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There are various efficient (very efficient) implementations of systems for computing stable
models and answer sets, employing splitting sets and other tricks and optimisations.

Further development is an active area of current research, usually falling under the label
of ‘Answer Set Programming’ (ASP).

One well known system is Smodels. See http://www.tcs.hut.fi/Software/smodels/.

The system DLV is also widely used though I know little about it myself.
See http://www.dbai.tuwien.ac.at/proj/dlv/.

A state-of-the-art system that is becoming widely used is Clasp.
http://www.cs.uni-potsdam.de/clasp.

Clasp is installed on the DoC lab machines (see course web pages) and will (probably) be
used as part of the assessed coursework.

Clasp: gringo, clasp and clingo

In common with most ASP systems, the computation of answer sets in Clasp has two
phases: first, a grounder constructs ground instances of the clauses in the program, replac-
ing variables by ground (variable-free) terms, possibly with some further transformations
and simplifications. Then, the resulting ground program (usually in a special, machine-
readable format) is passed to the actual solver which computes the answer sets.

logic
program

grounder−−−−−−−−→
(gringo)

ground
logic

program

solver−−−−−−−→
(clasp)

answer
set(s)

In the Clasp system the grounder is called gringo; clasp is the solver itself.

Clasp also provides a utility clingo which calls gringo and pipes its output to the solver
clasp automatically.

lparse is another widely used grounder. It is the grounder that comes with the Smodels
and DLV systems. (The clasp solver can also take lparse outputs.)
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The grounder (gringo)

The grounders used in ASP systems are very clever! There is much ingenuity here. They
do much more than merely generating all ground instances of the clauses in naive fashion.

From the Clasp manual: ‘The main task of a grounder is to substitute the variables
in a logic program by terms such that the result is a finite equivalent ground program.
(Two programs are equivalent if they have the same answer sets.) Of course, a necessary
condition for this is that the program possesses only finitely many finite answer sets.’

So, one can do various tricks during grounding, as long as they preserve answer sets.

Simple example

q(0, f(0)).

p(X) ← q(X, Y ), not p(Y ).

This program has an infinite Herbrand base (because it has terms 0, f(0), f(f(0)), . . . )
and so infinitely many ground instances of its clauses. However, it is equivalent to the
finite ground program

q(0, f(0)).

p(0) ← q(0, f(0)), not p(f(0)).

and has a single, finite answer set {q(0, f(0)), p(0)}. gringo can handle cases like this.

More generally, gringo deals with a special syntactic category of logic programs called

level-restricted logic programs

A level-restricted logic program is easy to detect syntactically, and has the property that
it is equivalent to a finite ground program. Details of the definition are omitted here —
they are not difficult but I did not have time to cover. Look at the Clasp documentation
if you are interested.

Maximal stratified sub-programs P ′ ⊆ P is a stratified sub-program of P if P ′ is
stratified and no predicate p in P ′ is the head of any clause in P − P ′.
A stratified sub-program P ′ ⊆ P is maximal if every stratified sub-program of P is con-
tained in P ′.
From the Clasp manual: ‘. . . every logic program has a maximal stratified sub-program,
which is also easy to determine.’

So, besides doing other stuff, gringo

• identifies the maximal stratified sub-program P ′ of P (I don’t know how this is done
but apparently it is easy);

• calculates the (unique) answer set of P ′ (no search required here — the iterated
fixpoint method will do it — and this can be very efficient);

• uses the answer set of P ′ to simplify/ground the ‘top’ part P − P ′, similarly to the
way we used splitting sets to ground/simplify programs in earlier examples.
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Note finally that the maximal stratified sub-program trick is not enough by itself: we still
need the level-restricted constraint, or something similar.

Example (from the Clasp manual)

nat(0).

nat(s(X)) ← nat(X).

This program is stratified (trivially) so it has a unique answer set (obviously). But this
answer set is not finite: gringo can’t handle it.

It is often very instructive to see how much work gringo does when grounding a program.
You can see the gringo output in readable form by running it with the -t option. See the
brief instructions provided with the DoC installation (details on course web pages).

Answer Set Programming

This is a huge area. There are whole courses devoted to it. It is a kind of constraint solving
paradigm. The program expresses the constraints; its answer sets are the solutions.

And ASP solvers can deal with much richer languages than (extended) logic programs:

• extended logic programs — almost always with the built-in consistency constraint

← p, ¬p (every atom p)

• disjunctive logic programs
A ; B ← L1, . . . , Lm

Note that the disjunction A ; B (sometimes written A | B) has a special meaning in
disjunctive logic programs. (Maybe more on this later.)

• ‘integrity constraints’

← L1, . . . , Lm =⇒ f ← L1, . . . , Lm, not f

• choice rules
{A1, . . . , Am } ← L1, . . . , Ln

• cardinality constraints

kmin {A1, . . . , Am } kmax ← L1, . . . , Ln

• weight constraints

• aggregation operators

• optimisation constructs
...

And more!

3

Constraints

← L1, . . . , Lm

From the clingo guide: ‘integrity constraints eliminate answer set candidates. They are
merely tests that discard unwanted answer sets. That is, there are no answer sets that
satisfy all literals in an integrity constraint.’

Integrity constraints are also sometimes written in the form:

⊥ ← L1, . . . , Lm

(⊥ is ‘falsum’ — always false).

As you have seen, an integrity constraint ← L1, . . . , Lm can be encoded by means of the
rule:

f ← L1, . . . , Lm, not f

where f is any atom not appearing anywhere else in the program.

(The same atom f can be used to encode all the integrity constraints, as is easy to check.)

Choice rules

{A1, . . . , Am } ← L1, . . . , Ln

Informally: if literals L1, . . . , Ln are satisfied, the answer set must contain a subset (possibly
empty) of literals {A1, . . . , Am }.

Example:
{a, b, c} ←

has answer sets: {}, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}.

Example

{a, b, c} ←
← b, c
← a, c



 has answer sets: {}, {a}, {b}, {c}, {a, b}

Example
{a, b} ←
← not a, not b

}
has answer sets: {a}, {b}, {a, b}

and so is an encoding of the ‘inclusive or’ a ∨ b.
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Cardinality constraints

kmin {A1, . . . , Am } kmax ← L1, . . . , Ln (kmax optional)

Informally: if literals L1, . . . , Ln are satisfied, the answer set must contain at least kmin

and at most kmax of the literals {A1, . . . , Am }. (The upper bound kmax is optional.)

Examples:
{

1 {a, b, c} 2←
}

has answer sets: {a}, {b}, {c}, {a, b}, {b, c}, {a, c}{
1 {a, b, c} 2←

}
has answer sets: {a}, {b}, {c}{

1 {a, b} ←
}

has answer sets: {a}, {b}, {a, b}

and so is another encoding of the ‘inclusive or’ a ∨ b.

Choice rules — encoding

Choice rules are easily represented in extended logic programs. It is easiest to see with an
example:

a← not a′ a′ ← not a
b← not b′ b′ ← not b

This program can obviously be split into two independent components: take {b, b′} as the
splitting set, say.

The ‘top’ component has two answer sets: {a}, {a′}.
The ‘bottom’ component has two answer sets: {b}, {b′}.
So the two components together (all four clauses) have answer sets:

{a′, b′}, {a, b′}, {a′, b}, {a, b}
If we ‘hide’ the auxiliary atoms a′ and b′ in the output, we see answer sets:

{}, {a}, {b}, {a, b}
Obviously this can be generalised.

A useful special case – ‘a (inclusive) or b’.

As a cardinality constraint:

1 {a, b} ←

equivalently, choice rule plus integrity constraint:

{a, b} ←
← not a, not b

can be represented:
a← not a′ a′ ← not a
b← not b′ b′ ← not b
f ← not a, not b, not f
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