and action constants at each time index.

Consistency is guaranteed because of the way that ¬(c= v) literals are defined. For com-
pleteness, it is necessary to ensure that the action description gives a value to every fluent
at every time index. Completeness of the valuation for (exogenous) action constants is
guaranteed by the exogeneity laws. For fluents, the exogeneity laws hold only for time
index 0.

In practice, action descriptions have the desired property. All fluents that are inertial or
which have a specified default value, for instance, will have a value at every time index.
To be on the safe side (rarely necessary) it is possible to add a suitable set of constraints.

For every fluent f with domain {v1, . . . , vn} add the constraints:

⊥ ← not f [T] = v1, ..., not f [T] = vn (T ∈ 1..m)

(The case T = 0 is guaranteed by the exogeneity laws for f .)

7

Computational tasks

The answer sets of lp(ΓD
m) represent the states/transitions/paths of length m in the tran-

sition system defined by D. For computational tasks (prediction, temporal interpolation,
planning, . . .) we want to pick out those answer sets satisfying some specific set of prop-
erties (initial state, goal state, etc).

We know, e.g. from the Coursework, that in order to pick out answer sets (transitions,
paths) satisfying specific properties at given time indices we must add constraints to the
logic program not facts (clauses with empty bodies).

For example: in Kautz’s stolen car problem where the car is known to be in the car park at
times 0 and 3 (say) and known not to be in the car park at time 6 (say), we add constraints:

:- not p(0).

:- not p(3).

:- p(6).

This is a little hard to read.

It is much easier to read and understand written like this (recommended method!):

observations :-

p(0), p(3), -p(6).

:- not observations.

(Because of the exogeneity laws, fluent formulas at time index 0—but only at time index
0—can be written as facts rather than as constraints. That is a detail.)

In the Yale Shooting Problem, the victim is alive at time 0. The gun is loaded at time 0.
Waiting occurs (at time 1), and then the gun is shot at time 2.

:- not alive(0).

:- not load(0).

:- not wait(1).

:- not shoot(2).

Again, the following is the recommended method of expressing such constraints, and is
much easier to read (and get right):

ysp_constraints :-

alive(0), load(0), wait(1), shoot(2).

:- not ysp_constraints.

8

In this problem we are interested to know whether it is possible, given the sequence of
events ysp constraints, that alive(3). We are therefore interested in paths of length 3
(at least) and we add the further constraint:

:- -alive(3).

That eliminates all answer sets where the victim is not alive at time 3. Alternatively,
because all answer sets represent consistent and complete interpretations, we could have
used the constraint:

:- not alive(3).

Example In the Monkey and Bananas problem, there is a monkey at location l1, a box
at location l2, and some bananas at location l3. Initially the monkey does not have the
bananas; the goal is that the monkey does have the bananas. I omit the details of the
action description: essentially the monkey can reach the bananas only by standing on the
box. It can walk to where the box is, push the box to where the bananas are, climb on to
the box, grasp the bananas.

Formulation of the action description is not difficult. For present purposes, I show only how
to formulate the initial state and the goal. I will use clingo syntax. val(loc(monkey),0,l1)
represents that the value of fluent loc(monkey) at time stamp 0 is l1, etc. (There are
other possibilities.) Fluent hasBananas is Boolean.

We are looking for some value of maxT such that:

monkey_plan :-

val(loc(monkey),0,l1),

val(loc(box),0,l2),

val(loc(bananas),0,l3),

-hasBananas(0),

hasBananas(maxT).

:- not monkey_plan.

That could also be written as a set of separate constraints:

:- not val(loc(monkey),0,l1).

:- not val(loc(box),0,l2).

:- not val(loc(bananas),0,l3).

:- not -hasBananas(0).

:- not hasBananas(maxT).

I suggest that the recommended method (first version) is clearer to read.

9

Examples

From Exam 2004

(i) The fluent constant status, with two possible values on and off, is inertial.

inertial status

caused status = on if status = on after status = on

caused status = off if status = off after status = off

status[i+1] = on⇐ status[i+1] = on ∧ status[i] = on (i ∈ 0..m−1)

status[i+1] = off⇐ status[i+1] = off ∧ status[i] = off (i ∈ 0..m−1)

I am going to write the logic program using clingo syntax. For a concrete represen-
tation, status(T,V) represents that fluent status has value V at time index T.

status(T+1,on) :- not -status(T+1,on), not -status(T,on),

T=0..maxT-1.

status(T+1,off) :- not -status(T+1,off), not -status(T,off),

T=0..maxT-1.

Or equivalently (but no more efficiently):

status(T+1,on) :- not -status(T+1,on), status(T,on),

T=0..maxT-1.

status(T+1,off) :- not -status(T+1,off), status(T,off),

T=0..maxT-1.

We also need:

-status(T,on) :- status(T,off), T=0..maxT.

-status(T,off) :- status(T,on), T=0..maxT.

Note the range of time index values T.

Since status is two-valued we could have used a Boolean fluent on(T) and used -on(T)

instead of status(T,off). That representation would be shorter (but harder to
read).

The required exogeneity laws are:

1 {status(0,on), status(0,off)} 1.

10

(ii) The (Boolean) action switch changes the value of fluent status from on to off and
from off to on.

switch causes status = on if status = off

switch causes status = off if status = on

caused status = on after switch ∧ status = off

caused status = off after switch ∧ status = on

status[i+1] = on⇐ switch[i] ∧ status[i] = off (i ∈ 0..m−1)

status[i+1] = off⇐ switch[i] ∧ status[i] = on (i ∈ 0..m−1)

In clingo syntax:

status(T+1,on) :- not -switch(T), not -status(T,off),

T=0..maxT-1.

status(T+1,off) :- not -switch(T), not -status(T,on),

T=0..maxT-1.

The exogeneity laws:

1 {switch(T), -switch(T)} 1 :- T=0..maxT-1.

Because switch(T) is Boolean we do not need to include a definition of -switch(T):

-switch(T) :- not switch(T), T=0..maxT-1.

(The exogeneity laws subsume it.) It is not needed but it does not hurt to include it.

(iii) The (Boolean) action open is not executable when status = off.

nonexecutable open if status = off

caused ⊥ after open ∧ status = off

⊥ ⇐ open[i] ∧ status[i] = off (i ∈ 0..m−1)

The logic program:

:- not -open(T), not -status(T,off), T=0..maxT-1.

Equivalently, but no more efficiently:

:- open(T), status(T,off), T=0..maxT-1.

Exogeneity laws:

1 {open(T), -open(T)} 1 :- T=0..maxT-1.

Again, because open(T) is Boolean, the exogeneity laws already take care of defining
-open(T).

11

From Exam 2007

In any given state, a certain (spring-loaded) door is either open or closed (but not both).
Let the Boolean fluent closed represent that the door is closed and ¬closed that it is open.

(i) The (Boolean) action of pushing the door causes it to become open if is closed;
pushing the door is not possible (executable) if the door is open.

push causes ¬closed if closed

nonexecutable push if ¬closed

caused ¬closed after push ∧ closed

caused ⊥ after push ∧ ¬closed

¬closed[i+1]⇐ push[i] ∧ closed[i] (i ∈ 0..m−1)

⊥ ⇐ push[i] ∧ ¬closed[i] (i ∈ 0..m−1)

-closed(T+1) :- not -push(T), not -closed(T), T=0..maxT-1.

:- not -push(T), not closed(T), T=0..maxT-1.

% exogeneity fluent closed

1 {closed(0), -closed(0)} 1.

% exogeneity action push

1 {push(T), -push(T)} 1 :- T=0..maxT-1.

All constants are Boolean. The exogeneity laws will take care of defining -push(T)

but exogeneity laws for the fluent closed are only for time index 0. So we add:

-closed(T) :- not closed(T), T=0..maxT.

(ii) If the door is closed, it remains closed by default (‘inertia’); if it is open, it will be
closed in the next state, by default.

caused closed if closed after closed (inertial)

caused closed if closed after ¬closed (not inertial)

closed[i+1]⇐ closed[i+1] ∧ closed[i] (i ∈ 0..m−1)

closed[i+1]⇐ closed[i+1] ∧ ¬closed[i] (i ∈ 0..m−1)

closed(T+1) :- not -closed(T+1), not -closed(T), T=0..maxT-1.

closed(T+1) :- not -closed(T+1), not closed(T), T=0..maxT-1.

The same effect could also be obtained simply as

caused closed if closed after >
closed(T+1) :- not -closed(T+1), T=0..maxT-1.

If the door is also closed by default in the initial state, then even more simply:

default closed

caused closed if closed

closed(T) :- not -closed(T), T=0..maxT.

12

Example

(Used earlier in the C+ notes) There are three agents a, b, c. Each has a car. There are
three locations: home, work, pub.

Fluent symbols:
loc(x) = p: agent x is at location p
car(x) = p: agent x’s car is at location p

Action symbols:
walk(x) = dest: x walks to dest
drive(x) = dest: x drives to dest

The domain of walk(x) and drive(x) are ‘destinations’ not locations:
dom(walk(x)) = dom(drive(x)) = {home,work, pub, none}.

drive(x) = p when loc(x) = p means that x drives around and ends up back where he/she
started. And similarly for walk(x).

In the following x ranges over the agents and p, p′ over the locations:

inertial loc(x)
inertial car(x)

walk(x) = p causes loc(x) = p

drive(x) = p causes loc(x) = p
drive(x) = p causes car(x) = p

nonexecutable drive(x) = p ∧ walk(x) = p′

nonexecutable drive(x) = p if loc(x) 6= car(x)

The last line is shorthand for the following C+ laws:

nonexecutable drive(x) = p if loc(x) = p′ ∧ ¬(car(x) = p′) (for all locations p,p′)

In clingo:

agent(a). location(home).

agent(b). location(work).

agent(c). location(pub).

destination(none).

destination(X) :- location(X).

In what follows the chosen clingo representation of multi-valued fluents and action con-
stants should be clear. (It is not the only possible one.) Notice that in this example the
definition of negated atoms can be expressed succinctly using general rules.

13

% ---- fluents ----

% definitions of -val(...)

-val(loc(X),T,P) :- agent(X), location(P),

val(loc(X),T,Q),

location(Q), P != Q,

T=0..maxT. % note

-val(car(X),T,P) :- agent(X), location(P),

val(car(X),T,Q),

location(Q), P != Q,

T=0..maxT. % note

% exogeneity of fluents

% (There is a way of expressing these more succinctly in clingo.)

1 {val(loc(X),0,home),val(loc(X),0,work),val(loc(X),0,pub)} 1

:- agent(X).

1 {val(car(X),0,home),val(car(X),0,work),val(car(X),0,pub)} 1

:- agent(X).

% ---- action constants ----

-val(drive(X),T,D) :- agent(X), destination(D),

val(drive(X),T,Dx),

destination(Dx), D != Dx,

T=0..maxT-1. % note

-val(walk(X),T,D) :- agent(X), destination(D),

val(walk(X),T,Dx),

destination(Dx), D != Dx,

T=0..maxT-1. % note

% exogeneity of actions

1 {val(drive(X),T,home),val(drive(X),T,work),

val(drive(X),T,pub),val(drive(X),T,none)} 1 :-

agent(X), T=0..maxT-1.

1 {val(walk(X),T,home),val(walk(X),T,work),

val(walk(X),T,pub),val(walk(X),T,none)} 1 :-

agent(X), T=0..maxT-1.

14

% ---- causal laws ----

% inertial loc(x)

% inertial car(x)

val(loc(X),T+1,P) :- not -val(loc(X),T+1,P), not -val(loc(X),T,P),

agent(X), location(P), T=0..maxT-1.

val(car(X),T+1,P) :- not -val(car(X),T+1,P), not -val(car(X),T,P),

agent(X), location(P), T=0..maxT-1.

% walk(x)=p causes loc(x)=p

% drive(x)=p causes loc(x)=p

% drive(x)=p causes car(x)=p

val(loc(X),T+1,P) :- not -val(walk(X),T,P),

agent(X), location(P),

T=0..maxT-1.

val(loc(X),T+1,P) :- not -val(drive(X),T,P),

agent(X), location(P),

T=0..maxT-1.

val(car(X),T+1,P) :- not -val(drive(X),T,P),

agent(X), location(P),

T=0..maxT-1.

% nonexecutable drive(x)=p & walk(x)=p’

:- not -val(drive(X),T,P), not -val(walk(X),T,Q),

agent(X), location(P), location(Q),

T=0..maxT-1.

% nonexecutable drive(x)=p if loc(x) != car(x)

% equivalently

% nonexecutable drive(x)=p if loc(x)=p’ & -(car(x)=p’)

:- not -val(drive(X),T,P),

not -val(loc(X),T,Q), not val(car(X),T,Q),

agent(X), location(P), location(Q),

T=0..maxT-1.

15

Example query

Suppose a walks home at time 0, then (at time 1) drives to the pub where he meets b. At
time 3 a walks home. At time 4 b is at work.

The recommended way of expressing the constraints (because it is clearer):

story_1 :-

val(walks(a),0,home).

val(drives(a),1,pub).

val(loc(b),2,pub).

val(walks(a),3,home).

val(loc(b),4,work).

:- not story_1.

16

