
Department of Computing, Imperial College

491 Knowledge Representation Autumn 2017
Assessed coursework

Deadline: 24 November 2017

This assignment is primarily an exercise in computing answer sets, extensions of some
simple Reiter default theories, and illustrations of the connections between them.

All of the examples are based on two classic problems in the AI literature concerning the
formalisation of default rules of persistence (‘laws of inertia’). The idea is that by doing
the exercises you learn something about these classic examples and why they have been
seen as presenting problems (or non-problems, depending on your point of view).

There is a lot of reading but, I hope, not too much writing. Some parts are optional—for
your interest only, recommended, but not assessed. In most cases you calculate answer sets
using the ASP solver clingo. You can find the executables, and some brief documentation,
in the directory /vol/lab/CLASP. You simply type (Linux command line):

/vol/lab/CLASP/clingo 0 file1.lp ... filen.lp

clingo calls the grounder gringo and then pipes its output to the ASP solver clasp

automatically. The argument 0 specifies that you want all solutions.

It is often instructive to look at the output produced by gringo. Type

/vol/lab/CLASP/clingo -t file1.lp ... filen.lp

If you want to put the clingo output in a file for later editing, you need to use the Linux
> redirection: /vol/lab/CLASP/clingo 0 file1.lp ... filen.lp > output file .

Question 0 (Recommended, not assessed. Do not submit!!)

You will need the following observation to simplify some of the calculations.

Let P be a (ground) normal logic program, let A be a ground atom, and let L1, . . . , Ln be
ground literals.

1) For any normal logic program P , P ∪ {A ← L1, . . . , Ln } ∪ {A ←} and P ∪ {A ←}
have the same (Herbrand) models.

2) For any normal logic program P , P ∪ {A ← L1, . . . , Ln } ∪ {A ←} and P ∪ {A ←}
have the same stable models (answer sets).

Try to prove this but do NOT include the proof in your submission. (It is very easy.
For (1), look at TP ∪ {A← L1, . . . , Ln } ∪ {A←}(X). (2) follows from (1) — compare

the two reducts. I will show the details in the model answer.) This result can also be
generalised, to cover the case where the body of one clause subsumes the body of another
clause with the same head allowing the program to be simplified without changing the
answer sets. You don’t need the more general version for this exercise.
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Kautz’s Stolen Car problem

Henry A. Kautz. The logic of persistence. In Proc. National Conference on Artificial
Intelligence (AAAI), pp 401–405, Philadelphia, 1986. Morgan Kaufmann Publishers, Inc.

A car is known (observed) to be in a car park at time 1. At some future time n, it is
known (observed) not to be in the car park. Assuming some form of default persistence
(‘inertia’), where is the car at times between 1 and n?

Question 1 Let p(t) represent that the car is in the car park at (integer) time t (and
¬p(t) to represent that it is not).

Suppose that facts, positive and negative, persist forwards in time by default, as expressed
by the following extended logic program Pf:

p(t+1) ← p(t), not ¬p(t+1)

¬p(t+1) ← ¬p(t), not p(t+1)

This is shorthand for a set of ground clauses, for t ranging over integers from 1 to some
n−1. Henceforth I’ll refer to n as the ‘maximum time’ for the example.

Use ‘splitting sets’ to determine the answer sets of Pf ∪ Obs for the following sets of
observations Obs:

{ p(1), ¬p(3) } and { p(1), p(3) } and { p(2) }

Here it makes sense to take ‘maximum time’ as 3.

Now, just for the practice, check your answers by computing the answer sets for these
three problems using clingo. You will find the persistence rules in clingo syntax in the
file kautz forward.lp in /vol/lab/CLASP/CWK-491-2017. (The files are read-only so you
will need to make your own copies if you want to edit them.) Type

/vol/lab/CLASP/clingo 0 kautz forward.lp kautz obs.lp

kautz obs.lp is a clingo input file (also supplied) specifying the observations.

If you want to run the exercise for other values of ‘maximum time’, say 5, type:

/vol/lab/CLASP/clingo 0 --const maxT=5 kautz forward.lp kautz obs.lp

(This is just for your own interest. Do not submit the clingo outputs for this question,
nor any splitting set calculations for maximum time greater than 3.)
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Question 2 Let Pb be the following extended logic program, for t ranging over integers
from 1 to some n−1.

p(t) ← p(t+1), not ¬p(t)

¬p(t) ← ¬p(t+1), not p(t)

You can read Pb as expressing a kind of ‘backwards persistence’ of positive and negative
facts over time. Some people simply cannot accept that ‘backwards persistence’ makes
any sense. Causality, so they say, goes in one direction: a fact p(t+1) cannot ‘cause’
another fact p(t) at an earlier time t. I don’t want to get into that here. Neither of the
clauses in Pb say anything about causality. But anyway: notice that we can read Pb not
as expressing some kind of causality in the car parks world, but simply as relating beliefs
about where the car is at time t with beliefs about where the car is at time t+1. Pb then
seems non-controversial (at least to me). Be that as it may.

Compute the answer sets of Pf ∪ Pb ∪Obs for the following sets of observations Obs:

{ p(1), ¬p(3) } and { p(1), p(3) } and { p(2) }

As in Question 1, do this by hand using ‘splitting sets’. I am sorry about the amount of
writing but I believe it is instructive to do these calculations by hand. You will need to
use Question 0 or you will not find any splitting sets. (You can also try the approximation
method of Question 2 but do not submit it. Too much writing.)

Add a brief commentary to explain the significance of the answers.

As before you can use clingo to check your calculations. You will find the clauses Pf ∪Pb

in the file kautz forward back.lp. It is worth trying it for other values of ‘maximum
time’, say 5. Do not submit the clingo outputs.

Question 3 In the literature, default persistence (‘laws of inertia’ or ‘frame axioms’) are
often expressed using Reiter default logic. Consider this (typical) pair:

F = { ¬ab(t, t+1)→ ( p(t)→ p(t+1) ),
¬ab(t, t+1)→ (¬p(t)→ ¬p(t+1) )

} D¬ab = { : ¬ab(t, t+1)

¬ab(t, t+1)
}

I have written F (for ‘frame axioms’) in this form to emphasise that F is a set of formulas
(in first-order logic, or as here, in propositional logic with ground instances for t ranging
over integers between 1 and n−1).

Temporal reasoning problems are then formulated as default theories (D¬ab, F ∪W ) where
W is some set of formulas expressing effect axioms, observations, and other (non-temporal)
features of the domain being modelled. Usually, of course, there are several time-varying
facts or ‘fluents’ to deal with, and the default persistence/frame theory takes the form

F = { ¬ab(f, t, t+1)→ ( f(t)→ f(t+1) ),
¬ab(f, t, t+1)→ (¬f(t)→ ¬f(t+1) )

} D¬ab = { : ¬ab(f, t, t+1)

¬ab(f, t, t+1)
}

for f ranging over every time-varying fact or ‘fluent’ of interest. Since the Stolen Car
examples need only one such ‘fluent’ p (for ‘parked’) I have omitted the extra argument in
ab for simplicity. But see the ‘Yale Shooting Problem’ exercises later.
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(a) Show that the following are both extensions of (D¬ab, F ∪ { p(1),¬p(3) }).

Th(F ∪ { p(1),¬p(3) } ∪ {¬ab(1, 2), ab(2, 3) })
Th(F ∪ { p(1),¬p(3) } ∪ { ab(1, 2),¬ab(2, 3) })

Do this by hand. Construct the reduct and then compute the relevant closure.

(b) (Recommended, not assessed. Do not submit!)

Are there any other extensions of (D¬ab, F ∪ { p(1),¬p(3) })? One way to investigate it is
as follows.

(i) First prove that if E is an extension of (D¬ab,W ) (any W ) then either ab(t, t+1) ∈ E
or ¬ab(t, t+1) ∈ E. (Very easy! Suppose ab(t, t+1) /∈ E. Then . . . )

(ii) Now prove that there is no extension E of (D¬ab, F ∪ { p(1),¬p(3) }) such that
ab(t, t+1) ∈ E and ¬ab(t, t+1) ∈ E. (Hint, to save work: extensions of Reiter default
theories are always minimal, and you know from part (a) something about extensions of
(D¬ab, F ∪ { p(1),¬p(3) }).)
(iii) It just remains to check whether there are any extensions of (D¬ab, F ∪{ p(1),¬p(3) })
of the form

Th(F ∪ { p(1),¬p(3) } ∪ { ab(1, 2), ab(2, 3) } ∪X)

Th(F ∪ { p(1),¬p(3) } ∪ {¬ab(1, 2),¬ab(2, 3) } ∪X)

where X is to be determined, but does not contain any instances of ab literals.

Investigate this. (Show there are no such extensions.) This is for your own interest. Do
not submit this.

(c) (For this part, there is something to submit — see below)

Since the defaults D¬ab have the same meaning as the extended logic program clauses
¬ab(t, t+1) ← not ab(t, t+1), you might think that the default theory (D¬ab, F ∪ Obs) is
equivalent, assuming Obs is a set of facts (ground literals), to the logic program PF ∪P¬ab∪
Obs where

PF = { p(t+1) ← p(t), ¬ab(t, t+1),
¬p(t+1) ← ¬p(t), ¬ab(t, t+1)

}

P¬ab = { ¬ab(t, t+1)← not ab(t, t+1) }

But that isn’t right. PF ∪ P¬ab ∪ Obs, for Obs a set of facts (ground literals) is equivalent
to the default theory (D′

¬ab,Obs) where

D′
¬ab = { p(t) ∧ ¬ab(t, t+1):

p(t+1)
,
¬p(t) ∧ ¬ab(t, t+1):

¬p(t+1)
,

: ¬ab(t, t+1)

¬ab(t, t+1)
}

Here, the material implications F in F ∪ Obs have been replaced in D¬ab by (monotonic,
non-default) rules. That is not the same thing. In general, the default theory (D ∪R, W )
where R is a set of monotonic (non-default) rules is not equivalent to the default theory
(D, mat(R) ∪W ).
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Just to see the difference in this example, compute the answer set(s) of PF ∪ P¬ab ∪
{ p(1),¬p(3) }. Don’t do this by hand: use clingo. The clauses PF ∪ P¬ab are in file
kautz bad reiter.lp. What do you get?

clingo output is not always easy to read. You will need to put the output in a file and
then edit it slightly to make it readable. Just submit the (edited) clingo output and add
a brief commentary to explain the significance of the answers.

Question 4 Here is a common variation of the treatment of default persistence/inertia
of the previous question. Some authors prefer to use the following frame axioms:

F ′ = { ¬ab(t, t+1)→ ( p(t)↔ p(t+1) ) } D¬ab = { : ¬ab(t, t+1)

¬ab(t, t+1)
}

Note first that F ′ and F of Question 3 are logically equivalent. And moreover, F and F ′

are also logically equivalent to the conjunction of

¬ab(t, t+1)→ ( p(t)→ p(t+1) )

¬ab(t, t+1)→ (¬p(t)→ ¬p(t+1) )

¬ab(t, t+1)→ ( p(t+1)→ p(t) )

¬ab(t, t+1)→ (¬p(t+1)→ ¬p(t) )

So (very rarely noticed!!) we have both ‘forward’ and ‘backward’ persistence. Amazingly,F ′

is often adopted as the natural frame axiom by authors who deny vehemently that ‘back-
wards persistence’ makes any sense.

Anyway. Put that to one side. Suppose we try to get the effects of the contrapositive1

forms of F ′ by taking the following extended logic program P ′
F :

p(t+1) ← p(t), ¬ab(t, t+1)

¬p(t+1) ← ¬p(t), ¬ab(t, t+1)

p(t) ← p(t+1), ¬ab(t, t+1)

¬p(t) ← ¬p(t+1), ¬ab(t, t+1)

ab(t, t+1) ← p(t), ¬p(t+1)

ab(t, t+1) ← ¬p(t), p(t+1)

together with P¬ab = { ¬ab(t, t+1)← not ab(t, t+1) } as in the previous question.

Compute the answer sets of P ′
F ∪ P¬ab ∪Obs for the following sets of observations Obs:

{ p(1), ¬p(3) } and { p(1), p(3) } and { p(2) }

There are many ways of doing this. You can use clingo. The clauses P ′
F ∪ P¬ab are in

file kautz reiter.lp. As usual, edit the output to make it more readable and add a little
commentary.

1The ‘contrapositive’ of P → Q is ¬Q→ ¬P .
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(If you want to try other values of ‘maximum time’ use --const maxT=N .)

Final remarks We haven’t shown that the rules/clauses P ′
F ∪ P¬ab ∪Obs are equivalent to

the default theory (D¬ab, F ′ ∪Obs). One could go on to investigate this (but we won’t).

There are also other ways of formulating default persistence (‘inertia’) using Reiter default
logic. The above is the most common.

Question 5 Here’s another way of looking at the Stolen Car and similar problems. Let’s
take simple ‘forward persistence’ of p(t) and ¬p(t), i.e. Pf as in Question 1.

Now, if we have p(t) and ¬p(t+1) it must be because something happened in the transition
from t to t+1: the car was stolen between t and t+1, or (being made of ice) it melted
between t and t+1, or whatever. Let q(t, t+1) represent that there is some car-disappearing
action between t and t+1. We add the following ‘effect axioms’ to Pf:

¬p(t+1)← q(t, t+1) (‘effects’ )

Notice the deliberate asymmetry: we are allowing for actions that result in a transition
from p(t) to ¬p(t+1) but we do not have actions that result in a transition from ¬p(t) to
p(t+1). We could allow for such actions if we wanted to — we would add a clause p(t+1)←
q(t, t+1). Or we could add a clause p(t+1)← q′(t, t+1) if we wanted to distinguish between
actions that remove the car from the car park (q) and actions that put the car into the car
park (q′). I won’t do this. I want to make the point that we can have asymmetry between
p(t) and ¬p(t).

So now: an action q(t, t+1) happens, or it does not. We can represent that like this:

q(t, t+1) ← not ¬q(t, t+1) (‘exog’ )

¬q(t, t+1) ← not q(t, t+1)

One last point. We need an ‘action pre-condition’: q(t, t+1) could not happen if p(t) is
false. How do we express this pre-condition? I’ve pointed it out before. If b is an atom not
appearing anywhere else in a program P , then

b ← L1, . . . , Lm, not b

added to P eliminates all answer sets containing {L1, . . . , Lm }. This is easy to see.
Because b appears nowhere in P we can ‘split’ the program into the ‘top part’ { b ←
L1, . . . , Lm, not b } and the ‘bottom part’ P . If X is an answer set of P containing
{L1, . . . , Lm }, simplifying the ‘top part’ leaves { b← not b }, and this has no answer sets.

So to express the action pre-condition we can add the following:

b ← q(t, t+1), ¬p(t), not b(t) (‘pre-conditions’ )

Most ASP solvers, including clingo allow constraints to be written in the following form
(but with :- for the arrow):

← q(t, t+1), ¬p(t)

And finally, to guard against the possibility of answer sets with complementary literals, let
us add the constraints:

← p(t), ¬p(t) (‘consistency’ )
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Note that clingo adds the ‘consistency’ constraints automatically.

So let Pcars be Pf together with the relevant instances of ‘effects’, ‘exog’, ‘pre-conditions’,
and ‘consistency’.

(a) Check that the following are both answer sets of Pcars ∪ { p(1),¬p(3) }. You can easily do
this by hand. (But do not submit it.) You could do it using splitting sets, but there is no
need : you are only checking the stability condition for a given answer set. Just compute
the reducts.

{ p(1), q(1, 2),¬p(2),¬q(2, 3),¬p(3) } and { p(1),¬q(1, 2), p(2), q(2, 3),¬p(3) }

This is as expected: one answer set explains the observation ¬p(3) because it has the
transition q(1, 2) and the other because it has the transition q(2, 3).

But perhaps more surprising is that the following is also an answer set of Pcars∪{ p(1),¬p(3) }.

{ p(1),¬q(1, 2), p(2),¬q(2, 3),¬p(3) }

Check this. (Do not submit it.) Here, the car seems to disappear mysteriously.

Is this surprising? Well, the program as formulated says that an action q(t, t+1) has the
result that ¬p(t+1). It does not say that absence of q(t, t+1), i.e., ¬q(t, t+1), cannot also
have the effect ¬p(t+1) and thereby override default persistence. You can see this already
with the simpler example Pcars ∪ { p(1),¬p(2) }.
I recommend that you try these hand calculations but do not submit them. Instead submit
your answer to the next part, part (b).

(b) Compute the answer sets of Pcars ∪ { p(1),¬p(2) } and Pcars ∪ { p(1),¬p(3) } using clingo.
The clauses for Pcars are in file kautz with q.lp. Edit the output and add a brief comment.

(c) The answer sets of Pcars ∪ { p(1) } represent all the possible evolutions of the world from
an initial state in which the car is in the car park.

Compute the answer sets of Pcars ∪ { p(1) } using clingo.

Which of these answer sets contain ¬p(2)?

You can do this by eye, or by adding the constraint

:- not -p(2).

(or more generally :- not -p(maxT).).

What is going on? In part (b) we calculate the answer sets of Pcars∪{ p(1) } in which ¬p(2)
is true. That is not the same as calculating the answer sets of Pcars ∪ { p(1) } ∪ {¬p(2) }!
In general: if we want to determine how some set of observations Obs (p(t) and ¬p(t)
literals) could have come about, we do not compute answer sets of Pcars ∪ Obs. No: we
calculate the answer sets of Pcars ∪ { p(1) }. These are the possible evolutions of the car
park world from a p(1) state. Then we pick out just those answer sets (possible evolutions)
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which have Obs all true. (Cf. the action language C+ covered at the end of the course.)
Or, if we are interested in cases where initially the car is not in the car park, we calculate
the answer sets of Pcars ∪ {¬p(1) } and then check which have Obs all true.

Try this for the case where, say, maximum time maxT = 6, and we have observations p(1)
and ¬p(6). Submit a (suitably edited) copy of the clingo output.

The Hanks-McDermott Problem (Yale Shooting Problem)

Now we are going to do a similar exercise for an even more famous problem in the AI
literature: the Yale Shooting Problem, also known as the Hanks-McDermott Problem.

Hanks, S. and McDermott, D. Nonmonotonic logic and temporal projection. Artificial
Intelligence 33:379–412 (1987).

A hugely influential paper (for better or worse, depending on your point of view).

The problem arises with the formalisation of a simple example concerning the effects of
loading and shooting a gun, and letting time pass (waiting). A person is initially alive.
Shooting someone with a loaded gun results in their death. The action wait has no effect
on truth of fluents. The expected model (or extension if we use Reiter default logic) is thus
one where the victim ends up dead after the sequence load; wait; shoot.

The problem? A natural (or perhaps simple-minded) formalisation of default persistence
(‘inertia’) gives two different models!!

• one (as expected) in which the victim is not alive after the sequence load; wait; shoot;

• and another (unexpected) model in which the victim is alive, but the gun has some-
how become unloaded during the wait. This second, unexpected model is sometimes
called the ‘anomalous’ model.

Much of the force of the Hanks-McDermott paper is that the problem is not specific to any
particular default reasoning formalism: they show in their paper that the same problem
arises using several non-monotonic formalisms. (That part is not at all surprising now,
since the relationships between these formalisms are well understood.)

Hanks & McDermott’s conclusion: this appears to be a problem for default and/or temporal
reasoning in general, rather than just an objection to a particular proposal.

The problem attracted the attention of a great many researchers and huge numbers of
papers were produced proposing a variety of solutions. Responses ranged from the view
that the problem is not really a problem, to the opinion that it constitutes a fatal objection
to the whole project of logic-based AI itself. There is also a range of solutions, and
demonstrations that other temporal reasoning systems are immune to the problem.
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Question 6 Here is a formulation in Reiter default logic similar to the one we had earlier.
The only difference is that we now have two fluents that persist, alive and loaded (and their
negations).

Defaults:

{ : ¬ab(loaded, t, t+1)

¬ab(loaded, t, t+1)
,

: ¬ab(alive, t, t+1)

¬ab(alive, t, t+1)
}

Persistence/frame (as before):

{ ¬ab(loaded, t, t+1)→ ( loaded(t)↔ loaded(t+1) ),

¬ab(alive, t, t+1)→ ( alive(t)↔ alive(t+1) ) }

And we need to specify the effects of the load and shoot actions:

{ load(t)→ loaded(t+1),

loaded(t) ∧ shoot(t)→ ¬alive(t+1) }

This is not exactly the same formalisation as that of Hanks-McDermott — they use the
‘situation calculus’ — but these differences are immaterial. The treatment of default
persistence and all essential features of the formalisation are the same.

We want to compute the extension(s) of this default theory when we add the further facts
{ load(0),wait(1), shoot(2) }.
Note that times range here from 0 to 3, rather than from 1 to 4. (There is no particular
reason why I chose that. It does not affect anything.) Also, the occurrences of actions are
represented in the form shoot(2) and not in the form shoot(2, 3) as was used in the ‘Stolen
Car’. That does not affect anything. And note finally that here shooting does not make
the gun unloaded. We could change that but nothing relevant to the Hanks-McDermott
problem is affected (try it).

Now, we want to compute the extensions. We can do this exactly as for the ‘Stolen Car’
examples. Let’s translate to a logic program and use clingo. The clingo clauses are in
files ysp reiter.lp and ysp effects.lp. Notice that ysp effects.lp has two clauses
corresponding to the effects axiom loaded(t)∧shoot(t)→ ¬alive(t+1), otherwise we do not
get the full effect of the material implication →.

So: what are the extensions (answer sets)?

(Hanks & McDermott say in their paper that there are just two. They are wrong.)

How are these extensions to be interpreted? (Briefly.)

(Optional Do not submit this, but you could investigate what happens if you remove the
contrapositive half of the effects of shoot. Or if shoot also unloads the gun.)
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Question 7 It is generally held that the essence of the Hanks-McDermott problem is the
existence of the ‘anomalous model’, which in itself has nothing to do with loading the gun,
or shooting, or anything else.

Many subsequent papers discuss the problem in the following simplified form:

{ loaded(1),

alive(2),

loaded(2)→ ¬alive(3) }

together with the usual default rules for persistence (‘inertia’).

(Notice that the last formula is logically equivalent to ¬loaded(2) ∨ ¬alive(3).)

What are the extensions for this simplified version of the problem? The clingo clauses
are in file ysp simplified.lp. How do you interpret the answer?

Question 8 (Follow up: Recommended but unassessed. Do not submit!!)

What do we get if instead of the Reiter-like default persistence rules tried by Hanks and
McDermott we use instead only the simple ‘forward persistence’ rules we looked at for the
‘Stolen Car’ in Questions 1 and 5? That didn’t deal with the ‘Stolen Car’ very well but
what happens here?

The clingo clauses are in file ysp forward.lp. What are the answer sets?

You should find that the ‘anomalous model’ has disappeared. Surprised?

One common response to the Hanks-McDermott paper is that it is not at all surprising or
undesirable that the gun might mysteriously unload itself during the waiting. We might
be waiting for a very long time before shooting, and there is nothing in the example as
formalised to say this could not happen. Why couldn’t the gun become unloaded during
the wait? (What is not clear to me is why this argument does not apply equally to being
alive. Why then could the victim not die during the waiting — or indeed during the loading
or during the shooting?)

The ‘simple forward’ persistence formulation eliminates all these possibilities. But suppose
that we change the example slightly. Suppose now that wait might unload the gun, or it
might not. How could the ‘simple forward’ persistence formulation of ysp forward.lp be
modified to allow for this? In other words, suppose we do want two models/extensions
here: one in which the gun does not unload during the wait (and so the shooting kills),
and the other in which the gun does unload during the wait (and so the shooting does not
kill). How do we get this, with ‘simple forward’ persistence? We don’t want the victim
dying, except by being shot with a loaded gun.

There are two ways to do it. Do both. (Optional. Don’t submit!!) Here they are:
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Method (1) Proceed as for the ‘Stolen Car’ in Question 5. Introduce an action —
call it unloading — which unloads the gun, together with the appropriate pre-conditions,
including a pre-condition that says unloading can only happen during wait.

Method (2) Do not bother with unloading. Think of a way of expressing in clauses that
wait(T ) might cause ¬loaded(T +1) or might not. One way to think of it is this: if wait(T )
happens then either loaded(T+1) or ¬loaded(T+1). Or look at how may cause works in
the action language C+ covered in the last part of the course. But be careful: wait(T )
could unload a loaded gun but we don’t want to say that wait(T ) could load a gun that is
not loaded.

There is nothing to submit for this part. I recommend that you try it however, and run
your solutions in clingo. Or at the very least look at the solution I will provide in my
sample answer.

SUBMISSION: Summary

Q0. Nothing to submit. But read it.

Q1. Use ‘splitting sets’ to determine the answer sets of Pf ∪ Obs for the following sets of
observations Obs:

{ p(1), ¬p(3) } and { p(1), p(3) } and { p(2) }

Q2. Use ‘splitting sets’ to determine the answer sets of Pf ∪ Pb ∪ Obs for the following sets of
observations Obs:

{ p(1), ¬p(3) } and { p(1), p(3) } and { p(2) }

Q3.

(a) Show that the following are both extensions of (D¬ab, F ∪ { p(1),¬p(3) }).

Th(F ∪ { p(1),¬p(3) } ∪ {¬ab(1, 2), ab(2, 3) })
Th(F ∪ { p(1),¬p(3) } ∪ { ab(1, 2),¬ab(2, 3) })

Part (a) you do by hand. (You write something.)

(b) Nothing to submit. (But I strongly recommend that you do the exercise, or at least
look at the sample solution when it is published.)

(c) Use clingo to compute the answer set(s) of PF ∪ P¬ab ∪ { p(1),¬p(3) }.
Submit (edited) copies of the clingo outputs, with a few comments.
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Q4. Use clingo to compute the answer sets of P ′
F ∪ P¬ab ∪Obs for the following sets of obser-

vations Obs:
{ p(1), ¬p(3) } and { p(1), p(3) } and { p(2) }

Submit (edited) copies of the clingo outputs, with a few comments.

Q5.

(a) Nothing to submit. (But do the calculations.)

(b) Use clingo to compute the answer sets of Pcars∪{ p(1),¬p(2) } and Pcars∪{ p(1),¬p(3) }.
Comment briefly.

(c) Use clingo to compute the answer sets of Pcars ∪ { p(1) } for various values of maxT.

For maxT = 6, which of these answer sets contain ¬p(6)? Does this make sense?

Q6. Use clingo to compute the extensions of the Hanks-McDermott default logic formalisation
of the YSP. Comment briefly on what you find.

Q7. Use clingo to compute the extensions of the simplified version of the YSP. Comment
briefly.

Q8. Optional follow up: recommended but unassessed. Nothing to submit.

It is NOT necessary to type submissions. Handwritten submissions are perfectly accept-
able, as long as they are readable. If you do type your submission, please do not submit it
electronically.

Where it says ‘add brief comments to the clingo output’ it means brief. The comments
are just for me to check you have understood the significance, for the example, of the
answers clingo computes.

FEEDBACK

This exercise is intended to provide a directed exploration of issues in the formalisation
of default persistence (‘inertia’) and temporal reasoning, and thereby to complement the
material presented in lectures. It is also intended to provide a framework for revision
and practising the core material on answer sets and default logic. There is an assessment
component but as you can see, it is not the primary purpose. I have tried to keep the
amount of writing to a minimum.

Submissions will be marked and returned with comments in the usual way. For revision
purposes I will also publish a sample solution, with commentary, on the course website.

The main aim of this exercise is the directed exploration. The assessment component is
secondary. If you have questions about the sample answer, or about the coursework, or
about anything else in the course, please ask.
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