
491 Knowledge Representation

The Action Language C+
Marek Sergot

Department of Computing
Imperial College, London

March 2009 v1.3f; November 2014 v2.0; November 2017 v2.1

Background The language C was introduced by Giunchiglia and Lifschitz [5]. It applies
the ideas of ‘causal theories’ [7, 10] to reasoning about the effects of actions and the
persistence (‘inertia’) of facts (‘fluents’), building on earlier suggestions by McCain and
Turner [9]. C+ extends C by allowing multi-valued fluents as well as boolean fluents [4] and
generalises the form of rules in the language in various ways. The definitive presentation of
C+, including various further extensions, is provided in [3]. A companion paper [1] shows
how C+ can be applied to some benchmark examples in the literature. An implementation
supporting a wide range of querying and planning tasks is available in the form of the Causal
Calculator (CCalc)1. We have our own implementation iCCalc which also supports a
number of other extensions.

The language C+ provides a means of constructing a transition system with certain prop-
erties. A separate language is used for making assertions about this transition system
(what is true when) and querying it. One implementation route is via the translation of a
C+ action description into a causal theory, and thence into a set of formulas of (classical)
propositional logic (its ‘literal completion’). This is the method used by the Causal Cal-
culator (CCalc). An alternative implementation route is provided by translations into
extended logic programs [8], which works better and is much faster. That is the method
that will be emphasised here. (Rob Craven developed another translation into logic pro-
grams with a different computational behaviour (EC+ in the diagram. Not covered in these
notes.)

action description
in C+

transition
system causal

theory

literal completion
(propositional logic)
satisfaction solver

CCalc and iCCalc

(extended)
logic program
(answer sets)

iCCalc

logic program
(event calculus

style)

EC+

☛ ❯

❄

❘✲✛

✠

✠ ❘❲ ❥

1http://www.cs.utexas.edu/users/tag/cc

1

Transition systems

A labelled transition system is a structure 〈S,A, R〉 in which

• S is a (non-empty) set of ‘states’;

• A is a (non-empty) set of transition labels (also called ‘events’);
• R is a set of transitions, R ⊆ S ×A× S.

It does not matter whether we think of the labelled transitions as a single three-place
relation R, as here, or as a family of binary relations {Rε}ε∈A. The former is chosen here
for consistency with published accounts of the language C+.

A transition system can be depicted as a labelled directed graph. Every state s is a node
of the graph. Labelled directed edges of the graph are the tuples (s, ε, s′) of R.

We are free to interpret the labels on the transitions in various ways. The usual way is
to see each label as corresponding to execution of an action or perhaps several actions
concurrently. It is then usual to call the transition label an ‘event’.

The triple (s, ε, s′) represents execution of event ε in state s leading (possibly non-deterministically)
to the state s′.

An event ε is executable in s when there is at least one tuple (s, ε, s′) in R.

An event ε is deterministic in s if there is at most one such s′.

Paths, ‘runs’, or ‘histories’

A run or trace of a transition system is a finite or infinite (ω length) path through the
system. (One or other of the terms run or trace is often reserved to refer to infinite length
paths. We will use ‘run’ and ‘path’ interchangeably and avoid the use of the term ‘trace’.
The account of C+ in [3] uses the term ‘history’.)

Let 〈S,A, R〉 be a transition system. A run (or path or history) of length m is a sequence

s0 ε0 s1 · · · sm−1 εm−1 sm (m ≥ 0)

such that s0, s1, . . . , sm ∈ S, ε0, . . . , εm−1 ∈ A, and (si, εi, si+1) ∈ R for 0 ≤ i < m.

Sometimes there is a distinguished set S0 ⊆ S of initial states. All runs (or histories) are
then defined so that their first state s0 ∈ S0. If there is a single initial state S0 = {s0}
then the set of all runs of the transition system can be seen as a tree rooted in s0.

Query languages

A wide variety of languages—we will call them query languages—can be interpreted on
labelled transition systems. These include simple propositional languages, as well as tem-
poral logics such as CTL and LTL widely used for expressing and verifying properties of
transition systems in software engineering.

2

Multi-valued signatures

A multi-valued propositional signature σ consists of:

• a set of symbols called constants,

• for each constant c, a non-empty set dom(c) of values, called the domain of c. For
simplicity we will assume that there are at least two distinct values in every dom(c)
(otherwise c is trivial — meaningful but causes some minor technical complications
in definitions and so on, which I want to avoid).

An atom of a signature σ is an expression of the form c= v where c is a constant in σ and
v ∈ dom(c).

A formula ϕ of signature σ is any truth-functional compound of atoms of σ.

ϕ ::= ⊥ | ⊤ | any atom c= v | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ.

(⊥ and ⊤, representing ‘false’ and ‘true’, and all atoms are formulas. If ϕ is a formula so
is ¬ϕ. If ϕ and ψ are formulas, then so are ϕ ∧ ψ and ϕ ∨ ψ and ϕ→ ψ.)

A Boolean constant is one whose domain is the set of truth values {t, f}. If p is a Boolean
constant, p is shorthand for the atom p= t and ¬p for the atom p= f.

An interpretation of σ is a function that maps every constant in σ to an element of its
domain. An interpretation I satisfies an atom c= v, written I |= c= v, if I(c) = v. The
satisfaction relation |= is extended from atoms to formulas in accordance with the standard
truth tables for the propositional connectives. I(σ) stands for the set of all interpretations
of σ. As usual, when X is a set of formulas, I |= X signifies that I is a model of X , i.e.,
that I |= ϕ for every ϕ ∈ X .

It is often convenient to represent an interpretation I by the set of atoms satisfied by I.

Reduction to Boolean signatures

Multi-valued signatures are for convenience. As long as the set of constants is finite, and
the domain of every constant is finite, a multi-valued signature can be translated to an
equivalent Boolean signature.

An atom c= v can be viewed as a classical, propositional atom. Then add the following
set of additional formulas:

∨

v

(c= v) ∧
∧

v 6=w

¬(c= v ∧ c=w) for all c ∈ σ

There are various optimisations — Details omitted.

3

Transition systems in C+

States Let σf be a multi-valued signature of constants called ‘state variables’, or more
usually in AI terminology, fluent constants. Given a labelled transition system 〈S,A, R〉
we add a valuation function which specifies, for every fluent constant f ∈ σf and every
state s ∈ S, a value in dom(f). We shall be dealing with the special case of transition
systems in which

• each state s ∈ S is an interpretation of σf , S ⊆ I(σf).

Not all interpretations of σf are states, in general. (There are usually constraints that have
to be satisfied.)

It is convenient to adopt the convention that an interpretation I of σf is represented by
the set of atoms of σf that are satisfied by I. A state is then a (complete, and consistent)
set of fluent atoms, and a separate valuation function is unnecessary. We say a formula ϕ
‘holds in’ state s or ‘is true in’ state s as alternative ways of saying that s satisfies ϕ.

Transition labels Although it is much less common, an idea employed in C+ is that
another category of constants and formulas — action formulas — can be interpreted on
the transition labels/events of a transition system. So, let σa be a multi-valued signature
of constants called action constants, disjoint from σf . Given a labelled transition system
〈S,A, R〉 we add a valuation function for action constants which specifies, for every action
constant a ∈ σa and every label/event ε ∈ A, a value in dom(a). Again, we deal with a
special case, the case of labelled transition systems in which the set A of labels/events is
the set of interpretations of σa. In other words the transition systems of interest will be
those of the form 〈σf , S, I(σa), R〉, on which we will interpret various query languages of
signature σf ∪ σa, or variations thereof. (σf , σa) is the ‘action signature’ of the transition
system.

Note that since a transition label/event ε is an interpretation of σa, it is meaningful to say
that ε satisfies an action formula α (ε |= α). When ε |= α we say that the event ε is of
type α. When ε |= α we also say that the transition (s, ε, s′) is a transition of type α.

Since a transition label is an interpretation of the action constants σa, it can also be rep-
resented by the set of atoms that it satisfies. The suggested reading of a transition label
{a1= v1, a2= v2, . . . , an= vn} for an action signature with action constants a1, a2, . . . , an is
that it represents a composite action in which the elementary actions a1= v1, a2= v2 . . . , an= vn
are performed (or occur) concurrently. Where a is a Boolean action constant, ¬a, i.e. a= f,
can be read as indicating that action a is not performed; and where all action constants
are Boolean, the action {a1= f, . . . , an= f} can be read as representing the ‘null’ event.

4

For example: suppose there are three agents, a, b, and c which can move in direction E,W ,
N , or S, or remain idle. Suppose (for the sake of an example) that they can also whistle as
they move (they are trains, let us say). Let the action signature consist of action constants
move(a), move(b), move(c) with domains {E,W,N, S, idle}, and Boolean action constants
whistle(a), whistle(b), whistle(c). Then one possible interpretation of the action signature,
and therefore one possible transition label, is

{move(a) =E,move(b) =N,move(c) = idle,whistle(a),¬whistle(b),whistle(c)}

Because of the way that action formulas are evaluated on a transition (s, ε, s′), an action
formula can also be regarded as expressing a property of the transition (s, ε, s′) as a whole.
The term ‘transition constants’ might have been better for σa therefore; I will stick to the
C+ terminology and call them ‘action constants’.

Example Let σf be the set of fluent constants {loc(a), loc(b)} with possible values {N, S},
and let σa be the set of Boolean action constants {go(a), go(b)}. Consider the transition
system T depicted in the following diagram:

loc(a)=N
loc(b)=S

loc(a)=S
loc(b)=N

loc(a)=S
loc(b)=S

{go(a), go(b)}

{go(a),¬go(b)} {¬go(a), go(b)}

{¬go(a),¬go(b)} {¬go(a),¬go(b)}

{¬go(a),¬go(b)}
There is no state {loc(a) = N, loc(b) = N} in T (for the sake of the example).

Query language: example (time-stamped query language)

Query languages can be interpreted on the paths (‘runs’) of a transition system. There are
many, many possibilities. One candidate, and the only one we will consider, is the query
language used in CCalc. This uses propositional formulas of time-stamped fluent and
action constants: the time-stamped fluent atom f [i] = v represents that fluent atom f = v
holds at integer time i, or more precisely, that f = v is satisfied by the state si of a path
s0 ε0 · · · εi−1 si · · · of the transition system; the time-stamped atom a[i] = v represents that
action atom a= v is satisfied by the transition label εi of a path s0 ε0 · · · si εi si+1 · · · .

Time-stamped formulas are therefore evaluated on paths of the transition system. Note
that the paths of length 0 are the states and the paths of length 1 are the transitions.

You can stop reading here and just skip to the example that follows. If you are interested
in a more careful exposition, here are the details.

5

Time-stamping: details (can be skipped)

In general, given a multi-valued signature σ and a non-negative integer i, we write σ[i]
for the signature consisting of all constants of the form c[i] where c is a constant of σ,
with dom(c[i]) = dom(c). For any non-negative integer m, we write σm for the signature
σ[0] ∪ · · · ∪ σ[m].

The time-stamped query language used in CCalc to express properties of paths of length
m of a transition system with action signature (σf , σa) is the propositional language of
signature σf

m ∪ σa
m−1. In other words, the formulas of this query language are:

• atoms f [i] = v where i ∈ 0 .. m and f = v is a fluent atom of σf ;

• atoms a[i] = v where i ∈ 0 .. m−1 and a= v is an action atom of σa;

• all truth-functional compounds of the above.

Let π = s0 ε0 s1 · · · sm−1 εm−1 sm be a path of length m of a transition system T of action
signature (σf , σa). An atom f [i] = v for any fluent constant f of σf and 0 ≤ i ≤ m is true
on path π (or ‘holds on’ path π, or ‘is satisfied by’ path π), written T , π |=m f [i] = v, when
si |= f = v; for action constants a of σa and 0 ≤ i < m, T , π |=m a[i] = v when εi |= a= v;
and |=m is extended to formulas ϕ of signature σm = σf

m ∪ σa
m−1 by the usual truth tables

for the propositional connectives.

We will say ϕ is true on paths of length m of T , written T |=m ϕ when T , π |=m ϕ for all
paths π of length m of T .

Equivalently, . . .

Let π[i] denote the ith component of a path π: that is, when π = s0 ε0 s1 · · · si εi si+1 . . . ,
let π[i] = si∪εi. Clearly, π[i] is an interpretation of σf ∪σa when π is a path of a transition
system with action signature (σf , σa).

For any formula ψ of signature σf∪σa, let ψ[i] stand for the formula of signature σf [i]∪σa[i]
obtained by time-stamping every constant in ψ with i, that is, replacing every constant
c in ψ by the constant c[i]. Clearly, every formula ϕ of signature σm = σf

m ∪ σa
m−1 is a

truth-functional compound of formulas of the form ψ[i] where 0 ≤ i ≤ m and ψ is a formula
of signature σ = σf ∪ σa.

Now, for any path π of length m of a transition system T of action signature (σf , σa), we
have

T , π |=m ψ[i] iff π[i] |=σ ψ

6

Example (contd) Consider again the transition system T :

loc(a)=N
loc(b)=S

loc(a)=S
loc(b)=N

loc(a)=S
loc(b)=S

{go(a), go(b)}

{go(a),¬go(b)} {¬go(a), go(b)}

{¬go(a),¬go(b)} {¬go(a),¬go(b)}

{¬go(a),¬go(b)}

Time-stamped formulas are evaluated on paths of the transition system.

T , π |=m ϕ means time-stamped formula ϕ is true on the path π of length m of T .

T |=m ϕ when T , π |=m ϕ for all paths π of length m of T .

We have, amongst other things:

T |=1 (loc(a)[0] =N ∧ go(a)[0])→ loc(a)[1] =S

T |=2 (loc(a)[0] =N ∧ go(a)[0] ∧ go(a)[1])→ loc(a)[2] =N

T |=1 (loc(a)[0] =N ∧ ¬go(a)[0])→ loc(a)[1] =N

T |=2 (loc(a)[0] =N ∧ go(b)[0] ∧ go(a)[1])→ loc(a)[2] =N

T |=m (loc(a)[i] =N ∧ loc(a)[i+2]=N)→ (go(a)[i]↔ go(a)[i+1]) for all 0 ≤ i ≤ m−2
T |=m (loc(a)[i] =S ∧ loc(b)[i] =S)→ ¬(go(a)[i] ∧ go(b)[i]) for all 0 ≤ i ≤ m−1

(Thanks to Robin Gallimard for pointing out an error in an earlier version of these notes.)

7

Examples of computational tasks

Prediction Given a transition system T and a time-stamped query language of signature
(σf , σa):

• Initially F holds.

• Partially specified events of type α0, α1, . . . , αm−1 happen.

• Does it follow that G holds in state m?

F and G are formulas of σf and αi are formulas of σa.

We want to know whether, for every path/run π = s0 ε0 s1 · · · sm−1 εm−1 sm, · · · of T such
that s0 |= F and εi |= αi for each i ∈ 0..m−1, we have sm |= G.

Or in other words is it the case that

T |=m (F [0] ∧ α0[0] ∧ α1[1] ∧ · · · ∧ αm−1[m−1]→ G[m])

A variant of the problem:

• Initially F holds.

• Partially specified events of type α0, α1, . . . , αm−1 happen.

• Is it possible that G holds in state m?

Is there a possible run/path π through the transition system T such that

T , π |=m F [0] ∧ α0[0] ∧ α1[1] ∧ · · · ∧ αm−1[m−1] ∧G[m]

What is this path π?

‘Postdiction’ (stupid term)

• Partially specified events of type α0, α1, . . . , αm−1 happen.

• G holds now (at time m).

• Does it follow that initially F ?

We want to know whether

T |=m (α0[0] ∧ α1[1] ∧ · · · ∧ αm−1[m−1] ∧G[m]→ F [0])

And as before, checking whether there is a possible path/run π of T such that

T , π |=m (α0[0] ∧ α1[1] ∧ · · · ∧ αm−1[m−1] ∧G[m] ∧ F [0])

asks whether it is possible that initially F . π, if it exists, shows how it is possible.

8

Temporal interpolation Prediction and ‘postdiction’ are both special cases of the gen-
eral problem in which:

• Partially specified events of type α0, α1, . . . , αk happen.

• Certain combinations of fluents (partially specified states) hold at given times.

We want to determine what holds in each state, or what possibly holds in each state.

‘Planning’

• Initially F .

• Goal: G.

Find the shortest sequence of fully specified actions (i.e., events, or transition labels)
ε0, ε1, . . . , εk−1 such that there is a path/run s0 ε0 s1 · · · sk−1 εk−1 sk of T in which s0 |= F
and sk |= G.

We try consecutively for k = 0, 1, . . . up to some specified maximum value m to find a
path π of T such that:

T , π |=k F [0] ∧G[k]
If there is such a path π = s0 ε0 s1 · · · sk−1 εk−1 sk then it contains a representation of the
plan: ε0, ε1, . . . , εk−1.

But note This is often called planning in the AI literature but it’s not really planning.
There is more to planning that just finding a suitable sequence of events ε0, ε1, . . . , εk−1

that gets us from the initial state to the goal state. For instance, some of these εi might
be non-deterministic. Calling this a ‘plan’ is then wishful thinking. It would be like saying
that my plan for getting rich is to bet £1000 on a particular horse, because there is one
possible path from where we are now to where I am rich in which I bet on this horse and it
wins. Similarly (it comes to the same thing) some of these events εi may represent actions
by other agents over whom I have no control. I might as well say my plan to get rich is
that some rich person gives me £1000, because there is a possible path which gets me from
where I am to where I am rich in which that happens. There’s obviously more to planning.
No time for further discussion of real planning methods in this course.

Other possible problems

• Given a sequence of (partially specified) events α0 α1 . . . αk (no gaps), is this consis-
tent with a given transition system? This can be combined with partial information
about these actions, and about some or all of the states. This is an instance of the
temporal interpolation problem above.

• Given a sequence of (partially specified) events α0 α1 . . . αk, but with possible gaps,
is this consistent with a given transition system ? What are the complete (no gap)
sequences of events? This is obviously much harder.

9

The Action Description Language C+

The language C+ has evolved through several versions. Here we follow the (definitive)
presentation in [3] though we will deal with a slightly simplified version of the language to
avoid unnecessary detail.

An action description in C+ is a set of C+ laws that define a transition system of a certain
kind.

Syntax

An action signature is a (non-empty) set σf of fluent constants and a (non-empty) set σa

of action constants.

A fluent formula is any truth-functional compound of fluent atoms (i.e., a formula of
signature σf). An action formula is any formula of signature σa. The language also allows
formulas of signature σf ∪ σa.

So we have:

• fluent atoms f = v, p, ¬p
• action atoms a= v, a, ¬a

The full language also has rigid fluents (which do not change value from state to state), and
a sub-category of fluents called statically determined fluents. I will not bother with rigid
fluents. I will ignore statically determined fluents for now so as not to distract attention
from the main ideas.

There are three kinds of expressions in C+:

(1) Static laws
caused F if G

where F and G are fluent formulas (i.e., formulas of signature σf).

Static laws are used to express constraints that hold in all states.

(2) Fluent dynamic laws
caused F if G after ψ

where F and G are fluent formulas, and ψ is a formula of signature σf ∪ σa.

Informally, in a transition (s, ε, s′), formulas F and G are evaluated at s′ (the resulting
state), fluent atoms in ψ are evaluated at s (i.e., in the state immediately before the
transition), and action atoms in ψ are evaluated on the transition ε itself, as explained
below.

10

Fluent dynamic laws are primarily used to express how the values of fluents are affected
by different kinds of actions, and to specify which fluents are ‘inertial’.

It might be helpful to note that a fluent dynamic law can be written equivalently as a set
of laws of the form

caused F if G after H ∧ α
where H is a fluent formula (no action constants) and α is an action formula (no fluent
constants).

H F if G

• •

α

(3) Action dynamic laws
caused α if ψ

where α is an action formula (i.e., a formula of signature σa) and ψ is any formula of
signature σf ∪ σa.

An action dynamic law can be written equivalently as a set of laws of the form

caused α if β ∧H

where H is a fluent formula (no action constants) and β is an action formula.

H α if β

• •

Two special cases:
caused α if β

(Every transition/event of type β is also a transition/event of type α.)

caused α if H

(Whenever a state satisfies fluent formula H there is a transition/event of type α from that
state.)

Note In the rest of the notes I usually omit the keyword caused . This is to save space.

There are also various (optional) abbreviations for commonly occuring patterns of laws.
See below.

11

Definite action descriptions

An action description D is definite when, for all static laws, fluent dynamic laws and action
dynamic laws in D:

• the head of every law is either a fluent atom or the symbol ⊥, and
• no atom is the head of infinitely many laws of D.

(Remember that a Boolean fluent constant p and its negation ¬p are treated as atoms, and
hence are included in the definition.)

Definite action descriptions are the ones of practical interest.

Static laws: caused f = v if G or caused ⊥ if G

Fluent dynamic laws: caused f = v if G after ψ or caused ⊥ if G after ψ

Action dynamic laws: caused a= v if ψ

Example The effects of toggling a switch between on and off can be represented by a
Boolean fluent on and a Boolean action constant toggle and the following pair of laws:

toggle causes on if ¬on
toggle causes ¬on if on

These are shortand for the following fluent dynamic laws:

on if ⊤ after toggle ∧ ¬on
¬on if ⊤ after toggle ∧ on

Example: ‘inertia’ Default persistence (‘inertia’) of fluents is not a built-in feature of
the C+ language. One specifies explicitly which fluents are ‘inertial’ by means of a C+ law
of the form

inertial f

This is shorthand for the set of fluent dynamic laws of the form

f = v if f = v after f = v, for every v ∈ dom(f).

How this form of rule works to express default persistence of f = v will become clearer
when we look at the semantics of C+ laws.

Example Not all fluents are inertial. Here is a traffic light:

light = yellow if ⊤ after light = green
light = red if ⊤ after light = yellow
light = red yellow if ⊤ after light = red
light = green if ⊤ after light = red yellow

12

Example Shooting someone with a loaded gun makes them not alive.

¬alive if ⊤ after shoot ∧ loaded

Example Suppose the shooter is not always accurate. Suppose shooting someone with
a loaded gun is non-deterministic

% alive is inertial
alive if alive after alive
¬alive if ¬alive after ¬alive
% shooting is non-deterministic (even with a loaded gun)
¬alive if ¬alive after shoot ∧ loaded

Abbreviations

The language C+ provides various (optional) abbreviations. Here are the most common.
(We won’t bother with the full list.)

default F F if F

default F if G F if F ∧G
inertial f f = v if f = v after f = v for all v ∈ dom(f)

α causes G G if ⊤ after α

α causes G if ψ G if ⊤ after α ∧ ψ
nonexecutable α ⊥ if ⊤ after α (or: α causes ⊥)
nonexecutable α if ψ ⊥ if ⊤ after α ∧ ψ (or: α causes ⊥ if ψ)

α may cause G G if G after α

α may cause G if ψ G if G after α ∧ ψ

How these rules work to express defaults will become clearer when we look at the semantics
of C+ laws.

(You don’t have to learn these abbreviations off by heart!!)

13

Semantics

(The rationale behind these definitions is far from obvious. They come from the formalism
of ‘nonmonotonic causal theories’ in which C+ has its roots. It is NOT NECESSARY to
memorize the definitions in this section. It is not even necessary to read them.)

An action description D of C+ defines a labelled transition system

〈σf , σa, S,A, R〉

• a state

– is an interpretation of σf (the fluent constants)

– that satisfies G→ F for every static law caused F if G in D

(and some extra conditions for ‘statically determined’ fluents)

• a transition label (or event)

– is an interpretation of σa (the action constants)

• a transition is a triple (s, ε, s′) where s and s′ are states and ε is a transition la-
bel/event. s is the initial state of the transition and s′ is the resulting state. A
transition defined by a definite action description D must satisfy the following addi-
tional constraints.

Tstatic(s) =def {F | F if G is in D, s |= G}
E(s, ε, s′) =def {F | F if G after ψ is in D, s′ |= G, s ∪ ε |= ψ}
A(ε, s) =def {A | A if ψ is in D, s ∪ ε |= ψ}

〈s, ε, s′〉 is a transition iff:

– s |= Tstatic(s)

– s′ = Tstatic(s
′) ∪ E(s, ε, s′)

– ε |= A(ε, s)

(and some extra details for ‘statically determined’ fluents)

You can ignore these formal definitions. Their purpose is to justify the translation of C+
action descriptions to logic programs which comes presently.

14

Example (first, one without any static laws)

Signature: Boolean fluent constants loaded , on; Boolean action constants load , toggle.

inertial loaded
inertial on

load causes loaded
toggle causes on if ¬on
toggle causes ¬on if on

¬loaded
on

loaded
on

¬loaded
¬on

loaded
¬on

‘load ’

‘load ’

‘toggle’ ‘toggle’ ‘toggle’ ‘toggle’

‘load ’

‘load ’

(Action load is supposed to mean something like ‘ensure that loaded’. Otherwise we would
change the action description to load causes loaded if ¬loaded .)

In the diagram, transition labels ‘load ’ and ‘toggle ’ are shorthand for {load ,¬toggle} and
{¬load , toggle}, respectively.

There are two other events/labels in this transition system, not shown in the diagram
above. They are the events {load , toggle} and {¬load ,¬toggle} (‘null’ event).

¬loaded
on

loaded
on

¬loaded
¬on

loaded
¬on

ltlt
lt lt

null

null

null

null

Here, the label lt is shorthand for {load , toggle} and null is shorthand for the ‘null’ event
{¬load ,¬toggle}.

If we wanted to eliminate the ‘null’ event, we could add the following law to the action
description:

⊥ if ⊤ after ¬load ∧ ¬toggle

15

for which there is a standard abbreviation in C+:

nonexecutable ¬load ∧ ¬toggle

If we wanted to eliminate the possibility of concurrent execution of load and toggle we
would add

nonexecutable load ∧ toggle

Example (‘Yale Shooting Problem’)

Signature: Boolean fluent constants loaded , alive; Boolean action constants load , shoot ,
wait .

inertial loaded
inertial alive

load causes loaded
shoot causes ¬alive if loaded
shoot causes ¬loaded (**)

nonexecutable shoot ∧ load
nonexecutable wait ∧ shoot
nonexecutable wait ∧ load
⊥ after ¬wait ∧ ¬shoot ∧ ¬load

loaded
alive

loaded
¬alive

¬loaded
alive

¬loaded
¬alive

‘load ’
‘shoot ’

‘shoot ’‘load ’

‘load ’‘wait ’ ‘load ’‘wait ’

‘wait ’ ‘shoot ’‘wait ’ ‘shoot ’

(**) says that shooting the gun unloads it. That isn’t part of the original statement of the
‘Yale Shooting Problem’. I just thought I would include it.

It is not possible to load and shoot a gun at the same time: shoot ∧ load events are
eliminated by the first of the nonexecutable laws.

Alternatively: we could eliminate the action constant wait and represent it instead by the
‘null’ event {¬shoot ,¬load}. The last three lines of the action description could then be
deleted.

16

Example (completely artificial; just for the sake of an example)

Signature: Boolean fluent constants rich, happy, on; Boolean action constants win, lose, toggle.

inertial rich
inertial on
inertial happy

win causes rich
lose causes ¬rich
toggle causes on if ¬on
toggle causes ¬on if on

happy if rich (a static law)

nonexecutable lose ∧ win

¬rich
¬happy
on

¬rich
happy
on

rich
happy
on

¬rich
happy
¬on

¬rich
¬happy
¬on

rich
happy
¬on

‘win ’

‘win ’

‘win ’

‘win ’

‘lose’

‘lose’

‘lose’

‘lose’

‘lose’

‘lose’

‘win ’

‘win ’

‘toggle’
‘toggle’

‘toggle’

null

null

null

null

null

Because of the static law, there are only 6 states not 23 = 8. The diagram does not show
the transitions with labels {toggle,win,¬lose} and {toggle,¬win, lose}.

17

Example (Winning the lottery)

Winning the lottery causes one to become (or remain) rich. Losing one’s wallet causes one
to become (or remain) not rich. A person who is rich is happy.

Signature: Boolean fluent constants alive, rich, happy; Boolean action constants birth , death,win, lose.

inertial alive
inertial rich
inertial happy

birth causes alive
nonexecutable birth if alive

death causes ¬alive
nonexecutable death if ¬alive
win causes rich
nonexecutable win if ¬alive
lose causes ¬rich
nonexecutable lose if ¬alive
happy if rich
⊥ if rich ∧ ¬alive
⊥ if happy ∧ ¬alive
nonexecutable birth ∧ death
nonexecutable birth ∧ win
nonexecutable birth ∧ lose
nonexecutable win ∧ lose

alive
¬ rich
¬ happy

¬ alive
¬ rich
¬ happy

alive
rich
happy

alive
¬ rich
happy

‘birth’

‘death’

‘win’

‘death’

‘lose’

‘win’

‘death’

‘lose’

‘win’

‘lose’

null

null

null

null

Because of the static laws, there are only four states in the transition system and not 23 = 8.
Transition labels ‘birth’, ‘death’, ‘win’, ‘lose’ in the diagram are shorthand for the events
{birth,¬death ,¬win,¬lose}, {¬birth, death,¬win,¬lose}, {¬birth,¬death ,win,¬lose},
{¬birth ,¬death,¬win, lose}, respectively. The label null is shorthand for the ‘null’ event
{¬birth ,¬death,¬win,¬lose}.

Notice that as formulated here, the example allows for reincarnation: a person can be
born, die, and be born again. The possibility of reincarnation can be eliminated easily
enough, for example by adding another fluent constant dead together with a static law
⊥ if alive ∧ dead ; the simpler version with reincarnation is perfectly adequate for present
purposes.

The diagram does not show transitions of type death ∧ lose (i.e., transitions with label
{¬birth , death,¬win, lose}). Their effects are exactly the same as ‘death’ transitions.

There are no transitions of type win ∧ death because they would lead to states with rich ∧
¬alive. There are no such states because of the static law ⊥ if rich ∧ ¬alive.

The laws nonexecutable birth∧death and nonexecutable win∧ lose could be deleted without
affecting the transition system. There are no transitions of type birth ∧ death because

18

they would lead to states with alive ∧ ¬alive, and there are no such states. There are no
transitions of type win ∧ lose because they would lead to states with rich ∧ ¬rich.
In fact, all the nonexecutable statements in this example could be omitted (they are all
implied). (This isn’t obvious, but turns out to be the case on closer examination.)

Statically determined fluent constants

A state of the transition system is uniquely determined by the values of the fluent constants.

In the previous example there are three Boolean fluent constants:

alive, rich, happy

All three are declared inertial. A static law

caused happy if rich

eliminates certain combinations.

The language C+ actually has two different kinds of fluent constant: simple fluent constants
and statically determined fluent constants.

A state of the transition system is uniquely determined by the values of the simple fluent
constants.

The values of the statically determined fluent constants are defined in terms of the simple
fluent constants (or other statically determined fluent constants). One does not write
dynamic laws saying how the values of statically determined fluent constants change from
state to state. Their values are defined in terms of other fluents.

(Statically determined fluent constants are an optional extra. They don’t change expressive
power but are sometimes useful.)

Example (An alternative, different version of the previous one)

Signature: (simple) Boolean fluent constants alive, rich;
(Boolean action constants birth, death,win, lose as before);
Boolean statically determined fluent constant happy .

Suppose a person is happy if and only if he is rich.

default ¬happy
caused happy if rich

Other features of the action description as before, except that . . .

We do not specify now that happy is inertial. It is statically determined. Its value is
determined by the value of rich (a simple fluent constant). In this version, if a person
ceases to be rich, s/he ceases to be happy. (happy is not inertial.)

19

Example (Going to work 1)

This illustrates non-deterministic actions.

Let the Boolean action constant go represent ‘Jack goes to work’. Jack can go to work by
walking or, if his car is in his garage, he can drive. For simplicity, to simplify the diagrams,
we ignore the possibility that Jack goes in the opposite direction.

The following action description

inertial AtWork
inertial CarInGarage

go causes AtWork

nonexecutable go if AtWork

makes ‘go’ deterministic in all states, as shown in the following diagram

¬AtWork
CarInGarage

AtWork
CarInGarage

¬AtWork
¬CarInGarage

AtWork
¬CarInGarage

‘go’

‘go’

(Reflexive edges corresponding to the event {¬go} are not shown.)

But what we expect (or want) is that go is non-deterministic in those states where CarInGarage
is true, because here Jack can either walk to work or drive and thereby move his car. To
obtain this effect one adds another statement to the action description:

go may cause ¬CarInGarage if CarInGarage

This is an abbreviation for the dynamic law

¬CarInGarage if ¬CarInGarage after CarInGarage ∧ go

With this additional statement we obtain the following transition diagram (‘null’ events
{¬go} omitted):

¬AtWork
CarInGarage

AtWork
CarInGarage

¬AtWork
¬CarInGarage

AtWork
¬CarInGarage

‘go’

‘go’

‘go’

20

Example (Going to work 2)

Alternatively, we could distinguish between walking to work and driving to work. Let us
have two Boolean action constants walk and drive to represent walking and driving to work
respectively. The action description

inertial AtWork
walk causes AtWork
drive causes AtWork
drive causes ¬CarInGarage if CarInGarage

nonexecutable walk if AtWork
nonexecutable drive if AtWork
nonexecutable drive if ¬CarInGarage
nonexecutable walk ∧ drive

defines the following transition system (‘null’ events {¬walk ,¬drive} omitted):

¬AtWork
CarInGarage

AtWork
CarInGarage

¬AtWork
¬CarInGarage

AtWork
¬CarInGarage

‘walk ’

‘walk ’

‘drive’

The first two causes laws could be replaced by the (equivalent) law: (walk∨drive) causes AtWork

We could also represent that walk and drive are both kinds of go by means of action
dynamic laws:

caused go if walk
caused go if drive

Or (equivalently as it turns out) by the pair of fluent dynamic laws:

nonexecutable walk ∧ ¬go (walk ∧ ¬go causes ⊥)
nonexecutable drive ∧ ¬go (drive ∧ ¬go causes ⊥)

We might also wish to add (in the absence of another kind of go, such as cycling):

nonexecutable go ∧ ¬walk ∧ ¬drive

This would not change the form of the transition system shown above except to replace
transition labels ‘walk ’ and ‘drive’ by {go,walk} and {go, drive} respectively.

Notice that the transition label {go,walk} cannot distinguish between two concurrent but
unrelated actions go and walk and one action ‘go by walking’. We have an extended version
of C+ which is intended to address such issues, amongst other things.

21

Example (Going to work 3)

Here is an example of another source of non-determinism. Some fluents vary from state to
state but are not ‘caused’ by any kind of action. Such fluents are called ‘exogenous’.

Take the previous example and add a Boolean constant raining . We express that raining
is exogenous by adding the following pair of static laws:

raining if raining
¬raining if ¬raining

Here is a fragment of the transition system obtained:

¬AtWork
CarInGarage
¬raining

AtWork
CarInGarage
¬raining

AtWork
CarInGarage
raining

‘walk ’

‘walk ’

The pair of static laws for raining above may also be written more concisely in C+ as:

exogenous raining

In general, for a fluent constant f , the abbreviation

exogenous f

stands for the set of static laws f = v if f = v, for every v ∈ dom(f)..

22

Example (Going to work 4)

This is just to illustrate the use of multi-valued fluents and action constants. (Action
constants can also be multi-valued.)

Suppose there are three agents a, b, c. Each has a car.

There are three locations: home, work, pub.

Fluent symbols:
loc(x) = p: agent x is at location p
car(x) = p: agent x’s car is at location p

Action symbols:
walk(x) = dest: x walks to dest
drive(x) = dest: x drives to dest

Note that the domain of walk(x) and drive(x) are ‘destinations’ not locations:
dom(walk(x)) = dom(drive(x)) = {home, work, pub, none}.

This is because every action constant must have a value in every model and obviously we
want transitions in which an agent does not walk and/or does not drive. (Very easy to
forget. I forgot in an earlier draft of these notes and only noticed when I executed the
example in iCCalc.

Here x ranges over the agents and p, p′ over the locations:

inertial loc(x)
inertial car(x)

walk(x) = p causes loc(x) = p

drive(x) = p causes loc(x) = p
drive(x) = p causes car(x) = p

nonexecutable drive(x) = p ∧ walk(x) = p′

nonexecutable drive(x) = p if loc(x) 6= car(x)

Note that

(1) p and p′ in these laws range over locations not ‘destinations’.

(2) drive(x) = p when loc(x) = p is possible (in this example), and means that x drives
around and ends up back where he/she started. And similarly for walk(x).

(3) The condition loc(x) 6= car(x) in the last line is valid syntax in CCalc and iCCalc.
The last line is shorthand for the following C+ laws:

nonexecutable drive(x) = p if loc(x) = p′ ∧ ¬(car(x) = p′) (for all locations p, p′)

23

Example (‘Yale Shooting Problem’, again)

The ‘Yale Shooting Problem’ (YSP) is one of the classics in temporal reasoning in AI.
The significance of the ‘problem’ (if it is a problem; not everyone agrees that it is) is that
attempts to formalise it using a variety of general purpose non-monotonic reasoning for-
malisms failed to give an adequate representation. One loads a gun; waits; then shoots.
Intuitively, the target should be dead (not alive) after this sequence. But various for-
malisations of the persistence (frame axiom/law of inertia) gave a surprising result: there
was one model (extension, answer set, . . .) in which the target was indeed not alive, but
another unintended anomalous model (extension, answer set, . . .) in which the gun was
mysteriously no longer loaded after the wait, and so after the shooting, the target was still
alive.

I don’t want to get into details of whether this really is a problem or not, or what the
diagnosis of the problem is (if it is a problem). What happens in C+?

Here is the earlier C+ action description.

Signature: Boolean fluent constants loaded , alive; Boolean action constants load , shoot ,
wait .

inertial loaded
inertial alive

load causes loaded
shoot causes ¬alive if loaded
shoot causes ¬loaded
nonexecutable shoot ∧ load
nonexecutable wait ∧ shoot
nonexecutable wait ∧ load
⊥ after ¬wait ∧ ¬shoot ∧ ¬load

With this action description, any path of the transition system which has load at time 0,
wait at time 1, and shoot at time 2, has alive false at time 3, just as expected. In this
action description, the wait at time 1 does not mysteriously result in the gun becoming
unloaded.

But suppose we did want to allow for this possibility? Suppose, for example, that wait
could be an extremely long wait during which the gun could lose its ability to fire (and
thus become ‘unloaded’). How could we get this effect in C+?

Answer: wait would then be an action with non-deterministic effects. It may but need
not, result in ¬loaded after wait .

How to express this? Add another causal law:

wait may cause ¬loaded

24

Causal theories

The details here are NOT EXAMINABLE. They are provided for background for the action
language C+, and for general interest.

Nonmonotonic causal theories (or just ‘causal theories’ for short) is a general purpose
non-monotonic representation formalism. A causal theory is a set of causal rules of the
form

F ⇐ G

where F and G are formulas (defined on next page). Informally, this is to be read as saying
that F is ‘caused’ if G is true (which is not the same as saying that G is the cause of F).
We don’t need to rely on this informal reading to use the formalism.

The main interest for us is that causal theories are intimately connected to the action
language C+ which we will be looking at later. You can think of them as a kind of
stepping stone between C+ and logic programs, which are our main interest.

Definite clausal theories A causal theory Γ is definite if

• the head of every rule of Γ is an atom or ⊥, and
• no atom is the head of infinitely many rules of Γ.

Note that, as defined earlier, when p is a Boolean constant, ¬p is shorthand for the atom
p= f and so covered by the definition.

Translation to (classical) propositional logic

Definite causal theories (defined above) can be translated via the process of ‘literal com-
pletion’ into expressions of (classical) propositional logic. The process is analogous to the
Clark completion for logic programs.

Literal completion

For a definite causal theory Γ, translate to set of (classical) formulas comp(Γ):

F ⇐ G1
...

F ⇐ Gn

becomes F ↔ G1 ∨ · · · ∨Gn

If F is an atom and there are no causal rules with F as the head then F ↔ ⊥ (which is
logically equivalent to ¬F).
A causal rule ⊥ ⇐ G becomes ¬G.

Models of Γ are the (classical) models of the formulas comp(Γ).

25

Relationship to other formalisms

A causal theory of a Boolean signature can be viewed as a Reiter default theory.

Translate causal rule F ⇐ G to the default rule
: G

F
.

More precisely: Let Γ be a causal theory of Boolean signature. Let D(Γ) be the set of
default rules obtained by translating every rule in Γ as described above.

An interpretation I is a model of Γ iff th(I) is an extension of the default theory (D(Γ), ∅).
(th(I) stands for the set of all formulas true in I.)

Extended logic programs (IMPORTANT)

Suppose that a causal theory Γ has a Boolean signature and is definite.

Every such causal theory can be written equivalently as a set of causal rules of the form

L⇐ L1 ∧ · · · ∧ Ln (n ≥ 0)

or

⊥ ⇐ L1 ∧ · · · ∧ Ln (n ≥ 0)

where L and every Li is a Boolean atom, i.e., of the form c or ¬c (c= t and c= f). Translate
each such rule to an extended logic programming clause:

L← not L1, . . . , not Ln

where as usual Li stands for the literal complementary to Li. (Translate L⇐ ⊤ to L←.)

Translate
⊥ ⇐ L1 ∧ · · · ∧ Ln (n ≥ 0)

to the constraint
← not L1, . . . , not Ln

Call this the program lp(Γ).

A set of literals I that is an interpretation of Γ is a model of Γ iff I is an answer set of
lp(Γ).

Notice: the above does not say that every answer set of an extended logic program lp(Γ)
is a model of Γ. It says that every interpretation I – every consistent and complete set of
atoms of the signature of Γ – is a model of Γ iff it is an answer set of lp(Γ).

26

Defaults

In causal theories, a causal rule of the form

F ⇐ F

effectively says ‘F holds by default’.

It should now be clear why. The causal rule F ⇐ G is (nearly exactly) equivalent to the
Reiter default rule

: F

F

(If it is consistent that F , then F , or ‘F holds by default’.)

Consider the corresponding translation to (extended) logic programs. For an atom p,

p⇐ p translates to p← not ¬p

One last little note

The very observant might have noticed that the causal rule

L⇐ L1 ∧ · · · ∧ Ln

translates to the Reiter default
: L1 ∧ · · · ∧ Ln

L

Whereas the logic program clause

L← not L1, . . . , not Ln

translates to the Reiter default
: L1, . . . , Ln

L

These are not equivalent, in general. Compare, for example

: p ∧ q
r

and
: p, q

r
when (¬p ∨ ¬q)

But they are equivalent when causal rules have only atoms in the head, i.e., when they
can be translated to a logic program.

27

Translation of C+ to causal theories

For any action description D in C+, and any non-negative integer m, it is possible to
construct a causal theory ΓD

m such that the models of ΓD
m correspond to the paths of length

m of the transition system defined by D. The language C+ can thus be regarded as a
higher-level notation for defining causal theories of a particular kind, and indeed this is
exactly as it is presented in [3].

The translation is obtained by time-stamping every fluent and action atom with a non-
negative integer, just as we did for the time-stamped query language earlier:

f [i] = v represents that fluent f = v holds at integer time i, or more precisely, that f = v
holds in the ith state of a history (path) of the transition system.

a[i] = v represents that action atom a= v is satisfied by the transition from the ith state
of the history (path) to the i+1th state.

For any formula ψ, ψ[i] stands for the result of time-stamping all fluent and action constants
in ψ with i. For example: (p ∨¬q)[i] is shorthand for p[i] ∨¬q[i], that is, p[i] = t∨ q[i] = f.

Given an action description D, the causal theory ΓD
m is constructed as follows.

• Static law
caused F if G 7→ F [i]⇐ G[i] (i ∈ 0 .. m)

• Fluent dynamic law

caused F if G after ψ 7→ F [i+1]⇐ G[i+1] ∧ ψ[i] (i ∈ 0 .. m−1)

• Action dynamic law

caused α if ψ 7→ α[i]⇐ ψ[i] (i ∈ 0 .. m−1)

We also require the following exogeneity laws:

• For every simple fluent constant f and every v ∈ dom(f):

f [0] = v ⇐ f [0] = v

• For every action constant a, every v ∈ dom(a):

a[i] = v ⇐ a[i] = v (i ∈ 0 .. m−1)

Look very carefully at the range of the time index i in all of the above causal laws.

28

The exogeneity laws are necessary. Why? Because to get a model of the causal
theory ΓD

m (and a representation of the transition system defined by D) we must have a
consistent and complete valuation for every fluent constant in every state, and for every
action constant at every transition. The exogeneity laws ensure this — assuming that if
we give a valuation for the (simple) fluent constants in the initial state the fluent dynamic
laws will ensure they get a valuation in every subsequent state. The fluent dynamic laws
must be written accordingly.

Note that there are no exogeneity laws for statically determined fluent constants — their
values are determined by the values of the simple fluents. Statically determined fluents
must be defined accordingly: by means of ‘default’ statements if necessary.

For illustration, here are the translated forms of the most commonly used abbreviations of
C+:

default F F [i]⇐ F [i]

default F if G F [i]⇐ F [i] ∧G[i]
inertial f f [i+1]= v ⇐ f [i+1]= v ∧ f [i] = v for all v ∈ dom(f)

α causes G G[i+1]⇐ α[i]

α causes G if ψ G[i+1]⇐ α[i] ∧ ψ[i]
nonexecutable α ⊥ ⇐ α[i]

nonexecutable α if ψ ⊥ ⇐ α[i] ∧ ψ[i]
α may cause G G[i+1]⇐ G[i+1] ∧ α[i]
α may cause G if ψ G[i+1]⇐ G[i+1] ∧ α[i] ∧ ψ[i]

Clearly any interpretation X of the signature of ΓD
m can be written in the form

s0[0] ∪ ε0[0] ∪ · · · ∪ εm−1[m−1] ∪ sm[m]

where s0, . . . , sm are interpretations of σf and ε0, . . . , εm−1 are interpretations of σa.

So, here is the key point . . .

Models of ΓD
m

1−1⇐⇒ paths/histories of length m in D

In particular, ΓD
1 represents paths of length 1 of D, i.e., the transitions of the transition

system described by D.

ΓD
0 represents paths of length 0, i.e., the states of the transition system described by D.

29

Example

toggle causes on if ¬on
toggle causes ¬on if on

load causes loaded

inertial on
inertial loaded

on[i+1]↔ (toggle[i] ∧ ¬on[i]) ∨ (on[i+1] ∧ on[i])

¬on [i+1]↔ (toggle[i] ∧ on[i]) ∨ (¬on [i+1] ∧ ¬on[i])
loaded [i+1]↔ load [i] ∨ (loaded [i+1] ∧ loaded [i])

¬loaded [i+1]↔ ¬loaded [i+1] ∧ ¬loaded [i]
on[0]↔ on[0]

¬on[0]↔ ¬on [0]
loaded [0]↔ loaded [0]

¬loaded [0]↔ ¬loaded [0]

toggle[i]↔ toggle [i]

¬toggle[i]↔ ¬toggle[i]
load [i]↔ load [i]

¬load [i]↔ ¬load [i]

(**)

on if ⊤ after toggle ∧ ¬on
¬on if ⊤ after toggle ∧ on

loaded if ⊤ after load

on if on after on
¬on if ¬on after ¬on
loaded if loaded after loaded
¬loaded if ¬loaded after ¬loaded

on[i+1]⇐ toggle[i] ∧ ¬on[i]
¬on [i+1]⇐ toggle[i] ∧ on[i]

loaded [i+1]⇐ load [i]

on[i+1]⇐ on[i+1] ∧ on[i]
¬on [i+1]⇐ ¬on[i+1] ∧ ¬on [i]
loaded [i+1]⇐ loaded [i+1] ∧ loaded [i]
¬loaded [i+1]⇐ ¬loaded [i+1] ∧ ¬loaded [i]
on[0]⇐ on[0]

¬on[0]⇐ ¬on [0]
loaded [0]⇐ loaded [0]

¬loaded [0]⇐ ¬loaded [0]

toggle[i]⇐ toggle [i]

¬toggle[i]⇐ ¬toggle[i]
load [i]⇐ load [i]

¬load [i]⇐ ¬load [i]

(*)

Note the introduction of the ‘exogeneity laws’ (*) in the second step.

Some versions of C+ require an explicit declaration

exogenous a

for every (exogenous) action constant a. Perhaps this is better because then one does not
forget.

30

Notice that all the formulas (**) in the completion resulting from the exogeneity laws (*)
are tautologies (always true) and so, since they are trivially satisfied, they can be deleted
from the completion before it is passed to the sat-solver as an obvious optimisation step.
And that is exactly what happens in practice.

But that does not mean that the exogeneity laws (*) themselves are unnecessary. See what
happens if they are omitted. In that case the completion would contain (by definition)

on[0]↔ ⊥, ¬on[0]↔ ⊥

i.e., both ¬on [0] and on [0]. And similarly for all the other exogeneity laws. The completion
would obviously be unsatisfiable.

The ‘Causal Calculator’

C+ is a language for defining transition systems. That’s all. Other languages can be
interpreted on these structures:

• temporal

• epistemic (cf. ‘interpreted systems’)
...

• narratives and planning

– e.g. as supported by the ‘causal calculator’ CCalc

Given an action description D of signature (σf , σa), non-negative integer m, and query ψ
of the time-stamped signature σm, CCalc

• performs the translation of D to ΓD
m,

• constructs comp(ΓD
m),

• invokes a standard propositional sat-solver to find (classical) models of comp(ΓD
m)∪ψ,

and then

• post-processes the sat-solver output to show the models obtained.

In practice, the first two steps may be combined into one, possibly with some additional
optimisations to simplify the set of formulas passed to the sat-solver.

In addition, CCalc provides

• a language for specifying the action signature (sorts, variables, various shorthand
notations)

• a language for asserting narratives and for expressing common forms of queries.

I won’t show the details. The query language in particular is very ugly.

31

Translation to logic programs (ASP)

This is our main interest. Think of causal theories as an (optional) stepping stone in the
translation to logic programs.

The translation for boolean signatures is very straightforward. The details for multi-valued
signatures are a bit fiddly.

The details are in a separate set of notes (‘Addendum’).

References

[1] V. Akman, S. T. Erdoğan, J. Lee, V. Lifschitz, and H. Turner. Representing the Zoo World
and the Traffic World in the language of the Causal Calculator. Artificial Intelligence,
153:105–140, 2004.

[2] Michael Gelfond and Vladimir Lifschitz. Action Languages. Electronic Transactions on AI,
3(16), 1998. http://www.ep.lin.se/ea/cis/1998/016.

[3] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, and Hudson Turner.
Nonmonotonic causal theories. Artificial Intelligence, 153:49–104, 2004.

[4] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, and Hudson Turner. Causal laws and
multi-valued fluents. In Proc. of the Fourth Workshop on Nonmonotonic Reasoning, Action,
and Change, Seattle, August 2001.

[5] Enrico Giunchiglia and Vladimir Lifschitz. An action language based on causal explanation:
Preliminary report. In Proc. AAAI-98, pages 623–630. AAAI Press, 1998.

[6] Enrico Giunchiglia and Vladimir Lifschitz. Action languages, temporal action logics, and
the situation calculus. In Working Notes of the IJCAI-99 Workshop on Nonmonotonic
Reasoning, Action, and Change, 1999.

[7] Vladimir Lifschitz. On the logic of causal explanation. Artificial Intelligence, 96:451–465,
1997.

[8] Vladimir Lifschitz and Hudson Turner. Representing transition systems by logic programs. In
Proc. Fifth International Conference on Logic Programming and Nonmonotonic Reasoning,
pages 92–106, 1999.

[9] Norman McCain and Hudson Turner. Causal theories of action and change. In Proc. AAAI-
97, pages 460–465. AAAI Press, 1997.

[10] Hudson Turner. A logic of universal causation. Artificial Intelligence, 113:87–123, 1999.

32

